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EQUATIONS DETERMINING THE ORBIT OF THE HIGHEST WEIGHT
VECTOR IN THE ADJOINT REPRESENTATION

ALEXANDER LUZGAREV

ABSTRACT. We explicitly construct a set of quadratic equations defining the high-
est weight vector orbit for adjoint representations of Chevalley groups of types
Dy, E¢, E7, and Eg. The combinatorics of these equations is related to the com-
binatorics of embeddings of the root system of type A3z. We believe that the
constructed equations provide a prominent framework for calculations with ex-
ceptional groups in adjoint representations, which is particularly interesting for
groups of type Eg.

1. INTRODUCTION

The highest weight vector orbit in an irreducible representation of a Chevalley
group over an algebraically closed field is an intersection of quadrics (cf. [3]). We
explicitly describe a set of quadratic equaions on this orbit over an arbitrary com-
mutative ring. First of all, we have square equations described by Nikolai Vavilov
in [7] for microweight representations as well as for adjoint ones. In some mi-
croweight cases those equations exhaust all equations defining the highest weight
orbit (over an algebraically closed field). In the adjoint cases square equations are
clearly not enough: for example (as Vavilov pointed out in [7]), they do not contain
coordinates corresponding to the zero weight. We cannot get on with an A;-proof
of the structure theorems for Eg (cf. [9]) without zero weight coordinates.

The equations on the highest weight vector orbit in the adjoint representation of
a group of type A are well known: they are called Pliicker equations. On the other
hand, non-simply-laced root systems are generally a little harder to deal with. That
is why we consider only the remaining simply-laced root systems Dy, Eg, E7, and
Eg. Moreover, in order to evade some difficulties relating to triality in D4 we take
1l > 5 in the Dy case. In any way, we include D; only because our constructions
work verbatim in this case; our main goal is to obtain equations for exceptional
groups.

We construct, in addition to the aforementioned square equations, two more
classes of equations; all of them contain zero-weight coordinates. The combina-
torics of these equations is also intimately related to the “numerology of maximal
squares” studied in [7] and [8]. The same equations are produced in a more gen-
eral context (but in slightly less explicit form) by Victor Petrov, Nikolai Vavilov,
and myself in [4].

The basic calculations that lead to the present paper were performed by the au-
thor in 2007-2008 at the Universitit Bielefeld. The author thanks Anthony Bak for
his hospitality and support, and Nikolai Vavilov for extremely useful discussions.
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2. THE EQUATIONS

Everywhere in this paper ® =Dy,1 > 50r ® =E;,1 =6,7,8. Let{xt1,...,x1} =
IT C @ be a fundamental system in @ (its elements will be called fundamental
roots). Our numbering of fundamental roots always follows Bourbaki [1]. For
o € ® wesetx = 22:1 ms (o) xs.

Let G = G(®,R) be the simply connected Chevalley group of type @ over a
commutative ring R with 1. We work with the adjoint representation of G(®, R),
which gives us the irreducible action of G(®,R) on a free R-module V of rank
(21 —1), 78, 133, 248 for ® = Dy, Eg, E7, Es respectively. By A we denote the set
of weights of our representation with multiplicities. More precisely, A = A* U A,
where A* = O is the set of non-zero weights, and A = {01, ..., 0t} is the set of zero
weights. We fix an admissible base e, A € A in V. Hence we have the vectors
e~ for « € ® and €' = €% fori =1,...,L. Then a vector v € V can be uniquely
written asv = Y, A vaed = o vae® + X1, Vet We will often simply write
v =(vp).

The root system @ is a subset of a Euclidean space E with the scalar prod-
uct denoted by (-,-). We will also use a bilinear product defined by («,3) =
2(x, 3)/(B,B) for &, B € E (for &, p € ® we get the Cartan numbers). Note that our
root system @ is simply-laced, which means that all roots have length 1; therefore
(x, B) = 2(ex, B) for &, B € ®. We denote by Z(«, B) the angle between «, 3 € E.
Note that for &, 3 € ® the scalar product («, ) is 0,1/2,-1/2,1,—1if « L §,
x—PBed a+ped x=p, a=—frespectively.

The structure constants Ny g, &, 3 € @ of the simple complex Lie algebra of
type @ are described in detail in [6, § 1]. We often use the identities for structure
constants summarized there without any explicit reference. Note that in our case
always Ny g =0 or £1.

o The t/2-equations. Suppose «, 3 € © and Z(«, 3) = n/2. Let us look at all
other (unordered) pairs of roots with the same sum:

ST[/Z((X) B) = {{V) 5} | Y+o=oa+ E’){V) 5} 7& {0(, B’}}

Consider the foolowing equation on a vector v = (vy)aca € V:

VaVp = Z N(x,_yN B,—5VyVs. (1)
{v,8}€S7,2(x,B)

We will call it the t/2-equation corresponding to the pair {«, 3}. First of all, we
need to prove that the right hand side makes sense: we could swap y with 6 and
get a different-looking coefficient. But it follows from the identity (C5) in [6] that
Ng,—yNg,—5 = Ng,—5Ng,—y. Next, note that (o, y) + (e, 8) = (&, Y+ 8) = (e, ot +
B) = (x,) = 1, while & # v, « # . Therefore («,v) = («,8) = 1/2. It follows
that Z(«,v) = Z(«, d) = 7t/3.

For the rest of the paper, put k = 1,4,5,7 for ® = Dy, E¢, E7, Eg, respectively.
In order to write the 7r/2-equation in a more symmetric form, recall a definition
from [7].

Definition 1. A set of roots {Bi},1=1,...,k,—X,...,—1such that Z(pi,p_i) =7/2
foreveryi=1,...,k, and Z(ps, B;) = /3 for i # £j, is called a maximal square.

For a maximal square {3} the sum 3; + _; does not depend on i. Therefore
the set of roots contained in the pairs from S/, («, 3), together with the roots
and B, is a maximal square (this was proved in [7, Theorem 1]). We shall prove
shortly that our 7/2-equation is uniquely determined by this maximal square, and
does not depend on the choice of an orthogonal pair of roots {c, B}. Let us fix an
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indexj=1,...,—T. Ifweput 1 =, _1 =B, and Sr/2(x, B) ={{Bi,p—i} | i =
2,...,k}, the m/2-equation can be rewritten as

VB Ve = Z Ng,, g Np_1,—p_ VB VB_i-
i>2
The sign column c(j) € (Z/ 27.)%* is defined as follows.
. 1 ifi=4j
chli=9 "’ T
_Nﬁj‘—BiNB—j‘—B—i) if i # £j.
Another equivalent form of the 7t/2-equation is

k

Z C(”ivﬁivﬁ,i =0.

i=1

The following lemma says that if we take another orthogonal pair in S, /> («, 3)
instead of {«, 3}, we will get the same equation.

Lemma 1. Foranyj,h=1,...,—1 we have
c(h) — c(h)jc(j) = 0.

Proof. Immediately follows from [7, Theorem 3]. O

o The 27t/3-equations.

Suppose again that &, € ® and Z(«,3) = n/2. Consider all pairs of roots
{v, 8} such that y + 6 = « and v, 6 are not orthogonal to 3. Note thatify L 3 and
Y+ 8 =«, then (6,) = (x—v,p) =0,808 L B. Also, 0 = (&, ) = (v +8,p) =
(v, B) + (9, B). Therefore for such a pair {7y, 5} one of the angles Z(v, ), Z(5,3) is
27t/3, while the other is 7t/3. Put

Sony3(o B) ={{v,8} [ v + 8 = &, (v, B) # O}

Consider the following equation on a vector v = (vy)aea € V:

1
Vg Z([S, Q) Vs = — Z Ny sVyVs. ()
s=1 {v,8}€S27/3(x,B),
Z(y,B)=m/3

We will call it the 27t/3-equation corresponding to the pair («, 3).

The pairs in S, /3(x, B) are related to the embeddings of root systems Az C ®.
In order to see that, consider a pair {y,8} € S,./3(x, ). We may assume that
(v,B) =1/2,(5,B) = —1/2. Then the roots §,v, p —y form a fundamental system
of a root subsystem ¥ C @ of type Az. We can write the roots «, 3 in the Dynkin
notation for this fundamental system as follows: o« = 110, § = 011. Note that ¥
contains y’, 8’ for exactly one more pair {y’,8'} € Sy/3(ex, ), namely, the pair
{y’, 8’} ={111,—001}. In other words, y' =5+ B, 8’ =y — . The pairs {y, 5} and
{y’, '} are said to beconjugate.

Note that [S;-/3(x, B)| = 2(1—-1),6,8,12 for ® = Dy, Eg, E7, Eg, respectively. We
see that the number of conjugate pairsin S, /3 (o, 3) is one less than the number of
pairs of orthogonal roots in a maximal square. This is not a coincidence: if we fix
an orthogonal pair («, ) in a maximal square and take any of the remaining pairs,
together they span a root subsystem of type Az. There are exactly k — 1 of these
subsystems, and each contains exactly two of conjugate pairs from S, /3(, 3).

We get the following equivalent description of Sy /3 (x, B):
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Lemma 2. Suppose that o, 3 € ©, & L . Let QO ={p1,...,B_1} be a maximal square
such that 31 = &, B_1 = B, and 3; L 3_; for every i. Then

Sons3log B) ={{B1 — B, B} [1=2,...,—2}

and the 2mt/3-equation corresponding to the pair (x, 3) can be rewritten as follows:

1
Ve ) (Bt as)Vs = ) Np,,—p Ve -6 Ve
o

itd]

Proof. Note that (B1 — Bi) + i = B1 = aand (B, B) = (B, 1) # O fori =
2,...,—2. This means that all pairs {1 — Bi, Bi} are in S, /3(x, 3). In order to
prove the reverse inclusion, consider a pair {y, 8} € Sy/3(x, ). We may assume
that Z(y,3) = 2n/3. Then the roots @ —y, v + 3 are orthogonal, and their sum
is o + B; it follows that « — v,y + B € Q, so that § = « —y = B; for some 1. It
remains to note that Ng,_p, .3, = Ng,,—g, = Np,,—p, by the identities (C4) and
(C1) from [6] O

e The m-equations. Suppose that &, 3 € ® and Z(«,3) = 7/2. Consider all
pairs of roots {y, 8} such that y = —0 and v, 6 are not orthogonal to « and 3. There
are two possibilities: the first is (v, «) = (v, ), and then (5, o) = (8, 3). We may
assume that (y, &) = (y, ) = 2rt/3. Put

Srlo, B) ={(v,8) [ v+ 8 =0,~L(y,&) = Z[v,B) = 2r/3}.
The second possibility is that one of the angles Z(v, «), Z(8, «) is 27t/3. We may

assume that Z(y,«) = 27t/3, and then Z(v,B) = n/3, Z(6,a) = /3, Z(8,B) =
27t/3. Put

Srlog B) ={(v,8) |y +6=0,2(y,a) = £(8, B) = 2/3}.
Consider the following equation on a vector v = (vy)aea € V:

1 1
Z &, &)V Z By axs)Vs = Z VyVs — Z VyVs. 3)
s=1 s=1

(v,8)eS7 (x,B) (v,8)€Sn(x,B)

We will call it the m-equation corresponding to the pair (x, 3).

Note that [Sx(«, )| = [SL(x,B) = 2(1 —1),6,8,12 for ® = Dy, E¢,E7,Es,
respectively. As in the previous case, we can construct a maximal square cor-
responding to Sx(«, ). For any pair (v,0) € Sx(«, ) we have y + « € @
(v + o« B) = (v,B) =—1/2, therefore y + « + € ®. Moreover, (y + « + 3, ) =
(v +a+B,B) = (—v,00 = (—v,B) =1/2and —y + (v + «+ ) = o + B. This
means that the roots {—y | (v,0) € Sx(«, )} together with «, 3 form a maximal
square. It is easy to see that the roots {y+ o, +5 | (v,8) € S/ (e, B)} together with
«, 3 form (the same) maximal square.

As in the previous case, the constructed sets S (e, 3) and S/ («, ) are related
to embeddings Az C ®: if (v,d) € Sx(«, ), the roots «,y, 3 form a fundamental
system of a root subsystem ¥ C @ of type Az. We can write (v, ) = (010,—010) in
Dynkin notation with respect to this fundamental system. Moreover, ¥ contains
another pair of roots from S, («, 3), namely, (—111,111). On the other hand, the
pairs (—110,110) and (011,—011) are in S’(x, ). The analogue of Lemma 2 holds
in this situation:

Lemma 3. Suppose that o, 3 € ®, « L 3. Let Q ={B1,...,P_1} be a maximal square
such that 31 = &, B_1 = B, and 3; L 3_4 for every i. Then

ST[((X) ﬁ) :{(_ﬁi) BL) | i= 2)'-')_2})
S;(o‘)ﬁ) :{(Bi_ [31)[31 - [31) |i:2)-'-)_2})
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and the m-equation corresponding to (e, 3) can be rewritten is follows.
! !

Z<B1>(x5>{)\5 : Z<ﬁ—1)(x5>{"\5 = Z (v[31—[31v[31—[31 _V—Bivﬁi)'

s—1 s—1 iAE]

To reiterate, we get one 7t/2-equation for every maximal square, one 27t/3-equation
and one 7-equation for every maximal square with a chosen pair of orthogonal
roots in it.

3. PRELIMINARY LEMMAS

We encountered embeddings A3 C @; we will use the fact that every such
embedding can be expanded to an embedding D4 C ©.

Lemma 4. Recall that ® = Ey or Dy (1 > 5). Every subsystem ¥ C @ of type A3z can
be embedded into a subsystem of type D4. To be precise, if ., 3,y € ® are roots such that
o Ly, Zle,B) = Z(B,y) = 21/3, then there is a root & € ® such that & 1L o, 6 L vy,
and Z(8,B) = 2m/3.

Proof. In the case ® = E; all subsystems of type A3 in @ lie in one orbit with
respect to the action of the Weyl group W(E;). This follows, for example, from
the tables in Carter’s paper [2]. Therefore it remains to show the statement for a
single subsystem of type As: for example, we may assume that « = a2, B = oy,
Y = «3 and take 0 = as. In the case @ = D, there are two orbits of subsystems
of type Az with respect to the action of the Weyl group W(D,). This immediately
follows from the computations in [2, § 9]. For one of the orbits we may assume
that « = 11, B = 12, ¥ = o, and take = «y_3; for the other orbit we may
assume that x = 13, p = 12, Y = 11, and take 6 = oq. O

Now we describe the possible relative positions of a root p € @ and a maximal
square Q = {p1,...,B_1}
Lemma 5. Let Q ={f1,...,_1}be a maximal square, and let p € ®@ be a root. Exactly
one of the following holds:

(1) There exists i such that p = Bi, Z(p, B—i) = /2, and Z(p, B;) = /3 for j # £i.

(2) There exists i such that p = —Bi, Z(p,p—i) = /2, and ZL(p, B;) = 2m/3 for
j #£ +i.

(3) There exists isuch that p L Biand p L B_y; foreveryj =1,...,—1either p L 35,
p L B_j, orone of the angles Z(p, B5), Z(p, B—j) equals 7t/3, while the other equals 211/3.

(4) For every i one of the angles Z(p, B1), Z(p, B—1) equals 7t/2, while the other equals
/3.

(5) For every i one of the angles Z(p, B1), Z(p, B—_i) equals 7t/2, while the other equals
2m/3.

Moreover, (p, i + p—i) equals 1, —1, 0, 1/2, —1/2 in cases (1), (2), (3), (4), (5),
respectively.

Proof. If p € O, we have p = (3; for some i. By the definition of maximal square,
the angle between p and every other root in Q) is equal to 7t/3. In this case, (1)
holds.

If —p € Q, we can apply the above observation to —p; in this case, (2) holds.

Now we assume that +p ¢ Q. Hence, (p, 31) is equal to 0 or £1/2. Suppose
that there exists i such that (p, i) = 0.

o If there exists 1 such that (p, i) = (p,p—i) = 0, then for every j # 1 we
have

(p) B]) + (p) ﬁ—]) = (p) B] + ﬁ—]) = (p) ﬁi + B—i) =0.
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This means that either (p, ;) = (p, f—j) = 0, or one of these scalar prod-
ucts equals 1/2, and the other equals —1/2. Therefore (3) holds. Note that
in this case there exists j such that (p, 3;) # 0: otherwise p would be or-
thogonal to every root in O, which is impossible.

o If there exists i such that (p, 3;) = 0and (p, 3—i) = 1/2, then for everyj # i
we have (p, 3;) + (p, —j) = 1/2. This means that one of these products is
equal to 0, and the other is equal to 1/2. Therefore (4) holds.

o Similarly, if there exists i such that (p, i) = 0 and (p, f—i) = —1/2, then
for every j # i we have (p, ;) + (p, —j) = —1/2. This means that one of
these products is equal to 0, and the other is equal to —1/2. Therefore (4)
holds.

Finally let us consider the remaining case: suppose that for every i the scalar prod-
uct (p, 31) is not equal to 0. We must show that this is impossible. If for some i we
have (p, i) = (p,B_i) = 1/2, then By + p_; — p is a root, and its sum with p is
Bi + B_i. Therefore p € O, and we are in the case (1).

On the other hand, if for some 1 we have (p, i) = (p,_i) = —1/2, then p +
Bi+ P ie®and —p+ (p+Pi+PB_i) =Pi+ B_i. Therefore —p € Q, and we are
in the case (2).

Finally, we can choose i such that (p, i) = 1/2, (p, 3—i) = —1/2. Let us show
that we are in the case (3). The roots —p31, p, p—i span a root subsystem ¥ C @ of
type Az. By Lemma 4, we can embed it into a root subsystem of type D4. Therefore
there exists 0 € ® such that ¢ L pi, 0 L i, and (0,p) = —1/2. But —0 — p +
Bi, 0+ p+ B_i € O, the sum of these two roots is f; + f_i, and both of them are
orthogonal to p. This means that we are in the case (3). O

Definition 2. Let Q be a maximal square in @, and let p € © be a root. We say that the
angle between p and Q is equal to Z(p, Q) =0, m, m/2, /3, 21/3, if in the Lemma 5 the
condition (1), (2), (3), (4), (5) holds, respectively.

Lemma 6. Let Q = {fy,...,B_1} be a maximal square. Suppose thatj € {1,...,—1}.
Put Yi = Bj — ﬁifOV everyi 75 :|:j, Y; = ﬁj, Y- = —B_J‘. Q' = {’Y],...,’Y_]} isa
maximal square.

Proof. An easy calculation shows that (yi,y—i) =0 for all i, and (yi,v¢) = 1/2 for
alli+#t. O

4. ACTION OF THE ELEMENTARY SUBGROUP

Suppose p € @, & € R. We work with the adjoint representation, therefore the
action of the elementary root unipotent x, (&) on the basis of V is described by the
following lemma.

Lemma 7 (Matsumoto). (1) IfA € ®, A+ p & © U{0}, then x,(&)er = e*;
(2) ifMA+p € @, then x,(E)er = e + Ny a&erP;
(3) xp(E)es =€ — (p,as)éeP fors =1,...,1;
4) xp(E)e P =e P+ Y ! mg(p)Ees — £2er.
Proof. See [5, Lemma 2.3]. O

This immediately implies the following description of the action of x, (&) on the
coordinates of v = (v)) € V. We will use it without any further reference.

Lemma 8. (1) IfA e O, A—p ¢ O U{0}, then (xp(E)V)A = Vi,
(2) lfLA\— p € @, then (xp(E)VIA =Vva + Npa_p&va_p/
(3) (Xp(i)v)s =Vs + ms(p)Ev_p.
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(4) (xp(EV)p = Vp — 3oy (py xs)EVs — E2v_y.
In particular, if Z(p,N) = m/2, 2t/3 or m, then (x,(E)V)A = va.

We will often use the following description of the action of x,(&) on the zero
weights.

Lemma 9. Suppose that ,p € @, £ € R,ve V,w =x,(E)v. Then }_ (B, as)Ws =
Zs<ﬁ’» o‘s>{’\s + E,<[3, p>v,

Proof.
Z<B»“s>ws = Z<Bs0¢s>(05 +ms(p)év_p)

s

_Z B, as vS+EZ B, ms(p)as)v_p
= Z B)‘Xs Vs + E,<ﬁ,p>\)_p

O

Suppose thatv e V, o, 3 € ©, and Q = {f1,...,_1}is a maximal square such
that p1 = «, p_1 = 3, and B; L B_; for every i. We need the following notation
for the polynomials in the equations (1), (2), (3):

2
/g (v) = vavg — > No,—yNp,—sVyVs,

{v,8}€Sx,2(x,B)
1

27/3 ~
fo:[é (v) = Z NB]»*B‘LVBI*B‘LVB‘L — VB, Z<Bf1s(xs>vss

iAt1 s=1
1 1
70-2»[5(\)) = Z (VBI—BivBi—BI _V—Bivﬁi) —Z<B1,OCS Z B ],OCS
it s—1 s—1

Proposition 1. Let &, 3, p € © be roots such that o« L (3, and let v € V be a vector. Take
& € Rand put w = x,(&)v. Suppose that ¢ € {m/2,2mn/3,m}. Then fﬁyﬁ(w) is a linear

combination of polynomials of the form f‘yl’ s(v).

We shall prove Proposition 1 in the next section. Now we can derive our main
result from it.

Theorem 1. Theset of vectorsv € V satisfying the equations (1), (2), (3) forall «, 3 € @,
o L B, is invariant under the action of the group E(®, R).

Proof. 1t suffices to prove that if v € V satisfies the above equations, then w =
Xp(&)V satisfies them for every p € @, & € R. Indeed, by Proposition 1, each of the
polynomials f§ ;(w) is equal to a linear combination of these polynomials applied
to v, which is zero. O

Corollary 1. If v € V is a column of an element g € E(®, R) corresponding to any root
p € A* = @, then v satisfies the equations (1), (2), (3) forall o, 3 € O, o« L p.

Proof. We have v = geP. It is obvious that e® satisfies those equations, so by Theo-
rem 1 v satisfies them too. O

5. PROOF OF PROPOSITION 1

Let Q = {B1,...,B—1} is a maximal square such that f; = o, p_7; = 3, and
Bi L B_i for every i. We shall explore the five cases described in Lemma 5.

(1) Suppose that (p, Q) = 0. This means that p = 3; for some j.
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o The 7t/2-equation. The discussion following Definition 1 shows that
the 71/2-equation depends only on a maximal square and not on the
choice of orthogonal roots «, 3 in it. Thus we may assume thatj = 1.

Then
2 2
/5 (w) — /2 (v)
1
= <_Z<B1so‘s>£{)\s - E.ZV[31> Vp_,
s=1
—& ) N, pNp g Npy g piVepiVe
i£+1
2
— &) Np,, 8Np 1, 8 Np,g g Ng B BiVE B1VB o B
i>2
First, note that Ng, g.—p, = —Ng,,_p,- Moreover, Ng |, g . =
N[571,[51*[31 and N[51,[571,[51 = —N,ﬁhmfﬁii. Therefore the terms
on the right-hand side containing £? sum up to —E,ngi 2] _p, (V). The

rest sums up to —Ef?;i/]iﬁ] (v). Indeed, Ng, —p, = —Np,.p,—p,, and

(by Lemma 6) the roots 3; — 31 together with f_; and —; form a
maximal square. Hence

5 2 2m/3 2
fzy/ﬁ (w) — f;rcy/ﬁ (v) = _E'ff;i/l »— B (v) = E’zfg£1 =B (v).

e The 27/3-equation. First suppose that j # £1. Then wg,_p, =
Vg, —p; fori# —j. Thus

2mt/3 27mt/3
f“,ﬁ (W)_fo‘,@ (v) = Z (NBI‘—Biv[31—BiE’NijBi_ijBi_Bj)
it
144
+Npy,—pENg;—p_ VB Vs
1

—Npi, V6185 D _(Bjy &) EVs

s=1
2
- Nﬁh*ﬁj"[ﬁ*ﬁja V—B;
1

- E'Nﬁj»f%*ﬁjv[ﬁ*ﬁj Z<B*1 y (xs>Gs

s=1
—vp, E(B-1,Bj)v—p;
- E’ZNBjyﬁl_ijB1_Bj <B—1) Bj>v_f3j .

Note that (B_1,B;) = 1 and Ng, g,—p, = —Ng, _p,, so the terms
containing &2 cancel each other out. Using the cocycle identity

Npi,—p:Np;—p1,p1-p: = Npj,—p:Np;—p1,p,
and Lemma 6, it is easy to show that the rest yields

27_(/3 27.(/3 27T/3
fop W) =T 5" (V) = &N, ;T3 5 5,5, (V).
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Now suppose that j = 1. By Lemma 9 we have Zi:] (B_1,as)ws =
> (B_1, )V, since (B_1,B1) = 0. Therefore

2m/3 2 /3
fo:,tﬁ (w) — f 5 ) = Z Ng,, g &Ny, B V—p: Ve,

i1
+ Z Ng, —g. Va1 —B ENB B —B 1 VB —B;
i1
2
+ ) Np—p &¥Ng, g Ny pi—p1 V-5 VBB,
i1
1 1
+ <Z<f51»0€s>5§5 + Ezv—[31> Z“s—])ocsﬁ)\s-
s=1 s=1
Note that Ng, g,—p, = —Np,,—p,. [tis easy to see that
27/3 27/3 27/3
273 (W) — £ (v) = —&fT 5 () + 2670, (v

Finally, suppose that j = —1. In this case wg,_pg, = vg,—p, for every
i# +1,and wg, = vg,. We obtain

2m/3 2m/3
e W) =) = ) Npy,pve, 6 ENp 8B VB b

i£+1
— VB, E,<[3_1 yB-1 >v—f371
=25 g, (V).

o The m-equation. First suppose that j # 1. Then wg, g, = vg,_p;
fori# —j,and wg,_pg, = vp,_p, for i # j. Moreover, w_g, =v_p,
for 1 # —j. Therefore

fl W) —fLa(v)=— > v . ENg 5, p, Vs,
i£t1
1445
+VBI_BjE’Nij_Bl\)_B]

1
+V—[3]- (EZV—B]- + Z<Bj) OCS>E»{)\5>

s=1
TENB;,—p VB VB -
- ENﬁj»*ﬁj*ﬁﬂ‘v*ﬁj*ﬁﬂ‘vﬁﬂ'

1
_ Z<B] y OCS>GSE,V7[3)»

s=1

1
— > (B, os)VsEvog,
s=1

— E,z\)_[gj\)_[gj .
The terms containing &2 cancel each other out. Arguing as above, it is
not hard to see that
27/3

T W) — s = £, ().
Forj =1wehavewg, g, =vpg,_p, andw_pg, =v_p, foralli# +£1.
Moreover, by Lemma 9, we have

!

1
Z<B 1»0‘5 ZB I,OCsVs,

s=1
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since (f_1,B1) =0.

Thus
W) —fEa(v)= > ENp, BV Ve p,
=]
— D Vg ENB BB VBB
i£E]
1
—E(B1,B1)v-py - ) (Bo1,0s)Vs
s=1
_ 2m/3
=2, V)
Finally, suppose that j = —1. Then wg, _p, = vg,—p, and w_g, =

v_p, foralli # £1. Moreover, by Lemma 9, we have Zi:] (B, os)Wg =
Zi:] (B1,xs)Vs, since (B1,B_1) = 0. Thus

W —Ta gV =Y vp,pENg ,,p Vg,
i#£+1
- Z Vg ENB_, BB VBi—B
i;é:H

—Z B1, o) Vs - E(B_1,B_1)v_p _,
27t/
= —2&f7 31 =B (v).

Suppose that (p, Q) = 7. This means that p = —f; for some j.

o The 7t/2-equation. Note that 3; — p = 3; + 3; is never a root, hence

by Lemma 8 we have wg, = vg, for all i, and fﬂ/z( ) = fﬂ/z( ).

o The 2nt/3-equation. Here we have wg, =vg,, wg, =vg,.
Ifj # £1, then wg, _p, =vp,—p, for i #j. Using Lemma 9, we get

271/3 2 /3
wp (W) =157 (V) +Npy,—p;Nop g, Eve, v, — v, &(B-1,—Bj)v,;-

It remains to note that Ng, 5, = —N_p, g, and (B_1,—B;) = —1,s0
that 2> (w) = £74° (v).
Forj = 1 we have wg,_p, =vg,—p, foralli, and (by Lemma 9)

1 1
Z B ],OCS s Z B ],OCS Vs— <B—1)_B’1>v[31 :O)

so that fZ”B( ) = f2”/3( ) again.
Finally, 1f] =-1, then
Wpy g = Vg, —p TNp_p_ &V,

and

1 1
Z<B 1a°¢s Z B1,xs) Vs = <[3,1,—[3,1>V[571 =—2&vp .
s=1 s=1
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Therefore
273 27/3
farg W) = F78° ) = > Ny g Nop_p Evp_ vp, +28v6,vp
i+]
= _ZZENBn*ﬁiNﬁfhfﬁfi +28vp, Ve,
i>2
_ 7t/2
= 28507, (V).

o The m-equation. First suppose thatj # £1. Then wg,_p, = vg,—p.
foralli #j,and wg,_pg, =Vp,—p, foralli # —j. Moreover, wg, = vg,
for all i. This means that

neW) = fRa(v) = > (=EN_p; 8, p. Ve, B VB,
i+]
i%£4j
+EN_p;,8, VB, Ve;—p;
+vg,—p;EN_g; B VB,

1
- <_Z<_ﬁj) (xs>a{"\s - E»ZV[Sj) VB,

s=1

1
— Y (B, xs)VsE(B 1, —B;)vp,
s=1

1
_ Z<B7] y 0(5>{)\sz.<ﬁ1 ) _Bj>v[5i
s=1

— E,ZijVﬁj .
The last four lines sum up to

1 1
— 3 (—B1 — b1+ By as)EVvp, = —Evp, D (—Bj, as)Vs.
s=1 s=1
Applying Lemma 6 and noticing that N_p, 5, g, = —Ng; g, p;, we
finally obtain

mew) =3 s v) = % ().
Next, suppose that j = 1. Arguing exactly like in case (1), we get
TewW) =R g(v) = 26657 (v).
Similarly, for j = —1,
Taw) = 5 (v) = —26F%, (V).

(3) Suppose that Z(p, Q) = 7/2. This means that for some j we have (p, ;) =
1/2 and (p,3—j) = —1/2 (or vice versa). Note that 3; — p and f_; + p are
orthogonal roots with sum 3_; + (3j; therefore they lie in Q. By Chevalley
commutator’s formula we have x,(&) = [Xﬁij_._p(a)) X—p_; (£1)]. Thus we
reduce the question to two previous cases, since Z(3_; + p,Q) = 0 and
4(_[5—])-()-) =T

(4) Suppose that (p, Q) = 27t/3. This means that for every i one of the scalar
products (p, 1), (p, B—i) equals 0, while the other equals —1/2.

o The 1/2-equation. Note that (31, p) < 0 for every i. Hence wg, = vg,
for every i and we obtain fz‘/é (w) = fz‘/é (v).
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o The 21t/3-equation. As above, we have wg, =vg, for every i.
If (B1,p) = —1/2, then wg,_p, = vp,—p, for every i # =+1, and
(B_1,p) =0,s0that X"\, (B_1,0s)Ws = X - (B_1, & )Vs. It follows
that 274> (w) = £375° (v).

Now we assume that (1, p) =0and (f_1,p) = —1/2. Thenwg, _p, =

vg,—p; whenever (fi, p) = 0. We obtain

27/3 27/3
g W) —fr = Y Np, p.ENpp, i oVp B pVBe
i (Bi,p)=—1/2
+&vp,v—p
Note that exactly half of 2k — 2 indices i = 2, ..., —2 satisfy the condi-

tion (B, p) = —1/2, and for each one of them we have (1 — i —p) +
Bi = B1 — p. Hence the roots 31, —p,{(B1 — Bi — P), Bili: (Bi,p)=—1/2
form a maximal square. Therefore

27mt/3
B

(w) — 3 (v) = EF 2 ().

e The m-equation. As above, note that for exactly half of the indices
i=1,...,—1 we have (fi,p) = —1/2, and for the other half we have
(Bi,p) = 0. Put ] ={i ] (By,p) =—1/2}, K={i| (B, p) = O}. We know
that i € J if and only if —i € K. Again, we have wg, = vg, for all i,
andw_pg, =v_p, forie K.

First suppose that1 € J. Thenwp, g, =vp,_p, foralli,andwg,_p, =
Vg,—p, fori € J. In this case we have

f

W = TR = > va, g ENp By oVBiB1—p
ieK\{-1}

- Z ENp,—Bi—pV—pBi—pVB:
ieJ\{1}

1
+ E.V—p : Z<B—1 ) “s)ﬁs
s=1

It is easy to see that the roots B_1, —p, {Bi — B1 — P, B—itiek\(—1) form
a maximal square. It follow that

27/3
Rpw) — fplv) = —£F5 ().
Finally, suppose that 1 € K. Then wg,_p, = vg,—p, fori € K, and
Wg,—p, = Vp;—p, for all i. Similarly,
W) —fag) = Y  &Npg, g oV BioVB:i B
e\ (=1}
- Z ENp,—Bi—pV—pi—pVB:
teJ\{=1}
1
+ Z<[31 ) “s)ﬁs : E,V—p
s=1

It is easy to see that the roots 31, —p, {1 — Bi — 0, Bitiep\(—1) form a
maximal square. It follows that

2
T aw) = fE g (v) = —EF73 (V).
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(5) Suppose that (p, Q) = /3. This means that (p, 1) =0and (p, f_1) = /3
(or vice versa). Then p — 3_; is a root and by Chevalley commutator’s

formula we have x,(&) = [xp—p ,(&),xpg_, (£1)]. Thus we reduce the
problem to previously discussed cases, since Z(p — —1,Q) = 2n/3 and
4(6—1 ) Q) =0
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