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EQUATIONS DETERMINING THE ORBIT OF THE HIGHEST WEIGHT

VECTOR IN THE ADJOINT REPRESENTATION

ALEXANDER LUZGAREV

ABSTRACT. We explicitly construct a set of quadratic equations defining the high-
est weight vector orbit for adjoint representations of Chevalley groups of types
Dl, E6, E7, and E8. The combinatorics of these equations is related to the com-
binatorics of embeddings of the root system of type A3. We believe that the
constructed equations provide a prominent framework for calculations with ex-
ceptional groups in adjoint representations, which is particularly interesting for
groups of type E8.

1. INTRODUCTION

The highest weight vector orbit in an irreducible representation of a Chevalley
group over an algebraically closed field is an intersection of quadrics (cf. [3]). We
explicitly describe a set of quadratic equaions on this orbit over an arbitrary com-
mutative ring. First of all, we have square equations described by Nikolai Vavilov
in [7] for microweight representations as well as for adjoint ones. In some mi-
croweight cases those equations exhaust all equations defining the highest weight
orbit (over an algebraically closed field). In the adjoint cases square equations are
clearly not enough: for example (as Vavilov pointed out in [7]), they do not contain
coordinates corresponding to the zero weight. We cannot get on with an A2-proof
of the structure theorems for E8 (cf. [9]) without zero weight coordinates.

The equations on the highest weight vector orbit in the adjoint representation of
a group of type Al are well known: they are called Plücker equations. On the other
hand, non-simply-laced root systems are generally a little harder to deal with. That
is why we consider only the remaining simply-laced root systems Dl, E6, E7, and
E8. Moreover, in order to evade some difficulties relating to triality in D4 we take
l ≥ 5 in the Dl case. In any way, we include Dl only because our constructions
work verbatim in this case; our main goal is to obtain equations for exceptional
groups.

We construct, in addition to the aforementioned square equations, two more
classes of equations; all of them contain zero-weight coordinates. The combina-
torics of these equations is also intimately related to the “numerology of maximal
squares” studied in [7] and [8]. The same equations are produced in a more gen-
eral context (but in slightly less explicit form) by Victor Petrov, Nikolai Vavilov,
and myself in [4].

The basic calculations that lead to the present paper were performed by the au-
thor in 2007–2008 at the Universität Bielefeld. The author thanks Anthony Bak for
his hospitality and support, and Nikolai Vavilov for extremely useful discussions.
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2. THE EQUATIONS

Everywhere in this paper Φ = Dl, l ≥ 5 or Φ = El, l = 6, 7, 8. Let {α1, . . . , αl} =
Π ⊂ Φ be a fundamental system in Φ (its elements will be called fundamental
roots). Our numbering of fundamental roots always follows Bourbaki [1]. For

α ∈ Φ we set α =
∑l
s=1ms(α)αs.

Let G = G(Φ,R) be the simply connected Chevalley group of type Φ over a
commutative ring R with 1. We work with the adjoint representation of G(Φ,R),
which gives us the irreducible action of G(Φ,R) on a free R-module V of rank
l(2l − 1), 78, 133, 248 for Φ = Dl, E6, E7, E8 respectively. By Λ we denote the set
of weights of our representation with multiplicities. More precisely, Λ = Λ∗ ⊔ ∆,
where Λ∗ = Φ is the set of non-zero weights, and ∆ = {01, . . . , 0l} is the set of zero
weights. We fix an admissible base eλ, λ ∈ Λ in V . Hence we have the vectors
eα for α ∈ Φ and êi = e0i for i = 1, . . . , l. Then a vector v ∈ V can be uniquely

written as v =
∑

λ∈Λ vλe
λ =

∑

α∈Φ vαe
α +

∑l
i=1 v̂iê

i. We will often simply write
v = (vλ).

The root system Φ is a subset of a Euclidean space E with the scalar prod-
uct denoted by (·, ·). We will also use a bilinear product defined by 〈α,β〉 =

2(α,β)/(β,β) for α,β ∈ E (for α,β ∈ Φ we get the Cartan numbers). Note that our
root system Φ is simply-laced, which means that all roots have length 1; therefore
〈α,β〉 = 2(α,β) for α,β ∈ Φ. We denote by ∠(α,β) the angle between α,β ∈ E.
Note that for α,β ∈ Φ the scalar product (α,β) is 0, 1/2,−1/2, 1,−1 if α ⊥ β,
α− β ∈ Φ, α + β ∈ Φ, α = β, α = −β respectively.

The structure constants Nα,β, α,β ∈ Φ of the simple complex Lie algebra of
type Φ are described in detail in [6, § 1]. We often use the identities for structure
constants summarized there without any explicit reference. Note that in our case
always Nα,β = 0 or ±1.

• The π/2-equations. Suppose α,β ∈ Φ and ∠(α,β) = π/2. Let us look at all
other (unordered) pairs of roots with the same sum:

Sπ/2(α,β) = {{γ, δ} | γ+ δ = α+ β, {γ, δ} 6= {α,β}}.

Consider the foolowing equation on a vector v = (vλ)λ∈Λ ∈ V :

vαvβ =
∑

{γ,δ}∈Sπ/2(α,β)

Nα,−γNβ,−δvγvδ. (1)

We will call it the π/2-equation corresponding to the pair {α,β}. First of all, we
need to prove that the right hand side makes sense: we could swap γ with δ and
get a different-looking coefficient. But it follows from the identity (C5) in [6] that
Nα,−γNβ,−δ = Nα,−δNβ,−γ. Next, note that (α, γ) + (α, δ) = (α, γ+ δ) = (α,α+

β) = (α,α) = 1, while α 6= γ, α 6= δ. Therefore (α, γ) = (α, δ) = 1/2. It follows
that ∠(α, γ) = ∠(α, δ) = π/3.

For the rest of the paper, put k = l, 4, 5, 7 for Φ = Dl,E6,E7,E8, respectively.
In order to write the π/2-equation in a more symmetric form, recall a definition
from [7].

Definition 1. A set of roots {βi}, i = 1, . . . , k,−k, . . . ,−1 such that ∠(βi, β−i) = π/2

for every i = 1, . . . , k, and ∠(βi, βj) = π/3 for i 6= ±j, is called a maximal square.

For a maximal square {βi} the sum βi + β−i does not depend on i. Therefore
the set of roots contained in the pairs from Sπ/2(α,β), together with the roots α
and β, is a maximal square (this was proved in [7, Theorem 1]). We shall prove
shortly that our π/2-equation is uniquely determined by this maximal square, and
does not depend on the choice of an orthogonal pair of roots {α,β}. Let us fix an
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index j = 1, . . . ,−1. If we put β1 = α, β−1 = β, and Sπ/2(α,β) = {{βi, β−i} | i =

2, . . . , k}, the π/2-equation can be rewritten as

vβ1
vβ

−1
=

∑

i≥2

Nβ1,−βi
Nβ

−1,−β−i
vβi

vβ
−i
.

The sign column c(j) ∈ (Z/2Z)2k is defined as follows.

c(j)i =

{

1, if i = ±j,

−Nβj,−βi
Nβ

−j,−β−i
, if i 6= ±j.

Another equivalent form of the π/2-equation is

k
∑

i=1

c(1)ivβi
vβ

−i
= 0.

The following lemma says that if we take another orthogonal pair in Sπ/2(α,β)

instead of {α,β}, we will get the same equation.

Lemma 1. For any j, h = 1, . . . ,−1 we have

c(h) − c(h)jc(j) = 0.

Proof. Immediately follows from [7, Theorem 3]. �

• The 2π/3-equations.
Suppose again that α,β ∈ Φ and ∠(α,β) = π/2. Consider all pairs of roots

{γ, δ} such that γ + δ = α and γ, δ are not orthogonal to β. Note that if γ ⊥ β and
γ + δ = α, then (δ, β) = (α − γ, β) = 0, so δ ⊥ β. Also, 0 = (α,β) = (γ + δ, β) =
(γ, β) + (δ, β). Therefore for such a pair {γ, δ} one of the angles ∠(γ, β), ∠(δ, β) is
2π/3, while the other is π/3. Put

S2π/3(α,β) = {{γ, δ} | γ+ δ = α, (γ, β) 6= 0}.

Consider the following equation on a vector v = (vλ)λ∈Λ ∈ V :

vα ·

l
∑

s=1

〈β,αs〉v̂s = −
∑

{γ,δ}∈S2π/3(α,β),

∠(γ,β)=π/3

Nγ,δvγvδ. (2)

We will call it the 2π/3-equation corresponding to the pair (α,β).
The pairs in S2π/3(α,β) are related to the embeddings of root systems A3 ⊂ Φ.

In order to see that, consider a pair {γ, δ} ∈ S2π/3(α,β). We may assume that
(γ, β) = 1/2, (δ, β) = −1/2. Then the roots δ, γ, β− γ form a fundamental system
of a root subsystem Ψ ⊆ Φ of type A3. We can write the roots α,β in the Dynkin
notation for this fundamental system as follows: α = 110, β = 011. Note that Ψ
contains γ ′, δ ′ for exactly one more pair {γ ′, δ ′} ∈ S2π/3(α,β), namely, the pair
{γ ′, δ ′} = {111,−001}. In other words, γ ′ = δ + β, δ ′ = γ − β. The pairs {γ, δ} and
{γ ′, δ ′} are said to beconjugate.

Note that |S2π/3(α,β)| = 2(l−1), 6, 8, 12 for Φ = Dl,E6,E7,E8, respectively. We
see that the number of conjugate pairs in S2π/3(α,β) is one less than the number of
pairs of orthogonal roots in a maximal square. This is not a coincidence: if we fix
an orthogonal pair (α,β) in a maximal square and take any of the remaining pairs,
together they span a root subsystem of type A3. There are exactly k − 1 of these
subsystems, and each contains exactly two of conjugate pairs from S2π/3(α,β).

We get the following equivalent description of S2π/3(α,β):
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Lemma 2. Suppose that α,β ∈ Φ, α ⊥ β. Let Ω = {β1, . . . , β−1} be a maximal square
such that β1 = α, β−1 = β, and βi ⊥ β−i for every i. Then

S2π/3(α,β) = {{β1 − βi, βi} | i = 2, . . . ,−2},

and the 2π/3-equation corresponding to the pair (α,β) can be rewritten as follows:

vβ1
·

l
∑

s=1

〈β−1, αs〉v̂s =
∑

i6=±1

Nβ1,−βi
vβ1−βi

vβi
.

Proof. Note that (β1 − βi) + βi = β1 = α and (βi, β) = (βi, β−1) 6= 0 for i =

2, . . . ,−2. This means that all pairs {β1 − βi, βi} are in S2π/3(α,β). In order to
prove the reverse inclusion, consider a pair {γ, δ} ∈ S2π/3(α,β). We may assume
that ∠(γ, β) = 2π/3. Then the roots α − γ, γ + β are orthogonal, and their sum
is α + β; it follows that α − γ, γ + β ∈ Ω, so that δ = α − γ = βi for some i. It
remains to note that Nβ1−βi,βi

= Nβi,−β1
= Nβ1,−βi

by the identities (C4) and
(C1) from [6] �

• The π-equations. Suppose that α,β ∈ Φ and ∠(α,β) = π/2. Consider all
pairs of roots {γ, δ} such that γ = −δ and γ, δ are not orthogonal to α and β. There
are two possibilities: the first is (γ, α) = (γ, β), and then (δ, α) = (δ, β). We may
assume that (γ, α) = (γ, β) = 2π/3. Put

Sπ(α,β) = {(γ, δ) | γ+ δ = 0,∠(γ, α) = ∠(γ, β) = 2π/3}.

The second possibility is that one of the angles ∠(γ, α), ∠(δ, α) is 2π/3. We may
assume that ∠(γ, α) = 2π/3, and then ∠(γ, β) = π/3, ∠(δ, α) = π/3, ∠(δ, β) =

2π/3. Put

S ′
π(α,β) = {(γ, δ) | γ+ δ = 0,∠(γ, α) = ∠(δ, β) = 2π/3}.

Consider the following equation on a vector v = (vλ)λ∈Λ ∈ V :

l
∑

s=1

〈α,αs〉v̂s ·

l
∑

s=1

〈β,αs〉v̂s =
∑

(γ,δ)∈S ′

π(α,β)

vγvδ −
∑

(γ,δ)∈Sπ(α,β)

vγvδ. (3)

We will call it the π-equation corresponding to the pair (α,β).
Note that |Sπ(α,β)| = |S ′

π(α,β)| = 2(l − 1), 6, 8, 12 for Φ = Dl,E6,E7,E8,
respectively. As in the previous case, we can construct a maximal square cor-
responding to Sπ(α,β). For any pair (γ, δ) ∈ Sπ(α,β) we have γ + α ∈ Φ

(γ + α,β) = (γ, β) = −1/2, therefore γ + α + β ∈ Φ. Moreover, (γ + α + β,α) =

(γ + α + β,β) = (−γ, α) = (−γ, β) = 1/2 and −γ + (γ + α + β) = α + β. This
means that the roots {−γ | (γ, δ) ∈ Sπ(α,β)} together with α, β form a maximal
square. It is easy to see that the roots {γ+α,β+δ | (γ, δ) ∈ S ′

π(α,β)} together with
α, β form (the same) maximal square.

As in the previous case, the constructed sets Sπ(α,β) and S ′
π(α,β) are related

to embeddings A3 ⊂ Φ: if (γ, δ) ∈ Sπ(α,β), the roots α, γ, β form a fundamental
system of a root subsystem Ψ ⊆ Φ of type A3. We can write (γ, δ) = (010,−010) in
Dynkin notation with respect to this fundamental system. Moreover, Ψ contains
another pair of roots from Sπ(α,β), namely, (−111, 111). On the other hand, the
pairs (−110, 110) and (011,−011) are in S ′(α,β). The analogue of Lemma 2 holds
in this situation:

Lemma 3. Suppose that α,β ∈ Φ, α ⊥ β. Let Ω = {β1, . . . , β−1} be a maximal square
such that β1 = α, β−1 = β, and βi ⊥ β−i for every i. Then

Sπ(α,β) = {(−βi, βi) | i = 2, . . . ,−2},

S ′
π(α,β) = {(βi − β1, β1 − βi) | i = 2, . . . ,−2},
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and the π-equation corresponding to (α,β) can be rewritten is follows.

l
∑

s=1

〈β1, αs〉v̂s ·

l
∑

s=1

〈β−1, αs〉v̂s =
∑

i6=±1

(vβ1−βi
vβi−β1

− v−βi
vβi

).

To reiterate, we get one π/2-equation for every maximal square, one 2π/3-equation
and one π-equation for every maximal square with a chosen pair of orthogonal
roots in it.

3. PRELIMINARY LEMMAS

We encountered embeddings A3 ⊆ Φ; we will use the fact that every such
embedding can be expanded to an embedding D4 ⊆ Φ.

Lemma 4. Recall that Φ = El or Dl (l ≥ 5). Every subsystem Ψ ⊆ Φ of type A3 can
be embedded into a subsystem of type D4. To be precise, if α,β, γ ∈ Φ are roots such that
α ⊥ γ, ∠(α,β) = ∠(β, γ) = 2π/3, then there is a root δ ∈ Φ such that δ ⊥ α, δ ⊥ γ,
and ∠(δ, β) = 2π/3.

Proof. In the case Φ = El all subsystems of type A3 in Φ lie in one orbit with
respect to the action of the Weyl group W(El). This follows, for example, from
the tables in Carter’s paper [2]. Therefore it remains to show the statement for a
single subsystem of type A3: for example, we may assume that α = α2, β = α4,
γ = α3 and take δ = α5. In the case Φ = Dl there are two orbits of subsystems
of type A3 with respect to the action of the Weyl group W(Dl). This immediately
follows from the computations in [2, § 9]. For one of the orbits we may assume
that α = αl−1, β = αl−2, γ = αl, and take δ = αl−3; for the other orbit we may
assume that α = αl−3, β = αl−2, γ = αl−1, and take δ = αl. �

Now we describe the possible relative positions of a root ρ ∈ Φ and a maximal
square Ω = {β1, . . . , β−1}.

Lemma 5. Let Ω = {β1, . . . , β−1} be a maximal square, and let ρ ∈ Φ be a root. Exactly
one of the following holds:

(1) There exists i such that ρ = βi, ∠(ρ, β−i) = π/2, and ∠(ρ, βj) = π/3 for j 6= ±i.

(2) There exists i such that ρ = −βi, ∠(ρ, β−i) = π/2, and ∠(ρ, βj) = 2π/3 for
j 6= ±i.

(3) There exists i such that ρ ⊥ βi and ρ ⊥ β−i; for every j = 1, . . . ,−1 either ρ ⊥ βj,
ρ ⊥ β−j, or one of the angles ∠(ρ, βj), ∠(ρ, β−j) equals π/3, while the other equals 2π/3.

(4) For every i one of the angles ∠(ρ, βi), ∠(ρ, β−i) equals π/2, while the other equals
π/3.

(5) For every i one of the angles ∠(ρ, βi), ∠(ρ, β−i) equals π/2, while the other equals
2π/3.

Moreover, (ρ, βi + β−i) equals 1, −1, 0, 1/2, −1/2 in cases (1), (2), (3), (4), (5),
respectively.

Proof. If ρ ∈ Ω, we have ρ = βi for some i. By the definition of maximal square,
the angle between ρ and every other root in Ω is equal to π/3. In this case, (1)
holds.

If −ρ ∈ Ω, we can apply the above observation to −ρ; in this case, (2) holds.
Now we assume that ±ρ 6∈ Ω. Hence, (ρ, βi) is equal to 0 or ±1/2. Suppose

that there exists i such that (ρ, βi) = 0.

• If there exists i such that (ρ, βi) = (ρ, β−i) = 0, then for every j 6= i we
have

(ρ, βj) + (ρ, β−j) = (ρ, βj + β−j) = (ρ, βi + β−i) = 0.
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This means that either (ρ, βj) = (ρ, β−j) = 0, or one of these scalar prod-
ucts equals 1/2, and the other equals −1/2. Therefore (3) holds. Note that
in this case there exists j such that (ρ, βj) 6= 0: otherwise ρ would be or-
thogonal to every root in Ω, which is impossible.

• If there exists i such that (ρ, βi) = 0 and (ρ, β−i) = 1/2, then for every j 6= i

we have (ρ, βj) + (ρ, β−j) = 1/2. This means that one of these products is
equal to 0, and the other is equal to 1/2. Therefore (4) holds.

• Similarly, if there exists i such that (ρ, βi) = 0 and (ρ, β−i) = −1/2, then
for every j 6= i we have (ρ, βj) + (ρ, β−j) = −1/2. This means that one of
these products is equal to 0, and the other is equal to −1/2. Therefore (4)

holds.

Finally let us consider the remaining case: suppose that for every i the scalar prod-
uct (ρ, βi) is not equal to 0. We must show that this is impossible. If for some i we
have (ρ, βi) = (ρ, β−i) = 1/2, then βi + β−i − ρ is a root, and its sum with ρ is
βi + β−i. Therefore ρ ∈ Ω, and we are in the case (1).

On the other hand, if for some i we have (ρ, βi) = (ρ, β−i) = −1/2, then ρ +

βi + β−i ∈ Φ and −ρ+ (ρ+ βi + β−i) = βi + β−i. Therefore −ρ ∈ Ω, and we are
in the case (2).

Finally, we can choose i such that (ρ, βi) = 1/2, (ρ, β−i) = −1/2. Let us show
that we are in the case (3). The roots −βi, ρ, β−i span a root subsystem Ψ ⊆ Φ of
type A3. By Lemma 4, we can embed it into a root subsystem of type D4. Therefore
there exists σ ∈ Φ such that σ ⊥ βi, σ ⊥ β−i, and (σ, ρ) = −1/2. But −σ − ρ +

βi, σ + ρ + β−i ∈ Φ, the sum of these two roots is βi + β−i, and both of them are
orthogonal to ρ. This means that we are in the case (3). �

Definition 2. Let Ω be a maximal square in Φ, and let ρ ∈ Φ be a root. We say that the
angle between ρ and Ω is equal to ∠(ρ,Ω) = 0, π, π/2, π/3, 2π/3, if in the Lemma 5 the
condition (1), (2), (3), (4), (5) holds, respectively.

Lemma 6. Let Ω = {β1, . . . , β−1} be a maximal square. Suppose that j ∈ {1, . . . ,−1}.
Put γi = βj − βi for every i 6= ±j, γj = βj, γ−j = −β−j. Ω ′ = {γ1, . . . , γ−1} is a
maximal square.

Proof. An easy calculation shows that (γi, γ−i) = 0 for all i, and (γi, γt) = 1/2 for
all i 6= t. �

4. ACTION OF THE ELEMENTARY SUBGROUP

Suppose ρ ∈ Φ, ξ ∈ R. We work with the adjoint representation, therefore the
action of the elementary root unipotent xρ(ξ) on the basis of V is described by the
following lemma.

Lemma 7 (Matsumoto). (1) If λ ∈ Φ, λ + ρ /∈ Φ ∪ {0}, then xρ(ξ)e
λ = eλ;

(2) if λ, λ + ρ ∈ Φ, then xρ(ξ)e
λ = eλ +Nρ,λξe

λ+ρ;
(3) xρ(ξ)ê

s = ês − 〈ρ, αs〉ξe
ρ for s = 1, . . . , l;

(4) xρ(ξ)e
−ρ = e−ρ +

∑l
s=1ms(ρ)ξê

s − ξ2eρ.

Proof. See [5, Lemma 2.3]. �

This immediately implies the following description of the action of xρ(ξ) on the
coordinates of v = (vλ) ∈ V . We will use it without any further reference.

Lemma 8. (1) If λ ∈ Φ, λ− ρ /∈ Φ ∪ {0}, then (xρ(ξ)v)λ = vλ;
(2) if λ, λ − ρ ∈ Φ, then (xρ(ξ)v)λ = vλ +Nρ,λ−ρξvλ−ρ;

(3) ̂(xρ(ξ)v)s = v̂s +ms(ρ)ξv−ρ.
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(4) (xρ(ξ)v)ρ = vρ −
∑l
s=1〈ρ, αs〉ξv̂s − ξ2v−ρ.

In particular, if ∠(ρ, λ) = π/2, 2π/3 or π, then (xρ(ξ)v)λ = vλ.

We will often use the following description of the action of xρ(ξ) on the zero
weights.

Lemma 9. Suppose that β, ρ ∈ Φ, ξ ∈ R, v ∈ V , w = xρ(ξ)v. Then
∑

s〈β,αs〉ŵs =
∑

s〈β,αs〉v̂s + ξ〈β, ρ〉v−ρ.

Proof.
∑

s

〈β,αs〉ŵs =
∑

s

〈β,αs〉(v̂s +ms(ρ)ξv−ρ)

=
∑

s

〈β,αs〉v̂s + ξ
∑

s

〈β,ms(ρ)αs〉v−ρ

=
∑

s

〈β,αs〉v̂s + ξ〈β, ρ〉v−ρ

�

Suppose that v ∈ V , α,β ∈ Φ, and Ω = {β1, . . . , β−1} is a maximal square such
that β1 = α, β−1 = β, and βi ⊥ β−i for every i. We need the following notation
for the polynomials in the equations (1), (2), (3):

f
π/2
α,β(v) = vαvβ −

∑

{γ,δ}∈Sπ/2(α,β)

Nα,−γNβ,−δvγvδ,

f
2π/3
α,β (v) =

∑

i6=±1

Nβ1,−βi
vβ1−βi

vβi
− vβ1

l
∑

s=1

〈β−1, αs〉v̂s,

fπα,β(v) =
∑

i6=±1

(vβ1−βi
vβi−β1

− v−βi
vβi

) −

l
∑

s=1

〈β1, αs〉v̂s ·

l
∑

s=1

〈β−1, αs〉v̂s.

Proposition 1. Let α,β, ρ ∈ Φ be roots such that α ⊥ β, and let v ∈ V be a vector. Take
ξ ∈ R and put w = xρ(ξ)v. Suppose that ϕ ∈ {π/2, 2π/3, π}. Then fϕα,β(w) is a linear

combination of polynomials of the form f
ψ
γ,δ(v).

We shall prove Proposition 1 in the next section. Now we can derive our main
result from it.

Theorem 1. The set of vectors v ∈ V satisfying the equations (1), (2), (3) for all α,β ∈ Φ,
α ⊥ β, is invariant under the action of the group E(Φ,R).

Proof. It suffices to prove that if v ∈ V satisfies the above equations, then w =

xρ(ξ)v satisfies them for every ρ ∈ Φ, ξ ∈ R. Indeed, by Proposition 1, each of the
polynomials fϕα,β(w) is equal to a linear combination of these polynomials applied
to v, which is zero. �

Corollary 1. If v ∈ V is a column of an element g ∈ E(Φ,R) corresponding to any root
ρ ∈ Λ∗ = Φ, then v satisfies the equations (1), (2), (3) for all α,β ∈ Φ, α ⊥ β.

Proof. We have v = geρ. It is obvious that eρ satisfies those equations, so by Theo-
rem 1 v satisfies them too. �

5. PROOF OF PROPOSITION 1

Let Ω = {β1, . . . , β−1} is a maximal square such that β1 = α, β−1 = β, and
βi ⊥ β−i for every i. We shall explore the five cases described in Lemma 5.

(1) Suppose that (ρ,Ω) = 0. This means that ρ = βj for some j.
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• The π/2-equation. The discussion following Definition 1 shows that
the π/2-equation depends only on a maximal square and not on the
choice of orthogonal roots α, β in it. Thus we may assume that j = 1.
Then

f
π/2
α,β(w) − f

π/2
α,β(v)

=

(
−

l
∑

s=1

〈β1, αs〉ξv̂s − ξ2v−β1

)
vβ

−1

− ξ
∑

i6=±1

Nβ1,−βi
Nβ

−1,−β−i
Nβ1,βi−β1

vβi−β1
vβ

−i

− ξ2
∑

i≥2

Nβ1,−βi
Nβ

−1,−β−i
Nβ1,βi−β1

Nβ1,β−i−β1
vβi−β1

vβ
−i−β1

.

First, note that Nβ1,βi−β1
= −Nβ1,−βi

. Moreover, Nβ
−1,−β−i

=

Nβ
−1,β1−βi

and Nβ1,β−i−β1
= −N−β1,β1−β−i

. Therefore the terms

on the right-hand side containing ξ2 sum up to −ξ2f
π/2
β

−1,−β1
(v). The

rest sums up to −ξf
2π/3
β

−1,−β1
(v). Indeed, Nβ1,−βi

= −Nβ1,βi−β1
, and

(by Lemma 6) the roots βi − β1 together with β−1 and −β1 form a
maximal square. Hence

f
π/2
α,β(w) − f

π/2
α,β(v) = −ξf

2π/3
β

−1,−β1
(v) − ξ2f

π/2
β

−1,−β1
(v).

• The 2π/3-equation. First suppose that j 6= ±1. Then wβ1−βi
=

vβ1−βi
for i 6= −j. Thus

f
2π/3
α,β (w) − f

2π/3
α,β (v) =

∑

i6=±1
i6=±j

(
Nβ1,−βi

vβ1−βi
ξNβj,βi−βj

vβi−βj

)

+Nβ1,−β−j
ξNβj,−β−1

v−β
−1

vβ
−j

−Nβ1,−βj
vβ1−βj

l
∑

s=1

〈βj, αs〉ξv̂s

−Nβ1,−βj
vβ1−βj

ξ2v−βj

− ξNβj,β1−βj
vβ1−βj

l
∑

s=1

〈β−1, αs〉v̂s

− vβ1
ξ〈β−1, βj〉v−βj

− ξ2Nβj,β1−βj
vβ1−βj

〈β−1, βj〉v−βj
.

Note that 〈β−1, βj〉 = 1 and Nβj,β1−βj
= −Nβ1,−βj

, so the terms

containing ξ2 cancel each other out. Using the cocycle identity

Nβ1,−βi
Nβj−β1,β1−βi

= Nβj,−βi
Nβj−β1,β1

and Lemma 6, it is easy to show that the rest yields

f
2π/3
α,β (w) − f

2π/3
α,β (v) = ξNβ1,−βj

f
2π/3
β1−βj,β1−β−j

(v).
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Now suppose that j = 1. By Lemma 9 we have
∑l
s=1〈β−1, αs〉ŵs =

∑l
s=1〈β−1, αs〉v̂s, since 〈β−1, β1〉 = 0. Therefore

f
2π/3
α,β (w) − f

2π/3
α,β (v) =

∑

i6=±1

Nβ1,−βi
ξNβ1,−βi

v−βi
vβi

+
∑

i6=±1

Nβ1,−βi
vβ1−βi

ξNβ1,βi−β1
vβi−β1

+
∑

i6=±1

Nβ1,−βi
ξ2Nβ1,−βi

Nβ1,βi−β1
v−βi

vβi−β1

+

(
l

∑

s=1

〈β1, αs〉ξv̂s + ξ2v−β1

)
l

∑

s=1

〈β−1, αs〉v̂s.

Note that Nβ1,βi−β1
= −Nβ1,−βi

. It is easy to see that

f
2π/3
α,β (w) − f

2π/3
α,β (v) = −ξfπα,β(v) + ξ2f

2π/3
−β1,−β−1

(v).

Finally, suppose that j = −1. In this case wβ1−βi
= vβ1−βi

for every
i 6= ±1, and wβ1

= vβ1
. We obtain

f
2π/3
α,β (w) − f

2π/3
α,β (v) =

∑

i6=±1

Nβ1,−βi
vβ1−βi

ξNβ
−1,βi−β−1

vβi−β−1

− vβ1
ξ〈β−1, β−1〉v−β

−1

= −2ξf
π/2
β1,−β−1

(v).

• The π-equation. First suppose that j 6= ±1. Then wβ1−βi
= vβ1−βi

for i 6= −j, and wβi−β1
= vβi−β1

for i 6= j. Moreover, w−βi
= v−βi

for i 6= −j. Therefore

fπα,β(w) − fπα,β(v) = −
∑

i6=±1
i6=±j

v−βi
ξNβj,βi−βj

vβi−βj

+ vβ1−βj
ξNβj,−β1

v−β1

+ v−βj

(
ξ2v−βj

+

l
∑

s=1

〈βj, αs〉ξv̂s

)

+ ξNβj,−β−1
v−β

−1
vβ

−j−β1

− ξNβj,−βj−β−j
v−βj−β−j

vβ
−j

−

l
∑

s=1

〈β1, αs〉v̂sξv−βj

−

l
∑

s=1

〈β−1, αs〉v̂sξv−βj

− ξ2v−βj
v−βj

.

The terms containing ξ2 cancel each other out. Arguing as above, it is
not hard to see that

fπα,β(w) − fπα,β(v) = ξf
2π/3
−βj,β−j

(v).

For j = 1 we have wβi−β1
= vβi−β1

and w−βi
= v−βi

for all i 6= ±1.
Moreover, by Lemma 9, we have

l
∑

s=1

〈β−1, αs〉ŵs =

l
∑

s=1

〈β−1, αs〉v̂s,
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since 〈β−1, β1〉 = 0.
Thus

fπα,β(w) − fπα,β(v) =
∑

i6=±1

ξNβ1,−βi
v−βi

vβi−β1

−
∑

i6=±1

v−βi
ξNβ1,βi−β1

vβi−β1

− ξ〈β1, β1〉v−β1
·
l

∑

s=1

〈β−1, αs〉v̂s

= −2ξf
2π/3
−β1,−β−1

(v).

Finally, suppose that j = −1. Then wβ1−βi
= vβ1−βi

and w−βi
=

v−βi
for all i 6= ±1. Moreover, by Lemma 9, we have

∑l
s=1〈β1, αs〉ŵs =

∑l
s=1〈β1, αs〉v̂s, since 〈β1, β−1〉 = 0. Thus

fπα,β(w) − fπα,β(v) =
∑

i6=±1

vβ1−βi
ξNβ

−1,−β−i
v−β

−i

−
∑

i6=±1

v−βi
ξNβ

−1,βi−β−1
vβi−β−1

−

l
∑

s=1

〈β1, αs〉v̂s · ξ〈β−1, β−1〉v−β
−1

= −2ξf
2π/3
−β

−1,−β1
(v).

(2) Suppose that (ρ,Ω) = π. This means that ρ = −βj for some j.
• The π/2-equation. Note that βi − ρ = βi + βj is never a root, hence

by Lemma 8 we have wβi
= vβi

for all i, and f
π/2
α,β(w) = f

π/2
α,β(v).

• The 2π/3-equation. Here we have wβi
= vβi

, wβ1
= vβ1

.
If j 6= ±1, then wβ1−βi

= vβ1−βi
for i 6= j. Using Lemma 9, we get

f
2π/3
α,β (w) = f

2π/3
α,β (v) +Nβ1,−βj

N−βj,β1
ξvβ1

vβj
− vβ1

ξ〈β−1,−βj〉vβj
.

It remains to note that Nβ1,−βj
= −N−βj,β1

and 〈β−1,−βj〉 = −1, so

that f
2π/3
α,β (w) = f

2π/3
α,β (v).

For j = 1 we have wβ1−βi
= vβ1−βi

for all i, and (by Lemma 9)

l
∑

s=1

〈β−1, αs〉ŵs −

l
∑

s=1

〈β−1, αs〉v̂s = ξ〈β−1,−β1〉vβ1
= 0,

so that f
2π/3
α,β (w) = f

2π/3
α,β (v) again.

Finally, if j = −1, then

wβ1−βi
= vβ1−βi

+N−β
−1,β−i

ξvβ
−i

and

l
∑

s=1

〈β−1, αs〉ŵs −

l
∑

s=1

〈β−1, αs〉v̂s = ξ〈β−1,−β−1〉vβ
−1

= −2ξvβ
−1

.
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Therefore

f
2π/3
α,β (w) − f

2π/3
α,β (v) =

∑

i6=±1

Nβ1,−βi
N−β

−1,β−i
ξvβ

−i
vβi

+ 2ξvβ1
vβ

−1

= −
∑

i≥2

2ξNβ1,−βi
Nβ

−1,−β−i
+ 2ξvβ1

vβ
−1

= 2ξf
π/2
β1,β−1

(v).

• The π-equation. First suppose that j 6= ±1. Then wβ1−βi
= vβ1−βi

for all i 6= j, and wβi−β1
= vβi−β1

for all i 6= −j. Moreover, wβi
= vβi

for all i. This means that

fπα,β(w) − fπα,β(v) =
∑

i6=±1
i6=±j

(−ξN−βj,βj−βi
vβj−βi

vβi
)

+ ξN−βj,β1
vβ1

vβj−β1

+ vβ1−β−j
ξN−βj,β−1

vβ
−1

−

(
−

l
∑

s=1

〈−βj, αs〉ξv̂s − ξ2vβj

)
vβj

−

l
∑

s=1

〈β1, αs〉v̂sξ〈β−1,−βj〉vβj

−

l
∑

s=1

〈β−1, αs〉v̂sξ〈β1,−βj〉vβj

− ξ2vβj
vβj

.

The last four lines sum up to

−

l
∑

s=1

〈−β1 − b−1 + βj, αs〉ξv̂svβj
= −ξvβj

l
∑

s=1

〈−β−j, αs〉v̂s.

Applying Lemma 6 and noticing that N−βj,βj−βi
= −Nβj,βi−βj

we
finally obtain

fπα,β(w) − fπα,β(v) = ξf
2π/3
βj,−β−j

(v).

Next, suppose that j = 1. Arguing exactly like in case (1), we get

fπα,β(w) − fπα,β(v) = 2ξf
2π/3
β1,−β−1

(v).

Similarly, for j = −1,

fπα,β(w) − fπα,β(v) = −2ξf
2π/3
β

−1,β1
(v).

(3) Suppose that ∠(ρ,Ω) = π/2. This means that for some j we have (ρ, βj) =

1/2 and (ρ, β−j) = −1/2 (or vice versa). Note that βj − ρ and β−j + ρ are
orthogonal roots with sum β−j + βj; therefore they lie in Ω. By Chevalley
commutator’s formula we have xρ(ξ) = [xβ

−j+ρ(ξ), x−β−j
(±1)]. Thus we

reduce the question to two previous cases, since ∠(β−j + ρ,Ω) = 0 and
∠(−β−j,Ω) = π.

(4) Suppose that (ρ,Ω) = 2π/3. This means that for every i one of the scalar
products (ρ, βi), (ρ, β−i) equals 0, while the other equals −1/2.

• The π/2-equation. Note that (βi, ρ) ≤ 0 for every i. Hence wβi
= vβi

for every i and we obtain f
π/2
α,β(w) = f

π/2
α,β(v).
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• The 2π/3-equation. As above, we have wβi
= vβi

for every i.
If (β1, ρ) = −1/2, then wβ1−βi

= vβ1−βi
for every i 6= ±1, and

〈β−1, ρ〉 = 0, so that
∑l
s=1〈β−1, αs〉ŵs =

∑l
s=1〈β−1, αs〉v̂s. It follows

that f
2π/3
α,β (w) = f

2π/3
α,β (v).

Now we assume that (β1, ρ) = 0 and (β−1, ρ) = −1/2. Then wβ1−βi
=

vβ1−βi
whenever (βi, ρ) = 0. We obtain

f
2π/3
α,β (w) − f

2π/3
α,β (v) =

∑

i : (βi,ρ)=−1/2

Nβ1,−βi
ξNρ,β1−βi−ρvβ1−βi−ρvβi

+ ξvβ1
v−ρ

Note that exactly half of 2k − 2 indices i = 2, . . . ,−2 satisfy the condi-
tion (βi, ρ) = −1/2, and for each one of them we have (β1 −βi − ρ) +

βi = β1 − ρ. Hence the roots β1,−ρ, {(β1 − βi − ρ), βi}i : (βi,ρ)=−1/2

form a maximal square. Therefore

f
2π/3
α,β (w) − f

2π/3
α,β (v) = ξf

π/2
β1,−ρ

(v).

• The π-equation. As above, note that for exactly half of the indices
i = 1, . . . ,−1 we have (βi, ρ) = −1/2, and for the other half we have
(βi, ρ) = 0. Put J = {i | (βi, ρ) = −1/2}, K = {i | (βi, ρ) = 0}. We know
that i ∈ J if and only if −i ∈ K. Again, we have wβi

= vβi
for all i,

and w−βi
= v−βi

for i ∈ K.
First suppose that 1 ∈ J. Then wβ1−βi

= vβ1−βi
for all i, and wβi−β1

=

vβi−β1
for i ∈ J. In this case we have

fπα,β(w) − fπα,β(v) =
∑

i∈K\{−1}

vβ1−βi
ξNρ,βi−β1−ρvβi−β1−ρ

−
∑

i∈J\{1}

ξNρ,−βi−ρv−βi−ρvβi

+ ξv−ρ ·

l
∑

s=1

〈β−1, αs〉v̂s

It is easy to see that the roots β−1, −ρ, {βi −β1 − ρ, β−i}i∈K\{−1} form
a maximal square. It follow that

fπα,β(w) − fπα,β(v) = −ξf
2π/3
−ρ,β

−1
(v).

Finally, suppose that 1 ∈ K. Then wβ1−βi
= vβ1−βi

for i ∈ K, and
wβi−β1

= vβi−β1
for all i. Similarly,

fπα,β(w) − fπα,β(v) =
∑

i∈J\{−1}

ξNρ,β1−βi−ρvβ1−βi−ρvβi−β1

−
∑

i∈J\{−1}

ξNρ,−βi−ρv−βi−ρvβi

+

l
∑

s=1

〈β1, αs〉v̂s · ξv−ρ

It is easy to see that the roots β1, −ρ, {β1 − βi − ρ, βi}i∈J\{−1} form a
maximal square. It follows that

fπα,β(w) − fπα,β(v) = −ξf
2π/3
−ρ,β1

(v).



EQUATIONS IN THE ADJOINT REPRESENTATION 13

(5) Suppose that (ρ,Ω) = π/3. This means that (ρ, β1) = 0 and (ρ, β−1) = π/3

(or vice versa). Then ρ − β−1 is a root and by Chevalley commutator’s
formula we have xρ(ξ) = [xρ−β

−1
(ξ), xβ

−1
(±1)]. Thus we reduce the

problem to previously discussed cases, since ∠(ρ − β−1,Ω) = 2π/3 and
∠(β−1,Ω) = 0.
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