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t. This paper is a slightly expanded text of our talk atthe PCA-2014. There, we announ
ed two re
ent results, 
on
erningexpli
it polynomial equations de�ning ex
eptional Chevalley groupsin mi
roweight or adjoint representations. One of these results isan expli
it 
hara
teristi
-free des
ription of equations on the entriesof a matrix from the simply 
onne
ted Chevalley group G(E7; R)in the 56-dimensional representation V . Before, similar des
riptionwas known for the group G(E6; R) in the 27-dimensional representa-tion, whereas for the group of type E7 it was only known under thesimplifying assumption that 2 ∈ R∗. In parti
ular, we 
ompute thenormalizer of G(E7; R) in GL(56; R) and establish that, as also thenormalizer of the elementary subgroup E(E7; R), it 
oin
ides withthe extended Chevalley group G(E7; R). The 
onstru
tion is basedon the works of J.Lurie and the �rst author on the E7-invariantquarti
 forms on V . Another major new result is a 
omplete de-s
ription of quadrati
 equations de�ning the highest weight orbit inthe adjoint representations of Chevalley groups of types E6, E7 andE8. Part of these equations not involving zero weights, the so-
alledsquare equations (or �=2-equations) were des
ribed by the se
ondauthor. Re
ently, the �rst author su

eeded in 
ompleting theseresults, expli
itly listing also the equations involving zero weight
oordinates linearly (the 2�=3-equations) and quadrati
ally (the �-equations). Also, we brie
y dis
uss re
ent results by S.Garibaldi andR.M.Guralni
k on o
ti
 invariants for E8.The present paper, whi
h is a dire
t sequel of [70℄, is based on ourtalk at the PCA-2014. In this talk, we reported some re
ent advan
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178 A. LUZGAREV, N. VAVILOVa major proje
t, whose goal is to develop methods of 
al
ulations, bothmanual and 
omputer ones, in ex
eptional Chevalley groups. In the spiritof this 
onferen
e, we 
on
entrate on expli
it polynomial equations de�n-ing ex
eptinal groups in their minimal representations, minus
ule and theadjoint ones. Before passing to our new results, let us brie
y outline thestate of art in the �eld.
§1. Introdu
tionLet � be a redu
ed irredu
ible root system, sin
e 
lassi
al groups arewell understood, and G2 is small enough to allow dire
t matrix 
al
ula-tions, in our proje
t we are mostly interested in the large ex
eptional 
ases,where � = E6;E7;E8 or F4. Further, let G = G(�; R) be a Chevalley groupof type � over a 
ommutative rings R with 1. Usually, we assume G to besimply 
onne
ted.Basi
ally, proofs of stru
ture results for G have either ring-theoreti
,or representation-theoreti
 and geometri
 
avour. They amount either toredu
tion of the dimension of the ground ring R, or the rank of the rootsystem �, or, eventually, to a 
ombination of both. Beneath, both methodsmake heavy use of [elementary℄ 
al
ulations in the elementary Chevalleygroup E(�; R) spanned by the elementary unipotents x�(�), where � ∈ �,� ∈ R, subje
t to Steinberg relations.Lo
alisation methods are well do
umented in the literature. Theywere introdu
ed in the study of algebrai
 groups by Andrei Suslin, whorealised that higher analogues of lo
al-global prin
iples of Quillen's typealso work at the level of K1, K2 and beyond. The �rst proofs of stru
turetheorems for ex
eptional groups by Eii
hi Abe, Kazuo Suzuki, GiovanniTaddei, Leonid Vaserstein, and others were based on Quillen{Suslin's lo-
alisation and pat
hing.The next major advan
e was originated by Anthony Bak, who intro-du
ed lo
alisation-
ompletion to prove the nilpoten
y of the [linear℄ K1.Over the last 12 years his method was simpli�ed, generalised and expandedin several dire
tions by Roozbeh Hazrat, the se
ond author, and ZuhongZhang [18, 19℄, and most notably by Alexei Stepanov [1, 50℄. One of themost important aspe
ts was that (unlike [3℄) these papers operate at therelative rather than the absolute level from the outset. We reported onre
ent versions of lo
alisation methods, and some of their appli
ations atthe PCA-2010 and PCA-2012, see the 
onferen
e papers [15℄ and [16℄, asalso at many further 
onferen
es, see in parti
ular [17℄.



CALCULATIONS IN EXCEPTIONAL GROUPS 179We espe
ially re
ommend to peruse the re
ent papers by Alexei Stepa-nov on his method of universal lo
alisation [46, 47℄, where he develops anew lo
alisation method that allows to establish results independent on thedimension of the ground ring, in terms of the universal/versal 
oeÆ
ientrings that depend on the roots system alone. All details are 
ontainedin his [Russian℄ Dr. S
i. Thesis (=Habilitation) [48℄. In our view, theseworks inaugurate an entirely new 
hapter in the development of lo
alisa-tion methods. Another amusing byprodu
t of these papers, was a furtherrethinking of some aspe
ts of elementary 
al
ulations in [20, 45℄.In this talk, we do not dis
uss lo
alisation methods any further, referringto the papers above.De
omposition of unipotents and its o�springs. Another majorbun
h of methods to 
al
ulate in Chevalley groups is based on geomet-ri
 realisations of these groups, in parti
ular in their minimal representa-tions. Over rings, this approa
h was pioneered in the groundbreaking worksby Hideya Matsumoto and Mi
hael Stein [31, 44℄. Soon thereafter, AlexeiStepanov, the se
ond author and Eugene Plotkin [49,53,54,73℄ developeda working approa
h towards the proof of the main stru
ture theorems forChevalley groups over rings, and many further related problems (see thedes
ription of the intended s
ope of the whole proje
t in the introdu
tionto [72℄).However, for ex
eptional groups, our initial approa
h requested someknowledge of at least part of the equations de�ning the groups in theirminimal representations. At ro
k bottom, an expli
it knowledge of thesystem of quadri
s [24℄, de�ning the highest weight orbit in these repre-sentations (see [54℄).Later, elaborating this approa
h, the se
ond author, Mikhail Gavrilovi
hand Sergei Nikolenko [62,63,71℄ introdu
ed a new group-theoreti
 twist tothis method, whi
h allowed to obtain mu
h more straightforward proofs,that invoked only the presen
e of very small 
lassi
al embeddings, su
h asA2 ⊆ E6;E7 (rather than huge 
lassi
al embeddings A5 ⊆ E6, A7 ⊆ E7or D8 ⊆ E8 used before that). Also, these new generation proofs, neverinvoked any equations on the entries of matri
es other than [part of the℄linear equations de�ning the 
orresponding Lie algebra.However, later again, the se
ond author noti
ed that using the equa-tions, one 
an develop mu
h more powerful versions of de
omposition ofunipotents, that allow to get to a small rank paraboli
 by forming very few



180 A. LUZGAREV, N. VAVILOV
ommutators. This would allow to improve the known bounds in many ex-isting appli
ations, as also a�ord various new appli
ations. One su
h newmethod is the A3-proof [55,60℄, some further variations were hinted in hisjoint paper with Vi
toria Kazakevi
h [64℄.What is in this paper? This required another look at the equationsde�ning ex
eptional groups, and stimulated us to return to the proje
tdes
ribed in [70℄. Here, we outline some re
ent results, mostly due to the�rst author, who su

eeded in 
ompleting previous results of the se
ondauthor to get �nal 
hara
teristi
 free answers. Namely, we announ
e thefollowing new results.
• Complete des
ription of the polynomial equations de�ning G(E7; R)as a subgroup of GL(56; R), in the mi
roweight representation, over anarbitrary 
ommutative ring R,
• Expli
it des
ription of the quadrati
 equations de�ning the highestweight orbits of G(E6; R), G(E7; R) and G(E8; R) in the adjoint represen-tation, again over an arbitrary 
ommutative ring.Also, we des
ribe another momentous re
ent a
hievement, due to SkipGaribaldi and Robert Guralni
k [13℄.
• Boosting the Cederwall|Palmkvist [8℄ 
onstru
tion of o
ti
 real poly-nomials in 248 variables, whose automorphism groups are split or 
ompa
treal forms of E8, Garibaldi and Guralni
k su

eeded in proving that overan arbitrary �eldK the Chevalley groupG(E8;K) admits a similar 
hara
-terisation as a subgroup of GL(248; R). However, as all su
h 
onstru
tions,this 
onstru
tion en
ounters serious troubles in 
hara
teristi
s 2 and 3, andit would be quite an exer
ise to 
onvert it into an expli
it 
hara
teristi
 freedes
ription of equations de�ning G(E8; R), over an arbitrary 
ommutativering R.We make no attempt whatsoever to des
ribe appli
ations of these re-sults, on whi
h we are 
urrently working, or their signi�
an
e in the de-velopment of new variants of de
omposition of unipotents. We refer thereader to our forth
oming papers: to [29℄, for a more general view of theseequations, involving the geometry of homogeneous spa
es and Gr�obnerbases, to [68℄ for an instan
e of appli
ation of our results on adjoint rep-resentations, and to [61℄, for 
ute new versions of the de
omposition ofunipotents.



CALCULATIONS IN EXCEPTIONAL GROUPS 181Basi
 notation. Sin
e this paper is a dire
t 
ompanion of [70℄, we donot reprodu
e the general setting, or the notation thereof, simply refer-ring to [31, 36, 44, 53, 54, 56, 72℄ for the de�nitions and further ba
kgroundreferen
es. Instead, we introdu
e an absolute minimum of notation.Below � denotes an arbitrary simply la
ed redu
ed irredu
ible rootsystem. A
tually, for the most part we are interested in the 
ases E6, E7and E8 and later on in various se
tions � will be E7 or E8. Further, let �be a fundamental root system in �. Let e�, � ∈ �, be a positive Chevalleysystem in the 
orresponding 
omplex simple Lie algebra L. Re
all thatin that 
ase [e�; e�℄ = N�;�e�+�, where the stru
ture 
onstants N�;� areequal to 0;±1, with further requirement that 
ertain 
onstants, where �are fundamental, are a
tually equal to +1. As usual, for two roots �; � ∈ �we denote by (�; �) their inner produ
t, and by 〈�; �〉 = 2(�; �)=(�; �) the
orresponding Cartan number.Usually, we 
onsider Chevalley group G(�; R) in some rational repre-sentation V . Mostly, V will be one of the fundamental representationsV = V ($i), where $i denotes the i-th fundamental weight. We denoteby � the set of weights of V with multipli
ities and 
hoose an admissiblebase of V . Re
all that an admissible base 
onsists of weight ve
tors, andthus 
an be indexed by the weights � ∈ �, in the sequel we denote it bye�, � ∈ �. Now, any ve
tor v ∈ V admits a linear expansion v = ∑ e�v�,where the sum is taken over � ∈ �. This means that a ve
tor v ∈ V 
anbe interpreted as a 
oordinate 
olumn v = (v�), where � ∈ �.
§2. Equations defining E7 inside Sp(56; R):the state of artBa
k in 2009 among other things we reported on the (then re
ent)paper [65℄, where we listed expli
it polynomial equations de�ning thesimply-
onne
ted Chevalley group of type E6 and its normaliser in the27-dimensional representation. In that paper we des
ribed the normaliserof Gs
(E6; R) in GL(27; R), as the largest subgroup 
onsisting of matri
eswhose �rst 
olumns are subje
t to 27 quadrati
 equations in 27 variables(see also § 7 of [70℄, espe
ially Theorem 10).Also, there we presaged similar results for the simply 
onne
ted Cheval-ley group of type E7 and its normaliser in the 56-dimensional representa-tion. Under the simplifying assumption that 2 ∈ R∗, this was indeed verysimilar in spirit to the 
ase of E6, and relatively straightforward. However,



182 A. LUZGAREV, N. VAVILOVit has taken us mu
h more time and e�ort to 
ope with the many addi-tional hurdles o

urring in the 
ase, where 2 in not invertible. A
tually,the key new idea 
omes from the works of Ja
ob Lurie [26℄ and the �rstauthor [27℄.Re
all that in [65℄ we worked from the 
lassi
al des
ription of theChevalley group E6 a
ting on the 27-dimensional module V = V ($1),in terms of a 
ubi
 form on V (see [54, 65, 69℄ for many more details andreferen
es).There exists a similar, but more 
ompli
ated des
ription of the simply
onne
ted group of type E7 a
ting on the 56-dimensional module V =V ($7). In this 
ase, to determine the group one needs two invariants, aquadrati
 one, and a quarti
 one. First of all, in this 
ase the module Vis self-dual and supports a unimodular symple
ti
 form h. Further, thereexists a four-linear form f : V × V × V × V −→ R su
h that G 
an beidenti�ed with the full isometry group of the pair h; f , or, in other words,with the group 
onsisting of all g ∈ GL(V ) su
h that h(gu; gv) = h(u; v)and f(gu; gv; gx; gy) = f(u; v; x; y) for all u; v; x; y ∈ V . The similarities ofthis pair of forms 
onstitute the extended Chevalley group G = G(E7; R).The 
onstru
tion of h is immediate. It is mu
h tri
kier to 
onstru
tan invariant of degree four. Classi
ally, one 
onstru
ts not the four-linearform f itself, but rather the 
orresponding quarti
. That the group G oftype E7 preserves a form of degree 4 in 56 variables, was �rst noted by�Eli Cartan, at least in 
hara
teristi
 0. His expli
it 
onstru
tion does notseem to work, but most probably this was simply a misprint. The formitself was also known to Leonard Di
kson ba
k in 1901, in the 
ontext ofthe 28 bitangents, and thus of the Weyl group W (E7).An extremely elegant elementary 
onstru
tion of su
h a quarti
 invari-ant over a �eld K of 
hara
teristi
 distin
t from 2 was proposed by HansFreudenthal in 1952. Namely, he identi�es V with the spa
e A(8;K)2 ofpairs of anti-symmetri
 8 × 8 matri
es, and 
onsiders the following sym-ple
ti
 inner produ
t, and the following quarti
 form:h((a1; b1); (a2; b2)) = 12(tr(a1bt2)− tr(a2bt1));Q((a; b)) = pf(a) + pf(b)− 14 tr((ab)2) + 116 tr(ab)2:Now, for all �elds K of 
hara
teristi
s distin
t from 2, one 
an indeedidentify the isometry group of this pair with the simply 
onne
ted Cheval-ley group G of type E7 overK, there are two remarkable proofs of this fa
t,



CALCULATIONS IN EXCEPTIONAL GROUPS 183by Mi
hael As
hba
her and Bru
e Cooperstein [2, 9℄. The 
onstru
tion ofthis form in the above papers are slightly di�erent. In fa
t, in [2℄ this formis 
onstru
ted in terms of A6, the essen
e of this 
onstru
tion is expressedby the equality 56 = 7+21+21+7). As opposed to that, the 
onstru
tionin [9℄ is mu
h 
loser in spirit to the original Freudenthal 
onstru
tion, andis phrased in terms of A7, where 56 = 28+ 28. The isometry group of theform Q is generated by G and a diagonal element of order 2, see [9℄.Chara
teristi
s p > 5 
an be treated uniformly, and do not 
ause serioustrouble, whereas 
hara
teristi
 3 requires some spe
ial attention. However,this approa
h breaks down 
ompletely in 
hara
teristi
 2. Not only the
onstru
tion itself does not work as stated, it seems that in 
hara
teristi
 2the module V does not support any non-trivial symmetri
G-invariant four-linear form at all, see [2℄. This is related to the fa
t that in 
hara
teristi
2 the squaring of the symple
ti
 formf(u; v; x; y) = h(u; v)h(x; y) + h(u; x)h(v; y) + h(u; y)h(v; x);be
omes symmetri
, whi
h is not the 
ase for 
hara
teristi
s > 3. As amatter of fa
t, in [2℄ As
hba
her 
onstru
ts another G-invariant four-linearform, whi
h is only symmetri
 with respe
t to the even permutations.There are di�erent 
onstru
tions of the form Q, in parti
ular the 
ele-brated 
onstru
tion by Robert Brown [6℄ in terms of ternary algebras, thatworks in 
hara
teristi
s 6= 2; 3. Let V be a spa
e with a nondegenerate in-ner produ
t. Then to de�ne a trilinear form on V is the same as to de�nethereon an algebra stru
ture. Similarly, four-linear forms on V 
orrespondto ternary algebra stru
tures. There exists a remarkable ternary algebra ofdimension 56, whi
h 
an be 
onstru
ted in terms of the ex
eptional Jordanalgebra J, see [6, 11℄ and referen
es there. This algebra 
onsists of 2 × 2matri
es J with s
alar diagonal entries, 56 = 1 + 27 + 27 + 1.These 
onstru
tions were widely used in the study of the groups byTonny Springer, Skip Garibaldi, and many others, but as we indi
atedabove,
§3. Equations defining E7 inside Sp(56; R):a system of quadri
s, and the extended groupFirst, we expli
itly 
onstru
t an ideal I in the polynomial ring

Z[x1; : : : ; x56℄, generated by 133 quadrati
 forms f1; : : : ; f133, su
h thatthe s
heme-theoreti
 normaliser of the ideal I 
oinsides with the extendedChevalley group of type E7.



184 A. LUZGAREV, N. VAVILOVThis 
onstru
tion works as follows. The highest Weyl orbit of equationsde�ning the highest weight orbit 
onsists of square equations . For minus-
ule and adjoint representations, their 
onstru
tions and numerology werestudied by the se
ond author in [54,58,59℄. Let us re
all the basi
 
onstru
-tion of [58℄ in the 
ontext of the 56-dimensional representation (E7; $7).Let � =W (E7)$7 be the set of weights of this representation. Usually,we interpret these weights as roots of E8 su
h that the last fundamentalroot �8 o

urs in their expansion with 
oeÆ
ient 1. A subset 
 ⊆ � is
alled a square if |
| > 4 and for any � ∈ 
 the di�eren
e � − � withall other weights � ∈ 
, ex
ept exa
tly one of them, denoted by �∗, isa root, whereas the di�eren
e � − �∗ is not a root (in whi
h 
ase �∗ isne
essarily orthogonal to �). In [58℄ it is proven that any maximal square
 
onsists of exa
tly 12 roots, and the sum �+�∗ does not depend on the
hoi
e of � ∈ 
. Moreover, for (E7; $7) a maximal square 
 is uniquelydetermined by this sum. In other words, maximal squares are in bije
tive
orresponden
e with the 126 roots of E7. More pre
isely, for a root � ∈ E7we set 
(�) = {� ∈ � | �− � ∈ �}:Let 
 be a maximal square. Chose orthogonal roots �; �∗ ∈ 
 and de�nea polynomial f�;�∗ ∈ Z[x�℄�∈� by the equalityf�;�∗ = x�x�∗ − ∑N�;−�N�∗;−�∗x�x�∗ ;where the sum is taken over all pairs of orthogonal weights {�; �∗} from 
,ex
ept the initial pair {�; �∗}. In [58℄ the equation of the form f�;�∗(v) =0 imposed on ve
tors v = (v�)�∈� ∈ V was 
alled a square equation
orresponding to a maximal square 
. Indeed, this equation only dependson the square 
 itself, and not on a arbitrary 
hoi
e of a pair {�; �∗}.For any other pair of orthogonal weights from the same maximal square
 the left hand-side of this equation remains the same, up to sign. Thus,
hoosing one pair of orthogonal weights from any maximal square 
, weget 126 quadrati
 equations, 
orresponding to the maximal squares in �,or, what is the same, to the 126 roots of E7. Without 
onfusion, we 
andenote these polynomials by f�, � ∈ �.However, there is also another Weyl orbit of equations. Namely, for aroot � ∈ E7 we introdu
e the polynomial g� ∈ Z[x�℄�∈� de�ned asg� = ∑N�;�∗x�x�∗ ;
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(�). Again, there are 126 su
hpolynomials, but it is easy to verify that the ideal in Z[x�℄�∈�, generatedby all polynomials g�, � ∈ �, 
oin
ides with the ideal generated by theideal generated by g�, � ∈ �. Denote gi = g�i , i = 1; : : : ; 7.Thus, �nally we get an ideal I generated by the above quadrati
 polyno-mials f�, � ∈ E7 and gi, i = 1; : : : ; 7. Altogether this gives us 126+7 = 133quadrati
 polynomials, whi
h already is a good omen.�ÅÏÒÅÍÁ 1. The simply 
onne
ted Chevalley group G(E7; R) preserves I.This results 
an be also stated as follows. Denote by FixR(I) the set ofR-linear transformations preserving the ideal I ,FixR(I) = {g ∈ GL(56; R) | f(gx) ∈ I for all f ∈ I}:Then Gs
(E7; R) 6 FixR(I). In fa
t, quite a bit more 
an be said in this
ase.�ÅÏÒÅÍÁ 2. The s
heme theoreti
 stabiliser of I 
oin
ides with the ex-tended simply 
onne
ted Chevalley group Gs
(E7;−).This result 
an be interpreted as an expli
it des
ription of the extendedsimply 
onne
ted Chevalley{Demazure group s
heme Gs
(E7;−) of type� = E7, 
onstru
ted in [4℄, see also [57℄ for other 
onstru
tions and manyfurther referen
es. For � = E7, the s
heme Gs
(E7;−) 
an be interpretedas the Levi fa
tor of the paraboli
 subs
heme of type P8 in the usualChevalley|Demazure s
heme G(E8;−) of type E8. Moreover, the Levifa
tor Gs
(E7;−) a
ts on the unipotent radi
al U8 of P8. This a
tion givesus an irredu
ible 56-dimensional representation of G(E7;−) with the high-est weight $7.Our results are also intimately related with the des
ription of Gs
(E7; R)as the stabiliser of a system of four-linear forms on V = V ($7). Namely, in[27℄ the �rst author 
onstru
ted a four-linear form f : V ×V ×V ×V −→ Rsu
h thatGs
(E7; R) = {g ∈ GL(56; R) | f(gu; gv; gw; gz) = f(u; v; w; z);h(gu; gv) = h(u; v) for all u; v; w; z ∈ V }:Here, h is the obvious symple
ti
 inner produ
t on V . Let us brie
y de-s
ribe the form f . If we identify V with U8 as above, we get a 
anon-i
al base (v�)�∈� of V , where � ⊆ E8 is the 
orresponding unipotentset of roots. In order to de�ne f(u; v; w; z) for all u; v; w; z ∈ V it suf-�
es to de�ne f(v�; v�; v� ; v�) for all �; �; �; � ∈ �. Let Æ ∈ E8 be the



186 A. LUZGAREV, N. VAVILOVmaximal root. Consider the semisimple 
omplex Lie algebra e8 of type E8with a Chevalley base (e�)�∈E8 . Note that for �; �; �; � ∈ � the element[[[[e−Æ; e�℄; e�℄; e� ℄; e�℄ lies in ZeÆ . Suppose that[[[[e−Æ; e�℄; e�℄; e� ℄; e�℄ = 
(�; �; �; �)eÆ :We put f(v�; v�; v� ; v�) = 
(�; �; �; �). It is easy to 
he
k thatf(v�; v�; v� ; v�) = 0 unless �+ �+ � + � = 2Æ.The bulk of the above system of quadrati
 forms 
onsists of the se
ondorder partial derivatives of the [regular part of℄ the form f . In other words,Gs
(E7; R) is the group of linear transformations preserving both f and h,whereas Gs
(E7; R) is the group of similarities of that pair of forms.In the following theorem, all normalisers and transporters are takeninside GL(56; R).�ÅÏÒÅÍÁ 3. Let R be any 
ommutative ring, thenN(E(E7; R)) = N(G(E7; R)) = Tran(E(E7; R); G(E7; R)) = G(R):One of the possible appli
ations of these results, we have in mind, wouldbe another approa
h to the proof of the standard des
ription of automor-phisms of Chevalley groups, without assumption that 2 ∈ R∗. For 
lassi
algroups su
h a des
ription was well known for some de
ades, but for ex
ep-tional groups the situation looked very di�erent, sin
e all published proofseither imposed irrelevant extra 
onditions, or 
ontained serious gaps. Re-
ently, this problem was almost 
ompletely settled by Elena Bunina, see [7℄and referen
es therein. She works in the adjoint representation and one ofthe most problemati
 parts is to verify that a 
onjugation in the 
or-responding general linear group GL(n;R) is indeed a 
onjugation insideGad(�; R) itself. But if the abstra
t and the algebrai
 normalisers 
oin-
ide, as they do by Theorem 3, then all su
h 
onjugations normalisingGad(�; R) are indeed honest inner automorphisms. Of 
ourse, with thisend one has either to rewrite all proofs of [7℄ and previous works for mi-
roweight representations, or to prove an analogue of our Theorem 3 foradjoint representations. In the next se
tion we report re
ent progress re-garding the se
ond of these tasks.
§4. Equations defining the highest weight orbitin the adjoint representationIn this se
tion we des
ribe another important re
ent advan
e. Namely,just a few months before the Conferen
e, in [28℄ the �rst author �nally
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ompleted an expli
it des
ription of the equations on the highest weightorbit in the adjoint representation of Chevalley groups of types E6, E7and E8, started by the se
ond author in [54, 58℄. Namely, he introdu
edtwo further types of equations, on top of the square equations 
onsideredin [58, 59℄.This is extremely important, sin
e the equations listed in [54, 58℄ inthemselves do not suÆ
e to 
onstru
t de
omposition of unipotents in theadjoint representations of Chevalley groups of types El, l = 6; 7; 8. Now,we are �nally in a position to 
omplete the proje
t started in [54, 58℄To state these equations, we need to re
all some further bits of nota-tion (see [54,56,58℄ for many more details). Let, as before � be a redu
edirredu
ible simply la
ed root system. A
tually, we are most interested inthe 
ases � = E6;E7;E8, but it all works verbatim also for the 
lassi
al
ases. Re
all that for all 
ases, apart from � = Al, the adjoint repre-sentation V = V (!) is fundamental, to wit, (�; !) = (E6; $2), (E7; $1)or (E8; $8). The set of weights � of this representation 
onsists of rootsand zero weight, of multipli
ity l. Denote the zero weights by 01; : : : ; 0l.The 
orresponding base ve
tors will be denoted simply e1; : : : ; el. Thus, ave
tor v ∈ V 
an be uniquely expressed in the formv = ∑�∈� e�v� ∑�∈� e�v� + l
∑i=1 eiv̂i:There are three Weyl orbits of quadrati
 equations de�ning the highestweight orbit in V , the ones not involving zero-weight 
oordinates, the onesthat 
ontain linear terms in these 
oordinates, and the ones that 
ontainquadrati
 terms.

• �=2-equations. First, let �; � ∈ � be two orthogonal roots. As in § 3let us 
onsider all other unordered pairs of roots with the same sum:S�=2(�; �) = {

{
; Æ} | 
 + Æ = �+ �; {
; Æ} 6= {�; �}}:Consider the following equation on a ve
tor v = (v�) ∈ V , where � ∈ �:v�v� = ∑

{
;Æ}∈S�=2(�;�)N�;−
N�;−Æv
vÆ : (1)A
tually, these equations are renamed �=2-equations in [28℄.
• 2�=3-equations. As above, let �; � ∈ � be two orthogonal roots.Consider all pairs of roots {
; Æ} su
h that 
 + Æ = � and 
; Æ are notorthogonal to �. Note that if 
 is orthogonal to � and 
 + Æ = �, then
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; �) = 0, so Æ is also orthogonal to �. Also, 0 = (�; �) =(
+ Æ; �) = (
; �) + (Æ; �). It follows, that for su
h a pair {
; Æ} one of theroots 
 or Æ forms angle 2�=3 with �, while the other forms angle �=3. PutS2�=3(�; �) = {

{
; Æ} | 
 + Æ = �; (
; �) 6= 0}:Consider the following equation on a ve
tor v = (v�)�∈� ∈ V :v� ·
l

∑s=1〈�; �s〉v̂s = −
∑N
;Æv
vÆ ; (2)where the sum on the right hand side is taken over all pairs {
; Æ} ∈S2�=3(�; �), su
h that 
 forms angle �=3 with �. We 
all this equation the2�=3-equation 
orresponding to the pair (�; �).

• �-equations. As always, let �; � ∈ � be two orthogonal roots. Con-sider all pairs of roots {
; Æ} su
h that 
 = −Æ and 
; Æ are not orthogonalto � and �. Two possibilities 
an possibly o

ur.
◦ Either (
; �) = (
; �), and then automati
ally (Æ; �) = (Æ; �). Swit
h-ing 
 and Æ if ne
essary, we may without loss of generality assume that theangles 
 forms with � and � are both equal to 2�=3. In this 
ase we setS−� (�; �) = {(
; Æ) | 
 + Æ = 0; 
 + �; 
 + � ∈ �}:
◦ Or exa
tly one of the angles between 
 or Æ and � equals 2�=3. Again,swit
hing 
 and Æ we may assume that 
 forms angle 2�=3 with �, andthen automati
ally the angles between 
 and � and between Æ and � willbe equal to �=3, whereas the angle between Æ and � is equal to 2�=3. Inthis 
ase we setS+� (�; �) = {(
; Æ) | 
 + Æ = 0; 
 + �; Æ + � ∈ �}:De�ne the sign "(
; Æ) of a pair (
; Æ) to be equal to +1 if (
; Æ) ∈S+� (�; �) and to −1 if (
; Æ) ∈ S−� (�; �)Consider the following equation on a ve
tor v = (v�)�∈� ∈ V :l

∑s=1〈�; �s〉vs · l
∑s=1〈�; �s〉vs = ∑ "(
; Æ)v
vÆ ; (3)where the sum on the right hand side is taken over all (
; Æ) ∈ S+� (�; �) ∪S−� (�; �).Now we are all set to state the main result of [28℄.
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tors v ∈ V satisfying the equations (1), (2),(3) for all �; � ∈ �, � ⊥ �, is invariant under the a
tion of the groupGad(�; R).The proof of this result in [28℄ 
onsists in a plethora of deli
ate 
om-putations with roots and stru
ture 
onstants, similar in spirit to thosein [54, 58℄, but mu
h more meti
ulous. In parti
ular, it follows that the�rst 
olumn of any matrix g ∈ E(�; R) satis�es the above equations.
§5. The o
ti
 E8 invariantLet us mention another amazing re
ent development. Namely, in [8℄Martin Cederwall and Jakob Palmkvist 
onstru
ted an o
ti
 polynomialin 248 variables, invariant under the a
tion of E8 in the adjoint represen-tation. We are embarrassed to 
on
ede that we were not aware of thatpaper (published in a physi
s journal) when 
ompiling the bibliography onexpli
it realisations of ex
eptional groups in [66℄ and only learned of itsexisten
e from the 1st version of the remarkable preprint by Skip Garibaldiand Robert Guralni
k [12℄.In [8℄ an invariant o
ti
 polynomial is 
onstru
ted for the (split and
ompa
t) real and 
omplex 
ases, using the realisation of E8 in terms ofD8 and its half-spin representation, 248 = 120 + 128. The 
onstru
tionitself, or the resulting polynomial, are too 
ompli
ated to be in
luded inthe 
asual exposition (in fa
t, during the talk itself, we demonstrated the
orresponding page of [8℄).The situation was mu
h 
lari�ed by Garibaldi and Guralni
k in [12℄and espe
ially in the 2nd version of that preprint [13℄, whi
h is about 50%longer, and 
ontains many additional details, and referen
es.�ÅÏÒÅÍÁ 5. Let G be a simple algebrai
 group of type E8 over a �eldK and put q for a nonzero G-invariant quadrati
 form on Lie(G). Thenthere exists a homogeneous polynomial F of degree 8 on Lie(G) that isG-invariant and does not belong to Kq4. For any ea
h su
h F ,

• the [set-theoreti
℄ stabiliser of F in GL(248;K) is generated by G andthe eighth roots of unity;
• if 
har(K) 6= 2; 3, the s
heme-theoreti
 stabiliser of F in GL(248;K)and the s
heme-theoreti
 stabiliser of KF in PGL(248;K) 
oin
ide with[the image of ℄ G.It would be a formidable task to generalise this result to arbitrary 
om-mutative ringsR, in the spirit of [65,67℄, deriving expli
it matrix equations.
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hallenge to get rid of the assump-tion 6 ∈ R∗. In fa
t, Garibaldi and Guralni
k 
onje
ture that the s
heme-theoreti
 stabiliser of KF in PGL(248;K) is always smooth, and that thes
heme-theoreti
 stabiliser of F in GL(248;K) is smooth in 
hara
teristi
3. However, it is 
learly not smooth in 
hara
teristi
 2, so that to ob-tain an expli
it 
hara
teristi
 free des
ription of the polynomial equationsde�ning G(E8; R) inside SO(248; R) one will have to �nd other invariants,inevitably non-symmetri
 ones.One extremely important aspe
t of [13℄ is that it makes 
lear that thevery spe
ial role played by 
hara
teristi
s 2 and 3 is explained not justby the fa
t that 2 and 3 divide d!, where d is the degree of a polynomialinvariant, but also by the very ex
eptional behaviour of Lie algebras in
hara
teristi
s 2 and 3. From a 
lassi
al paper by Alexei Rudakov [37℄ weknow that Chevalley algebras in 
hara
teristi
s p > 5 are rigid, whi
h theyare not in 
hara
teristi
s 2 and 3.
§6. Final remarksDue to the time 
onstraints, in this talk we 
ould not tou
h many furtherrelated re
ent results, and possible generalisations.In the introdu
tion, we have already mentioned the marvellous re
entpapers by Alexei Stepanov, espe
ially [46℄, whi
h 
learly indi
ate an en-tirely new stage of maturity of the whole theory, and pave way for a wholenew range of appli
ations.Presently, one of the main pursuits of the St. Petersburg s
hool of alge-brai
 groups 
onsists in a systemati
 endeavour to generalise all existingresults from Chevalley groups to arbitrary { suÆ
iently isotropi
! { redu
-tive groups over rings. This enterprise was started by the truly remarkable
ontribution by Vi
tor Petrov and Anastasia Stavrova [32℄, who de�nedthe elementary subgroup of su
h groups, and proved its normality. To dothat, they had to develop large fragments of the general stru
ture theoryof su
h groups, thus e�e
tively expanding parts of the 
lassi
al Borel{Titsstru
ture theory [5℄ to the Demazure|Grothendie
k setting [10℄, and todevelop lo
alisation te
hniques in the spirit of Quillen|Suslin [51, 52℄, inthis more general 
ontext.Further advan
es in this dire
tion were mostly due to Stavrova herself,with 
ollaboration of the �rst author and Ekaterina Kulikova (Sopkina)[22, 30, 41, 43℄. Presently, Stavrova, Stepanov and the �rst author 
arrythrough the proje
t whose obje
tive is to des
ribe subgroups of isotropi
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tive groups normalised by the elementary subgroup (at lest when6 ∈ R∗), see [42℄.Another major advan
e, was an improvement of fa
torisations and sta-bility theorems at the level of K1 and K2, for ex
eptional embeddings,obtained by Sergei Sin
huk in his Thesis [39℄ (see also his paper [40℄, foran outline of some of these results, without detailed proofs). This wasthe �rst 
onsiderable improvement of the stability results for ex
eptionalgroups obtained by Mi
hael Stein and Eugene Plotkin [33{35, 44℄ somede
ades ago.Finally, we would like to mention the re
ent amazing paper by AndreiLavrenov [23℄, whi
h 
ontains a 
omplete solution of an outstanding openproblem, 
entrality of the symple
ti
 K2. Before, 
entrality was only knownin the linear 
ase, from the beautiful another presentation by Wilberdvan der Kallen [21℄ (soon thereafter expanded by Marat Tulenbaev from
ommutative to almost 
ommutative rings). The work by Lavrenov wasthe �rst signi�
ant progress for de
ades, and hopefully, 
ombined withthe ideas of Petrov and Sin
huk, it will eventually lead to a proof of K2
entrality also for large ex
eptional groups.Certainly, ea
h of these subje
ts would deserve a separate talk, and aseparate survey. Referen
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