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ABSTRACT. This paper is a slightly expanded text of our talk at
the PCA-2014. There, we announced two recent results, concerning
explicit polynomial equations defining exceptional Chevalley groups
in microweight or adjoint representations. One of these results is
an explicit characteristic-free description of equations on the entries
of a matrix from the simply connected Chevalley group G(E7, R)
in the 56-dimensional representation V. Before, similar description
was known for the group G(Eg, R) in the 27-dimensional representa-
tion, whereas for the group of type Er it was only known under the
simplifying assumption that 2 € R*. In particular, we compute the
normalizer of G(E7, R) in GL(56, R) and establish that, as also the
normalizer of the elementary subgroup E(E7, R), it coincides with
the extended Chevalley group §(E7, R). The construction is based
on the works of J.Lurie and the first author on the Er-invariant
quartic forms on V. Another major new result is a complete de-
scription of quadratic equations defining the highest weight orbit in
the adjoint representations of Chevalley groups of types Eg, E7 and
Esg. Part of these equations not involving zero weights, the so-called
square equations (or w/2-equations) were described by the second
author. Recently, the first author succeeded in completing these
results, explicitly listing also the equations involving zero weight
coordinates linearly (the 27 /3-equations) and quadratically (the -
equations). Also, we briefly discuss recent results by S.Garibaldi and
R.M.Guralnick on octic invariants for Eg.

The present paper, which is a direct sequel of [70], is based on our
talk at the PCA-2014. In this talk, we reported some recent advances in

Key words and phrases: Chevalley groups, elementary subgroups, exceptional
groups, multilinear invariants, microweight representation, adjoint representation, high-
est weight orbit.

This work was supported by the Research Project 6.38.191.2014 “Structure theory,
classification, geometry, K-theory and arithmetics of algebraic groups and related struc-
tures” at the St.Petersburg State University. Various parts of the research presented in
this paper were also supported by the cooperative projects REFI/GFEN 13-01-91150
and RFFI/Indian Academy 13-01-92699 (both at SPbGU), and by the initiative projects
12-01-00947 (PDMI), RFFI 13-01-00709 (SPbGU), 13-01-00429 (PDMI), 14-01-00820
(RGPU), and 14-01-31515 (SPbGU).



178 A. LUZGAREV, N. VAVILOV

a major project, whose goal is to develop methods of calculations, both
manual and computer ones, in exceptional Chevalley groups. In the spirit
of this conference, we concentrate on explicit polynomial equations defin-
ing exceptinal groups in their minimal representations, minuscule and the
adjoint ones. Before passing to our new results, let us briefly outline the
state of art in the field.

§1. INTRODUCTION

Let @ be a reduced irreducible root system, since classical groups are
well understood, and Gz is small enough to allow direct matrix calcula-
tions, in our project we are mostly interested in the large exceptional cases,
where ® = Fg4, E7, Eg or Fy. Further, let G = G(®, R) be a Chevalley group
of type ® over a commutative rings R with 1. Usually, we assume G to be
simply connected.

Basically, proofs of structure results for G have either ring-theoretic,
or representation-theoretic and geometric flavour. They amount either to
reduction of the dimension of the ground ring R, or the rank of the root
system ®, or, eventually, to a combination of both. Beneath, both methods
make heavy use of [elementary] calculations in the elementary Chevalley
group E(®, R) spanned by the elementary unipotents z,(£), where a € ®,
£ € R, subject to Steinberg relations.

Localisation methods are well documented in the literature. They
were introduced in the study of algebraic groups by Andrei Suslin, who
realised that higher analogues of local-global principles of Quillen’s type
also work at the level of K1, K5 and beyond. The first proofs of structure
theorems for exceptional groups by Eiichi Abe, Kazuo Suzuki, Giovanni
Taddei, Leonid Vaserstein, and others were based on Quillen—Suslin’s lo-
calisation and patching.

The next major advance was originated by Anthony Bak, who intro-
duced localisation-completion to prove the nilpotency of the [linear] Kj.
Over the last 12 years his method was simplified, generalised and expanded
in several directions by Roozbeh Hazrat, the second author, and Zuhong
Zhang [18,19], and most notably by Alexei Stepanov [1,50]. One of the
most important aspects was that (unlike [3]) these papers operate at the
relative rather than the absolute level from the outset. We reported on
recent versions of localisation methods, and some of their applications at
the PCA-2010 and PCA-2012, see the conference papers [15] and [16], as
also at many further conferences, see in particular [17].
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We especially recommend to peruse the recent papers by Alexei Stepa-
nov on his method of universal localisation [46,47], where he develops a
new localisation method that allows to establish results independent on the
dimension of the ground ring, in terms of the universal/versal coefficient
rings that depend on the roots system alone. All details are contained
in his [Russian] Dr. Sci. Thesis (=Habilitation) [48]. In our view, these
works inaugurate an entirely new chapter in the development of localisa-
tion methods. Another amusing byproduct of these papers, was a further
rethinking of some aspects of elementary calculations in [20,45].

In this talk, we do not discuss localisation methods any further, referring
to the papers above.

Decomposition of unipotents and its offsprings. Another major
bunch of methods to calculate in Chevalley groups is based on geomet-
ric realisations of these groups, in particular in their minimal representa-
tions. Over rings, this approach was pioneered in the groundbreaking works
by Hideya Matsumoto and Michael Stein [31,44]. Soon thereafter, Alexei
Stepanov, the second author and Eugene Plotkin [49, 53, 54,73] developed
a working approach towards the proof of the main structure theorems for
Chevalley groups over rings, and many further related problems (see the
description of the intended scope of the whole project in the introduction
to [72]).

However, for exceptional groups, our initial approach requested some
knowledge of at least part of the equations defining the groups in their
minimal representations. At rock bottom, an explicit knowledge of the
system of quadrics [24], defining the highest weight orbit in these repre-
sentations (see [54]).

Later, elaborating this approach, the second author, Mikhail Gavrilovich
and Sergei Nikolenko [62,63,71] introduced a new group-theoretic twist to
this method, which allowed to obtain much more straightforward proofs,
that invoked only the presence of very small classical embeddings, such as
A, C Eg,E; (rather than huge classical embeddings A5 C Eg, A7 C E7
or Dg C Eg used before that). Also, these new generation proofs, never
invoked any equations on the entries of matrices other than [part of the]
linear equations defining the corresponding Lie algebra.

However, later again, the second author noticed that using the equa-
tions, one can develop much more powerful versions of decomposition of
unipotents, that allow to get to a small rank parabolic by forming very few
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commutators. This would allow to improve the known bounds in many ex-
isting applications, as also afford various new applications. One such new
method is the As-proof [55,60], some further variations were hinted in his
joint paper with Victoria Kazakevich [64].

What is in this paper? This required another look at the equations
defining exceptional groups, and stimulated us to return to the project
described in [70]. Here, we outline some recent results, mostly due to the
first author, who succeeded in completing previous results of the second
author to get final characteristic free answers. Namely, we announce the
following new results.

e Complete description of the polynomial equations defining G(E7, R)
as a subgroup of GL(56, R), in the microweight representation, over an
arbitrary commutative ring R,

e Explicit description of the quadratic equations defining the highest
weight orbits of G(Es, R), G(E7, R) and G(Es, R) in the adjoint represen-
tation, again over an arbitrary commutative ring.

Also, we describe another momentous recent achievement, due to Skip
Garibaldi and Robert Guralnick [13].

e Boosting the Cederwall—Palmkvist [8] construction of octic real poly-
nomials in 248 variables, whose automorphism groups are split or compact
real forms of Eg, Garibaldi and Guralnick succeeded in proving that over
an arbitrary field K the Chevalley group G(Esg, K) admits a similar charac-
terisation as a subgroup of GL(248, R). However, as all such constructions,
this construction encounters serious troubles in characteristics 2 and 3, and
it would be quite an exercise to convert it into an explicit characteristic free
description of equations defining G(Esg, R), over an arbitrary commutative
ring R.

We make no attempt whatsoever to describe applications of these re-
sults, on which we are currently working, or their significance in the de-
velopment of new variants of decomposition of unipotents. We refer the
reader to our forthcoming papers: to [29], for a more general view of these
equations, involving the geometry of homogeneous spaces and Groébner
bases, to [68] for an instance of application of our results on adjoint rep-
resentations, and to [61], for cute new versions of the decomposition of
unipotents.
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Basic notation. Since this paper is a direct companion of [70], we do
not reproduce the general setting, or the notation thereof, simply refer-
ring to [31,36,44,53, 54,56, 72] for the definitions and further background
references. Instead, we introduce an absolute minimum of notation.

Below ® denotes an arbitrary simply laced reduced irreducible root
system. Actually, for the most part we are interested in the cases Eg, E;
and Eg and later on in various sections ® will be E; or Eg. Further, let 11
be a fundamental root system in ®. Let ey, a € ®, be a positive Chevalley
system in the corresponding complex simple Lie algebra L. Recall that
in that case [eq, e8] = Nu,g€a+s, Where the structure constants N, g are
equal to 0, %1, with further requirement that certain constants, where [
are fundamental, are actually equal to +1. As usual, for two roots «, 5 € ®
we denote by (a, ) their inner product, and by («, 8) = 2(«, 8)/(8, 8) the
corresponding Cartan number.

Usually, we consider Chevalley group G(®, R) in some rational repre-
sentation V. Mostly, V will be one of the fundamental representations
V = V(w;), where w; denotes the i-th fundamental weight. We denote
by A the set of weights of V' with multiplicities and choose an admissible
base of V. Recall that an admissible base consists of weight vectors, and
thus can be indexed by the weights A € A, in the sequel we denote it by
e*, A € A. Now, any vector v € V admits a linear expansion v = >_ e*vy,
where the sum is taken over A € A. This means that a vector v € V can
be interpreted as a coordinate column v = (vy), where A € A.

§2. EQUATIONS DEFINING E; INSIDE Sp(56, R):
THE STATE OF ART

Back in 2009 among other things we reported on the (then recent)
paper [65], where we listed explicit polynomial equations defining the
simply-connected Chevalley group of type Eg and its normaliser in the
27-dimensional representation. In that paper we described the normaliser
of Gs.(Eg, R) in GL(27, R), as the largest subgroup consisting of matrices
whose first columns are subject to 27 quadratic equations in 27 variables
(see also § 7 of [70], especially Theorem 10).

Also, there we presaged similar results for the simply connected Cheval-
ley group of type E; and its normaliser in the 56-dimensional representa-
tion. Under the simplifying assumption that 2 € R*, this was indeed very
similar in spirit to the case of Eg, and relatively straightforward. However,
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it has taken us much more time and effort to cope with the many addi-
tional hurdles occurring in the case, where 2 in not invertible. Actually,
the key new idea comes from the works of Jacob Lurie [26] and the first
author [27].

Recall that in [65] we worked from the classical description of the
Chevalley group Eg acting on the 27-dimensional module V = V (@),
in terms of a cubic form on V (see [54,65,69] for many more details and
references).

There exists a similar, but more complicated description of the simply
connected group of type E7 acting on the 56-dimensional module V' =
V(wr). In this case, to determine the group one needs two invariants, a
quadratic one, and a quartic one. First of all, in this case the module V'
is self-dual and supports a unimodular symplectic form A. Further, there
exists a four-linear form f : V xV xV xV — R such that G can be
identified with the full isometry group of the pair h, f, or, in other words,
with the group consisting of all g € GL(V') such that h(gu, gv) = h(u,v)
and f(gu, gv, gz, gy) = f(u,v,z,y) for all u,v,z,y € V. The similarities of
this pair of forms constitute the extended Chevalley group G = G(E7, R).

The construction of h is immediate. It is much trickier to construct
an invariant of degree four. Classically, one constructs not the four-linear
form f itself, but rather the corresponding quartic. That the group G of
type E7 preserves a form of degree 4 in 56 variables, was first noted by
Eli Cartan, at least in characteristic 0. His explicit construction does not
seem to work, but most probably this was simply a misprint. The form
itself was also known to Leonard Dickson back in 1901, in the context of
the 28 bitangents, and thus of the Weyl group W (Er).

An extremely elegant elementary construction of such a quartic invari-
ant over a field K of characteristic distinct from 2 was proposed by Hans
Freudenthal in 1952. Namely, he identifies V with the space A(8, K)? of
pairs of anti-symmetric 8 x 8 matrices, and considers the following sym-
plectic inner product, and the following quartic form:

(e, b), a2, b)) = 5 (tr(anth) — tr(aat))),

Q(a,b)) = pf(a) + p(b) — itr((ab)z) + 1i6 tr(ab)2.

Now, for all fields K of characteristics distinct from 2, one can indeed
identify the isometry group of this pair with the simply connected Cheval-
ley group G of type E7 over K, there are two remarkable proofs of this fact,
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by Michael Aschbacher and Bruce Cooperstein [2,9]. The construction of
this form in the above papers are slightly different. In fact, in [2] this form
is constructed in terms of Ag, the essence of this construction is expressed
by the equality 56 = 74214214 7). As opposed to that, the construction
in [9] is much closer in spirit to the original Freudenthal construction, and
is phrased in terms of A7, where 56 = 28 + 28. The isometry group of the
form @) is generated by G and a diagonal element of order 2, see [9].

Characteristics p > 5 can be treated uniformly, and do not cause serious
trouble, whereas characteristic 3 requires some special attention. However,
this approach breaks down completely in characteristic 2. Not only the
construction itself does not work as stated, it seems that in characteristic 2
the module V' does not support any non-trivial symmetric G-invariant four-
linear form at all, see [2]. This is related to the fact that in characteristic
2 the squaring of the symplectic form

flu,v,z,y) = h(u,v)h(z,y) + h(u, z)h(v,y) + h{u,y)h(v, ),

becomes symmetric, which is not the case for characteristics > 3. As a
matter of fact, in [2] Aschbacher constructs another G-invariant four-linear
form, which is only symmetric with respect to the even permutations.

There are different constructions of the form (), in particular the cele-
brated construction by Robert Brown [6] in terms of ternary algebras, that
works in characteristics # 2, 3. Let V' be a space with a nondegenerate in-
ner product. Then to define a trilinear form on V is the same as to define
thereon an algebra structure. Similarly, four-linear forms on V' correspond
to ternary algebra structures. There exists a remarkable ternary algebra of
dimension 56, which can be constructed in terms of the exceptional Jordan
algebra J, see [6,11] and references there. This algebra consists of 2 x 2
matrices J with scalar diagonal entries, 56 = 1 + 27 + 27 + 1.

These constructions were widely used in the study of the groups by
Tonny Springer, Skip Garibaldi, and many others, but as we indicated
above,

§3. EQUATIONS DEFINING E; INSIDE Sp(56, R):
A SYSTEM OF QUADRICS, AND THE EXTENDED GROUP

First, we explicitly construct an ideal I in the polynomial ring
Z|z1, ..., z56], generated by 133 quadratic forms fi,..., fi33, such that
the scheme-theoretic normaliser of the ideal I coinsides with the extended
Chevalley group of type E7.



184 A. LUZGAREV, N. VAVILOV

This construction works as follows. The highest Weyl orbit of equations
defining the highest weight orbit consists of square equations. For minus-
cule and adjoint representations, their constructions and numerology were
studied by the second author in [54,58,59]. Let us recall the basic construc-
tion of [58] in the context of the 56-dimensional representation (E7,wr).

Let A = W(Er)w7 be the set of weights of this representation. Usually,
we interpret these weights as roots of Eg such that the last fundamental
root ag occurs in their expansion with coefficient 1. A subset 2 C A is
called a square if |Q2] > 4 and for any A € Q the difference A — p with
all other weights p € Q, except exactly one of them, denoted by A*, is
a root, whereas the difference A — \* is not a root (in which case A* is
necessarily orthogonal to A). In [58] it is proven that any maximal square
Q consists of exactly 12 roots, and the sum A+ A* does not depend on the
choice of A € Q. Moreover, for (E7,w7) a maximal square {2 is uniquely
determined by this sum. In other words, maximal squares are in bijective
correspondence with the 126 roots of E;. More precisely, for a root o € E7
we set

Qa)={reA|X—acA}.

Let 2 be a maximal square. Chose orthogonal roots p, p* € Q and define
a polynomial f, ,» € Z[xa]aea by the equality

foor = Tppr — E :NPﬁANP*ﬁ/\*xkx%*a

where the sum is taken over all pairs of orthogonal weights {A, A*} from Q,
except the initial pair {p, p*}. In [58] the equation of the form f, ,«(v) =
0 imposed on vectors v = (vx)aea € V was called a square equation
corresponding to a maximal square (2. Indeed, this equation only depends
on the square ) itself, and not on a arbitrary choice of a pair {p, p*}.
For any other pair of orthogonal weights from the same maximal square
Q the left hand-side of this equation remains the same, up to sign. Thus,
choosing one pair of orthogonal weights from any maximal square 2, we
get 126 quadratic equations, corresponding to the maximal squares in A,
or, what is the same, to the 126 roots of E;. Without confusion, we can
denote these polynomials by f,, a € ®.

However, there is also another Weyl orbit of equations. Namely, for a
root a € E7 we introduce the polynomial g, € Z[z)]rca defined as

Ja = E Ny y-xAT ),
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where the sum is taken over pairs {A, A*} € Q(«). Again, there are 126 such
polynomials, but it is easy to verify that the ideal in Z[zx]xca, generated
by all polynomials g,, a € ®, coincides with the ideal generated by the
ideal generated by g,, @ € II. Denote g; = ¢4,, 2 =1,...,7.

Thus, finally we get an ideal I generated by the above quadratic polyno-
mials fo, a € Er and g;,7 = 1,...,7. Altogether this gives us 126+7 = 133
quadratic polynomials, which already is a good omen.

Teopema 1. The simply connected Chevalley group G(E7, R) preserves I.

This results can be also stated as follows. Denote by Fixg(I) the set of
R-linear transformations preserving the ideal I,

Fixg(I) = {g € GL(56,R) | f(gz) € I for all f € T}.

Then Gs.(E7, R) < Fixg(I). In fact, quite a bit more can be said in this
case.

Teopema 2. The scheme theoretic stabiliser of I coincides with the ex-
tended simply connected Chevalley group Gs.(E7,—).

This result can be interpreted as an explicit description of the extended
simply connected Chevalley-Demazure group scheme G.(E7, —) of type
® = Er, constructed in [4], see also [57] for other constructions and many
further references. For ® = E;, the scheme G.(E7, —) can be interpreted
as the Levi factor of the parabolic subscheme of type Pg in the usual
Chevalley—Demazure scheme G(Eg,—) of type Es. Moreover, the Levi
factor Gy (E7, —) acts on the unipotent radical Us of Ps. This action gives
us an irreducible 56-dimensional representation of G(E7, —) with the high-
est weight wy.

Our results are also intimately related with the description of Gs.(E7, R)
as the stabiliser of a system of four-linear forms on V' = V(7). Namely, in
[27] the first author constructed a four-linear form f : VxVxVxV — R
such that

GSC(E77R) = {g € GL(567R) | f(guugvagwugz) = f(u,v,w,z),
h(gu, gv) = h(u,v) for all w,v,w,z € V}.

Here, h is the obvious symplectic inner product on V. Let us briefly de-
scribe the form f. If we identify V with Ug as above, we get a canon-
ical base (v*)aea of V, where A C Eg is the corresponding unipotent
set of roots. In order to define f(u,v,w,z) for all u,v,w,z € V it suf-
fices to define f(v*, v*,v”,v?) for all A\, u,v,p € A. Let § € Eg be the
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maximal root. Consider the semisimple complex Lie algebra eg of type Eg
with a Chevalley base (e*)xers. Note that for A, u,v,p € A the element
[[[[e~?%, e*], "], e’],e] lies in Ze®. Suppose that

e, e, et] "], e”] = e(, v, p)e’.

We put f(v*,v*,v",v?) = c(\pv,p). It is easy to check that
Fl* v v, vP) = 0 unless A+ p+ v+ p = 24.

The bulk of the above system of quadratic forms consists of the second
order partial derivatives of the [regular part of] the form f. In other words,
Gsc(E7, R) is the group of linear transformations preserving both f and h,
whereas G.(E7, R) is the group of similarities of that pair of forms.

In the following theorem, all normalisers and transporters are taken
inside GL(56, R).

Teopema 3. Let R be any commutative ring, then
N(E(E7,R)) = N(G(E7,R)) = Tran(E(E7, R), G(E+, R)) = G(R).

One of the possible applications of these results, we have in mind, would
be another approach to the proof of the standard description of automor-
phisms of Chevalley groups, without assumption that 2 € R*. For classical
groups such a description was well known for some decades, but for excep-
tional groups the situation looked very different, since all published proofs
either imposed irrelevant extra conditions, or contained serious gaps. Re-
cently, this problem was almost completely settled by Elena Bunina, see [7]
and references therein. She works in the adjoint representation and one of
the most problematic parts is to verify that a conjugation in the cor-
responding general linear group GL(n, R) is indeed a conjugation inside
Gaa(®, R) itself. But if the abstract and the algebraic normalisers coin-
cide, as they do by Theorem 3, then all such conjugations normalising
Gad(®, R) are indeed honest inner automorphisms. Of course, with this
end one has either to rewrite all proofs of [7] and previous works for mi-
croweight representations, or to prove an analogue of our Theorem 3 for
adjoint representations. In the next section we report recent progress re-
garding the second of these tasks.

§4. EQUATIONS DEFINING THE HIGHEST WEIGHT ORBIT
IN THE ADJOINT REPRESENTATION

In this section we describe another important recent advance. Namely,
just a few months before the Conference, in [28] the first author finally
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completed an explicit description of the equations on the highest weight
orbit in the adjoint representation of Chevalley groups of types Eg, Er
and Eg, started by the second author in [54,58]. Namely, he introduced
two further types of equations, on top of the square equations considered
in [58,59].

This is extremely important, since the equations listed in [54, 58] in
themselves do not suffice to construct decomposition of unipotents in the
adjoint representations of Chevalley groups of types E;, | = 6,7,8. Now,
we are finally in a position to complete the project started in [54, 58]

To state these equations, we need to recall some further bits of nota-
tion (see [54,56, 58] for many more details). Let, as before ® be a reduced
irreducible simply laced root system. Actually, we are most interested in
the cases & = Eg4, E7, Eg, but it all works verbatim also for the classical
cases. Recall that for all cases, apart from ® = A;, the adjoint repre-
sentation V' = V(w) is fundamental, to wit, (®,w) = (Eq,w2), (E7, @)
or (Eg,w@s). The set of weights A of this representation consists of roots
and zero weight, of multiplicity [. Denote the zero weights by 01,...,0;.
The corresponding base vectors will be denoted simply e',...,el. Thus, a
vector v € V can be uniquely expressed in the form

l
v = E eruy E eruy + g e'v;.
AEA acd i=1

There are three Weyl orbits of quadratic equations defining the highest
weight orbit in V', the ones not involving zero-weight coordinates, the ones
that contain linear terms in these coordinates, and the ones that contain
quadratic terms.

e 7/2-equations. First, let «, 5 € ® be two orthogonal roots. As in § 3
let us consider all other unordered pairs of roots with the same sum:

Sasa(e, B) = {{7, 0} |y +6=a+8, {7,6} # {a, 8} }.

Consider the following equation on a vector v = (vy) € V, where A € A:

Vo = Y. NayNssvq0s. (1)
{7:0}€S7/2(a,3)
Actually, these equations are renamed 7/2-equations in [28].

e 27/3-equations. As above, let a, € ® be two orthogonal roots.
Consider all pairs of roots {7,d} such that v+ & = «a and 7, are not
orthogonal to 8. Note that if v is orthogonal to f and v 4+ é = «, then
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(6,8) = (o —v,8) =0, so ¢ is also orthogonal to 5. Also, 0 = («, 8) =
(v+9,8) = (v,8) + (4, 8). It follows, that for such a pair {7, d} one of the
roots v or  forms angle 27 /3 with 3, while the other forms angle 7/3. Put

Sarnsz(e, B) = {{7,0} [y +d =0, (v,B) #0}.

Consider the following equation on a vector v = (vx)xea € V:

!
Vg - Z(ﬂ, asybs = — Z N, 50405, (2)
s=1
where the sum on the right hand side is taken over all pairs {v,d} €
Sar/3(a, ), such that « forms angle 7/3 with 3. We call this equation the
27 /3-equation corresponding to the pair («, 3).

e m-equations. As always, let a, 5 € ® be two orthogonal roots. Con-
sider all pairs of roots {~,d} such that v = —d and ~, § are not orthogonal
to a and . Two possibilities can possibly occur.

o Either (v, a) = (v, ), and then automatically (6, a) = (4, 8). Switch-
ing v and ¢ if necessary, we may without loss of generality assume that the
angles v forms with a and § are both equal to 27/3. In this case we set

S;(a,8)={(7,0)|v+6=0, v+a,7v+ 5 € d}.

o Or exactly one of the angles between « or § and « equals 27/3. Again,
switching v and § we may assume that v forms angle 27/3 with «, and
then automatically the angles between v and 8 and between § and a will
be equal to /3, whereas the angle between ¢ and S is equal to 27/3. In
this case we set

SHe,B) ={(7,6) |v+6=0, y+a,0+ 5 € }.

Define the sign e(7,d) of a pair (vy,d) to be equal to +1 if (vy,d) €
$(a,8) and to —1 if (+,0) € S (a, )
Consider the following equation on a vector v = (vy)xea € V:

1 14

Z(a,as)vs : Z(ﬁ, Qs)vs = 28(7,6)%1}5, (3)

s=1 s=1

where the sum on the right hand side is taken over all (y,d) € St («,8) U
Sy (a, ).

Now we are all set to state the main result of [28].
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Teopema 4. The set of vectors v € V satisfying the equations (1), (2),
(3) for all a,8 € @, a L B, is invariant under the action of the group
Gad((I)uR)'

The proof of this result in [28] consists in a plethora of delicate com-
putations with roots and structure constants, similar in spirit to those
in [54, 58], but much more meticulous. In particular, it follows that the
first column of any matrix g € E(®, R) satisfies the above equations.

§5. THE OCTIC Eg INVARIANT

Let us mention another amazing recent development. Namely, in [8]
Martin Cederwall and Jakob Palmkvist constructed an octic polynomial
in 248 variables, invariant under the action of Eg in the adjoint represen-
tation. We are embarrassed to concede that we were not aware of that
paper (published in a physics journal) when compiling the bibliography on
explicit realisations of exceptional groups in [66] and only learned of its
existence from the 1st version of the remarkable preprint by Skip Garibaldi
and Robert Guralnick [12].

In [8] an invariant octic polynomial is constructed for the (split and
compact) real and complex cases, using the realisation of Eg in terms of
Dg and its half-spin representation, 248 = 120 + 128. The construction
itself, or the resulting polynomial, are too complicated to be included in
the casual exposition (in fact, during the talk itself, we demonstrated the
corresponding page of [8]).

The situation was much clarified by Garibaldi and Guralnick in [12]
and especially in the 2nd version of that preprint [13], which is about 50%
longer, and contains many additional details, and references.

Teopema 5. Let G be a simple algebraic group of type Eg over a field
K and put q for a nonzero G-invariant quadratic form on Lie(G). Then
there exists a homogeneous polynomial F of degree 8 on Lie(G) that is
G-invariant and does not belong to Kq*. For any each such F,

o the [set-theoretic] stabiliser of F' in GL(248, K) is generated by G and
the eighth roots of unity;

o if char(K) # 2,3, the scheme-theoretic stabiliser of F' in GL(248, K)
and the scheme-theoretic stabiliser of KF' in PGL(248, K) coincide with
[the image of] G.

It would be a formidable task to generalise this result to arbitrary com-
mutative rings R, in the spirit of [65,67], deriving explicit matrix equations.
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As it seems, it may be already quite a challenge to get rid of the assump-
tion 6 € R*. In fact, Garibaldi and Guralnick conjecture that the scheme-
theoretic stabiliser of K'F' in PGL(248, K) is always smooth, and that the
scheme-theoretic stabiliser of F' in GL(248, K) is smooth in characteristic
3. However, it is clearly not smooth in characteristic 2, so that to ob-
tain an explicit characteristic free description of the polynomial equations
defining G(Eg, R) inside SO(248, R) one will have to find other invariants,
inevitably non-symmetric ones.

One extremely important aspect of [13] is that it makes clear that the
very special role played by characteristics 2 and 3 is explained not just
by the fact that 2 and 3 divide d!, where d is the degree of a polynomial
invariant, but also by the very exceptional behaviour of Lie algebras in
characteristics 2 and 3. From a classical paper by Alexei Rudakov [37] we
know that Chevalley algebras in characteristics p > 5 are rigid, which they
are not in characteristics 2 and 3.

§6. FINAL REMARKS

Due to the time constraints, in this talk we could not touch many further
related recent results, and possible generalisations.

In the introduction, we have already mentioned the marvellous recent
papers by Alexei Stepanov, especially [46], which clearly indicate an en-
tirely new stage of maturity of the whole theory, and pave way for a whole
new range of applications.

Presently, one of the main pursuits of the St. Petersburg school of alge-
braic groups consists in a systematic endeavour to generalise all existing
results from Chevalley groups to arbitrary — sufficiently isotropic! — reduc-
tive groups over rings. This enterprise was started by the truly remarkable
contribution by Victor Petrov and Anastasia Stavrova [32], who defined
the elementary subgroup of such groups, and proved its normality. To do
that, they had to develop large fragments of the general structure theory
of such groups, thus effectively expanding parts of the classical Borel-Tits
structure theory [5] to the Demazure—Grothendieck setting [10], and to
develop localisation techniques in the spirit of Quillen—Suslin [51,52], in
this more general context.

Further advances in this direction were mostly due to Stavrova herself,
with collaboration of the first author and Ekaterina Kulikova (Sopkina)
[22, 30, 41, 43]. Presently, Stavrova, Stepanov and the first author carry
through the project whose objective is to describe subgroups of isotropic
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reductive groups normalised by the elementary subgroup (at lest when
6 € R*), see [42].

Another major advance, was an improvement of factorisations and sta-
bility theorems at the level of K; and Ks, for exceptional embeddings,
obtained by Sergei Sinchuk in his Thesis [39] (see also his paper [40], for
an outline of some of these results, without detailed proofs). This was
the first considerable improvement of the stability results for exceptional
groups obtained by Michael Stein and Eugene Plotkin [33-35,44] some
decades ago.

Finally, we would like to mention the recent amazing paper by Andrei
Lavrenov [23], which contains a complete solution of an outstanding open
problem, centrality of the symplectic K>. Before, centrality was only known
in the linear case, from the beautiful another presentation by Wilberd
van der Kallen [21] (soon thereafter expanded by Marat Tulenbaev from
commutative to almost commutative rings). The work by Lavrenov was
the first significant progress for decades, and hopefully, combined with
the ideas of Petrov and Sinchuk, it will eventually lead to a proof of K,
centrality also for large exceptional groups.

Certainly, each of these subjects would deserve a separate talk, and a
separate survey.
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