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178 A. LUZGAREV, N. VAVILOVa major projet, whose goal is to develop methods of alulations, bothmanual and omputer ones, in exeptional Chevalley groups. In the spiritof this onferene, we onentrate on expliit polynomial equations de�n-ing exeptinal groups in their minimal representations, minusule and theadjoint ones. Before passing to our new results, let us briey outline thestate of art in the �eld.
§1. IntrodutionLet � be a redued irreduible root system, sine lassial groups arewell understood, and G2 is small enough to allow diret matrix alula-tions, in our projet we are mostly interested in the large exeptional ases,where � = E6;E7;E8 or F4. Further, let G = G(�; R) be a Chevalley groupof type � over a ommutative rings R with 1. Usually, we assume G to besimply onneted.Basially, proofs of struture results for G have either ring-theoreti,or representation-theoreti and geometri avour. They amount either toredution of the dimension of the ground ring R, or the rank of the rootsystem �, or, eventually, to a ombination of both. Beneath, both methodsmake heavy use of [elementary℄ alulations in the elementary Chevalleygroup E(�; R) spanned by the elementary unipotents x�(�), where � ∈ �,� ∈ R, subjet to Steinberg relations.Loalisation methods are well doumented in the literature. Theywere introdued in the study of algebrai groups by Andrei Suslin, whorealised that higher analogues of loal-global priniples of Quillen's typealso work at the level of K1, K2 and beyond. The �rst proofs of struturetheorems for exeptional groups by Eiihi Abe, Kazuo Suzuki, GiovanniTaddei, Leonid Vaserstein, and others were based on Quillen{Suslin's lo-alisation and pathing.The next major advane was originated by Anthony Bak, who intro-dued loalisation-ompletion to prove the nilpoteny of the [linear℄ K1.Over the last 12 years his method was simpli�ed, generalised and expandedin several diretions by Roozbeh Hazrat, the seond author, and ZuhongZhang [18, 19℄, and most notably by Alexei Stepanov [1, 50℄. One of themost important aspets was that (unlike [3℄) these papers operate at therelative rather than the absolute level from the outset. We reported onreent versions of loalisation methods, and some of their appliations atthe PCA-2010 and PCA-2012, see the onferene papers [15℄ and [16℄, asalso at many further onferenes, see in partiular [17℄.



CALCULATIONS IN EXCEPTIONAL GROUPS 179We espeially reommend to peruse the reent papers by Alexei Stepa-nov on his method of universal loalisation [46, 47℄, where he develops anew loalisation method that allows to establish results independent on thedimension of the ground ring, in terms of the universal/versal oeÆientrings that depend on the roots system alone. All details are ontainedin his [Russian℄ Dr. Si. Thesis (=Habilitation) [48℄. In our view, theseworks inaugurate an entirely new hapter in the development of loalisa-tion methods. Another amusing byprodut of these papers, was a furtherrethinking of some aspets of elementary alulations in [20, 45℄.In this talk, we do not disuss loalisation methods any further, referringto the papers above.Deomposition of unipotents and its o�springs. Another majorbunh of methods to alulate in Chevalley groups is based on geomet-ri realisations of these groups, in partiular in their minimal representa-tions. Over rings, this approah was pioneered in the groundbreaking worksby Hideya Matsumoto and Mihael Stein [31, 44℄. Soon thereafter, AlexeiStepanov, the seond author and Eugene Plotkin [49,53,54,73℄ developeda working approah towards the proof of the main struture theorems forChevalley groups over rings, and many further related problems (see thedesription of the intended sope of the whole projet in the introdutionto [72℄).However, for exeptional groups, our initial approah requested someknowledge of at least part of the equations de�ning the groups in theirminimal representations. At rok bottom, an expliit knowledge of thesystem of quadris [24℄, de�ning the highest weight orbit in these repre-sentations (see [54℄).Later, elaborating this approah, the seond author, Mikhail Gavrilovihand Sergei Nikolenko [62,63,71℄ introdued a new group-theoreti twist tothis method, whih allowed to obtain muh more straightforward proofs,that invoked only the presene of very small lassial embeddings, suh asA2 ⊆ E6;E7 (rather than huge lassial embeddings A5 ⊆ E6, A7 ⊆ E7or D8 ⊆ E8 used before that). Also, these new generation proofs, neverinvoked any equations on the entries of matries other than [part of the℄linear equations de�ning the orresponding Lie algebra.However, later again, the seond author notied that using the equa-tions, one an develop muh more powerful versions of deomposition ofunipotents, that allow to get to a small rank paraboli by forming very few



180 A. LUZGAREV, N. VAVILOVommutators. This would allow to improve the known bounds in many ex-isting appliations, as also a�ord various new appliations. One suh newmethod is the A3-proof [55,60℄, some further variations were hinted in hisjoint paper with Vitoria Kazakevih [64℄.What is in this paper? This required another look at the equationsde�ning exeptional groups, and stimulated us to return to the projetdesribed in [70℄. Here, we outline some reent results, mostly due to the�rst author, who sueeded in ompleting previous results of the seondauthor to get �nal harateristi free answers. Namely, we announe thefollowing new results.
• Complete desription of the polynomial equations de�ning G(E7; R)as a subgroup of GL(56; R), in the miroweight representation, over anarbitrary ommutative ring R,
• Expliit desription of the quadrati equations de�ning the highestweight orbits of G(E6; R), G(E7; R) and G(E8; R) in the adjoint represen-tation, again over an arbitrary ommutative ring.Also, we desribe another momentous reent ahievement, due to SkipGaribaldi and Robert Guralnik [13℄.
• Boosting the Cederwall|Palmkvist [8℄ onstrution of oti real poly-nomials in 248 variables, whose automorphism groups are split or ompatreal forms of E8, Garibaldi and Guralnik sueeded in proving that overan arbitrary �eldK the Chevalley groupG(E8;K) admits a similar hara-terisation as a subgroup of GL(248; R). However, as all suh onstrutions,this onstrution enounters serious troubles in harateristis 2 and 3, andit would be quite an exerise to onvert it into an expliit harateristi freedesription of equations de�ning G(E8; R), over an arbitrary ommutativering R.We make no attempt whatsoever to desribe appliations of these re-sults, on whih we are urrently working, or their signi�ane in the de-velopment of new variants of deomposition of unipotents. We refer thereader to our forthoming papers: to [29℄, for a more general view of theseequations, involving the geometry of homogeneous spaes and Gr�obnerbases, to [68℄ for an instane of appliation of our results on adjoint rep-resentations, and to [61℄, for ute new versions of the deomposition ofunipotents.



CALCULATIONS IN EXCEPTIONAL GROUPS 181Basi notation. Sine this paper is a diret ompanion of [70℄, we donot reprodue the general setting, or the notation thereof, simply refer-ring to [31, 36, 44, 53, 54, 56, 72℄ for the de�nitions and further bakgroundreferenes. Instead, we introdue an absolute minimum of notation.Below � denotes an arbitrary simply laed redued irreduible rootsystem. Atually, for the most part we are interested in the ases E6, E7and E8 and later on in various setions � will be E7 or E8. Further, let �be a fundamental root system in �. Let e�, � ∈ �, be a positive Chevalleysystem in the orresponding omplex simple Lie algebra L. Reall thatin that ase [e�; e�℄ = N�;�e�+�, where the struture onstants N�;� areequal to 0;±1, with further requirement that ertain onstants, where �are fundamental, are atually equal to +1. As usual, for two roots �; � ∈ �we denote by (�; �) their inner produt, and by 〈�; �〉 = 2(�; �)=(�; �) theorresponding Cartan number.Usually, we onsider Chevalley group G(�; R) in some rational repre-sentation V . Mostly, V will be one of the fundamental representationsV = V ($i), where $i denotes the i-th fundamental weight. We denoteby � the set of weights of V with multipliities and hoose an admissiblebase of V . Reall that an admissible base onsists of weight vetors, andthus an be indexed by the weights � ∈ �, in the sequel we denote it bye�, � ∈ �. Now, any vetor v ∈ V admits a linear expansion v = ∑ e�v�,where the sum is taken over � ∈ �. This means that a vetor v ∈ V anbe interpreted as a oordinate olumn v = (v�), where � ∈ �.
§2. Equations defining E7 inside Sp(56; R):the state of artBak in 2009 among other things we reported on the (then reent)paper [65℄, where we listed expliit polynomial equations de�ning thesimply-onneted Chevalley group of type E6 and its normaliser in the27-dimensional representation. In that paper we desribed the normaliserof Gs(E6; R) in GL(27; R), as the largest subgroup onsisting of matrieswhose �rst olumns are subjet to 27 quadrati equations in 27 variables(see also § 7 of [70℄, espeially Theorem 10).Also, there we presaged similar results for the simply onneted Cheval-ley group of type E7 and its normaliser in the 56-dimensional representa-tion. Under the simplifying assumption that 2 ∈ R∗, this was indeed verysimilar in spirit to the ase of E6, and relatively straightforward. However,



182 A. LUZGAREV, N. VAVILOVit has taken us muh more time and e�ort to ope with the many addi-tional hurdles ourring in the ase, where 2 in not invertible. Atually,the key new idea omes from the works of Jaob Lurie [26℄ and the �rstauthor [27℄.Reall that in [65℄ we worked from the lassial desription of theChevalley group E6 ating on the 27-dimensional module V = V ($1),in terms of a ubi form on V (see [54, 65, 69℄ for many more details andreferenes).There exists a similar, but more ompliated desription of the simplyonneted group of type E7 ating on the 56-dimensional module V =V ($7). In this ase, to determine the group one needs two invariants, aquadrati one, and a quarti one. First of all, in this ase the module Vis self-dual and supports a unimodular sympleti form h. Further, thereexists a four-linear form f : V × V × V × V −→ R suh that G an beidenti�ed with the full isometry group of the pair h; f , or, in other words,with the group onsisting of all g ∈ GL(V ) suh that h(gu; gv) = h(u; v)and f(gu; gv; gx; gy) = f(u; v; x; y) for all u; v; x; y ∈ V . The similarities ofthis pair of forms onstitute the extended Chevalley group G = G(E7; R).The onstrution of h is immediate. It is muh trikier to onstrutan invariant of degree four. Classially, one onstruts not the four-linearform f itself, but rather the orresponding quarti. That the group G oftype E7 preserves a form of degree 4 in 56 variables, was �rst noted by�Eli Cartan, at least in harateristi 0. His expliit onstrution does notseem to work, but most probably this was simply a misprint. The formitself was also known to Leonard Dikson bak in 1901, in the ontext ofthe 28 bitangents, and thus of the Weyl group W (E7).An extremely elegant elementary onstrution of suh a quarti invari-ant over a �eld K of harateristi distint from 2 was proposed by HansFreudenthal in 1952. Namely, he identi�es V with the spae A(8;K)2 ofpairs of anti-symmetri 8 × 8 matries, and onsiders the following sym-pleti inner produt, and the following quarti form:h((a1; b1); (a2; b2)) = 12(tr(a1bt2)− tr(a2bt1));Q((a; b)) = pf(a) + pf(b)− 14 tr((ab)2) + 116 tr(ab)2:Now, for all �elds K of harateristis distint from 2, one an indeedidentify the isometry group of this pair with the simply onneted Cheval-ley group G of type E7 overK, there are two remarkable proofs of this fat,



CALCULATIONS IN EXCEPTIONAL GROUPS 183by Mihael Ashbaher and Brue Cooperstein [2, 9℄. The onstrution ofthis form in the above papers are slightly di�erent. In fat, in [2℄ this formis onstruted in terms of A6, the essene of this onstrution is expressedby the equality 56 = 7+21+21+7). As opposed to that, the onstrutionin [9℄ is muh loser in spirit to the original Freudenthal onstrution, andis phrased in terms of A7, where 56 = 28+ 28. The isometry group of theform Q is generated by G and a diagonal element of order 2, see [9℄.Charateristis p > 5 an be treated uniformly, and do not ause serioustrouble, whereas harateristi 3 requires some speial attention. However,this approah breaks down ompletely in harateristi 2. Not only theonstrution itself does not work as stated, it seems that in harateristi 2the module V does not support any non-trivial symmetriG-invariant four-linear form at all, see [2℄. This is related to the fat that in harateristi2 the squaring of the sympleti formf(u; v; x; y) = h(u; v)h(x; y) + h(u; x)h(v; y) + h(u; y)h(v; x);beomes symmetri, whih is not the ase for harateristis > 3. As amatter of fat, in [2℄ Ashbaher onstruts another G-invariant four-linearform, whih is only symmetri with respet to the even permutations.There are di�erent onstrutions of the form Q, in partiular the ele-brated onstrution by Robert Brown [6℄ in terms of ternary algebras, thatworks in harateristis 6= 2; 3. Let V be a spae with a nondegenerate in-ner produt. Then to de�ne a trilinear form on V is the same as to de�nethereon an algebra struture. Similarly, four-linear forms on V orrespondto ternary algebra strutures. There exists a remarkable ternary algebra ofdimension 56, whih an be onstruted in terms of the exeptional Jordanalgebra J, see [6, 11℄ and referenes there. This algebra onsists of 2 × 2matries J with salar diagonal entries, 56 = 1 + 27 + 27 + 1.These onstrutions were widely used in the study of the groups byTonny Springer, Skip Garibaldi, and many others, but as we indiatedabove,
§3. Equations defining E7 inside Sp(56; R):a system of quadris, and the extended groupFirst, we expliitly onstrut an ideal I in the polynomial ring

Z[x1; : : : ; x56℄, generated by 133 quadrati forms f1; : : : ; f133, suh thatthe sheme-theoreti normaliser of the ideal I oinsides with the extendedChevalley group of type E7.



184 A. LUZGAREV, N. VAVILOVThis onstrution works as follows. The highest Weyl orbit of equationsde�ning the highest weight orbit onsists of square equations . For minus-ule and adjoint representations, their onstrutions and numerology werestudied by the seond author in [54,58,59℄. Let us reall the basi onstru-tion of [58℄ in the ontext of the 56-dimensional representation (E7; $7).Let � =W (E7)$7 be the set of weights of this representation. Usually,we interpret these weights as roots of E8 suh that the last fundamentalroot �8 ours in their expansion with oeÆient 1. A subset 
 ⊆ � isalled a square if |
| > 4 and for any � ∈ 
 the di�erene � − � withall other weights � ∈ 
, exept exatly one of them, denoted by �∗, isa root, whereas the di�erene � − �∗ is not a root (in whih ase �∗ isneessarily orthogonal to �). In [58℄ it is proven that any maximal square
 onsists of exatly 12 roots, and the sum �+�∗ does not depend on thehoie of � ∈ 
. Moreover, for (E7; $7) a maximal square 
 is uniquelydetermined by this sum. In other words, maximal squares are in bijetiveorrespondene with the 126 roots of E7. More preisely, for a root � ∈ E7we set 
(�) = {� ∈ � | �− � ∈ �}:Let 
 be a maximal square. Chose orthogonal roots �; �∗ ∈ 
 and de�nea polynomial f�;�∗ ∈ Z[x�℄�∈� by the equalityf�;�∗ = x�x�∗ − ∑N�;−�N�∗;−�∗x�x�∗ ;where the sum is taken over all pairs of orthogonal weights {�; �∗} from 
,exept the initial pair {�; �∗}. In [58℄ the equation of the form f�;�∗(v) =0 imposed on vetors v = (v�)�∈� ∈ V was alled a square equationorresponding to a maximal square 
. Indeed, this equation only dependson the square 
 itself, and not on a arbitrary hoie of a pair {�; �∗}.For any other pair of orthogonal weights from the same maximal square
 the left hand-side of this equation remains the same, up to sign. Thus,hoosing one pair of orthogonal weights from any maximal square 
, weget 126 quadrati equations, orresponding to the maximal squares in �,or, what is the same, to the 126 roots of E7. Without onfusion, we andenote these polynomials by f�, � ∈ �.However, there is also another Weyl orbit of equations. Namely, for aroot � ∈ E7 we introdue the polynomial g� ∈ Z[x�℄�∈� de�ned asg� = ∑N�;�∗x�x�∗ ;



CALCULATIONS IN EXCEPTIONAL GROUPS 185where the sum is taken over pairs {�; �∗} ∈ 
(�). Again, there are 126 suhpolynomials, but it is easy to verify that the ideal in Z[x�℄�∈�, generatedby all polynomials g�, � ∈ �, oinides with the ideal generated by theideal generated by g�, � ∈ �. Denote gi = g�i , i = 1; : : : ; 7.Thus, �nally we get an ideal I generated by the above quadrati polyno-mials f�, � ∈ E7 and gi, i = 1; : : : ; 7. Altogether this gives us 126+7 = 133quadrati polynomials, whih already is a good omen.�ÅÏÒÅÍÁ 1. The simply onneted Chevalley group G(E7; R) preserves I.This results an be also stated as follows. Denote by FixR(I) the set ofR-linear transformations preserving the ideal I ,FixR(I) = {g ∈ GL(56; R) | f(gx) ∈ I for all f ∈ I}:Then Gs(E7; R) 6 FixR(I). In fat, quite a bit more an be said in thisase.�ÅÏÒÅÍÁ 2. The sheme theoreti stabiliser of I oinides with the ex-tended simply onneted Chevalley group Gs(E7;−).This result an be interpreted as an expliit desription of the extendedsimply onneted Chevalley{Demazure group sheme Gs(E7;−) of type� = E7, onstruted in [4℄, see also [57℄ for other onstrutions and manyfurther referenes. For � = E7, the sheme Gs(E7;−) an be interpretedas the Levi fator of the paraboli subsheme of type P8 in the usualChevalley|Demazure sheme G(E8;−) of type E8. Moreover, the Levifator Gs(E7;−) ats on the unipotent radial U8 of P8. This ation givesus an irreduible 56-dimensional representation of G(E7;−) with the high-est weight $7.Our results are also intimately related with the desription of Gs(E7; R)as the stabiliser of a system of four-linear forms on V = V ($7). Namely, in[27℄ the �rst author onstruted a four-linear form f : V ×V ×V ×V −→ Rsuh thatGs(E7; R) = {g ∈ GL(56; R) | f(gu; gv; gw; gz) = f(u; v; w; z);h(gu; gv) = h(u; v) for all u; v; w; z ∈ V }:Here, h is the obvious sympleti inner produt on V . Let us briey de-sribe the form f . If we identify V with U8 as above, we get a anon-ial base (v�)�∈� of V , where � ⊆ E8 is the orresponding unipotentset of roots. In order to de�ne f(u; v; w; z) for all u; v; w; z ∈ V it suf-�es to de�ne f(v�; v�; v� ; v�) for all �; �; �; � ∈ �. Let Æ ∈ E8 be the



186 A. LUZGAREV, N. VAVILOVmaximal root. Consider the semisimple omplex Lie algebra e8 of type E8with a Chevalley base (e�)�∈E8 . Note that for �; �; �; � ∈ � the element[[[[e−Æ; e�℄; e�℄; e� ℄; e�℄ lies in ZeÆ . Suppose that[[[[e−Æ; e�℄; e�℄; e� ℄; e�℄ = (�; �; �; �)eÆ :We put f(v�; v�; v� ; v�) = (�; �; �; �). It is easy to hek thatf(v�; v�; v� ; v�) = 0 unless �+ �+ � + � = 2Æ.The bulk of the above system of quadrati forms onsists of the seondorder partial derivatives of the [regular part of℄ the form f . In other words,Gs(E7; R) is the group of linear transformations preserving both f and h,whereas Gs(E7; R) is the group of similarities of that pair of forms.In the following theorem, all normalisers and transporters are takeninside GL(56; R).�ÅÏÒÅÍÁ 3. Let R be any ommutative ring, thenN(E(E7; R)) = N(G(E7; R)) = Tran(E(E7; R); G(E7; R)) = G(R):One of the possible appliations of these results, we have in mind, wouldbe another approah to the proof of the standard desription of automor-phisms of Chevalley groups, without assumption that 2 ∈ R∗. For lassialgroups suh a desription was well known for some deades, but for exep-tional groups the situation looked very di�erent, sine all published proofseither imposed irrelevant extra onditions, or ontained serious gaps. Re-ently, this problem was almost ompletely settled by Elena Bunina, see [7℄and referenes therein. She works in the adjoint representation and one ofthe most problemati parts is to verify that a onjugation in the or-responding general linear group GL(n;R) is indeed a onjugation insideGad(�; R) itself. But if the abstrat and the algebrai normalisers oin-ide, as they do by Theorem 3, then all suh onjugations normalisingGad(�; R) are indeed honest inner automorphisms. Of ourse, with thisend one has either to rewrite all proofs of [7℄ and previous works for mi-roweight representations, or to prove an analogue of our Theorem 3 foradjoint representations. In the next setion we report reent progress re-garding the seond of these tasks.
§4. Equations defining the highest weight orbitin the adjoint representationIn this setion we desribe another important reent advane. Namely,just a few months before the Conferene, in [28℄ the �rst author �nally



CALCULATIONS IN EXCEPTIONAL GROUPS 187ompleted an expliit desription of the equations on the highest weightorbit in the adjoint representation of Chevalley groups of types E6, E7and E8, started by the seond author in [54, 58℄. Namely, he introduedtwo further types of equations, on top of the square equations onsideredin [58, 59℄.This is extremely important, sine the equations listed in [54, 58℄ inthemselves do not suÆe to onstrut deomposition of unipotents in theadjoint representations of Chevalley groups of types El, l = 6; 7; 8. Now,we are �nally in a position to omplete the projet started in [54, 58℄To state these equations, we need to reall some further bits of nota-tion (see [54,56,58℄ for many more details). Let, as before � be a reduedirreduible simply laed root system. Atually, we are most interested inthe ases � = E6;E7;E8, but it all works verbatim also for the lassialases. Reall that for all ases, apart from � = Al, the adjoint repre-sentation V = V (!) is fundamental, to wit, (�; !) = (E6; $2), (E7; $1)or (E8; $8). The set of weights � of this representation onsists of rootsand zero weight, of multipliity l. Denote the zero weights by 01; : : : ; 0l.The orresponding base vetors will be denoted simply e1; : : : ; el. Thus, avetor v ∈ V an be uniquely expressed in the formv = ∑�∈� e�v� ∑�∈� e�v� + l
∑i=1 eiv̂i:There are three Weyl orbits of quadrati equations de�ning the highestweight orbit in V , the ones not involving zero-weight oordinates, the onesthat ontain linear terms in these oordinates, and the ones that ontainquadrati terms.

• �=2-equations. First, let �; � ∈ � be two orthogonal roots. As in § 3let us onsider all other unordered pairs of roots with the same sum:S�=2(�; �) = {

{; Æ} |  + Æ = �+ �; {; Æ} 6= {�; �}}:Consider the following equation on a vetor v = (v�) ∈ V , where � ∈ �:v�v� = ∑

{;Æ}∈S�=2(�;�)N�;−N�;−ÆvvÆ : (1)Atually, these equations are renamed �=2-equations in [28℄.
• 2�=3-equations. As above, let �; � ∈ � be two orthogonal roots.Consider all pairs of roots {; Æ} suh that  + Æ = � and ; Æ are notorthogonal to �. Note that if  is orthogonal to � and  + Æ = �, then



188 A. LUZGAREV, N. VAVILOV(Æ; �) = (� − ; �) = 0, so Æ is also orthogonal to �. Also, 0 = (�; �) =(+ Æ; �) = (; �) + (Æ; �). It follows, that for suh a pair {; Æ} one of theroots  or Æ forms angle 2�=3 with �, while the other forms angle �=3. PutS2�=3(�; �) = {

{; Æ} |  + Æ = �; (; �) 6= 0}:Consider the following equation on a vetor v = (v�)�∈� ∈ V :v� ·
l

∑s=1〈�; �s〉v̂s = −
∑N;ÆvvÆ ; (2)where the sum on the right hand side is taken over all pairs {; Æ} ∈S2�=3(�; �), suh that  forms angle �=3 with �. We all this equation the2�=3-equation orresponding to the pair (�; �).

• �-equations. As always, let �; � ∈ � be two orthogonal roots. Con-sider all pairs of roots {; Æ} suh that  = −Æ and ; Æ are not orthogonalto � and �. Two possibilities an possibly our.
◦ Either (; �) = (; �), and then automatially (Æ; �) = (Æ; �). Swith-ing  and Æ if neessary, we may without loss of generality assume that theangles  forms with � and � are both equal to 2�=3. In this ase we setS−� (�; �) = {(; Æ) |  + Æ = 0;  + �;  + � ∈ �}:
◦ Or exatly one of the angles between  or Æ and � equals 2�=3. Again,swithing  and Æ we may assume that  forms angle 2�=3 with �, andthen automatially the angles between  and � and between Æ and � willbe equal to �=3, whereas the angle between Æ and � is equal to 2�=3. Inthis ase we setS+� (�; �) = {(; Æ) |  + Æ = 0;  + �; Æ + � ∈ �}:De�ne the sign "(; Æ) of a pair (; Æ) to be equal to +1 if (; Æ) ∈S+� (�; �) and to −1 if (; Æ) ∈ S−� (�; �)Consider the following equation on a vetor v = (v�)�∈� ∈ V :l

∑s=1〈�; �s〉vs · l
∑s=1〈�; �s〉vs = ∑ "(; Æ)vvÆ ; (3)where the sum on the right hand side is taken over all (; Æ) ∈ S+� (�; �) ∪S−� (�; �).Now we are all set to state the main result of [28℄.



CALCULATIONS IN EXCEPTIONAL GROUPS 189�ÅÏÒÅÍÁ 4. The set of vetors v ∈ V satisfying the equations (1), (2),(3) for all �; � ∈ �, � ⊥ �, is invariant under the ation of the groupGad(�; R).The proof of this result in [28℄ onsists in a plethora of deliate om-putations with roots and struture onstants, similar in spirit to thosein [54, 58℄, but muh more metiulous. In partiular, it follows that the�rst olumn of any matrix g ∈ E(�; R) satis�es the above equations.
§5. The oti E8 invariantLet us mention another amazing reent development. Namely, in [8℄Martin Cederwall and Jakob Palmkvist onstruted an oti polynomialin 248 variables, invariant under the ation of E8 in the adjoint represen-tation. We are embarrassed to onede that we were not aware of thatpaper (published in a physis journal) when ompiling the bibliography onexpliit realisations of exeptional groups in [66℄ and only learned of itsexistene from the 1st version of the remarkable preprint by Skip Garibaldiand Robert Guralnik [12℄.In [8℄ an invariant oti polynomial is onstruted for the (split andompat) real and omplex ases, using the realisation of E8 in terms ofD8 and its half-spin representation, 248 = 120 + 128. The onstrutionitself, or the resulting polynomial, are too ompliated to be inluded inthe asual exposition (in fat, during the talk itself, we demonstrated theorresponding page of [8℄).The situation was muh lari�ed by Garibaldi and Guralnik in [12℄and espeially in the 2nd version of that preprint [13℄, whih is about 50%longer, and ontains many additional details, and referenes.�ÅÏÒÅÍÁ 5. Let G be a simple algebrai group of type E8 over a �eldK and put q for a nonzero G-invariant quadrati form on Lie(G). Thenthere exists a homogeneous polynomial F of degree 8 on Lie(G) that isG-invariant and does not belong to Kq4. For any eah suh F ,

• the [set-theoreti℄ stabiliser of F in GL(248;K) is generated by G andthe eighth roots of unity;
• if har(K) 6= 2; 3, the sheme-theoreti stabiliser of F in GL(248;K)and the sheme-theoreti stabiliser of KF in PGL(248;K) oinide with[the image of ℄ G.It would be a formidable task to generalise this result to arbitrary om-mutative ringsR, in the spirit of [65,67℄, deriving expliit matrix equations.



190 A. LUZGAREV, N. VAVILOVAs it seems, it may be already quite a hallenge to get rid of the assump-tion 6 ∈ R∗. In fat, Garibaldi and Guralnik onjeture that the sheme-theoreti stabiliser of KF in PGL(248;K) is always smooth, and that thesheme-theoreti stabiliser of F in GL(248;K) is smooth in harateristi3. However, it is learly not smooth in harateristi 2, so that to ob-tain an expliit harateristi free desription of the polynomial equationsde�ning G(E8; R) inside SO(248; R) one will have to �nd other invariants,inevitably non-symmetri ones.One extremely important aspet of [13℄ is that it makes lear that thevery speial role played by harateristis 2 and 3 is explained not justby the fat that 2 and 3 divide d!, where d is the degree of a polynomialinvariant, but also by the very exeptional behaviour of Lie algebras inharateristis 2 and 3. From a lassial paper by Alexei Rudakov [37℄ weknow that Chevalley algebras in harateristis p > 5 are rigid, whih theyare not in harateristis 2 and 3.
§6. Final remarksDue to the time onstraints, in this talk we ould not touh many furtherrelated reent results, and possible generalisations.In the introdution, we have already mentioned the marvellous reentpapers by Alexei Stepanov, espeially [46℄, whih learly indiate an en-tirely new stage of maturity of the whole theory, and pave way for a wholenew range of appliations.Presently, one of the main pursuits of the St. Petersburg shool of alge-brai groups onsists in a systemati endeavour to generalise all existingresults from Chevalley groups to arbitrary { suÆiently isotropi! { redu-tive groups over rings. This enterprise was started by the truly remarkableontribution by Vitor Petrov and Anastasia Stavrova [32℄, who de�nedthe elementary subgroup of suh groups, and proved its normality. To dothat, they had to develop large fragments of the general struture theoryof suh groups, thus e�etively expanding parts of the lassial Borel{Titsstruture theory [5℄ to the Demazure|Grothendiek setting [10℄, and todevelop loalisation tehniques in the spirit of Quillen|Suslin [51, 52℄, inthis more general ontext.Further advanes in this diretion were mostly due to Stavrova herself,with ollaboration of the �rst author and Ekaterina Kulikova (Sopkina)[22, 30, 41, 43℄. Presently, Stavrova, Stepanov and the �rst author arrythrough the projet whose objetive is to desribe subgroups of isotropi



CALCULATIONS IN EXCEPTIONAL GROUPS 191redutive groups normalised by the elementary subgroup (at lest when6 ∈ R∗), see [42℄.Another major advane, was an improvement of fatorisations and sta-bility theorems at the level of K1 and K2, for exeptional embeddings,obtained by Sergei Sinhuk in his Thesis [39℄ (see also his paper [40℄, foran outline of some of these results, without detailed proofs). This wasthe �rst onsiderable improvement of the stability results for exeptionalgroups obtained by Mihael Stein and Eugene Plotkin [33{35, 44℄ somedeades ago.Finally, we would like to mention the reent amazing paper by AndreiLavrenov [23℄, whih ontains a omplete solution of an outstanding openproblem, entrality of the sympleti K2. Before, entrality was only knownin the linear ase, from the beautiful another presentation by Wilberdvan der Kallen [21℄ (soon thereafter expanded by Marat Tulenbaev fromommutative to almost ommutative rings). The work by Lavrenov wasthe �rst signi�ant progress for deades, and hopefully, ombined withthe ideas of Petrov and Sinhuk, it will eventually lead to a proof of K2entrality also for large exeptional groups.Certainly, eah of these subjets would deserve a separate talk, and aseparate survey. Referenes1. H. Apte, A. Stepanov, Loal-global priniple for ongruene subgroups of Chevalleygroups. | Cent. Eur. J. Math. 12, no. 6 (2014), 801{812.2. M. Ashbaher, Some multilinear forms with large isometry groups. | Geom. Ded-iata 25, no. 21{3 (1988), 417{465.3. A. Bak, R. Hazrat, N. Vavilov, Loalization-ompletion strikes again: relative K1is nilpotent. | J. Pure Appl. Algebra 213 (2009), 1075{1085.4. S. Berman, R. V. Moody, Extensions of Chevalley groups. | Israel J. Math 22,no. 1 (1975), 42{51.5. A. Borel, J. Tits, Groupes rÎutifs. | Inst. Hautes �Etudes Si. Publ. Math. No. 27(1965), 55{150.6. R. B. Brown, Groups of type E7. | J. reine angew. math. 236 (1969), 79{102.7. E. I. Bunina, Automorphisms of Chevalley groups of di�erent types over ommu-tative rings. | J. Algebra 355, no. 1 (2012), 154{170.8. M. Cederwall, J. Palmkvist, The oti E8 invariant. | J. Math. Phys. 48, no. 7(2007), 073505, 7 pp.9. B. N. Cooperstein, The �fty-six-dimensional module for E7. I. A four form for E7.| J. Algebra 173, no. 2 (1995), 361{389.10. M. Demazure, A. Grothendiek (with the ollaboration of M. Artin, J.-E. Bertin,P. Gabriel, M. Raynaud and J-P. Serre), Sh�emas en groupes (SGA 3).
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