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Abstract

We construct cubic forms on the adjoint representation of the Cheval-
ley group of type E7, whose partial derivatives are linear combinations
of equations on the orbit of the highest weight vector. In order to
describe the forms we introduce new combinatorial notions related to
maximal squares in root systems of exceptional types.

1 Introduction

Algebraic groups are often given as transformations preserving some multi-
linear forms. For example, an orthogonal group (say, over a field of charac-
teristic not 2) is by definition the group of linear transformations preserving a
non-degenerate quadratic form, or, equivalently, preserving the correspond-
ing bilinear form. Similarly, a symplectic group is a group of linear transfor-
mations preserving a symplectic bilinear form.

In 1905 Leonard Dickson constructed an invariant cubic form for the
group of type E6. Later this form in 27 variables was studied in the works
of Claude Chevalley, Hans Freudenthal, and many others.

Michael Aschbacher proved (see [8]) that the group of linear transfor-
mations of the 27-dimensional space preserving this form coincides with the
simply-connected Chevalley group of type E6 over an arbitrary field (even in
the cases of characteristics 2 and 3).

Even before that, Leonard Dickson described an invariant form of degree
4 for the group of type E7. This form acts on the 56-dimensional space
of the minimal representation of the simply-connected Chevalley group of
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type E7. It is also known that this space possesses an invariant symplectic
form. Bruce Cooperstein ([10], see also [9]) showed that the group of linear
transformations preserving both these forms coincides with the Chevalley
group of type E7 for the case of a field of characteristic not 2. In [7] the
restriction on the characteristic was removed by replacing a form of degree
4 with a non-symmetric four-linear one.

The study of minimal representations for the groups of types E6 and
E7 is simplified by the fact that these representations are microweight. At
the same time, the group of type E8 has no microweight representations. Its
minimal representation is the adjoint one. Therefore it is instructive to study
adjoint representations of exceptional groups and their invariant multilinear
forms.

The multilinear forms described above are intimately connected to the
equations on the orbit of the highest weight vector. It is well known (see [11])
that the orbit of the highest weight vector in any representation is cut out by
quadratic equations. Let us differentiate an invariant trilinear form for the
group of type E6 with respect to every variable. We get a set of 27 quadratic
polynomials. It turns out that these polynomials cut out precisely the orbit
of the highest weight vector (over an algebraically closed field). Similarly,
the second order partial derivatives of a four-linear invariant form for the
group of type E7 are polarizations of quadratic polynomials describing the
orbit of the highest weight vector of the minimal representation of this group
(however, there are subtleties due to the existence of an invariant symplectic
form on this 56-dimensional representation).

The equations on the orbit of the highest weight vector in adjoint rep-
resentations for the groups of type E6, E7, E8 are described in [12]. They
are distributed among three types, identified [12] as “π/2-equations”, “2π/3-
equations”, and “π-equations”. In the present work, which is a development
of the bachelor thesis of the first author under supervision of the second
author, we construct cubic forms on the space of the adjoint representation
for the Chevalley group of type E7. The partial derivatives of these forms
with respect to any variable are linear combinations of the equations of the
first two types. Thus various π/2- and 2π/3-equations are compactly pre-
sented in a comparatively small number of cubic forms. It is easy to show
that in fact various partial derivatives of these forms provide all the π/2-
and 2π/3-equations on the orbit of the highest weight vector. In the process
of constructing these forms we unravel additional combinatorial structures
on root systems, which complement the maximal squares defined by Vavilov
(see [3], [4]); we are convinced that these structures (below we call them
batches) will be important in a future development of geometric methods of
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computations in exceptional groups in their adjoint representations.

2 Main notation

One can find many details relating to Chevalley groups over rings and further
references in [13], [14], [15], [16], [17]. Here we only fix the main notation.

Let Φ be a reduced irreducible root system of rank l. Let Π = α1, . . . , αl
be a fundamental system in Φ (its elements will be called fundamental roots).
Our numbering of the fundamental roots always follows Bourbaki [1]. For
α ∈ Φ we have α =

∑l
s=1ms(α)αs

Let G = G(Φ, R) be a simply-connected Chevalley group of type Φ over
a commutative ring R with 1. We are going to work with the adjoint rep-
resentation G(Φ, R), which gives us an irreducible action of G(Φ, R) on a
free R-module V of rank |Φ| + l. Let Λ denote the set of roots of our rep-
resentation with multiplicities. Thus Λ = Λ∗ t∆, where Λ∗ = Φ is the set
of non-zero roots, and ∆ = {01, . . . , 0l} is the set of zero roots. We fix an
admissible base eλ, λ ∈ Λ in V . Then any vector v ∈ V can be uniquely
expressed as

v =
∑
λ∈Λ

vλe
λ =

∑
α∈Φ

vαe
α +

l∑
i=1

v̂iê
i.

We often write simply v = (vλ).
The set of roots of Φ is a subset of the euclidean space E equipped

with the scalar product (·, ·). We shall also make use of the product defined
by 〈α, β〉 = 2(α, β)/(β, β) for α, β ∈ E (for α, β ∈ Φ, we get the Cartan
number). We only consider simply-laced root systems, which means that all
roots have length 1. Therefore we have 〈α, β〉 = 2(α, β) for any α, β ∈ Φ.
The angle between α, β ∈ E will be denoted by ∠(α, β).

In the present work we treat the cases Φ = E6,E7,E8; the last two sections
contain a construction of cubic forms for the case Φ = E7. Nevertheless,
many of the preliminary lemmas hold true even for Φ = Dl; sometimes we
give remarks concerning this case.

The structure constants Nα,β, α, β ∈ Φ of the simple complex Lie algebra
of type Φ are described in [2], and we freely use the identities listed there
without explicit reference. Note that in our case Nα,β = 0 or ±1.

Let k = l − 1, 4, 5, 7 for Φ = Dl,E6,E7,E8, respectively.

Definition 1. A set of roots Ω = {βi}, i = 1, . . . , k,−k, . . . ,−1 such that
∠(βi, β−i) = π/2 for i = 1, . . . , k, and ∠(βi, βj) = π/3 for i 6= ±j, is called a
maximal square.
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In general, a set of roots {βi} that satisfies the aforementioned conditions
on the angles is called a square; a maximal set with this property contains
exactly 2k roots. In what follows we only need maximal squares, so the
adjective “maximal” will often be omitted.

Since the sum βi+β−i does not depend on i, it is the same for the whole
square Ω. We denote this vector by σ(Ω).

Conversely, for every pair α, β ∈ Φ of orthogonal roots there exists a
unique square containing this pair: we can just take all the pairs of roots with
the same sum. This square will be denoted by Ω(α, β). Let us number its
elements as in Definition 1: put Ω(α, β) = {β1, . . . , βk, β−k, . . . , β−1}, where
β1 = α, β−1 = β. Consider the following polynomials in Z[{xα}α∈Φ, {x̂s}ls=1]:

f
π/2
α,β = xαxβ −

∑
i≥2

Nα,−βiNβ,−β−ixβixβ−i ;

f
2π/3
α,β =

∑
i 6=±1

Nα,−βixα−βixβi − xα
l∑

s=1

〈β, αs〉x̂s;

fπα,β =
∑
i 6=±1

(xα−βixβi−α − x−βixβi)−
l∑

s=1

〈α, αs〉x̂s ·
l∑

s=1

〈β, αs〉x̂s.

Suppose that v = (vλ)λ∈Λ ∈ V is a vector from the highest weight vector
orbit, i. .e., v ∈ G ·eρ, where ρ is the maximal root of Φ (which is exactly the
highest weight of the adjoint representation). As shown in [12], the coordi-
nates of v satisfy the equations fπ/2α,β (v) = 0, f2π/3

α,β (v) = 0, and fπα,β(v) = 0.

3 Combinatorial lemmas

Recall that the Weyl groupW = W (Φ) acts on the root system by reflections:

sα(β) = β − 〈α, β〉α.

Since we only consider reduced crystallographic simply-laced root systems,
the value of 〈α, β〉 can only be 2, −2, 1, −1, or 0. The angle ∠(α, β) equals
0, π, π/3, 2π/3, or π/2, respectively. Hence ∠(α, β) = π/3 is equivalent to
α− β ∈ Φ, while ∠(α, β) = 2π/3 is equivalent to α+ β ∈ Φ.

Consider a square Ω. Let us reflect all its roots with respect to an arbi-
trary root α ∈ Φ.

Definition 2. A set Sα(Ω) = {sα(γ) | γ ∈ Ω} is called the reflection of the
square Ω with respect to α.
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Lemma 1. The set Sα(Ω) is itself a square. Moreover, if α ∈ Ω, then
σ(Sα(Ω)) = σ(Ω)− 2α.

Proof. Suppose that Ω = {β1, . . . , βk, β−k, . . . , β−1}. Without loss of gener-
atlity we may assume that α = β1. By the definition of the square, β1 is
orthogonal to β−1, while having angle π/3 with the rest of βi’s. Therefore,
our reflection acts as follows:

(β1, β−1) 7→ (−β1, β−1)
(βi, β−i) 7→ (βi − β1, β−i − β1) for any i 6= ±1

Note that the sum of all the pairs we get is the same; it equals σ(Ω) − 2α,
and the pair (−β1, β−1) is orthogonal.

Note also that (in the notation of the proof of Lemma 1)

βi + β−i − 2β1 = β1 + β−1 − 2β1 = β−1 − β1.

Consider an arbitrary square

Ω = {β1, . . . , βk, β−k, . . . , β−1}.

A square formed by the opposite roots will be denoted by −Ω.

Definition 3. The set of squares obtained by reflection of the square Ω
with respect to all of its roots, together with ±Ω, is called a batch. It will
be denoted by s(Ω) = {Sα(Ω)|α ∈ Ω} ∪ {±Ω}.

Below we show that a batch (as a set of roots) is closed under reflections.
Consider the following binary relation ∼ on the set of all squares: Ω ∼ Ω′

if and only if Ω′ ∈ s(Ω). It turns out that ∼ is an equivalence relation, so
the set of all squares is partitioned into a disjoint union of batches. Before
proving this, let us draw a picture of a batch.

For any batch we consider a graph with labelled vertices and edges. Its
vertices are squares of the batch, while its edges are reflections. A square
can be transformed into another square by a reflection which labels an edge
joining these two squares. In order to preserve the symmetry, we actually
label an edge not by a root, but by a pair of opposite roots (because the
opposite roots define the same reflection).

By the definition of a batch, our graph has 2(k + 1) vertices. Let us
number them by −k, . . . , −1, −0, 0, 1, . . . , k, which corresponds to the
squares

Sβ−k(Ω), . . . , Sβ−1(Ω), − Ω, Ω, Sβ1(Ω), . . . , Sβk(Ω)
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Note that labels i,−i correspond to the opposite squares, since Sβ−i(Ω) =
−Sβi(Ω).

Now we join two non-zero vertices i, j with i 6= ±j, by an edge labelled
by ±(βi−βj). Also, we label the edge (0, i) by ±βi, and the edge (−0, i) by
±β−i.

0 -0

1

±β1
±β−1

-1

±β−1

±β1

k

±βk ±(β−1 − βk)

-k

±βk

±(β1 − β−k)

The only pairs of vertices not joined by an edge correspond to opposite
squares.

Lemma 2. Every edge joins two squares obtained from one another by the
reflection that labels this edge.

Proof. Since any reflection is idempotent, it suffices to prove the assertion
for any one direction of each edge.

Consider an arbitrary edge. If it goes from 0, the assertion is true by the
definition of a batch.

Now take an arbitrary edge going out from −0. Without loss of gen-
erality we may consider the edge (−0,1). The square labelled by 1 has an
orthogonal pair (−β1, β−1) that goes to (−β1,−β−1) after the reflection with
respect to β−1. The pair obtained lies in the square labelled by −0.

It remains to consider an edge joining two non-zero vertices, e. g., (1,2).
The square 1 contains an orthogonal pair (β2−β1, β−2−β1), while the square
2 contains an orthogonal pair (β1 − β2, β−1 − β2). Note that the second
roots in these pairs are the same: β−2 − β1 = β−1 − β2, since β1 + β−1 =
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β2 + β−2. It follows that the first pair goes to the second pair when we
consider the reflection with respect to β1− β2. Since a square is determined
by an orthogonal pair, the whole square 1 goes to the square 2.

Corollary 1. 1. An intersection of any two non-opposite squares from a
batch is a single root.

2. Either two batches have no common squares, or they coincide.

3. The edges going out from a vertex with non-zero sign are labelled by
the roots of the corresponding square.

4. Any root appears in a batch either two times, or does not appear at all.

Proof. Consider an edge joining two non-opposite squares. Suppose it is
labelled by ±α. The proof of Lemma 2 shows that the root corresponding to
a “+” sign on the edge’s label is contained in a square corresponding to one
of this edge’s vertex, while the root corresponding to a “−” sign appears in
the other square. The roots orthogonal to these two roots are the same. All
the other roots from one of the squares have the angle π/3 with α, and all
the other roots from the second square have the angle 2π/3 with α; hence
they can not coincide. We proved the first assertion. The other assertions
easily follow from this and from the proof of Lemma 2.

Lemma 3. A batch is closed under reflections of its squares with respect to
the roots of this batch.

Proof. Looking at the graph we constructed, we see that it remains to con-
sider the reflections of a square with respect to the roots that are not in this
square. Consider the square labelled by 1 and its reflection with respect to
β2. This square contains the orthogonal pair (−β1, β−1). After the reflection
with respect to β2 we get (−β1 +β2, β−1−β2). Note that the sum of roots in
this pair is the same. This means that the whole square is mapped to itself
after this reflection. By symmetry, the same is true for any square.

Since a square is determined by a pair of orthogonal roots α, β, we some-
times denote a batch that contains a square Ω with σ(Ω) = α+β by s(α, β)
instead of s(Ω). Also, we sometimes consider a batch as a set of squares, and
sometimes as a set of roots contained in these squares. The precise meaning
should be clear from the context.

Now let us consider a batch as a set of roots (the union of all the squares
in this batch). Note that (by definition) a batch is closed under reflections
with respect to its elements. Also, it is finite. It follows that a batch is a
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root system. An easy calculation (using the transitivity of the Weyl group
action on the batches) can be performed to determine its type. We obtain
the following statement.

Lemma 4. If Φ = E6,E7,E8, then the set of roots in any batch is a root
system of type D5,D6,D8, respectively.

Note that D5,D6,D8 are maximal subsystems of type D in E6,E7,E8.
In the case Φ = Dl the situation becomes more complicated: the pairs of

orthogonal roots in Dl form two orbits under the Weyl group action. These
orbits give us two types of squares: the “long” ones (they contain 2l−2 roots)
and the “short” ones (they contain 6 roots). The equations on the highest
weight vector orbit, described in [12], are parametrized by “long” squares.
If l = 4, the situation is even more complicated due to the fact that these
squares have the same size (2 · 4− 2 = 6) — this is explained by triality. The
construction of the batches for Φ = Dl (and its properties) still hold only for
the “long” squares.

In what follows we denote by ρ the maximal root of E8. The root system
E7 consists of the roots E8 that have zero coefficient at the fundamental root
α8. Similarly, E6 is the set of roots that have zero coefficients at α8 and α7.

The type of a vector in E is its coordinate at α8. For example, the
maximal root has type 2. Note that the type of a root λ ∈ Φ is equal to
0,±1,±2 when λ ∈ E7, λ /∈ E7 ∪ {±ρ}, λ = ±ρ, respectively. The set of all
roots in E8 of type i will be denoted by E

(i)
8 . The type of a square Ω is the

type of σ(Ω).

Lemma 5. A square in E8 can only have type 0,±1, or ±2.

Proof. Since σ is a sum of two roots, the discussion above implies that its
type is an integer between −4 and 4. The values ±3, ±4 can by obtained
only by using ±ρ. But such a square would countain no more than two
roots.

Lemma 1 implies that the types of the squares in one batch have the
same parity. Therefore every batch is either even or odd.

We say that a batch s in E8 contains an E7-batch if after intersecting
every square in s with E7 (and omitting empty intersections) we get a batch
in E7. It is easy to see that such a batch is even (it contains squares of type
0). The batch obtained from s by restriction to E7 will be denoted by s|E7 .
Similarly, we say that a square lies in E7, if its intersection with E7 is itself
a square in E7. Note that, by construction, a batch that contains a square
in E7 automatically contains an E7-batch.
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Lemma 6. Let s be an arbitrary batch in E8. The batch s contains an
E7-batch if and only if ρ ∈ s.

Proof. Suppose that ρ ∈ s. Then the batch s is even. Consider a square
Ω ∈ s that contains ρ. This square has type 2 + 0 = 2. Therefore all the
other orthogonal pairs in this square have type 1+1. Consider a reflection of
Ω with respect to one of its roots of type 1. Then one pair of the orthogonal
roots goes to 1 + (−1), while the other go to 0 + 0. The pairs of roots of
type 0 + 0 form a square in E7, therefore s contains an E7-batch.

Conversely, suppose that s contains an E7-batch. Consider a square Ω in
s that lies in E7. It has type 0, and contains 2(k − 1) pairs of type 0 + 0.
Consider the remaining two pairs. The sums of types in each of these pairs
should equal 0, hence they are either 2 + (−2) or 1 + (−1). But types 2, −2
occur only when we have roots ρ, −ρ, which are not orthogonal. Therefore,
the remaining two pairs have type 1 + (−1). After reflecting these two pairs
with respect to a root of type −1 we obtain sums 2 + 0 and 1 + 1. Hence we
found a root of type 2 in s — this root is ρ.

Let s be a batch in E8 that contains an E7-batch. Note that the pair of
ρ in these batch lies in E7. Conversely, for any root in E7 we may consider
the set of the roots in E7 orthogonal to it; this set turns out to be a batch.

Lemma 7. Let α be an arbitrary root in E7. Then

{γ ∈ E7 | γ ⊥ α} = {γ ∈ E7 | γ ∈ s(ρ, α)|E7}.

Proof. Suppose that β ∈ s(ρ, α)|E7 is not orthogonal to α. Note that ρ ⊥ β,
since ρ ⊥ E7. Consider the reflection of Ω(ρ, α) with respect to β. We get
a square that contains ρ and is distinct from Ω(ρ,±α). But each root in a
batch appears twice, and we get a contradiction. The number of roots in
our batch is equal to the number of roots in D6, i. e., 60. The number of
roots in E7 that are orthogonal to a given one is the same. Hence these sets
coincide.

Therefore, the batches in E7 are parametrized by the pairs of opposite
roots in E7: for a pair ±α ∈ E7 we have a batch s(ρ, α)|E7 , and for a batch s
we have a unique (up to a sign) root in E7 that is orthogonal to all roots in
s. This is exactly the correspondence between the roots in E7 (up to a sign)
and (orthogonal to them) subsystems of type D6 in E7.
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4 π/2-forms

From now on we set Φ = E7. Let A denote the set of all (unordered) triples of
pairwise orthogonal roots α, β, γ ∈ E7 such that the roots α, β, γ, ρ generate
a subsystem of type D4 in E8. Note that we have α + β + γ + ρ = 2δ,
where δ ∈ E8 is a root of type 1. Conversely, for a root δ ∈ E

(1)
8 let Aδ

denote the set of triples of pairwise orthogonal roots α, β, γ ∈ E7 such that
α+ β + γ + ρ = 2δ. Then

A =
⋃

δ∈E(1)
8

Aδ.

Since the subgroup W (E7) in W (E8) acts transitively on E
(1)
8 , all the sets

Aδ have the same cardinality; it is easy to see that each of them contains
45 elements. For example, one can look at δ = α8. In this case Aδ is the
set of triples of pairwise orthogonal roots α, β, γ ∈ E7 such that α + β +
γ = −2465430

3
. The coefficient at α7 of a root in E7 can be equal to 0

or ±1. Therefore α, β, γ has coefficient −1 at α7. This means that α, β, γ
can be considered as a triple of pairwise orthogonal roots of the minimal
representation of E6 that arises from the standard embedding E6 ≤ E7 and
its action on the set of roots of type −∗ ∗ ∗ ∗ ∗1∗ in E7. These triples are
well-known; usually they are called triads. It is known that there are 45
of them (see, for example, [6]). On the minimal representation of E6 there
exists a unique (up to a scalar multiple) invariant cubic form; it is the sum
of monomials ±xαxβxγ , where {α, β, γ} runs over all triads. Let cαβγ be a
sign at xαxβxγ (for some choice of signs in this cubic form).

Since everything is symmetric with respect to the Weyl group action, we
can repeat these construction for any root δ ∈ E

(1)
8 : Aδ is the set of pairwise

orthogonal triples of weights for a minimal representation of E6 arising from
some embedding of the root systems E6 → E7. Therefore |Aδ| = 45 and we
can choose the signs cαβγ in some manner for all the triples {α, β, γ} ∈ Aδ.

Therefore, for each of the fifty-six roots δ ∈ E
(1)
8 we constructed some

cubic form
F
π/2
δ =

∑
{α,β,γ}∈Aδ

cαβγxαxβxγ ∈ Z[{xα}α∈E7 ].

Naturally, this form coincides with the invariant cubic form on a minimal
representation of E6 for some embedding of root systems E6 → E7 and the
corresponding embedding of the weights of this representation into E7.

Theorem 1. Let F be a linear combination of cubic forms F π/2δ with arbi-
trary scalar coefficients. Then for any α ∈ E7 the formal derivative ∂F/∂xα
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is a linear combination of π/2-equations corresponding to the squares in the
batch s(ρ, α)|E7.

Proof. It is well known (see, for example, [6] or [5]), that the derivatives of
the invariant cubic form on the minimal representation of the group of type
E6 are exactly the square equations for this representation. Namely, each
derivative ∂F π/2δ /∂xα is a sum of five square monomials corresponding to
the pairs of orthogonal weights with the same sum 2δ − ρ− α. Choose such
a pair (β, γ). The sum obtained is comprised of exactly five terms in the
polynomial fπ/2β,γ . It remains to note that the signs of these terms in the π/2-
polynomial agree with the signs in the derivative, since we know that the
orbit of the highest weight vector satisfies both of these polynomials (see [12]
and [5]).

5 2π/3-forms

Definition 4. A triple of roots α, β, γ ∈ E7 is called a 2π/3-triple if after
renumbering we have ∠(α, β) = ∠(α, γ) = π/2 and ∠(β, γ) = 2π/3. The set
of all 2π/3-triples in E7 will be denoted by Υ.

Note that if {α, β, γ} is a 2π/3-triple such that ∠(β, γ) = 2π/3, then
β + γ ∈ E7 and α ⊥ β + γ. Given a pair of orthogonal roots α, β + γ,
we can construct a unique maximal square Ω that contains this pair, and
σ(Ω) = α+β+γ. Conversely, for an arbitrary maximal square Ω in E7 one can
consider the set Υ(Ω) of all 2π/3-triples α, β, γ such that α+ β + γ = σ(Ω).
Therefore

Υ =
⋃

Ω∈M(E7)

Υ(Ω),

where M(E7) denotes the set of all maximal squares in E7. Note that
|M(E7)| = 756. Symmetry considerations show that all maximal squares
(as well as the sets Υ(Ω)) are conjugate under the action of the Weyl group
W (E7).

For every triple {α, β, γ} ∈ Υ(Ω) we may assume (after renaming the
roots) that α ⊥ β, α ⊥ γ, and ∠(β, γ) = 2π/3. By Lemma 7 there exists
a unique (up to a sign) root τ that is orthogonal to all α’s from the triples
{α, β, γ} ∈ Υ(Ω). Choose one of these two opposite roots and denote it by
τ . Then τ ⊥ (β + γ); one of the expressions 〈τ, β〉, 〈τ, γ〉 equals 1, while
the other equals −1. Switching, if necessary, β with γ, we may assume that
〈τ, β〉 = 1 and 〈τ, γ〉 = −1 for all triples α, β, γ for Υ(Ω). From now on we
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may assume that Υ(Ω) consists of ordered 2π/3-triples (α, β, γ) such that
∠(β, γ) = 2π/3 and 〈τ, β〉 = 1.

Let us fix an arbitrary triple (α0, β0, γ0) ∈ Υ(Ω). For α, δ ∈ Ω with α ⊥ δ
define

cα,δ =

{
Nα0,−αNβ0+γ0,−δ, if α 6= α0 and α 6= β0 + γ0;

−1, if α = α0 or α = β0 + γ0.

Now define a cubic form

F
2π/3
Ω =

∑
(α,β,γ)∈Υ(Ω)

cα,β+γNβ,γxαxβxγ −
∑

{α,δ}⊆Ω,
α⊥δ

cα,δxαxδ

l∑
s=1

〈τ, αs〉x̂s.

Theorem 2. Let F be a linear combination of cubic forms F 2π/3
Ω with ar-

bitrary scalar coefficients. Then for any α ∈ E7 the formal derivative of F
with respect to any of the variables xα, x̂s is a linear combination of π/2-
polynomials and 2π/3-polynomials.

Proof. It suffices to prove this for F = F
2π/3
Ω for some fixed maximal square

Ω. Note that the derivatives with respect to variables corresponding to roots
not in any of the triples in Υ(Ω) are zero. Consider a 2π/3-triple (α1, β1, γ1)
in Υ(Ω) (recall that ∠(β1, γ1) = 2π/3 by our conventions).

Consider first the derivative ∂F/∂xα1 . For sake of simplicity we shall
assume at first that α1 6= α0 and α1 6= β0 + γ0. It is easy to see that our
derivative is equal to Nα0,−α1Nβ0+γ0,−β1−γ1f

2π/3
β1+γ1,τ

. Indeed, it suffices to
note that there exists exactly one root δ1 ∈ Ω orthogonal to α1 (namely,
δ1 = β1 + γ1), so the terms in ∂F/∂xα1 containing the variables x̂s are

Nα0,−α1Nβ0+γ0,−β1+γ1xβ1+γ1

l∑
s=1

〈τ, αs〉x̂s.

The cases α1 = α0 and α1 = β0 + γ0 can be treated similarly.
Now consider the derivative of F 2π/3

Ω with respect to xβ1 . Note that for
every 2π/3-triple (α, β, γ) in Υ(Ω) we have

Nα0,−αNβ0+γ0,−β−γNβ,γ = −Nα0,−αN−β0,−γ0,β+γNβ,γ

= −Nα0,−αN−β0−γ0+β,γN−β0−γ0,β

= −Nα0,−αNβ0+γ0−β,−γN−β0−γ0,β

12



Suppose that β = β1 in such a triple. Then the third factor in our product is
constant, so after differentiating we obtain a sum of termsNα0,−αNβ0+γ0−β,−γxαxγ
that runs over all orthogonal pairs α, γ with a fixed sum α+ γ = σ(Ω)− β1,
and one more term −Nβ1,γxα0xβ0+γ0−β1 . It remains to note that Nβ1,γ =

N−β0−γ0,β1 . Summing everything up, we see that ∂F/∂xβ1 equalsN−β0−γ0,β1f
π/2
α0,β0+γ0−β1 .

The only remaining case is the derivative ∂F/∂x̂s for s = 1, . . . , l; it is
easy to see that this is equal to 〈τ, αs〉fπ/2α0,δ0

(since the coefficient cα,δ are
exactly the signs used in the definition of fπ/2; see. [12, p. 3])
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