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OVERGROUPS OF F4 IN E6 OVER COMMUTATIVE RINGS

A. YU. LUZGAREV

Abstract. Overgroups of the elementary Chevalley group of type F4 in the Cheval-
ley group of type E6 over an arbitrary commutative ring are described.

§1. Introduction

In the present paper we describe overgroups of the elementary Chevalley group of
type F4 in the Chevalley group of type E6 over an arbitrary commutative ring. A
systematic study of similar questions for the classical groups over fields was started by
Roger Dye, Oliver King, and Li Shang Zhi; see [22, 23, 24, 29, 30, 33]. The description
of overgroups for orthogonal, symplectic and unitary groups in the general linear group
over a commutative ring was obtained by Vavilov and Petrov in [9, 10, 11, 35] and by
Hong You in [27, 28].

The papers listed above deal with overgroups of classical groups in irreducible rep-
resentations, or equivalently, with subgroups of GL(n,R) containing a given Chevalley
group. It would be useful to transfer these results to the exceptional groups over commu-
tative rings. In [12], the author presented some steps towards a description of overgroups
for Chevalley groups of types E6 and E7 in their irreducible representations.

In [5, 8] it was observed that, in order to study Chevalley groups of type F4, instead
of the minimal 26-dimensional representation, it is often convenient to use the reducible
27-dimensional representation that arises as a result of twisting the minimal module of
the group of type E6. Thus, we have an inclusion Gsc(F4, R) ≤ Gsc(E6, R), and it is
natural to ask about intermediate subgroups in this setting.

Several technicalities arise when we try to adjust the proofs in [10] to exceptional
groups, but the core remains the same, and so does the result: a “fan subgroup” descrip-
ton in the spirit of Borevich. More precisely, for any subgroup H lying between E(F4, R)
and G(E6, R) (and viewed as subgroups in GL(27, R)) there is a unique ideal A in R such
that H lies between the group E(F4, R,A) = E(F4, R)E(E6, R,A) and its normalizer in
G(E6, R).

Theorem 1. Let R be any commutative ring. For any subgroup H in G = G(E6, R)
that contains E(F4, R), there exists a unique ideal A � R such that

E(F4, R,A) ≤ H ≤ NG(E(F4, R,A)).

Moreover, we compute the normalizer in question. Consider the extended Chevalley
group

sG(F4, R) = G(F4, R) Cent(G(E6, R))
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(where Cent(G) denotes the center of a group G).
For any two subgroups E, F in a group G, let TranG(E,F ) denote the transporter of

E to F :

TranG(E,F ) = {g ∈ G | Eg ≤ F}.
Another result of this paper is the following theorem.

Theorem 2. Under the hypothesis of Theorem 1, we have

NG(E(F4, R)) = NG(G(F4, R)) = TranG(E(F4, R), G(F4, R)) = sG(F4, R).

Now, consider the reduction homomorphism ρE6

A : G(E6, R) → G(E6, R/A) induced
by a homomorphism of the corresponding general linear groups, and let CG(F4, R,A)

denote the full preimage of G(F4, R/A) under ρE6

A .

Theorem 3. Under the hypothesis of Theorem 1, for any ideal A � R we have

NG(E(F4, R,A)) = CG(F4, R,A).

The matrices in CG(F4, R,A) are determined by certain congruences modulo A. We
make these congruences explicit in Proposition 2.

Technically, this work combines the localization-completion method, introduced by
A. Bak in [19] and simplified by Hazrat and Vavilov in [25, 26, 10], with explicit compu-
tations in exceptional groups in their minimal representations, as developed by Vavilov
and his students; see [4, 5, 6, 7, 8, 12].

This paper is organized as follows. In §§2 and 3 we recall the basic definitions per-
taining to Chevalley groups of types E6 and F4 in their 27-dimensional representation.
In §4 we reproduce some general facts about these groups. In §5 we prove technical re-
sults concerning the equations that define G(E6, R). In §6 we describe certain parabolic
subgroups in G(E6, R) and G(F4, R), together with their unipotent radicals. In §7 we
prove Theorem 2 and describe equations on elements of the extended Chevalley group
G(F4, R). The notion of the lower level for the subgroups in question is introduced in §8.
In §9 we prove Theorem 3 and describe equations that determine the normalizer appear-
ing in that theorem. The technical core of the proof of Theorem 1 is §10: localization
helps us to simplify the extraction of a root element. The next three sections are devoted
to this exrtraction: we gradually weaken conditions that ensure the existence of a root
element. After that, the proof of Theorem 1 is finished easily in §14.

I am grateful to Nikolăı Aleksandrovich Vavilov, without whom this paper would not
have been written, and to Antony Bak for hospitality and valuable support.

§2. Chevalley group of type E6

In the present section we recall the basic notions and facts pertaining to Chevalley
groups of type E6 over commutative rings. Further information and references can be
found in [1, 13, 34, 36, 15, 40, 41, 42, 4, 6, 7]. However, we wish to discuss more thoroughly
the inclusion of a group of type F4 in a group of type E6, which is far less covered in the
literature.

We consider the root systems E6 and F4 with fixed sets of fundamental roots Π(E6)
and Π(F4). Our numbering of roots follows [2]. From now on, let R be a commutative
ring with 1.

Our computations use an action of the Chevalley group G = G(E6, R) of type E6 on
a module V = V (�1) with the highest weight ω = �1. Let Λ be the set of weights for
this module. Then V has a crystalic base vλ, λ ∈ Λ. This means (see [34]) that each vλ
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is a weight vector, and the action of the elementary root unipotents xα(ξ) for α ∈ E6,
ξ ∈ R, can be written as follows:

xα(ξ)v
λ = vλ + cλαξv

λ+α.

Moreover, every structure constant cλα of this action is equal to ±1, and cλα = +1 for
α ∈ ±Π(E6). Let T (E6, R) be a split maximal torus in G(E6, R); in our representation, a
matrix in G(E6, R) belongs to T (E6, R) if and only if it is diagonal. The group T (E6, R)
is Abelian and is generated by the following elements:

hα(ε) = e+
∑

λ,λ+α∈Λ

((ε− 1)eλ+α,λ+α + (ε−1 − 1)eλ,λ)

for every α ∈ Π(E6), ε ∈ R∗.
It is easily seen that

hα(ε)xβ(ξ) = xβ(ε
〈α,β〉ξ)

for all α ∈ Π, β ∈ Φ, ε ∈ R∗, ξ ∈ R. Recall that 〈α, β〉 = 2(α, β)/(β, β), where (·, ·) is a
W (E6)-invariant scalar product on P ⊗Z R, and in our case, P = Psc is a weight lattice.

The paper [7] was devoted to a detailed study of the module V . In particular, the
tables of signs of the structure constants in the crystalic base can be found there. Those
tables are used extensively in our computations. As was noted in [17, 18, 6], a principal
instrument for studying the module V is the invariant trilinear form. This form was
described in [7]. One can look at G(E6, R) from several different viewpoints: the clas-
sical definition says that it is the group of points of a certain affine group scheme (the
Chevalley–Demazure scheme). But for specific matrix computations it is easier to use
the fact that for any commutative ring R the group G(E6, R) coincides with the group of
isometries of a trilinear form T . The description of this form, and of the associated cubic
form together with its partial derivatives can be found in [7] (see also [40, 41, 42, 8, 6]).
We reproduce the cubic form and its partial derivatives in §5.

Moreover, G(E6, R) coincides with the group of isometries of the cubic form Q men-
tioned above. This result is nontrivial (see [17]), especially if the invertibility of 2 and 3
in R is not assumed: note that T (u, u, u) = 6Q(u).

In Figure 1 we reproduce the weight diagram of the module V . Its vertices are labeled
by the weights of V , while each edge connects a pair of weights if their difference is a
fundamental root. The edge is then labeled by this fundamental root, and the greatest
of two weights is put on the left-hand side.

� ��
�

� � �

�

�

�

�

� �

�

�

� � �

�

� � �

Figure 1

We view a vector a ∈ V , a =
∑

aλv
λ, as a column of coordinates in the crystalic base:

a = (aλ), λ ∈ Λ. At the same time, an element b of the contragredient module V ∗ can
naturally be regarded as a row b = (bλ), λ ∈ Λ. Note that the coordinates of a vector
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in V ∗ are indexed by weights of the module V ; that is why they are written as rows.
We identify an element g ∈ G(E6, R) with its image with respect to the representation π
and write it as a matrix (gλµ) belonging to GL(V ) � GL(27, R) with rows and columns
indexed by the set of weights Λ. We denote by g∗µ the column of this matrix with
index µ ∈ Λ. In other words, g∗µ = gvµ. Similarly, we denote by gλ∗ the row of the
matrix g with index λ ∈ Λ. The entries of the inverse matrix of g are denoted as follows:
g−1 = (g′λµ), λ, µ ∈ Λ.

The following lemma is a simple reformulation of the definition of a crystalic base,
and we shall use it in the computations without any special mention.

Lemma 1. For any g ∈ GL(27, R), α ∈ E6, ξ ∈ R, we have

(xα(ξ)g)λµ = gλµ + cλ−α,αξgλ−α,µ, (gxα(ξ))λµ = gλµ + cµαξgλ,µ+α.

Often we do not need to know the exact signs of the constants cλα, and then we use
the symbol ‘±’ instead of the sign.

§3. Chevalley group of type F4

From now on we assume (unless otherwise stated) that Φ = F4, Φl is the set of long
roots, and Φs is the set of short roots in Φ. We realize the root system F4 as the projection

of the root system E6 to the four-dimensional subspace spanned by the vectors 00000
1

,

00100
0

, 01010
0

, 10001
0

. Then the long roots of F4 are precisely the roots of E6 lying in this

subspace. Such a root must have the form abcba
d

∈ E6, and from the F4 point of view it

is the root dα1 + cα2 + 2bα3 + 2aα4 ∈ Φl (where the αi, 1 ≤ i ≤ 4, are the fundamental
roots of F4). Therefore, we may assume that Φl ⊂ E6 (note that Φl is a root system of
type D4). On the other hand, a short root of F4 is the projection of two roots of E6 to

our four-dimensional subspace: the roots abcb
′a′

d
and a′b′cba

d
are projected to

dα1 + cα2 + (b+ b′)α3 + (a+ a′)α4 ∈ Φs.

Let βi, 1 ≤ i ≤ 6, denote the short roots of E6; we recall that our numbering follows
[2]. Consider the outer automorphism α 	→ α of order 2 of the root system E6 that
permutes β1 with β6 and β3 with β5, leaving β2 and β4 invariant. The one-element
orbits of this automorphism consist precisely of the long roots of F4, while each two-
element orbit contains two roots that project to a short root of F4. Note that the roots
β 
= β in a two-element orbit are orthogonal to each other and form angles of π/4 with
the corresponding short root (β+ β)/2 ∈ Φs. We shall identify the set of orbits with the
set of roots F4.

We denote by xβ(ξ) the elementary root unipotents of the group G(E6, R), and by
Xβ(ξ) the elementary root unipotents of the group G(F4, R). Each element Xβ(ξ) is

equal to xβ(ξ) for β = β (long root unipotent), or to xβ(ξ)xβ(±ξ) for β 
= β (short root

unipotent). We shall use the explicit signs in the short root unipotents:

X0001(ξ) = x10000
0

(ξ)x00001
0

(ξ), X0010(ξ) = x01000
0

(ξ)x00010
0

(ξ),

X0011(ξ) = x11000
0

(ξ)x00011
0

(−ξ), X0110(ξ) = x01100
0

(ξ)x00110
0

(−ξ),

X1110(ξ) = x01100
1

(ξ)x00110
1

(−ξ), X0111(ξ) = x11100
0

(ξ)x00111
0

(ξ),
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X1111(ξ) = x11100
1

(ξ)x00111
1

(ξ), X0121(ξ) = x11110
0

(ξ)x01111
0

(−ξ),

X1121(ξ) = x11110
1

(ξ)x01111
1

(−ξ), X1221(ξ) = x11210
1

(ξ)x01211
1

(−ξ),

X1231(ξ) = x12210
1

(ξ)x01221
1

(−ξ), X1232(ξ) = x12211
1

(ξ)x11221
1

(ξ).

The split maximal torus T (F4, R) of the group G(F4, R) is generated by the following
diagonal elements:

H1000(ε) = h00000
1

(ε), H0100(ε) = h00100
0

(ε),

H0010(ε) = h01000
0

(ε)h00010
0

(ε), H0001(ε) = h10000
0

(ε)h00001
0

(ε).

When we restrict the representation π from G(E6, R) to G(F4, R), we obtain the 27-
dimensional representation with the weight diagram depicted in Figure 2. Here the edges
are labeled by the fundamental roots of F4.
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Figure 2

We shall use this numeration of weights in all our computations. For diversity, this
numeration (and even its positive part) does not coincide with any of the three numer-
ations listed in [7]. A weight labeled by an integer i on this diagram is denoted by λi

or (if this does not cause ambiguity) simply by i. Note that after restriction to F4 the
weights 13, 14, and 15 become zero weights.

The representation (E6, �1) ↓ F4 is reducible: it is the direct sum of a 26-dimensional
representation on the short roots and a trivial 1-dimensional representation. Moreover,
we need to consider the restriction (E6, �1) ↓ D4. To visualize it, one should remove all
edges labeled by 1 and 6 from the diagram (E6, �1). Combining the restrictions to F4

and to D4, we obtain the restriction to B3, which corresponds to removal of all edges
labeled by 4. It is easily seen that the result is the direct sum of three one-dimensional
representations (corresponding to the weights λ1 = ω, λ−1 = −ω, and λ13), and three
eight-dimensional representations (one of them is reducible and is the direct sum of a
seven-dimensional and a one-dimensional representation). Let B, Γ, ∆ be the sets of
weights of these representations:

B = {2, 3, 4, 5, 7, 8, 9, 10},
Γ = {6, 11, 12, 14, 15,−12,−11,−6},
∆ = {−10,−9,−8,−7,−5,−4,−3,−2}.
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As has already been noted, G(E6, R) coincides with the group of transformations
of the free right module R27 that preserve the trilinear form T . It is convenient to
view the group G(F4, R) < G(E6, R) as the group of transformations of class G(E6, R)
that stabilize a certain vector u with Q(u) 
= 0. Equivalently, G(F4, R) is the group
of transformations of class G(E6, R) that preserve a bilinear form B(x, y) defined by
B(x, y) = T (u, x, y). We can choose u = v13 − v14 + v15, so that Q(u) = −1, while the
bilinear form is expressed as

B(x, y) =

12∑
i=1

(−1)i+1(xiy−i+x−iyi)+x13y14+x14y13+x14y15+x15y14−x13y15−x15y13.

Let F denote the Gram matrix of the bilinear form B. We see that a matrix g =
(gij) ∈ G(E6, R) belongs to G(F4, R) if and only if gFgT = F (here, as usual, gT is the
transpose of g). This means that G(F4,−) is a subscheme in G(E6,−); a matrix g ∈
G(E6, R) belongs to G(F4, R) if and only if (FgT )ij = (g−1F )ij for all i, j = 1, . . . ,−1. In
particular, when i, j = 1, . . . , 12,−12, . . . ,−1, these equations say that g′ij = εiεjg−j,−i.

We also need to consider the group of similarities of the bilinear form B, that is,
the group of transformations g ∈ G(E6, R) such that B(gx, gy) = λ(g)B(x, y) for some
λ(g) ∈ R∗. In terms of the Gram matrix, this condition can be rewritten as gFgT =
λ(g)F . This group is denoted by G(F4, R). Let g ∈ G(F4, R). For any x, y ∈ R27 we
have

T (u, x, y) = B(x, y) = λ(g)−1B(gx, gy) = λ(g)−1T (u, gx, gy) = λ(g)−1T (g−1u, x, y),

whence T (λ(g)u − g−1u, x, y) = 0. Therefore, g−1u = λ(g)u, which means that g maps
the one-dimensional subspace 〈u〉 into itself. Since the converse is also true, G(F4, R)
can be described as the group of matrices in G(E6, R) that stabilize 〈u〉.

Lemma 2. If gu = λu for some g ∈ G(E6, R), λ ∈ R, then λ3 = 1.

Proof.
−1 = Q(u) = Q(gu) = Q(λu) = λ3Q(u) = −λ3. �

Therefore, if R contains no nontrivial cubic roots of 1, then G(F4, R) = G(F4, R). But
if λ ∈ R and λ3 = 1, then the matrix λI27 belongs to the center of G(E6, R) and, at
the same time, to G(F4, R); moreover, Cent(G(E6, R)) consists of these scalar matrices.
Hence,

(1) G(F4, R) = G(F4, R) Cent(G(E6, R)).

We denote the diagonal subgroup in G(F4, R) by T (F4, R). Since this subgroup nor-
malizes E(F4, R), we can form the product

E(F4, R) = E(F4, R)T (F4, R) = E(F4, R) Cent(G(E6, R)).

§4. General facts about Chevalley groups

In this section Φ is E6 or F4.
Let A � R be an ideal of the ring R. By definition, the group E(Φ, A) is generated

by the root elements of level A:

E(Φ, A) = 〈xα(ξ), α ∈ Φ, ξ ∈ A〉.
In particular, if A = R, the group E(Φ, R) is called an (absolute) elementary group.
There are, of course, relative elementary groups E(Φ, R,A):

E(Φ, R,A) = 〈xa(ξ), α ∈ Φ, ξ ∈ A〉E(Φ,R).

The following simple fact is well known (see, for example, [36, Corollary 4.4]).
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Lemma 3. If Φ is E6 or F4, then the elementary group E(Φ, R) is perfect.

Consider the reduction homomorphism ρΦA : G(Φ, R) → G(Φ, R/A), that is, the re-
striction of an obvious homomorphism GL(27, R) → GL(27, R/A) to the groupG(Φ, R) ≤
GL(27, R). Let G(Φ, R,A) be the kernel of this homomorphism, and C(Φ, R,A) the
preimage of the center of G(Φ, R/A).

The following equations are called the standard commutator formulas.

Lemma 4. Suppose Φ is E6 or F4. For any ideal A � R the following equations hold
true:

[G(Φ, R), E(Φ, R,A)] = [E(Φ, R), C(Φ, R,A)] = E(Φ, R,A).

In particular, E(Φ, R,A) is normal in G(Φ, R).

In the exceptional cases that we need here, this lemma was proved by Taddei [37] and
Vaserstein [39]. One can find other proofs and further references in [40, 20, 26].

Let S be a multiplicative system in the ring R, i.e., a subset of R that contains 1 and
is closed under multiplication. We denote by S−1R the localization of R with respect to
S, and by FS : R → S−1R the canonical homomorphism. The following cases are of
particular interest.

(1) Localization with respect to a maximal ideal: S = R \M , where M ∈ Max(R)
is a maximal ideal of R. In this case we write (R \M)−1R = RM , and use the
notation FM instead of FS . The Ring RM is local with a unique maximal ideal
RMFM (M).

(2) Principal localization: S = 〈s〉 = {1, s, s2, . . . } is the smallest multiplicative
system that contains s ∈ R. In this case we write Rs instead of 〈s〉−1R and Fs

instead of FS .

Let X be an affine group scheme over Z. The homomorphism X(FS) : X(R) →
X(S−1R) induced by the localization homomorphism will also be denoted by FS . Note
that if X is one of G(E6, R), G(F4, R), G(F4, R), then the elementary root unipotents
are mapped to elementary root unipotents: FS(xα(ξ)) = xα(FS(ξ)). Thus,

FS(E(E6, R)) ≤ E(E6, S
−1R),

FS(E(F4, R)) ≤ E(F4, S
−1R).

Since FS maps tori to tori, FS(E(F4, R)) ≤ E(F4, S
−1R). Hence, E(E6,−), E(F4,−),

E(F4,−) are also functors from the category of commutative rings to the category of
groups, but these functors are not representable.

It is well known that these functors commute with inductive limits. More precisely,
if Ri, i ∈ I, is an inductive system of rings, and X is one of the functors G(E6,−),
G(F4,−), G(F4,−), E(E6,−), E(F4,−), and E(F4,−), then X( lim−→Ri) = lim−→X(Ri).

In particular, if Ri is the inductive system of all finitely generated subrings of R
with respect to inclusion, then X(R) = lim−→X(Ri), and we can restrict our attention to

Noetherian rings.
Moreover, if S is a multiplicative system, then the rings Rs, s ∈ S, form an inductive

system with respect to canonical localization homomorphisms Ft : Rs → Rst. There-
fore, X(S−1R) = lim−→X(Rs). This fact allows us to pass from arbitrary localizations (in

particular, localizations with respect to maximal ideals) to principal localizations. Lo-
calizing with respect to maximal ideals, we obtain local rings. It is well known (see, for
example, [16]) that for local (and even for semilocal) rings we have G(E6, R) = E(E6, R),
G(F4, R) = E(F4, R); therefore, G(F4, R) = E(F4, R).
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§5. The study of equations on G(E6, R)

In the present section we collect some technical results concerning matrices inG(E6, R).
The proofs involve the explicit description of the trilinear form T , the cubic form Q, and
its partial derivatives fλ, λ ∈ Λ. With respect to our numeration of the weights, the
cubic form looks like this:

Q(x) = x1x13x−1 − x1x−10x−2 + x1x−9x−3 − x1x−8x−4 + x1x−5x−7

− x2x10x−1 + x2x14x−2 − x2x−12x−3 + x2x−11x−4 − x2x−6x−7

+ x3x9x−1 − x3x12x−2 + x3x15x−3 − x3x−11x−5 + x3x−8x−6

− x4x8x−1 + x4x11x−2 − x4x15x−4 + x4x−12x−5 − x4x−9x−6

+ x7x5x−1 − x7x6x−2 + x7x15x−7 − x7x−12x−8 + x7x−9x−11

− x5x11x−3 + x5x12x−4 − x5x14x−5 + x5x−10x−6 + x8x6x−3

− x8x12x−7 + x8x14x−8 − x8x−10x−11 − x6x9x−4 + x6x10x−5

− x6x13x−6 + x9x11x−7 − x9x14x−9 + x9x−10x−12 − x11x10x−8

+ x11x13x−11 + x10x12x−9 − x10x15x−10 − x12x13x−12 + x13x14x15.

The symmetric trilinear form T is obtained from Q by polarization. For future refer-
ences, we reproduce the explicit form of the partial derivatives in this numeration:

f1(x) = x13x−1 − x−10x−2 + x−9x−3 − x−8x−4 + x−7x−5,

f2(x) = −x10x−1 + x14x−2 − x−12x−3 + x−11x−4 − x−6x−7,

f3(x) = x9x−1 − x12x−2 + x15x−3 − x−11x−5 + x−8x−6,

f4(x) = −x8x−1 + x11x−2 − x15x−4 + x−12x−5 − x−9x−6,

f5(x) = x7x−1 − x11x−3 + x12x−4 − x14x−5 + x−10x−6,

f6(x) = −x7x−2 + x8x−3 − x9x−4 + x10x−5 − x13x−6,

f7(x) = x5x−1 − x6x−2 + x15x−7 − x−12x−8 + x−9x−11,

f8(x) = −x4x−1 + x6x−3 − x12x−7 + x14x−8 − x−10x−11,

f9(x) = x3x−1 − x6x−4 + x11x−7 − x14x−9 + x−10x−12,

f10(x) = −x2x−1 + x6x−5 − x11x−8 + x12x−9 − x15x−10,

f11(x) = x4x−2 − x5x−3 + x9x−7 − x10x−8 + x13x−11,

f12(x) = −x3x−2 + x5x−4 − x8x−7 + x10x−9 − x13x−12,

f13(x) = x1x−1 − x6x−6 + x11x−11 − x12x−12 + x14x15,

f14(x) = x2x−2 − x5x−5 + x8x−8 − x9x−9 + x13x15,

f15(x) = x3x−3 − x4x−4 + x7x−7 − x10x−10 + x13x14,

f−12(x) = −x2x−3 + x4x−5 − x7x−8 + x9x−10 − x12x13,

f−11(x) = x2x−4 − x3x−5 + x7x−9 − x8x−10 + x11x13,

f−10(x) = −x1x−2 + x5x−6 − x8x−11 + x9x−12 − x10x15,

f−9(x) = x1x−3 − x4x−6 + x7x−11 − x9x14 + x10x12,

f−8(x) = −x1x−4 + x3x−6 − x7x−12 + x8x14 − x10x11,

f−7(x) = x1x−5 − x2x−6 + x7x15 − x8x12 + x9x11,

f−6(x) = −x2x−7 + x3x−8 − x4x−9 + x5x−10 − x6x13,

f−5(x) = x1x−7 − x3x−11 + x4x−12 − x5x14 + x6x10,

f−4(x) = −x1x−8 + x2x−11 − x4x15 + x5x12 − x6x9,
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f−3(x) = x1x−9 − x2x−12 + x3x15 − x5x11 + x6x8,

f−2(x) = −x1x−10 + x2x14 − x3x12 + x4x11 − x6x7,

f−1(x) = x1x13 − x2x10 + x3x9 − x4x8 + x5x7.

We shall often use the fact that every column v of a matrix in G(E6, R) is a singular
vector; hence, v satisfies the quadratic equations fλ(v) = 0 for λ ∈ Λ.

Lemma 5. Let v be a column of a matrix in G(E6, R), and let the row (v2, . . . , v−1)
be unimodular. If vj = 0 for j = 6, 11, 12, 13,−12, . . . ,−1 and v14 + v15 = 0, then
v14 = v15 = 0.

Proof. Let ξ = v15 = −v14. Since v is a column of a matrix in G(E6, R), we have
fλ(v) = 0 for every λ ∈ Λ. In particular,

0 = f−2(v) = v2v14 = −ξv2,

0 = f−3(v) = v3v15 = ξv3,

0 = f−4(v) = −v4v15 = −ξv4,

0 = f−5(v) = −v5v14 = ξv5,

0 = f−7(v) = v7v15 = ξv7,

0 = f−8(v) = v8v14 = −ξv8,

0 = f−9(v) = −v9v14 = ξv9,

0 = f−10(v) = −v10v15 = −ξv10,

0 = f13(v) = v14v15 = ξv14.

Since the row (v2, v3, v4, v5, v7, v8, v9, v10, v14) is unimodular, we have ξ = 0. �

§6. Parabolic subgroups

We split Λ into three parts: {λ1}, B∪Γ, and {λ13, λ−1}∪∆ (this partition corresponds
to the removal of all edges labeled by 1 from the weight diagram of E6).

If gλ1 = 0 for all λ ∈ B∪Γ, and g11 is invertible, then the equations in the first column
imply that it coincides with that of the identity matrix. Therefore, g lies in the parabolic
subgroup of G(E6, R), and the matrix g has the following block structure with respect
to our partition of Λ:

g =

⎛
⎝
∗ ∗ ∗
0 ∗ ∗
0 0 ∗

⎞
⎠ .

Here the diagonal blocks have sizes 1, 16, and 10. We denote this parabolic subgroup by
P1(R). Its unipotent radical U1(R) looks like this:

⎛
⎝
1 A ∗
0 I16 ∗
0 0 I10

⎞
⎠ .

The group U1(R) is Abelian and is isomorphic to R16 as an abstract group. Indeed,
choosing any row A of length 16 consisting of elements of R, we have a unique way to
construct a matrix in the unipotent radical U1(R). We describe this construction. Let
Σ1 be the set of all roots α ∈ E6 such that λ1 − α ∈ Λ. When we subtract such roots α
from λ1, we precisely obtain the 16 weights in B∪Γ:

Σ1 = {λ1 − λ | λ ∈ B∪Γ} = {1∗∗∗∗∗ ∈ E6}.
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We choose any 16 elements ξα ∈ R, α ∈ Σ1, and consider the matrix
∏

α∈Σ1

xα(ξα) ∈ G(E6, R).

The product of these root elements can be taken in any order because they commute
with one another. It is obvious that this matrix belongs to U1(R), and it has ±ξλ1−λ

at the intersection of the first row and the column vλ for λ ∈ B∪Γ (the sign here is in
fact the sign of the structure constant cλ,λ1−λ). Moreover, any matrix in U1(R) can be
expressed in this way uniquely.

The parabolic subgroup P6(R) and its unipotent radical U6(R) can be defined similarly.
Consider the partition of Λ into the three subsets {λ1, λ13} ∪ B, Γ ∪ ∆, and {λ−1},
corresponding to removal of all edges labeled by 6 from the weight diagram of E6. The
matrices in P6(R) and in U6(R) have the following block structure with respect to this
partition: ⎛

⎝
∗ ∗ ∗
0 ∗ ∗
0 0 ∗

⎞
⎠ ∈ P6(R),

⎛
⎝
I10 ∗ ∗
0 I16 ∗
0 0 1

⎞
⎠ ∈ U6(R).

The group U6(R) is Abelian and can be expressed as the product of sixteen pairwise
commuting subgroups. Indeed, let

Σ6 = {α ∈ E6 | λ−1 + α ∈ Λ} = {∗∗∗∗1∗ ∈ E6}.

We have λ−1 +α ∈ Γ∪∆ for α ∈ Σ6. Now we choose any ξα ∈ R, α ∈ Σ6, and form the
product ∏

α∈Σ6

xα(ξα) ∈ G(E6, R).

It belongs to U6(R), and any element of U6(R) can be expressed in this way.
Now we consider the intersection P1(R) ∩ P6(R). We need to split Λ into six subsets:

Λ = {λ1} ∪ B∪Γ ∪ {λ13} ∪∆ ∪ {λ−1}.
The block structure of the matrices in the intersection P1(R)∩P6(R) and in its unipotent
radical is as follows:⎛
⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ 0 ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ ∗
0 0 0 0 0 ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ P1(R) ∩ P6(R),

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 ∗ 0 ∗ ∗
0 I8 0 0 ∗ ∗
0 0 I8 0 0 ∗
0 0 0 1 0 0
0 0 0 0 I8 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ U1(R) ∩ U6(R).

Let Ψ16 be the intersection Σ1 ∩ Σ6, and let Ψ1 and Ψ6 be the complements of Ψ16 in
Σ1 and in Σ6, respectively. It is easily seen that

Ψ1 = {λ1 − λ | λ ∈ B} = {1∗∗∗0∗ ∈ E6},

Ψ6 = {λ− λ−1 | λ ∈ ∆} = {0∗∗∗1∗ ∈ E6},

Ψ16 = {λ1 − λ | λ ∈ Γ} = {λ− λ−1 | λ ∈ Γ} = {1∗∗∗1∗ ∈ E6}.

A matrix in U1(R) ∩ U6(R) can uniquely be expressed as a product
∏

α∈Ψ16

xα(ξα) ∈ G(E6, R),

where ξα ∈ R for α ∈ Ψ16.
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Lemma 6. Suppose g ∈ G(E6, R) is such that g11 = 1 and gλ1 = 0 for λ ∈ (B∪Γ)\{λ15}.
Then gλ1 = 0 for all λ /∈ {λ1, λ15}.

Proof. We denote g15,1 by ξ and consider the matrix

h = x−11221
1

(ξ)g.

We have h15,1 = g15,1 − ξg11 = 0 and hλ,1 = gλ,1 for every λ ∈ (B∪Γ) \ {λ15}, because
for such a λ the sum λ + 11221

1
is not a weight. This implies that hλ1 = 0 for every

λ 
= λ1, whence h ∈ P1(R). Therefore, since g = x−11221
1

(−ξ)h, we obtain

gλ,1 = hλ,1 = 0 for every λ ∈ Λ \ {λ1}, λ+ 11221
1

/∈ Λ.

Finally, if λ, λ+ 11221
1

∈ Λ and λ 
= λ15, then

gλ,1 = hλ,1 ± ξh
λ+11221

1
= hλ,1 = 0. �

Lemma 7. Let g =
∏

γ∈Ψ16
xγ(ξγ) ∈ G(E6, R), where ξγ ∈ R for all γ ∈ Ψ16. The

matrix g belongs to G(F4, R) if and only if ξ12211
1

= ξ11221
1

.

Proof. If ξ12211
1

= ξ11221
1

= ξ, then

x12211
1

(ξ12211
1

)x11221
1

(ξ11221
1

) = X1232(ξ),

and since all other roots of Ψ16 belong to Φl, we have g ∈ E(F4, R). Conversely, if

g1,13 = 0, g1,14 = −ξ12211
1

, g1,15 = −ξ11221
1

,

then
(gu)1 = g1,13 − g1,14 + g1,15 = ξ12211

1
− ξ11221

1
.

By assumption, we have gu = λu for some λ ∈ R∗. Therefore,

ξ12211
1

− ξ11221
1

= (gu)1 = λu1 = 0. �

Lemma 8. If g ∈ P1(R) ∩G(F4, R), then g ∈ P6(R).

Proof. We have g11 ∈ R∗ and gλ,1 = 0 for every λ 
= λ1. Choose any λ ∈ ∆ ∪ {λ13}.
Then

0 = B(v1, vλ) = B(gv1, gvλ) = g11g−1,λ,

and g−1,λ = 0 for every such λ. On the other hand, for any λ ∈ B∪∆ ∪ {λ1} we have
g−1,λ = 0 because g ∈ P1(R). This means that the last row of g is proportional to the
last row of the identity matrix, whence g ∈ P6(R). �

§7. The normalizer of E(F4, R) in G(E6, R)

Loosely speaking, Theorem 2 shows that G is not only a scheme-theoretic normalizer
of F4 in E6, but also a pointwise normalizer: when we apply this functor to any com-
mutative ring, we obtain the normalizer of the corresponding group in a group-theoretic
sense. Note that our definition of G(F4, R) coincides with the definition of the extended
Chevalley group, given originally in [14] for adjoint groups and later carried over in [21]
to simply connected groups, which is the case of interest to us (see also [3]). Obviously,
G(F4, R) is a normal subgroup of G(F4, R).

By the very definition, G(F4,−) is an affine scheme over Z. It is well known that the
functor of points of any affine group scheme is determined by its values at all local rings.
In particular, we have the following lemma.
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Lemma 9. Suppose g ∈ G(E6, R) and FM (g) ∈ G(F4, R) for every M ∈ Max(R). Then
g ∈ G(F4, R).

Lemma 10. A matrix g ∈ G(E6, R) belongs to G(F4, R) if and only if

(FgT )ir(g
−1F )js = (g−1F )ir(FgT )js

for all i, j, r, s = 1, . . . ,−1.

Proof. Let X be an affine group subscheme of G(E6,−) over Z defined by the above
equations. It is clear that G(F4, R) ⊂ X(R). By Lemma 9, it suffices to establish the
reverse inclusion for a local ring R. Let M = R \ R∗ denote the maximal ideal of R.
First, we show that for g ∈ X(R) there exist i and r such that (FgT )ir(g

−1F )ir ∈ R∗.
Indeed, suppose (FgT )ir(g

−1F )ir ∈ M for all i, r. Since FgT is invertible, for any i there
exists an r such that (FgT )ir /∈ M . Since g−1F is invertible, for any j there exists an s
such that (g−1F )js /∈ M . Therefore, (FgT )ir(g

−1F )js ∈ R∗, but by assumption we have
(g−1F )ir(FgT )js ∈ M , which contradicts the fact that g ∈ X(R).

Now we fix i, r so that (FgT )ir(g
−1F )ir ∈ R∗. Let

λ = (FgT )ir((g
−1F )ir)

−1 ∈ R∗.

Then the equations for g can be written as (FgT )js = λ(g−1F )js. But this implies

FgT = λg−1F , whence gFgT = λF and g ∈ G(F4, R). �

The following theorem is a slightly stronger version of the Taddei theorem [37]. Strictly
speaking, in [37] it was proved that E(Φ, R) is normal in the Chevalley group G(Φ, R),
but later (see, for example, [9, 10, 11]) it was suggested that G(Φ, R) can be replaced by
G(Φ, R). In fact, in our case (Φ = F4) this fact can easily be deduced from the Taddei
theorem with the help of (1).

Lemma 11. The elementary subgroup E(F4, R) is normal in G(F4, R) for any commu-
tative ring R.

Proof of Theorem 2. Recall that G denotes the group G(E6, R). Clearly, G(F4, R) ≤
NG(G(F4, R)) (this follows directly from (1)). Lemma 11 implies that G(F4, R) ≤
NG(E(F4, R)). Next, obviously,

NG(E(F4, R)), NG(G(F4, R)) ≤ TranG(E(F4, R), G(F4, R)).

To finish the proof we only need to establish the inclusion

TranG(E(F4, R), G(F4, R)) ≤ G(F4, R).

Let g ∈ TranG(E(F4, R), G(F4, R)). For some α ∈ F4 and ξ ∈ R, consider the matrix
h = g−1Xα(ξ)g. Since h ∈ G(F4, R), we have hu = u, which implies g−1Xα(ξ)gu = u.
We denote gu = v; then Xα(ξ)v = v. Since Xα(ξ) = e + ξeα, we have eαv = 0 for all
α ∈ F4. This shows that if α ∈ Φl, λ ∈ Λ, and λ + α ∈ Λ, then vλ = 0. Therefore,
the vector v has zeros in all entries except for 13, 14, and 15 (for any other entry we
can easily choose a necessary root α ∈ Φl). Substituting 0001 ∈ F4 in place of α, we
obtain v13 + v14 = 0, while substituting α = 0010 ∈ F4 yields v14 + v15 = 0. Thus,
v = λu for some λ ∈ R, so that gu = λu, and by Lemma 2 we have λ3 = 1. Therefore,
g ∈ G(F4, R). �

A simple group-theoretic argument allows us to refine the result of Theorem 2 as
follows.

Corollary. Under the hypothesis of Theorem 2 we have

TranG(E(F4, R), G(F4, R)) = G(F4, R).
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Proof. Suppose that [g, E(F4, R)] ≤ G(F4, R) for some g ∈ G(E6, R). Lemma 11 implies

[g, E(F4, R), E(F4, R)] ≤ E(F4, R).

But the group E(F4, R) is perfect (Lemma 3), and applying the lemma on three sub-
groups, we obtain g ∈ NG(E(F4, R)) = G(F4, R). �

§8. Relative groups and lower level

We recall the definition of the relative elementary groups. Let R be a commutative
ring, let A � R, and let Φ be any root system. Then

E(Φ, R,A) = E(Φ, A)E(Φ,R).

The following proposition was proved by Tits [38].

Lemma 12. The group E(E6, R,A) is generated by the elements

zα(ξ, ζ) =
x−α(ζ)xα(ξ), ξ ∈ A, ζ ∈ R, α ∈ E6 .

Lemma 13. For any ideal A � R we have

E(E6, A)E(F4,R) = E(E6, R,A).

Proof. Obviously, the group on the left is included in that on the right. Let H denote
the group on the left-hand side. By Lemma 12, it remains to check that zα(ξ, ζ) ∈ H
for all α ∈ E6, ξ ∈ A, ζ ∈ R. This is obvious for α ∈ Φl. Otherwise, α and α 
= α
project to a root β ∈ Φs. Consider the element X−β(ζ)xα(ξ) = x−α(±ζ)x−α(±ζ)xα(ξ) in
H. Since α is orthogonal to α, this element equals x−α(±ζ)xα(ξ) = zα(ξ,±ζ), and the
proof is finished. �

Lemma 14. Assume that H is a subgroup in G(E6, R) that contains E(F4, R). For
every α ∈ E6 \Φl, let Iα = {ξ ∈ R | xα(ξ) ∈ H}. Then for any β ∈ E6 \ Φl we have
Iα = Iβ = I, and I � R.

Proof. Clearly, each set Iα is an additive subgroup in R. Suppose α ∈ E6 \Φl and ξ ∈ Iα.
We choose any ζ ∈ R and take β ∈ E6 \Φl such that β − α ∈ Φl. Then

xβ(±ξζ) = [xα(ξ), xβ−α(ζ)] = [xα(ξ), Xβ−α(ζ)] ∈ H.

Hence, IαR ⊂ Iβ . Moreover, for some choice of the signs, xα(±ξ)xα(±ξ) belongs to
E(F4, R), whence Iα = Iα. We split the positive roots of E6 \Φl into three sets:

Θ1 : 10000
0

, 11110
0

, 11110
1

, 11210
1

, 00001
0

, 01111
0

, 01111
1

, 01211
1

Θ2 : 11000
0

, 11100
0

, 11100
1

, 12210
1

, 00011
0

, 00111
0

, 00111
1

, 01221
1

Θ3 : 01000
0

, 01100
0

, 01100
1

, 12211
1

, 00010
0

, 00110
0

, 00110
1

, 11221
1

It is easily seen that, in each of these sets, the difference of any two of the first four roots
lies in Φl, while the last four roots are the images of the first four under the action of the
automorphism α 	→ α. Therefore, for all roots α in each set Θi, the sets Iα coincide and
form ideals. We denote these three ideals, corresponding to the roots in Θ1, Θ2, Θ3, by
I1, I2, I3, respectively. Consider the commutator

[x10000
0

(ξ), X0010(ζ)] = [x10000
0

(ξ), x01000
0

(±ζ)x00010
0

(±ζ)] = x11000
0

(±ξζ).

This implies that I1R ⊂ I2. Acting similarly, we obtain I1 = I2 = I3. Hence, the
ideals Iα coincide for all positive roots α ∈ E6 \Φl. Similar arguments can be used to
show that the ideals Iα coincide for all negative roots α ∈ E6 \Φl. It remains to note

that the difference of the roots 10000
0

and −01111
0

belongs to Φl, and we can repeat the
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computation at the beginning of this proof to see that the ideals in question are identical
for all roots in E6 \Φl. �

Combining Lemmas 13 and 14, we arrive at the following statement.

Proposition 1. Assume H is a subgroup in G(E6, R) that contains E(F4, R). Then
there exists a unique largest ideal A � R such that

E(F4, R,A) = E(F4, R)E(E6, R,A) ≤ H.

Moreover, if xα(ξ) ∈ H for some α ∈ E6 \F4, then ξ ∈ A.

This proposition shows that with every subgroup between E(F4, R) and G(E6, R) we
can associate the lower level. In order to finish the proof of Theorem 1, it remains to
show that this lower level coincides with the upper level; i.e., E(F4, R,A) is normal in H.

§9. Proof of Theorem 3

Lemma 15. If R is a commutative ring and A � R, then the group E(F4, R,A) is
perfect.

Proof. Lemma 13 implies that E(F4, R,A) is generated (as an abstract group) by the root
elements xα(ζ) with α ∈ F4, ζ ∈ R and the root elements xα(ξ) with α ∈ E6 \F4, ξ ∈ A.
We show that all these generators belong to the commutator subgroup of E(F4, R,A).
For the root elements of F4, this follows from the fact that the absolute elementary group
is perfect (see Lemma 3). Now, consider xα(ξ) for α ∈ E6 \F4 and ξ ∈ A. As in the
proof of Lemma 14, we can find a root β ∈ E6 \F4 such that α− β ∈ F4. But

xα(ξ) = [xβ(ξ), xα−β(±1)],

and the two root elements on the right-hand side belong to E(F4, R,A). �

Consider the reduction homomorphism ρE6

A : G(E6, R) → G(E6, R/A) and denote by

CG(F4, R,A) the full preimage of G(F4, R/A) under this reduction:

CG(F4, R,A) = (ρE6

A )−1(G(F4, R/A)).

We recall that G(E6, R,A) denotes the kernal of ρE6

A . Note that G(F4, R)G(E6, R,A) ≤
CG(F4, R,A), but this inequality can be strict.

Lemma 10 immediately implies the following description of the group CG(F4, R,A).

Proposition 2. A matrix g ∈ G(E6, R) belongs to CG(F4, R,A) if and only if it satisfies
the congruences

(FgT )ir(g
−1F )js ≡ (g−1F )ir(FgT )js (mod A)

for all i, j, r, s = 1, . . . ,−1.

Now everything is ready for the proof of Theorem 3.

Proof of Theorem 3. Recall that G = G(E6, R). Clearly,

NG(E(F4, R,A)) ≤ NG(E(F4, R,A)G(E6, R,A)).

Also, combining Theorem 2 applied to the ringR/A with the fundamental homomorphism
theorem, we see that

NG(E(F4, R,A)G(E6, R,A)) = CG(F4, R,A).

In particular,

[CG(F4, R,A),E(F4, R,A)] ≤ E(F4, R,A)G(E6, R,A).
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It remains to show that E(F4, R,A) is normalized by CG(F4, R,A). Note that

[G(F4, R,A)G(E6, R,A),E(F4, R,A)] ≤ E(F4, R,A).

Indeed, consider the commutator

[xy, hg], x ∈ G(F4, R), y ∈ G(E6, R,A), h ∈ E(F4, R), g ∈ E(E6, R,A).

We have [xy, hg] = x[y, h] · [x, h] · h[xy, g]. Lemma 11 shows that the second com-
mutator belongs to E(F4, R). By Lemma 4, the commutators [xy, g] and [y, h] be-
long to E(E6, R,A), so that h[xy, g] ∈ E(F4, R,A) and, again by Lemma 4, we have
x[y, h] ∈ E(E6, R,A).

But E(F4, R,A)G(E6, R,A) is included in G(F4, R,A)G(E6, R,A), and a fortiori, we
have

[E(F4, R,A)G(E6, R,A),E(F4, R,A)] ≤ E(F4, R,A).

Summarizing, we obtain

[[CG(F4, R,A),E(F4, R,A)],E(F4, R,A)] ≤ E(F4, R,A).

Now we want to refine this result by showing that in fact

[[CG(F4, R,A),E(F4, R,A)], [CG(F4, R,A),E(F4, R,A)]] ≤ E(F4, R,A).

We have already proved that the left-hand side is generated by the commutators [uv, [z, y]]
for u, y ∈ E(F4, R,A), v ∈ G(E6, R,A), and z ∈ CG(F4, R,A). But

[uv, [z, y]] = u[v, [z, y]] · [u, [z, y]],
and here the second commutator belongs to E(F4, R,A), while the first belongs to
[G(E6, R,A), E(E6, R)] ≤ E(E6, R,A).

Now we can finish the proof. Recall that it remains to show that E(F4, R,A) is
normalized by CG(F4, R,A). Lemma 15 says that the group E(F4, R,A) is perfect.
Therefore, it suffices to show that [z, [x, y]] ∈ E(F4, R,A) for every x, y ∈ E(F4, R,A),
z ∈ CG(F4, R,A). The Hall–Witt identity yields

[z, [x, y]] = xz[[z−1, x−1], y] · xy[[y−1, z], x−1],

and the above implies that the second commutator belongs to E(F4, R,A). Note that

xz[[z−1, x−1], y] = x[z[z−1, x−1], zy] = x[[x−1, z], [z, y]y].

Thus, it remains to check that [[x−1, z], [z, y]y] ∈ E(F4, R,A). But

[[x−1, z], [z, y]y] = [x−1, z][z, y]y[z, x−1]y−1[y, z]

= [[x−1, z], [z, y]] · [z, y][x−1, z]y[z, x−1]y−1[y, z]

= [[x−1, z], [z, y]] · [z,y][[x−1, z], y],

and both [[x−1, z], [z, y]] and [[x−1, z], y] belong to E(F4, R,A), while the conjugating
element [z, y] of the second commutator belongs to E(F4, R,A)G(E6, R,A), and therefore,
normalizes E(F4, R,A). �

§10. Localization functor

The following lemmas provide the technical base for localization. Lemma 16 is a
particular case of [26, Theorem 5.3].

Lemma 16. For any finite set of elements g1, . . . , gn ∈ E(F4, R) and any k ≥ 0 there
exists m ≥ 0 such that

[gi, Fs(G(F4, R, smR))] ≤ E(F4, Fs(s
kR)).
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Lemma 17. Assume that H is a subgroup in G(E6, R) that contains E(F4, R). Suppose
that X ≤ G(E6,−) is a group subscheme and that for some s ∈ R we have

Fs(H)G(F4, Rs) ∩X(Rs) 
⊆ G(F4, Rs).

Then there exists t ∈ R such that

Ft(H)E(F4, Rt) ∩X(Rt) 
⊆ G(F4, Rt).

Proof. Suppose that the element Fs(g)x, where g ∈ H, x ∈ G(F4, Rs), does not belong
to G(F4, Rs). By Lemma 9, there exists a maximal ideal M ∈ Max(R) such that s /∈ M
and FM (g) /∈ G(F4, RM ). Since RM is a local ring, we have G(F4, RM ) = E(F4, RM ).
On the other hand, since E(F4, RM ) = lim−→E(F4, Rt), where the limit is taken over all

t /∈ M , there exists t = sq /∈ M such that Fq(x) ∈ E(F4, Rt). Therefore,

Fq(Fs(g)x) = Ft(g)Fq(x) ∈ Ft(H)G(F4, Rt) ∩X(Rt)

and, by our choice of M , we have Ft(g) /∈ G(F4, Rt). �
Lemma 18. Under the assumptions of Lemma 17, if y ∈ Fs(H)E(F4, Rs), then there
exists n ∈ N0 such that

[y,Xα(s
n/1)] ∈ Fs(H)

for all α ∈ F4.

Proof. We write y = gx for some g ∈ Fs(H), x ∈ E(F4, Rs). For every n we have

[y,Xα(s
n/1)] = g[x,Xα(s

n/1)][g,Xα(s
n/1)].

By Lemma 16, we can choose n such that

[x,Xα(s
n/1)] ∈ Fs(E(F4, R)) ⊆ Fs(H)

for all α ∈ F4. The other factors on the right-hand side belong to Fs(H). �
The next auxiliary result allows us to extract a root element from the group Fs(H)

by using not only elements of Fs(E(F4, R)), but also elements of G(F4, Rs). Thanks to
that, we can finish the proof almost without the use of localization.

Proposition 3. Assume that H is a subgroup in G(E6, R) that contains E(F4, R). Sup-
pose that there exists s ∈ R such that Fs(H)G(F4, Rs) contains a nontrivial elementary
root unipotent corresponding to a root in E6 \Φl. Then H contains a nontrivial elemen-
tary root unipotent xα(ξ) for some α ∈ E6 \Φl, ξ ∈ R.

Proof. By Lemma 17, we may assume that

xα(a/s
k) ∈ Fs(H)E(F4, Rs)

for some α ∈ E6 \Φl, a ∈ R, k ≥ 0, and a/sk 
= 0. Choose a root β ∈ Φl such that
α+ β ∈ E6 and consider the commutator

[xα(a/s
k), xβ(s

n+k/1)] = xα+β(±sna/1).

Lemma 18 implies the existence of n such that xα+β(±sna/1) ∈ Fs(H), which means
that there exists g ∈ H with Fs(g) = xα+β(±sna/1). On the other hand, we have
Fs(xα+β(±sna)) = xα+β(±sna/1), whence g = xα+β(±sna)y for some y ∈ Ker(Fs).
Therefore, there exists m ∈ N0 such that y ∈ GL(27, R,Ann(sm)). Consider the commu-
tator z = [g, x−β(s

m)] ∈ H. Since [y, x−β(s
m)] = e, we have

z = [xα+β(±sna), x−β(s
m)] = xα(s

n+ma).

If sm+na = 0, then a ∈ Ker(Fs), which is impossible because we have assumed that
a/sk ∈ Rs is nonzero. Therefore, z = xα(s

m+na) ∈ H is the required elementary root
unipotent. �



OVERGROUPS OF F4 IN E6 OVER COMMUTATIVE RINGS 971

§11. Extraction of a root unipotent from unipotent radicals

In the following propositions we extract a root unipotent, which is similar to the ex-
traction of a transvection in the proofs of the standard descriptions of overgroups for
the classical groups in the general linear group. Recall that P1(R) and P6(R) denote
the maximal parabolic subgroups in G(E6, R) that correspond to the roots α1 and α6,
respectively; U1(R) and U6(R) denote their (Abelian) unipotent radicals. Now we show
the existence of a root unipotent, first assuming the existence of a nontrivial element in
the intersection of the unipotent radicals U1(Rs) and U6(Rs), then assuming the exis-
tence of a nontrivial element in their product, and finally, assuming the existence of a
nontrivial element in the product of U1(Rs), U6(Rs) and the torus T (E6, Rs). Thus, we
relax our assumptions step-by-step.

Proposition 4. Assume that H is a subgroup in G(E6, R) that contains E(F4, R). Sup-
pose that for some s ∈ R we have

Fs(H) ·G(F4, Rs) ∩ U1(Rs) ∩ U6(Rs) 
⊆ G(F4, Rs).

Then H contains a nontrivial root unipotent corresponding to a root in E6 \Φl.

Proof. Every element of U1(Rs) ∩ U6(Rs) is a product of elementary root unipotents

xα(ξα), where α has the form 1∗∗∗1
∗ . It is easily seen that all roots of this form, except

for α = 12211
1

and α = 11221
1

, belong to Φl. Multipliying by the inverses to these root

unipotents, we obtain

y = xα(ξα)xα(ξα) ∈ Fs(H) ·G(F4, Rs),

where y /∈ G(F4, Rs). The roots α and α project to the short root 1232 ∈ F4: X1232(ξ) =
xα(ξ)xα(ξ). Consider the element

z = yX1232(−ξα) = xα(ξα − ξα) ∈ Fs(H) ·G(F4, Rs).

It is obvious that z /∈ G(F4, Rs), whence ξα− ξα 
= 0 ∈ Rs, and Proposition 3 shows that
H contains the nontrivial root unipotent that we need. �

Proposition 5. Assume that H is a subgroup in G(E6, R) that contains E(F4, R). Sup-
pose that for some s ∈ R we have

Fs(H) ·G(F4, Rs) ∩ U1(Rs) · U6(Rs) 
⊆ G(F4, Rs).

Then H contains a nontrivial root unipotent corresponding to a root in E6 \Φl.

Proof. Every element y of the product of unipotent radicals U1(Rs) · U6(Rs) and the
torus T can be expressed as follows:

y =
∏

γ∈Ψ6

xγ(ξγ)
∏

γ∈Ψ1

xγ(ξγ)
∏

γ∈Ψ16

xγ(ξγ).

On the other hand, if we write y as

y =
∏

γ∈Ψ1

xγ(ζγ)
∏

γ∈Ψ6

xγ(ζγ)
∏

γ∈Ψ16

xγ(ζγ),

then ξγ = ζγ for every γ ∈ Ψ1 ∪ Ψ6 (this follows immediately from the fact that for
γ ∈ Ψ1, δ ∈ Ψ6 we have [xγ(ξ), xδ(ζ)] = xγ+δ(±ξζ) if γ+ δ ∈ Ψ16, and [xγ(ξ), xδ(ζ)] = 1
otherwise).

For every root γ ∈ Ψ6 we can form the element xγ(−ξγ)xγ(±ξγ) ∈ E(Fs) and multiply
y on the left by the product of all such elements. Hence, we may assume that ξγ = ζγ = 0
for all γ ∈ Ψ6.
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Choose a short root α ∈ F4 such that α = ∗∗∗1. The corresponding roots β, β ∈ E6

have the following form: β = 1∗∗∗0
∗ ∈ Ψ1, β = 0∗∗∗1

∗ ∈ Ψ6. Commuting y with the root

unipotent Xα(ξ) = xβ(ξ)xβ(±ξ), we obtain

[Xα(ξ), y] =
xβ(ξ)[xβ(±ξ), y] · [xβ(±ξ), y].

Denote

y6 =
∏

γ∈Ψ6

xγ(ξγ), y1 =
∏

γ∈Ψ1

xγ(ξγ), y16 =
∏

γ∈Ψ16

xγ(ξγ).

Then y = y6y1y16. Note that xβ(ξ) commutes with every xγ(ξγ) for γ ∈ Ψ1∪Ψ16; hence,
it commutes with y1 and y16. Therefore,

[xβ(±ξ), y] = [xβ(±ξ), y6y1y16]

= [xβ(±ξ), y6] · y6 [xβ(±ξ), y1] · y6y1 [xβ(±ξ), y16]

= [xβ(±ξ), y6].

Similarly, denote

z1 =
∏

γ∈Ψ1

xγ(ζγ), z6 =
∏

γ∈Ψ6

xγ(ζγ), z16 =
∏

γ∈Ψ16

xγ(ζγ),

so that y = z1z6z16, whence

[xβ(±ξ), y] = [xβ(±ξ), z1].

Moreover, y6 can be expressed as a product of pairwise commuting root unipotents

xγ(ξγ), where γ = 0∗∗∗1
∗ . If we commute xβ(±ξ) with one such element, we obtain

either e or a root unipotent corresponding to a root in Ψ16; in either case, the result
commutes with every root unipotent xγ(ξγ), γ ∈ Ψ1 ∪Ψ6 ∪Ψ16. Therefore,

[xβ(±ξ), y6] = [xβ(±ξ),
∏

γ∈Ψ6

xγ(ξγ)] =
∏

γ∈Ψ6

[xβ(±ξ), xγ(ξγ)].

Acting similarly, we show that

[xβ(±ξ), z1] = [xβ(±ξ),
∏

γ∈Ψ1

xγ(ζγ)] =
∏

γ∈Ψ1

[xβ(±ξ), xγ(ζγ)],

and since the element [xβ(±ξ), y] = [xβ(±ξ), z1] is now a product of the root unipotent

corresponding to roots in Ψ16, it commutes with xβ(ξ). Therefore,

z = [xα(ξ), y] = [xβ(±ξ), y6] · [xβ(±ξ), z1]

=
∏

γ∈Ψ6

[xβ(±ξ), xγ(ξγ)]
∏

γ∈Ψ1

[xβ(±ξ), xγ(ζγ)].

Each of these commutators is a root unipotent of the form xγ(∗), γ ∈ Ψ16, so that
the entire product belongs to U1(Rs) ∩ U6(Rs). If we choose α in such a way that
z /∈ G(F4, Rs), then Proposition 4 applies, thus finishing the proof. We show that this is
always possible. Recall that ξγ = 0 for all γ ∈ Ψ6, and ξγ = ζγ for all γ ∈ Ψ1 ∪Ψ6. We
have

z =
∏

γ∈Ψ1

[xβ(±ξ), xγ(ξγ)].
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But Lemma 7 implies that the element z =
∏

γ∈Ψ16
xγ(ηγ) belongs to G(F4, Rs) if and

only if η12211
1

= η11221
1

. We list all possible α’s:

α = 0001, β = 00001
0

, η12211
1

= ±ξξ12210
1

, η11221
1

= 0;

α = 0011, β = 00011
0

, η12211
1

= 0, η11221
1

= ±ξξ11210
1

;

α = 0111, β = 00111
0

, η12211
1

= 0, η11221
1

= ±ξξ11110
1

;

α = 1111, β = 00111
1

, η12211
1

= 0, η11221
1

= ±ξξ11110
0

;

α = 0121, β = 01111
0

, η12211
1

= ±ξξ11100
1

, η11221
1

= 0;

α = 1121, β = 01111
1

, η12211
1

= ±ξξ11100
0

, η11221
1

= 0;

α = 1122, β = 01211
1

, η12211
1

= ±ξξ11000
0

, η11221
1

= 0;

α = 1132, β = 01221
1

, η12211
1

= 0, η11221
1

= ±ξξ10000
0

.

By our assumption, every such z belongs to G(F4, Rs). Therefore, ξγ = 0 for all γ ∈ Ψ1

and all y ∈ U1(Rs) ∩ U6(Rs). Now we can apply Proposition 4. �

Proposition 6. Assume that H is a subgroup in G(E6, R) that contains E(F4, R). Sup-
pose that for some s ∈ R we have

Fs(H) ·G(F4, Rs) ∩ U1(Rs) · U6(Rs) · T (E6, Rs) 
⊆ G(F4, Rs).

Then H contains a nontrivial root unipotent corresponding to a root in E6 \Φl.

Proof. Suppose y ∈ Fs(H) ·G(F4, Rs) ∩ U1(Rs) · U6(Rs) · T (E6, Rs) and y /∈ G(F4, Rs).
After multiplying y by a suitable element of T (F4, Rs), we may assume that y = zd ∈
Fs(H) ·G(F4, Rs) \G(F4, Rs), where

z ∈ U1(Rs) · U6(Rs), d = h10000
0

(ε)h01000
0

(η)

for some ε, η ∈ R∗
s .

Consider the roots β = 10000
0

, β = 00001
0

, α = 0001 ∈ F4 and put

g = [Xα(ξ), y] = Xα(ξ)zdxβ(−ξ)xβ(−ξ)d−1z−1

= Xα(ξ)zxβ(−ε2ηξ)xβ(−ξ)z−1.

Consider the commutator of z and the root unipotent xβ(∗). We know that z is a
product of the root unipotents xγ(∗) for γ ∈ Ψ1 ∪Ψ6 ∪Ψ16. Since β ∈ Ψ1, the element
xβ(∗) commutes with xγ(∗) for every γ such that β + γ /∈ E6. On the other hand, if
β + γ ∈ E6, then γ ∈ Ψ6, β + γ ∈ Ψ16, and [xβ(∗), xγ(∗)] = xβ+γ(∗). Thus,

[z, xβ(∗)] ∈ U1(Rs) ∩ U6(Rs).

Arguing similarly, we obtain

[z, xβ(∗)] ∈ U1(Rs) ∩ U6(Rs).

Hence,

g = Xα(ξ)uxβ(−ε2ηξ)xβ(−ξ)zz−1 = uxβ((1− ε2η)ξ)

for some u ∈ U1(Rs) ∩ U6(Rs).
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If g /∈ G(F4, Rs), we can apply Proposition 5. It is easily seen that g12 = (1 − ε2η)ξ
and g−2,−1 = 0. But if g ∈ G(F4, Rs), then

0 = B(v2, v−1) = B(gv2, gv−1) = g12 − g−2,−1.

Substituting ξ = 1 yields ε2η = 1.

Now we repeat this argument for β = 11000
0

, β = 00011
0

, α = 0011 ∈ F4. In this case,

g = [Xα(ξ), y] = Xα(ξ)zdxβ(−ξ)xβ(ξ)d
−1z−1

= Xα(ξ)zxβ(−εηξ)xβ(ξ)z
−1.

Commuting z with xβ(∗) and xβ(∗), again we obtain elements in U1(Rs) ∩ U6(Rs).
Therefore,

g = Xα(ξ)uxβ(−εηξ)xβ(ξ)zz
−1 = uxβ((1− εη)ξ)

for some u ∈ U1(Rs) ∩ U6(Rs).
If g /∈ G(F4, Rs), we can apply Proposition 4. As above, it is easily seen that g13 =

(1− εη)ξ, g−3,−1 = g−2,−1 = 0. But if g ∈ G(F4, Rs), then

0 = B(v3, v−1) = B(gv3, gv−1) = g13 + g−2,−1.

Substituting ξ = 1 yields εη = 1. From the equations εη = ε2η = 1 we obtain ε = η = 1.
Therefore, d = 1, y ∈ U1(Rs) · U6(Rs), and we could apply Proposition 5 from the very
beginning. �

§12. Extraction of a root unipotent from the parabolic subgroups

We continue to relax the assumptions: in this section we extract a root element from
parabolic subgroups (first from the intersection of P1(Rs) and P6(Rs), then from P1(Rs)),
reducing the problem to extraction from unipotent radicals, which was performed in the
preceding section. Loosely speaking, here we destroy the Levi factors.

Proposition 7. Assume that H is a subgroup in G(E6, R) that contains E(F4, R). Sup-
pose that for some s ∈ R we have

Fs(H) ·G(F4, Rs) ∩ P1(Rs) ∩ P6(Rs) 
⊆ G(F4, Rs).

Then H contains a nontrivial root unipotent corresponding to a root in E6 \Φl.

Proof. Suppose y ∈ Fs(H) · G(F4, Rs) ∩ P1(Rs) ∩ P6(Rs) and y /∈ G(F4, Rs). Choose a
root α ∈ Σ1 ∩ Φl, that is, a long root of F4 such that ω − α ∈ Λ. Let z = y−1Xα(1)y.
Note that ω − α ∈ B. It is easily seen that z ∈ U1(Rs) ∩ U6(Rs). If z /∈ G(F4, Rs), we
can apply Proposition 4. Now we can assume that z ∈ G(F4, Rs), whence z ∈ G(F4, Rs).
For every j ∈ Γ we have

z1j =
∑

λ,λ+α∈Λ

cλ,αy
′
1,λ+αyλ,j = cω−α,αy

′
11yω−α,j ,

because for each of the other five summands, the factor yλ,j equals 0: indeed, for four of
them, λ ∈ ∆, while y∆,Γ = 0; and the fifth has λ = −ω, and y−1,Γ = 0. Furthermore,

z1,13 =
∑

λ,λ+α∈Λ

cλ,αy
′
1,λ+αyλ,13 = cω−α,αy

′
11yω−α,13 = 0,

because y∆,13 = 0, y−1,13 = 0, and yB,13 = 0. By our assumption, z ∈ G(F4, Rs); hence
zu = u, which yields z1,13−z1,14+z1,15 = 0. Thus, cω−α,αξy

′
11(−yω−α,14+yω−α,15) = 0.

Since cω−α,α = ±1 and y′11 ∈ R∗, we have −yω−α,14 + yω−α,15 = 0. At the same time,
yω−α,13 = 0 because ω − α ∈ B. Substituting all possible α’s shows that for every
λ ∈ Γ \ {14, 15}, we have yλ,13 − yλ,14 + yλ,15 = 0.
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Now let α = 1232 ∈ Φs, β = 12211
1

∈ E6, β = 11221
1

∈ E6, and

z = y−1Xα(1)y = y−1xβ(1)xβ(1)y.

The same argument as above shows that z ∈ U1(Rs)∩U6(Rs), and we may assume that
z ∈ G(F4, Rs). For every j ∈ Γ we have

z1j =
∑

λ,λ+β∈Λ

cλ,βy
′
1,λ+βyλ,j +

∑

λ,λ+β∈Λ

cλ,βy
′
1,λ+β

yλ,j

= cω−β,βy
′
11yω−β,j + cω−β,βy

′
11yω−β,j = −y′11(y14,j + y15,j),

because cω−β,β = cω−β,β = −1. Furthermore,

z1,13 =
∑

λ,λ+β∈Λ

cλ,βy
′
1,λ+βyλ,13 +

∑

λ,λ+β∈Λ

cλ,βy
′
1,λ+β

yλ,13

= cω−β,βy
′
11yω−β,13 + cω−β,βy

′
11yω−β,13 = 0.

By assumption, z ∈ G(F4, Rs); hence z1,13 − z1,14 + z1,15 = 0 and y′11(y14,14 + y15,14 −
y14,15−y15,15) = 0. We denote −y15,14+y15,15 = ξ, y13,13 = ζ; then −y14,14+y14,15 = −ξ.
Moreover, y14,13 = y15,13 = 0.

Now, consider the block-diagonal matrix g with the blocks y11, yBB, yΓΓ, y13,13, y∆∆,
y−1,−1. Since g is a Levi factor of y with respect to the Levi decomposition for the
parabolic subgroup P1(Rs) ∩ P6(Rs), we have g ∈ G(E6, Rs).

Now we are going to multiply g by a certain diagonal matrix in G(E6, Rs) and the
result will belong to G(F4, Rs). Consider the vector gu. The definition of g yields

(gu)λ = gλ,13 − gλ,14 + gλ,15 = 0 for λ ∈ B∪∆ ∪ {1,−1}.

Furthermore,

(gu)λ = gλ,13 − gλ,14 + gλ,15 = yλ,13 − yλ,14 + yλ,15 = 0 = ruλ

for λ ∈ Γ \ {14, 15}. Finally,

(gu)13 = g13,13 − g13,14 + g13,15 = y13,13 = ζ,

(gu)14 = g14,13 − g14,14 + g14,15 = y14,13 − y14,14 + y14,15 = −ξ,

(gu)15 = g15,13 − g15,14 + g15,15 = y15,13 − y15,14 + y15,15 = ξ.

Note that ζ ∈ R∗
s . We look closely at the invertible matrix gΓΓ = yΓΓ. If we subtract

the column yΓ,14 from the column yΓ,15, then the matrix will remain invertible, while all
of the entries in its column with index 15 will be 0, except for −ξ in the row 14 and ξ in
the row 15. Therefore, ξ ∈ R∗

s .
Thus, we have proved that

gu = ζv13 − ξv14 + ξv15, where ξ, ζ ∈ R∗
s .

Now it is easy to change g slightly via a diagonal matrix in G(E6, Rs) to obtain a matrix
in G(F4, Rs). Note that

−1 = Q(u) = Q(gu) = −ζξ2,

whence ζ = ξ−2. Consider the product of weight elements

h = hβ6
(ξ2)hβ5

(ξ).

Since hgu = u, we have hg ∈ G(F4, Rs). Moreover, the product y(hg)−1 belongs to
T · U1(Rs) · U6(Rs), and at the same time y(hg)−1 ∈ Fs(H) · G(F4, Rs) and y(hg)−1 /∈
G(F4, Rs). Therefore, we can apply Proposition 6, and the proof is finished. �
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Proposition 8. Assume that H is a subgroup in G(E6, R) that contains E(F4, R). Sup-
pose that for some s ∈ R we have

Fs(H) ·G(F4, Rs) ∩ P1(Rs) 
⊆ G(F4, Rs).

Then H contains a nontrivial root unipotent corresponding to a root in E6 \Φl.

Proof. Suppose y ∈ Fs(H) · G(F4, Rs) ∩ P1(Rs) and y /∈ G(F4, Rs). As in the proof
of the preceding proposition, we choose a root α ∈ Σ1 ∩ Φl, that is, a long root in
F4 such that ω − α ∈ Λ. Let z = y−1Xα(1)y. It is easily seen that z ∈ U1. If
z /∈ G(F4, Rs), we can apply Proposition 5 immediately and finish the proof. Otherwise,
if z ∈ G(F4, Rs), then in fact z ∈ G(F4, Rs). In this case, B(zvi, zvj) = B(vi, vj) for all
i, j ∈ Λ. In particular, taking i ∈ B and j = −ω, we obtain B(z∗i, z∗,−1) = 0. This yields
z1iz−1,−1 + ziiz−i,−1 = 0. But z−1,−1 = 1 and z−i,−1 = 0 because −i ∈ ∆. Therefore,
z1i = 0. But

z1i =
∑

λ,λ+α∈Λ

±y′1,λ+αyλ,i.

It is easily seen that every root α ∈ Σ1∩Φl makes one addition from the weight ω−α ∈ Γ
to the weight ω, four additions from some weights in ∆, and one addition from −ω.
Since y belongs to P1, the five additions mentioned change nothing: we have yλ,i = 0
and z1i = ±y′11yω−α,i. Moreover, the element y′11 is invertible. Thus, yω−α,i = 0.

Now we take a short root α = 1232. The root unipotent Xα(1) is a product of two
root unipotents of E6, namely, Xα(1) = x11221

1
(1)x12211

1
(1), and both of them belong to

U1. Thus, we can apply the same argument, obtaining y14,i + y15,i = 0 for all i ∈ B.
Therefore, if v = y∗i is the column y with index i ∈ B, then Lemma 5 yields v14 =

v15 = 0. Thus, yij = 0 for all i ∈ Γ, j ∈ B.
Let i ∈ Γ, j ∈ ∆. Consider the equations on the rows zi∗ and z−j,∗ of the matrix z.

These equations are B(zi∗, z−j,∗) = 0. Since all entries of the row z−j,∗ with indices in
B∪Γ∪ {λ13} are equal to 0, except for z−j,−j = 1, this equation reduces to zij = 0. But
zij =

∑
±y′i,λ+αyλ,j = ±y′i,−ω+αy−ω,j , because we know that y′i,λ+α = 0 for all i ∈ Γ,

λ+ α ∈ {ω} ∪B. Now note that −ω + α ∈ Γ, and the row y′i,λ−1+α (where i ranges over

Γ) is a row of an invertible matrix y′ΓΓ, so that y−1,j = 0.
Consider the column z∗,13. For i ∈ {6, 11, 12,−12,−11,−6} we have B(z∗,13, z∗,−i) =

0, whence zi,13 = 0. At the same time, B(z∗,13, z∗,14) = 1, whence z13,13 + z15,13 = 1.
Therefore, z15,13 = 0. Similarly, since B(z∗,13, z∗,15) = −1, we have −z13,13+z14,13 = −1
and z14,13 = 0. We have proved that zi,13 = 0 for every i ∈ B. Now we can repeat
the argument of the preceding paragraph with 13 in place of j, obtaining y−1,13 = 0.
It follows that the last row of y is proportional to the last row of the identity matrix,
whence y ∈ P1 ∩ P6, and we can apply Proposition 7. �

§13. Extraction of a root unipotent: The final part

It remains to get into the parabolic subgroup. Over a local ring the orbits of actions
of G(F4, R) and G(E6, R) do not coincide (since our representation of F4 is reducible),
and we must relax the assumptions yet again: now we need a nontrivial element in the
product of the parabolic subgroup and a certain root unipotent of E6.

Proposition 9. Assume that H is a subgroup in G(E6, R) that contains E(F4, R). Sup-
pose that for some s ∈ R there exists g ∈ Fs(H) · G(F4, Rs) such that g /∈ G(F4, Rs)
and the first column of g coincides with that of the identity matrix in all entries except
possibly for λ15. Then H contains a nontrivial root unipotent corresponding to a root in
E6 \Φl.
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Proof. We denote a = g15,1 and consider h = x−11221
1

(a)g. It is easily seen that h belongs

to the parabolic subgroup P1(Rs). Choose α ∈ F4 and ξ ∈ R, and consider the element

z = Xα(ξ)
g = g−1Xα(ξ)g = h−1x−11221

1
(a)Xα(ξ)x−11221

1
(−a)h.

Suppose that α = ∗∗∗1 ∈ Φs; we have Xα(ξ) = xα′(ξ)xα′′(±ξ), where α′ = 1∗∗∗0
∗ and

α′′ = 0∗∗∗1
∗ are roots of E6. We want to have α′ − 11221

1
∈ E6 and α′′ − 11221

1
/∈ E6 (in

fact, these two conditions are equivalent). Now

x−11221
1

(a)Xα(ξ)x−11221
1

(−a) = x−11221
1

(a)xα′(ξ)xα′′(±ξ)x−11221
1

(−a)

= x−11221
1

(a)xα′(ξ)x−11221
1

(−a)xα′′(±ξ)

= xα′(ξ)[xα′(−ξ), x−11221
1

(a)]xα′′(±ξ)

= xα′(ξ)x
α′−11221

1
(±aξ)xα′′(±ξ).

Since α′ − 11221
1

has the form −0∗∗∗∗
∗ , the entire product belongs to P1(Rs). Thus,

z ∈ P1(Rs), so that if z /∈ G(F4, Rs), we can apply Proposition 8.
Otherwise, if z ∈ G(F4, Rs), then z ∈ G(F4, Rs) and Lemma 8 yields z ∈ P1(Rs) ∩

P6(Rs). Next, z11 = z−1,−1 = 1. Thus, the last row of z coincides with that of the
identity matrix. Let w = h′

−1,∗ ∈ 27R denote the last row of h−1. We have zh−1 =

h−1xα′(ξ)x
α′−11221

1
(±aξ)xα′′(±ξ). The last row of the matrix on the left in this identity

coincides with w. The matrix on the right-hand side is h−1(e+ξeα′±aξe
α′−11221

1
±ξeα′′).

Therefore, the last row of the matrix h−1(ξeα′ ± aξe
α′−11221

1
± ξeα′′) is zero, whence

w(ξeα′ ± aξe
α′−11221

1
± ξeα′′) = 0. Now we can use explicit formulas: (weγ)λ = ±wλ+γ

if λ + γ ∈ Λ; (weγ)λ = 0 if λ + γ /∈ Λ. Substituting ξ = 1, α = 0001, 0121, 1121, 1221
and considering w(ξeα′ ± aξe

α′−11221
1

± ξeα′′)λ for λ = λ−1 and λ = λ−10, we obtain

w−1 = w−5 = w−8 = w−9 = w13 = 0. Moreover, taking ξ = 1, α = 1221, λ = λ−3, we
obtain aw−1 = 0

Now we choose α = ∗ ∗ ∗0 ∈ Φl and argue as above: here Xα(ξ) = xα(ξ) for α =
0∗∗∗0
∗ ∈ E6. Thus, α − 11221

1
/∈ E6. Hence, x−11221

1
(a)Xα(ξ)x−11221

1
(−a) = xα(ξ) and

again z belongs to P1(Rs). If z /∈ G(F4, Rs), we can apply Proposition 8. Otherwise,
if z ∈ G(F4, Rs), then z ∈ G(F4, Rs), and Lemma 8 yields z ∈ P1(Rs) ∩ P6(Rs), while
z11 = z−1,−1 = 1. Therefore, the last row of z coincides with that of the identity matrix.
Since zh−1 = h−1xα(ξ), we have w = wxα(ξ), whence weα = 0 (we can plug ξ = 1).
Thus, wλ+α = 0 whenever λ, λ + α ∈ Λ. Substituting α = ±1000, ±0100, ±0120, we
obtain w−3 = w−4 = w−7 = w−10 = 0.

Thus, all the entries in the last row w of the matrix h−1 equal 0, except for h′
−1,−1,

and moreover, ah′
−1,−1 = 0. Since the matrix h−1 is invertible, we have h′

−1,−1 ∈ R∗,
a = 0, which means that we could apply Proposition 8 from the very beginning. �

If R is a local ring, the singular vectors in R27 form one orbit under the action of
E(E6, R). The next proposition describes the orbits into which it splits when we restrict
the group action to E(F4, R).

Proclaim 10. Assume that R is a local ring and g ∈ G(E6, R). There exists x ∈
E(F4, R) such that the first column of xg coincides with the first column of the identity
matrix in all entries, except possibly for λ15.
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Proof. Let M denote the maximal ideal of R. First we show that there exists x1 ∈
E(F4, R) with (x1g)11 = 1.

Since R is local, we can choose λ ∈ Λ such that gλ1 is invertible. We consider several
cases separately.

(1) λ ∈ B. Let α = ω − λ ∈ Φs. Consider the element

h = Xα((1− g11)g
−1
λ1 )g.

We have Xα(ξ) = xα′(ξ)xα′′(±ξ), where α′ = 1∗∗∗0
∗ , α′′ = 0∗∗∗1

∗ . Hence,

h11 = g11 ± (1 − g11)g
−1
λ1 gλ1. By changing the sign of the argument of Xα if

needed, we can arrange that h11 = 1.
(2) λ ∈ Γ \ {λ14, λ15}. Similarly, let α = ω − λ (now α ∈ Φl). Consider the element

h = Xα((1− g11)g
−1
λ1 )g. As in case (1), by changing the sign of the argument of

Xα if needed, we obtain h11 = 1.
(3) λ = λ1. First, we get 1 in the entry 10 of the first column: put α = λ10 − λ1 =

1231 ∈ Φs and h = Xα((1− g10,1)g
−1
11 )g. By changing the sign of the argument,

we may assume that h10,1 = 1, and then invoke case (1).
(4) λ = λ−1. We can easily obtain 1 in the entry −6: put α = λ−6−λ−1 = 0122 ∈ Φl,

h = Xα((1− g−6,1)g
−1
−1,1)g, and, by changing the sign of the argument if needed,

we have h−6,1 = 1, which brings us to case (2) already discussed.
(5) λ ∈ ∆. Similarly, it is easy to choose α ∈ Φl such that λ + α ∈ B: for ex-

ample, put α = 0122 for λ ∈ {λ−10, λ−9, λ−8, λ−7} and α = 2342 for λ ∈
{λ−5, λ−4, λ−3, λ−2}. Then, consider h = Xα((1 − gλ+α,1)g

−1
λ,1)g. By changing

the sign of the argument if needed, we obtain hλ+α,1 = 1, and now we can use
case (1).

(6) Now we may assume that gλ,1 ∈ M for any λ ∈ Λ \ {λ13, λ14, λ15}. Note that
the elements g13,1, g14,1, g15,1 cannot be invertible simultaneously: otherwise
Q(g∗1) is congruent to ±g13,1g14,1g15,1 modulo M , and hence, invertible. On the
other hand, since the column g∗1 is singular, we have Q(g∗1) = 0. Assume that
g14,1 ∈ R∗. We know that at least one of the elements g13,1, g15,1 belongs to M .

Suppose g13,1 ∈ M . Consider α = 0001 ∈ Φs, ξ = (1 − g10,1)g
−1
14,1, h = Xα(ξ).

Since Xα(ξ) = x10000
0

(ξ)x00001
0

(±ξ), we have h10,1 = g10,1 ± ξg14,1 ± ξg13,1 =

g10,1 ± (1 − g10,1) ± ξg13,1. By changing the sign of ξ, we may assume that
h10,1 = 1 ± ξg13,1 ∈ R∗, because g13,1 ∈ M . This means that we can apply case

(1). Similarly, if g15,1 ∈ M , we take α = 0010 ∈ Φs and ξ = (1 − g12,1)g
−1
14,1;

hence, h12,1 ∈ R∗, where h = Xα(±ξ)g, and we can apply case (2). The same
argument applies to the last case where g14,1 ∈ M , because at least one of the
elements g13,1, g15.1 is invertible.

Now we have x1 ∈ E(F4, R) and y = x1g such that y11 = 1. First, we shall show
that we can use downwards additions from the first element of the first column to put
0 into every entry except possibly λ15. To start with, we obtain 0 in the entries from
B: put x2 =

∏
λ∈B Xλ−ω(±yλ1) and z = x2y. The signs here must be chosen so that

the element Xλ−ω(±yλ1) executes subtraction of the first row from the row λ with the
coefficient yλ1 (with respect to the left action on matrices). Equivalently, the matrix
entry (Xλ−ω(±yλ1))λ1 must be equal to −yλ1, not to yλ1. It is clear that zλ1 = 0 for all
λ ∈ B.

Now we can put 0 in all entries in Γ except λ14 and λ15: it suffices to consider
x3 =

∏
λ∈Γ Xλ−ω(±zλ1) and u = x3z, again with a clever choice of the signs.

If u14,1 
= 0, we consider x4 = X1232(±u14,1) and v = x4u. We can choose the signs
so as to obtain v14,1 = 0.
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This proves that there exists a matrix x with (xg)11 = 1 and (xg)λ1 = 0 for all
λ ∈ (B∪Γ) \ {λ15}. By Lemma 6, this implies that the other entries in the first column
are also equal to 0. �

§14. Proof of Theorem 1

The next lemma summarizes the extraction of a root element.

Main lemma. Assume that H is a subgroup in G(E6, R) that contains E(F4, R). Then
either H ≤ G(F4, R), or H contains a nontrivial root unipotent xα(ξ), where α ∈ E6 \Φl

and ξ ∈ R.

Proof. Suppose that g ∈ H and g /∈ G(F4, R). Lemma 9 shows that there exists a
maximal ideal M ∈ Max(R) such that FM (g) /∈ G(F4, RM ). Since RM is a local ring,
Proposition 10 implies the existence of x ∈ E(F4, RM ) such that the first column of
xFM (g) coincides with that of the identity matrix in all entries except for λ15. Since
E(F4, RM ) = lim−→E(F4, Rs), where the limit is taken over all s /∈ M , there exists s ∈ M

and x ∈ E(F4, Rs) such that the first column of y = xFs(g) coincides with that of the
identity matrix in all entries except for λ15. Obviously, y /∈ G(F4, Rs). Now we can
invoke Proposition 9 and finish the proof. �
Proof of Theorem 1. Suppose, as in Proposition 1, that A is the greatest ideal such that
E(F4, R,A) ≤ H. Let H = ρE6

A (H) be the image of H under the reduction homomor-

phism ρE6

A : G(E6, R) → G(E6, R/A). It is clear that H contains E(F4, R/A), and the

main lemma implies that either H ≤ G(F4, R,A), or H contains a nontrivial elementary
root unipotent xα(ξ + A), where α ∈ E6 \F4, ξ ∈ R. We shall show that the latter is
impossible. Indeed, express xα(ξ) ∈ H G(F4, R,A) as a product xα(ξ) = ab for some
a ∈ H, b ∈ G(F4, R,A). There exists a root β ∈ E6 \F4 such that β − α ∈ F4. Consider
the commutator

[xα(ξ), xβ−α(1)] = xβ(±ξ).

Substituting xα(ξ) = ab, we obtain

xβ(±ξ) = [ab, xβ−α(1)] =
a[b, xβ−α(1)][a, xβ−α(1)].

The standard commutator formulas show that the first of the commutators on the right-
hand side belongs to E(E6, R,A), while the second belongs to H. Therefore, xβ(±ξ) ∈
H, and ξ /∈ A. This contradicts the maximality of A. Hence, we always have H ≤
G(F4, R/A), and Theorem 3 yields

H ≤ (ρE6

A )−1(G(F4, R/A)) = CG(F4, R,A) = NG(E(F4, R,A)).

This finishes the proof. �
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Math. J. (2) 28 (1976), no. 2, 185–198. MR0439947 (55:12828)

[17] M. Aschbacher, The 27-dimensional module for E6. I–IV, Invent. Math. 89 (1987), no. 1, 159–195;
J. London Math. Soc. 37 (1988), 275–293; Trans. Amer. Math. Soc. 321 (1990), 45–84; J. Algebra
131 (1990), 23–39. MR0892190 (88h:20045); MR0928524 (89a:20041); MR0986684 (90m:20044);
MR1054997 (91f:20049)

[18] , Some multilinear forms with large isometry groups, Geom. Dedicata 25 (1988), no. 1–3,
417–465. MR0925846 (89c:20067)

[19] A. Bak, Nonabelian K-theory: The nilpotent class of K1 and general stability, K-Theory 4 (1991),
363–397. MR1115826 (92g:19001)

[20] A. Bak and N. Vavilov, Normality for elementary subgroup functors, Math. Proc. Cambridge Philos.
Soc. 118 (1995), no. 1, 35–47. MR1329456 (96d:20046)

[21] S. Berman and R. Moody, Extensions of Chevalley groups, Israel J. Math. 22 (1975), no. 1, 42–51.
MR0390077 (52:10903)

[22] R. H. Dye, Interrelations of symplectic and orthogonal groups in characteristic two, J. Algebra 59
(1979), no. 1, 202–221. MR0541675 (81c:20028)

[23] , On the maximality of the orthogonal groups in the symplectic groups in characteristic two,
Math. Z. 172 (1980), no. 3, 203–212. MR0581439 (81h:20060)

[24] , Maximal subgroups of GL2n(K), SL2n(K), PGL2n(K), PSL2n(K) associated with sym-
plectic polarities, J. Algebra 66 (1980), no. 1, 1–11. MR0591244 (81j:20061)

[25] R. Hazrat, Dimension theory and nonstable K1 of quadratic modules, K-Theory 27 (2002), no. 4,
293–328. MR1962906 (2004a:19005)

[26] R. Hazrat and N. A. Vavilov, K1 of Chevalley groups are nilpotent, J. Pure Appl. Algebra 179
(2003), 99–116. MR1958377 (2004i:20081)

[27] Hong You, Overgroups of symplectic group in linear group over commutative rings, J. Algebra 282
(2004), no. 1, 23–32. MR2095570 (2005g:20076)

[28] , Overgroups of classical groups over commutative rings in linear group, Sci. China Ser. A
49 (2006), no. 5, 626–638. MR2250893 (2007d:20087)

[29] O. H. King, On subgroups of the special linear group containing the special orthogonal group, J.
Algebra 96 (1985), no. 1, 178–193. MR0808847 (87b:20057)

[30] , On subgroups of the special linear group containing the special unitary group, Geom. Ded-
icata 19 (1985), no. 3, 297–310. MR0815209 (87c:20081)

[31] Shang Zhi Li, Overgroups of SU(n,K, f) or Ω(n,K,Q) in GL(n,K), Geom. Dedicata 33 (1990),
no. 3, 241–250. MR1050412 (91g:11038)

http://www.ams.org/mathscinet-getitem?mr=2381940
http://www.ams.org/mathscinet-getitem?mr=2381940
http://www.ams.org/mathscinet-getitem?mr=2354606
http://www.ams.org/mathscinet-getitem?mr=2354606
http://www.ams.org/mathscinet-getitem?mr=2473743
http://www.ams.org/mathscinet-getitem?mr=1811793
http://www.ams.org/mathscinet-getitem?mr=1811793
http://www.ams.org/mathscinet-getitem?mr=2068980
http://www.ams.org/mathscinet-getitem?mr=2068980
http://www.ams.org/mathscinet-getitem?mr=2333895
http://www.ams.org/mathscinet-getitem?mr=2333895
http://www.ams.org/mathscinet-getitem?mr=2117858
http://www.ams.org/mathscinet-getitem?mr=2117858
http://www.ams.org/mathscinet-getitem?mr=0466335
http://www.ams.org/mathscinet-getitem?mr=0466335
http://www.ams.org/mathscinet-getitem?mr=0073602
http://www.ams.org/mathscinet-getitem?mr=0073602
http://www.ams.org/mathscinet-getitem?mr=0999577
http://www.ams.org/mathscinet-getitem?mr=0999577
http://www.ams.org/mathscinet-getitem?mr=0439947
http://www.ams.org/mathscinet-getitem?mr=0439947
http://www.ams.org/mathscinet-getitem?mr=0892190
http://www.ams.org/mathscinet-getitem?mr=0892190
http://www.ams.org/mathscinet-getitem?mr=0928524
http://www.ams.org/mathscinet-getitem?mr=0928524
http://www.ams.org/mathscinet-getitem?mr=0986684
http://www.ams.org/mathscinet-getitem?mr=0986684
http://www.ams.org/mathscinet-getitem?mr=1054997
http://www.ams.org/mathscinet-getitem?mr=1054997
http://www.ams.org/mathscinet-getitem?mr=0925846
http://www.ams.org/mathscinet-getitem?mr=0925846
http://www.ams.org/mathscinet-getitem?mr=1115826
http://www.ams.org/mathscinet-getitem?mr=1115826
http://www.ams.org/mathscinet-getitem?mr=1329456
http://www.ams.org/mathscinet-getitem?mr=1329456
http://www.ams.org/mathscinet-getitem?mr=0390077
http://www.ams.org/mathscinet-getitem?mr=0390077
http://www.ams.org/mathscinet-getitem?mr=0541675
http://www.ams.org/mathscinet-getitem?mr=0541675
http://www.ams.org/mathscinet-getitem?mr=0581439
http://www.ams.org/mathscinet-getitem?mr=0581439
http://www.ams.org/mathscinet-getitem?mr=0591244
http://www.ams.org/mathscinet-getitem?mr=0591244
http://www.ams.org/mathscinet-getitem?mr=1962906
http://www.ams.org/mathscinet-getitem?mr=1962906
http://www.ams.org/mathscinet-getitem?mr=1958377
http://www.ams.org/mathscinet-getitem?mr=1958377
http://www.ams.org/mathscinet-getitem?mr=2095570
http://www.ams.org/mathscinet-getitem?mr=2095570
http://www.ams.org/mathscinet-getitem?mr=2250893
http://www.ams.org/mathscinet-getitem?mr=2250893
http://www.ams.org/mathscinet-getitem?mr=0808847
http://www.ams.org/mathscinet-getitem?mr=0808847
http://www.ams.org/mathscinet-getitem?mr=0815209
http://www.ams.org/mathscinet-getitem?mr=0815209
http://www.ams.org/mathscinet-getitem?mr=1050412
http://www.ams.org/mathscinet-getitem?mr=1050412


OVERGROUPS OF F4 IN E6 OVER COMMUTATIVE RINGS 981

[32] , Overgroups of a unitary group in GL(2,K), J. Algebra 149 (1992), no. 2, 275–286.
MR1172429 (93e:20067)

[33] , Overgroups in GL(n, F ) of a classical group over a subfield of F , Algebra Colloq. 1 (1994),
no. 4, 335–346. MR1301157 (95i:20068)

[34] H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci.
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