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To my teacher Nikolai Vavilov

One of the most important tools in studying the Chevalley group of type E7 in the 56�dimensional rep�
resentation is an invariant biquadratic form and its partial polarizations. This form was first constructed
by ‘Elie Cartan (for a field of characteristic 0); subsequently, it was studied by Hans Freudenthal, Jacques
Tits, Robert Brown, Michael Aschbacher, Bruce Cooperstein, Tony Springer, and other authors; see, in
particular, [4–7, 12–14] and the references therein. It was usually assumed that 2 ∈ R* or, sometimes,
even 6 ∈ R*.

In this paper, we describe all four�linear forms stabilized by the Chevalley group G(E7, R) of type E7

over any commutative ring R. For this purpose, we construct an asymmetric four�linear form on the mod�
ule V( ) without constraints on the characteristic of the base ring R. The biquadratic form associated
with its symmetrization coincides (up to a multiplier) with a form constructed by Cartan in the case of a
field of characteristic different from 2 (it was discussed in [4, 8, 9, 15]).

We do not recall definitions related to Chevalley groups, Weyl modules, the choice of a basis, etc. They
can be found in, e.g., [2]. Let � be a Lie algebra of type E8 with simple roots α1, …, α8, and let ρ be the
highest root of E8. The coefficient of the simple root α8 in the decomposition of a root from E8 in the sim�
ple root basis (the α8�altitude root) can take values –2, –1, 0, 1, and 2. This fact determines a grading of
length 5 on �:

� = �–2 ⊕ �–1 ⊕ �0 ⊕ �1 ⊕ �2.
Namely, the subspace of � spanned by eα is contained in �i if the coefficient α of α8 equals i. Moreover,

�0 contains a Cartan subalgebra �.
Note that �0 is the direct sum of the Lie algebra of type E7 and a one�dimensional Abelian space con�

tained in a Cartan subalgebra of the algebra �. Thus, the adjoint action of the Lie algebra of type E7 on the
subspace �1 is defined, which determines an action of the group G(E7, R) on �1. This action coincides with
the action of G(E7, R) on the internal Chevalley module V( ) considered in [2]. In particular, the 56�
dimensional space �1 has the basis consisting of the elementary root elements eα, where α ranges over the
roots of α8�height 1, that is, the weights of the representation of V( ). In what follows, we identify �1

with V( ) and treat the root system of E7 as the subset of the root system of E8 which consists of the roots
whose decompositions contain the simple root α8 with zero coefficient. The spaces �–2 and �2 are one�
dimensional and spanned by e–ρ and eρ, respectively, where ρ is the maximal root of E8.

Let Λ denote the set of weights of the representation of V( ). In what follows, we extensively use the
fact that the elements of Λ can be considered as roots of E8. Many of our calculations are based on the
structure of the weight diagram of the representation under consideration. We fix an enumeration of the
weights (see the figure); in [2], this enumeration was called the natural enumeration. Note that the weight
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diagram of V( ) is symmetric (we say that weights are symmetric if their sum equals ρ). This symmetry is
reflected in the enumeration: the numbers of symmetric weights are opposite. It is more convenient for us
to write –n instead of .

Let α, β, γ, δ ∈ Λ. Consider the element [[[[e–ρ, eα], eβ], eγ], eδ]. The root –ρ has α8�height –2, and
the roots α, β, γ, and δ have α8�height 1. Therefore, the above element belongs to �2 and is proportional
to eρ. We define c(α, β, γ, δ) by

It is easy to see that c(α, β, γ, δ) ∈ �. For all other quadruples of weights α, β, γ, and δ, we set c(α, β,
γ, δ) = 0. Each set of coefficients c(α, β, γ, δ) determines the four�linear form q on V( ) defined by

Considering the decompositions of the vectors u, v, w, and z in the basis of eα, we obtain

(1)

Note that if a quadruple of weights (α, β, γ, δ) is such that c(α, β, γ, δ) = 0, then α + β + δ + δ = 2ρ. We
say that a quadruple of weights is degenerate if it contains symmetric weights. Otherwise, a quadruple of
weights whose sum is 2ρ is said to be nondegenerate. Degenerate and nondegenerate quadruples exhaust
all quadruples of weight whose sum is 2ρ; we refer to such quadruples as significant. Finally, quadruples of
weights whose sum differs from 2ρ are said to be insignificant.

Let us introduce yet another invariant on V, a bilinear symplectic form. Given two weights α, β ∈ Λ,
consider the commutator [eα, eβ]. Since there are no opposite weights in Λ, this commutator equals N(α,
β) if α + β is a root and vanishes otherwise (see [16]). But α and β are roots of α8�height 1; therefore, their
sum is a root only if β = ρ – α, that is, if the weights α and β are opposite in the weight diagram of V( ).
In this case, N(α, ρ – α) = N(–ρ, α). We set c'(α, β) = N(α, β) if α + β = ρ and c'(α, β) = 0 for all other
pairs of weights (α, β). Each set of coefficients c'(α, β) determines the bilinear form h on V defined by

A coordinate�free expression for this form is

This can easily be shown by decomposing u and v in the basis of eα. Note that if α + β = ρ, then c'(α, β) =
N(α, β) = –N(β, α) = –c'(β, α); therefore, the form h is symplectic.

ϖ7

n
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Theorem 1. The forms q and h are invariant with respect to the action of G(E7, R) on the module V =
V( ). In other words,

for all u, v, w, z ∈ V and g ∈ G(E7, R).
Proof. Choosing arbitrary g ∈ G(E7, R) and u, v, w, z ∈ V and applying g to both sides of relation (1),

we obtain

On the other hand, the substitution of gu, gv, gw, and gz instead of u, v, w, and z, respectively, into the
same equality yields

Comparing these two relations and taking into account the fact that ge–ρ = e–ρ and geρ = eρ, we obtain
q(u, v, w, z) = q(gu, gv, gw, gz), which means that q is invariant. For a bilinear form h, the proof is com�
pletely similar.

Thus, our stock of invariant four�linear forms on V includes q(u, v, w, z), h(u, v)h(w, z), h(u, w)h(v,
z), h(u, z)h(v, w), and all linear combinations of these forms with coefficients in R. The following theorem
asserts that there are no other invariant four�linear forms on V.

Theorem 2. Let F be a four�linear form on V invariant with respect to the action of E(E7, R), that is, a map�
ping F: V × V × V × V  R such that

for all u, v, w, z ∈ V and g ∈ E(E7, R). Then there exist c1, c2, c3, c4 ∈ R such that

for all u, v, w, z ∈ V.
A similar theorem for Lie algebras was proved independently in [10].
The rest of the paper is devoted to the proof of Theorem 2. We denote the four�linear forms mentioned

in the statement of the theorem by

It follows directly from the description of the forms h and q that, for an insignificant quadruple (α, β, γ,
δ), any linear combination of the forms q, h12, h13, and h14 vanishes at the quadruple of vectors (eα, eβ, eγ,
eδ).

Let Σ+ denote the set of roots in E7 whose decompositions contain α7 with coefficient 1. Take ϕ ∈ E7.
Let Rϕ = {α ∈ Λ|α + ϕ ∈ Λ} be the set of “right ends” of all edges labeled by the root ϕ in the weight graph.
Such sets can easily be extracted from the tables given in [2]; e.g., these are precisely the numbers of the
columns containing nonzero matrix elements in root elements eϕ.

Lemma 1. If β, γ ∈ Λ\{ρ – ω}, then there exists a ϕ ∈ Σ+\{α7} for which β + ϕ ∉ Λ and γ + ϕ ∉ Λ.
Proof. Suppose that there exists no such ϕ, that is, for any ϕ ∈ Σ+\{α7}, at least one of the two sums

β + ϕ and γ + ϕ belongs to Λ, i.e., at least one of the weights β and γ belongs to Rϕ. Let us look at some
values of Rϕ:

ϖ7

q u v w z, , ,( ) q gu gv gw gz, , ,( ) and h u v,( ) h gu gv,( )= =

ge ρ– gu,[ ] gv,[ ] gw,[ ] gz,[ ] q u v w z, , ,( )geρ.=

e ρ– gu,[ ] gv,[ ] gw,[ ] gz,[ ] q gu gv gw gz, , ,( )eρ.=

F gu gv gw gz, , ,( ) F u v w z, , ,( )=

F u v w z, , ,( ) c1q u v w z, , ,( ) c2h u v,( )h w z,( ) c3h u w,( )h v z,( ) c4h u z,( )h v w,( )+ + +=

h12 u v w z, , ,( ) h u v,( )h w z,( ),=

h13 u v w z, , ,( ) h u w,( )h v z,( ),=

h14 u v w z, , ,( ) h u z,( )h v w,( ).=

R0000110
0

3 19 22 25 28 27 23 20 17 15 13 1, , , , , , , , , , ,{ },=

R0111110
0

7 19 25 28 26 23 18 15 12 10 6 1, , , , , , , , , , ,{ },=

R1122110
1

15 22 26 24 21 16 14 11 9 7 3 1, , , , , , , , , , ,{ },=

R1232210
2

26 27 20 17 15 13 8 7 5 4 2 1, , , , , , , , , , ,{ },=

R1343210
2

22 18 15 10 8 6 5 4 3 2 1, , , , , , , , , ,{ }.=
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One of the weights β and γ must belong to at least three of these five subsets; but it is easy to see that the

intersection of any three weights among them equals either { } or { , }. By condition, this cannot be

; therefore, β =  or γ = . Suppose that β = . Let us look at the subsets

None of them contains . Therefore, γ must belong to each of these subsets, but their intersection equals

{ }. This contradiction completes the proof. �
Lemma 2. Let ϕ ∈ E7, and let α', β', γ', δ' ∈ Λ be weights such that α' – ϕ ∈ Λ, β' + ϕ ∉ Λ, γ' + ϕ ∉ Λ,

and δ' + ϕ ∉ Λ. Then F(eα, eβ, eγ, eδ) = 0 for any permutation (α, β, γ, δ) of the quadruple (α', β', γ', δ').
Proof. It is sufficient to prove the required assertion for the identity permutation, passing to another

invariant form F if necessary. Take ξ ∈ R. Then

The substitution of ξ = 1 yields F(eα, eβ, eγ, eδ) = 0, as required. �
Lemma 3. If F is the same as in the statement of the theorem, then F(eα, eβ, eγ, eδ) = 0 for any insignificant

quadruple (α, β, γ, δ).
Proof. First, let us prove that if F(eα, eβ, eγ, eδ) ≠ 0, then β = γ = ρ – α. The group W(E7) acts transitively

on the set of weights Λ; therefore, it suffices to consider the case where α = ω is the highest weight. First,
suppose that neither β nor γ equals ρ – ω. By Lemma 1, there exists a ϕ ∈ Σ+\{α7} such that β + ϕ ∉ Λ
and γ + ϕ ∉ Λ. Moreover, obviously, ω – ϕ ∈ Λ and ω + ϕ ∉ Λ. By Lemma 2, for the quadruple of weights
(ω, ω, β, γ) and the root ϕ, we have F(eω, eω, eβ, eγ) = 0.

Now, consider the case where β = ρ – ω or γ = ρ – ω. For definiteness, consider the former possibility.
We must prove that if F(eω, eω, eρ – ω, eγ) = 0, then γ = ρ – ω. First, suppose that γ ≠ ω and γ ≠ ρ – ω. Then
there exists a root ϕ ∈ E7 whose decomposition contains α7 with zero coefficient for which γ – ϕ ∈ Λ.
Indeed, after the removal of all edges labeled by 7, the weight diagram decomposes into four pieces and,
by assumption, γ is contained in a piece with 27 vertices. By Lemma 2, for the quadruple of weights (γ, ω,
ω, ρ – ω) and the root ϕ, we obtain F(eω, eω, eρ – ω, eγ) = 0, as required.

It remains to consider the case where β = ρ – ω and γ = ω. In this case, we can apply Lemma 2 to the
quadruple (ρ – ω, ω, o, γ) and the root α7, which gives F(eω, eω, eρ – ω, eγ) = 0.

Permuting arguments of the form, we arrive at the following fact: If F(eα, eβ, eγ, eδ) = 0 and at least two
of the roots α, β, γ, and δ coincide, then there are precisely two such roots, and the remaining two roots
are symmetric to them. In this case, obviously, the quadruple (α, β, γ, δ) is significant.

Now, consider the case in which there are two symmetric weights among α, β, γ, and δ, and F(eα, eβ,
eγ, eδ) ≠ 0. It is required to prove that the other two weights are symmetric as well. Let us assume that β =
ρ – α. As above, applying the action of an element of the Weyl group W(E7), we can assume that α = ω.
We can also assume that the difference α – γ is a root (that is, the distance between α and γ equals 1); oth�
erwise, the difference β – γ is a root, and we can interchange α and β. After this, applying the action of an
element of the Weyl group W(E6), we can assume that γ = ω – α7 (W(E6) leaves α and β invariant and tran�
sitively permutes weights at a distance of 1 from ω). Thus, we have arrived at the quadruple (ω, ρ – ω, ω –
α7, δ). Let us try to find a root ϕ ∈ E7 for which ω + ϕ, ρ – ω + ϕ, ω – α7 + ϕ are not weights, while δ –
ϕ is a root. If such a root exists, then we can apply Lemma 2 to the weights δ, ω, ρ – ω, and ω – α7 and
the root ϕ, which gives F(eω, eρ – ω, , eδ) = 0. It is easy to satisfy the conditions ω + ϕ ∉ Λ and ρ –

ω + ϕ ∉ Λ: it suffices to choose roots whose decompositions contain α7 with zero coefficient. There
remain the conditions ω – α7 + ϕ ∉ Λ and δ – ϕ ∈ Λ. If we choose positive ϕ, then the former condition
holds automatically. It is easy to see that this can be done always except in the case where there is “no

space” to the right of δ, i.e., δ =  or δ = . (Recall that we have already eliminated the case where two

1 1 15

1 15 15 15

R0001110
0

4 19 22 25 26 24 23 20 14 12 11 1, , , , , , , , , , ,{ },=

R1111110
1

10 22 25 27 24 20 16 13 11 7 5 1, , , , , , , , , , ,{ },=

R1122110
1

15 22 26 24 21 16 14 11 9 7 3 1, , , , , , , , , , ,{ },=

R12343210
2

25 21 17 14 10 9 8 7 4 3 2 1, , , , , , , , , , ,{ }.=

15

1

F eα ϕ– eβ eγ eδ, , ,( ) F xϕ ξ( )eα ϕ– xϕ ξ( )eβ xϕ ξ( )eγ xϕ ξ( )eδ, , ,( )=

=  F eα ϕ– ξeα± eβ eγ eδ, , ,( ) F eα ϕ– eβ eγ eδ, , ,( ) ξF eα eβ eγ eδ, , ,( ).±=

eω α7–
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weights among α, β, γ, and δ are equal.) But in the case δ = , ϕ = –α1 suits. Thus, there remains only

the case δ = , in which γ and δ are symmetric, as required.

Now, we can assume that there are neither coinciding nor symmetric weights among α, β, γ, and δ.
Thus, any two weights form an angle of π/3 or π/2. Suppose that two of these weights form an angle of π/3,
that is, are a distance 1 apart. As above, applying the action of the Weyl group and permuting arguments,
we can assume that α = ω and δ = ω – α7. By Lemma 1, there exists a ϕ ∈ Σ+\{α7} such that β + ϕ ∉ Λ
and γ + ϕ ∉ Λ. Obviously, we have ω – ϕ ∈ Λ and ω – α7 + ϕ ∉ Λ. Now, applying Lemma 2 to the qua�
druple (ω, β, γ, ω – α7) and the root ϕ, we obtain F(eω, eβ, eγ, ) = 0.

There remains only the case where α, β, γ, and δ are pairwise orthogonal; but in this case, these weights
form a significant quadruple (see, e.g., [11, Corollary 1.4]).

Proof of the theorem. Let us fix a nondegenerate quadruple of weights, say (1, , 19, ). A direct cal�
culation shows that q(e1, , e19, ) = 1. Setting c1 = F(e1, , e19, )) and replacing the form F by F –

c1q, we obtain a form satisfying the assumptions of the theorem and vanishing at the quadruple (e1, , e19,

)). Let us prove that this form is a linear combination of the forms h12, h13, and h14.

First, we show that if a quadruple of weights (α, β, γ, δ) is nondegenerate, then F(eα, eβ, eγ, eδ) = 0. We
know that F vanishes at one nondegenerate quadruple; obviously, its vanishing is preserved under the
action of the Weyl group E7. Let us show that any nondegenerate quadruple can be mapped into the qua�
druple under consideration. Indeed, the Weyl group acts transitively on Λ; therefore, the first element of
the quadruple can be mapped to the highest weight (number 1). The remaining three weights are orthog�
onal to it; therefore, they are among the 27 weights at a distance of 2 from the highest weight. But these
weights form the weight diagram of the 27�dimensional representation of E6, and the restriction of the
action of W(E7) to the subgroup W(E6) coincides on this diagram with the standard action of W(E6) on
the weights of the minimal representation. Moreover, since these three weights are pairwise orthogonal, it
follows that they form a triad, and it is well known that the triads form a singe orbit under the action of

W(E6) (see, e.g., [3, 1]). Therefore, the triad under consideration can be mapped to the fixed triad ( , ,

) so that the first weight is left intact. Hence, F = 0 at all nondegenerate quadruples.

Now, we set

It is easy to see that h12, h13, and h14 take the value 1 or 0 at these quadruples, so that the difference F –
c2h12 – c3h13 – c4h14 vanishes at these three quadruples. Let us replace F by this difference and prove that
the form F identically vanishes. We already know that F vanishes at all insignificant and nondegenerate
quadruples.

First, note that any degenerate quadruple of the form (1, , β, ρ – β), where {β, ρ – β} ≠ {1, }, can

be reduced to the form (1, , , 2) or (1, , 16, ) by the action of the Weyl group W(E6). Indeed, W(E6)
acts transitively on the pieces obtained from the weight diagram by deleting the edges labeled by 7, and the

weights β and ρ – β are in two different pieces, each containing 27 weights. But for ξ ∈ R and ϕ = ,

we have

(we have used the fact that ϕ is the maximal root of E7, so that all signs of the action are positive for xϕ(ξ)).
The further terms correspond to insignificant quadruples and, therefore, vanish. Moreover, the last term
on the right�hand side of the expression written above vanishes by assumption, and F(e1, e19, , ) = 0,
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because this term corresponds to a nondegenerate quadruple. Consequently, F(e1, , e16, ) = 0. We

conclude that any quadruple of weights of the form (1, , β, ρ – β) with {β, ρ – β} ≠ {1, } can be reduces
to one of the two quadruples at which the form vanishes. Therefore, F vanishes at all such quadruples. Per�

muting arguments in this consideration, we see that F also vanishes at all quadruples of the forms (1, β, ,

ρ – β) and (1, β, ρ – β, ). But any degenerate quadruple without repeated weights can be reduced to
such a quadruple by the action of the Weyl group: it is sufficient to map the first weight to the highest
weight.

It remains to consider degenerate quadruples with repeated weights. Take any weight α ∈ Λ. Obviously,
there exists a simple or a negative simple root ϕ for which α – ϕ is a weight. Then all signs of the action
for xϕ(ξ) equal 1 and, hence,

The remaining terms vanish. The second and fourth terms on the right�hand side vanish as well,
because they correspond to degenerate quadruples without repeated weights. Therefore, F(eα, eρ – α, eα,
eρ – α) = 0. Applying this argument to various permutations of the arguments, we see that F vanishes at all
degenerate quadruples with repeated weights. Therefore, F vanishes everywhere, which completes the
proof of the theorem. �
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1

F eα eρ α– eα ϕ– eρ α–, , ,( )

=  F xϕ ξ( )eα xϕ ξ( )eρ α– xϕ ξ( )eα ϕ– xϕ ξ( )eρ α–, , ,( )

=  F eα eρ α– ξeρ α– ϕ++ eα ϕ–, , ξeα+ eρ α–, ξeρ α– ϕ++( )

=  F eα eρ α– eα ϕ– eρ α–, , ,( ) ξF eα eρ α– ϕ+ eα ϕ– eρ α–, , ,( )+

+ ξF eα eρ α– eα eρ α–, , ,( ) ξF eα eρ α– eα ϕ– eρ α– ϕ+, , ,( ) ….+ +


