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PRIVATE LIFE OF GL(5,Z)

A. Yu. Luzgarev∗ and I. M. Pevzner∗ UDC 512.5

In the paper, the (2, 3)-generation of GL (S, Z) is investigated. We reduce the problem to five specific pairs of
matrices. Bibliography: 4 titles.

1. Definitions
A group G that can be generated by an element of order 2 and an element of order 3 is said to be (2, 3)-

generated, or equivalently, if it is a nontrivial epimorphic image of PSL(2, Z).
It was shown in [1, 2] that the group SL(n, q) is (2, 3)-generated for n ≥ 5 and odd q �= 9. Moreover, Di

Martino and Vavilov conjecture that all finite simple groups of Lie type are (2, 3)-generated, except for some
groups of low rank in characteristics 2 and 3.

It is proved in [3] that the groups SL(n, Z) for n ≥ 13 and GL(n, Z) for n ≥ 19 are (2, 3)-generated. On the
other hand, if n = 2, 4, the groups SL(n, Z) and GL(n, Z) are not (2, 3)-generated. Recently, it has been shown
(see [4]) that the groups SL(3, Z) and GL(3, Z) are not (2, 3)-generated. That paper had a major influence upon
our work. Our aim is to prove that GL(5, Z) and SL(5, Z) are not (2, 3)-generated either. In this paper we reduce
the question to a finite number of cases. More precisely, we prove the following theorem.

Theorem 1. Suppose the group GL(5, Z) is (2, 3)-generated. Let A be a matrix of order 2 and B be a matrix
of order 3 that generate this group. Then we may assume that

A =




−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
1 0 0 1 0
0 0 1 0 1


 , B =




0 1 0 0 a
−1 −1 0 0 b
0 0 0 1 c
0 0 −1 −1 d
0 0 0 0 1


 , (1)

where (a, b, c, d) is one of the following quadruples:

(1,−1,−2,−2), (0,−1,−2,−2),

(1,−1,−2, 4), (0,−1, 4,−8),

(−1, 1,−2,−2), (0, 1,−2,−2),

(−1, 1,−2, 4), (0, 1, 4,−8),

(1,−1, 1,−3), (0,−1, 0,−1).

We let GL(5, Z) act from the right on the free Abelian group Z
5 consisting of row vectors. Let p be a prime

number, fp : GL(5, Z) → GL(5, p) the obvious homomorphism. We will use the fact that Im fp contains SL(5, p).
In particular, Im fp is absolutely irreducible in both actions on the row and column vectors.

Assume that GL(5, Z) = 〈A, B〉, where A2 = B3 = I. It is obvious that detA = −1 and det B = 1.
Take a nonzero vector x ∈ Z

5. Consider the vector x + xB + xB2 = x(I + B + B2). Note that (I − B)2 =
I − 2B + B2 = (I + B + B2) − 3B, and if I + B + B2 = 0 then (I − B)2 = −3B. But det(−3B) = −35, while
det(I − B)2 ≥ 0, a contradiction. Hence, I + B + B2 �= 0 and there exists x such that x + xB + xB2 �= 0.
Therefore, (x + xB + xB2)B = x(I + B + B2)B = x + xB + xB2. This shows that we found a nonzero vector
ω = x + xB + xB2 ∈ Z

5 such that ωB = ω.
Note that A fixes a certain subspace W ⊂ Q

5 pointwise and dimW = 4 or 2.

2. The first case (dimW = 4)
Let {e1, e2, e3, e4} be a basis for W ∩ Z

5 and consider a vector e5 such that {e1, e2, e3, e4, e5} is a basis for
Z

5. Let (λ1, λ2, λ3, λ4, λ5) be the coordinates of ω with respect to this basis. Since Im f5 is irreducible, it follows
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that λ5 = ±1. Therefore, {e1, e2, e3, e4, ω} is a basis for Z
5. Now it follows that in this basis our matrices are of

the form

A =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
a b c d −1


 , B =




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 0 0 1


 ,

and GCD (a, b, c, d) = 1. Let π be the projection of Z
5 into 〈e1, e2, e3, e4〉 along ω. Consider the vectors

f1 = (a, b, c, d, 0) and π(f1B). If they are collinear, then the subspace 〈f1, ω〉 is invariant under the action of
A and B, because ωA = f1 − ω, ωB = ω, f1A = f1, and f1B − π(f1B) ‖ ω. Hence f1 and π(f1B) span
a two-dimensional subspace of Z

5, and we can choose a vector f2 to obtain a basis for this subspace. We get
π(f1B) ∈ 〈f1, f2〉 and f1B ∈ 〈f1, f2, ω〉.

Furthermore, consider π(f2B). If π(f2B) ∈ 〈f1, f2〉, then 〈f1, f2, ω〉 is invariant, and we can choose a vector
f3 such that {f1, f2, f3} is a basis for 〈f1, f2, π(f2B)〉. We conclude that f2B ∈ 〈f1, f2, f3, ω〉. Similarly,
consider π(f3B). If π(f2B) ∈ 〈f1, f2, f3〉, then 〈f1, f2, f3, ω〉 is an invariant subspace, and we can choose f4

such that {f1, f2, f3, f4} is a basis for 〈f1, f2, f3, π(f2B)〉. Now we have 〈f1, f2, f3, f4〉 = 〈e1, e2, e3, e4〉. Hence,
〈f1, f2, f3, f4, ω〉 is a basis for Z

5. In this basis our matrices are of the form

A′ =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 −1


 , B′ =




∗ r 0 0 ∗
∗ ∗ s 0 ∗
∗ ∗ ∗ t ∗
∗ ∗ ∗ ∗ ∗
0 0 0 0 1


 .

Let us note that B′3 = I. A direct calculation shows that

B′3 =




∗ ∗ ∗ rst ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 0 0 1


 .

Therefore, rst = 0. But if r = 0, then π(f1B) ‖ f1, a contradiction with our construction. Similarly, if s = 0,
then π(f2B) ∈ 〈f1, f2〉, and if t = 0, then π(f3B) ∈ 〈f1, f2, f3〉. All these cases lead to a contradiction.

3. The second case (dimW = 2)
Consider the eigenspace V ⊂ Q

5 associated with the eigenvalue −1 of the operator A. It is obvious that −1
is a thrice-repeated root of A, that is, dimV = 3 and Q

5 = V ⊕W .
If the operator B has 5, 4, or 3 linearly independent eigenvectors associated with the eigenvalue 1, then the

corresponding eigenspace must have a nonempty intersection with V . The operator A takes any vector with
integer coordinates from this intersection to the opposite one, while B takes it to itself, a contradiction. If the
operator B has two linearly independent eigenvectors ω1 and ω2 associated with the eigenvalue 1, then let y be any
noneigenvector. Since yB and y are not collinear, it follows that y+yB+yB2 ∈ 〈ω1, ω2〉 and yB2 ∈ 〈y, yB, ω1, ω2〉.

Consider any vector z /∈ 〈y, yB, ω1, ω2〉. Let αz be the projection of zB into 〈z〉. Therefore, α2z is the
projection of zB2 into 〈z〉 and α3z is the projection of zB3 into 〈z〉. But zB3 = z, and α3 = 1. This means that
α = 1 and the projection of z + zB + zB2 into 〈z〉 is equal to 3z. However z + zB + zB2 is B-invariant, whence
it belongs to 〈ω1, ω2〉 and its projection into 〈z〉 is equal to 0. Thus we have z = 0, a contradiction. This proves
that B has only one eigenvector associated with the eigenvalue 1 (up to multiplication by a constant).

By the way we have proved that for any y we have y + yB + yB2 ‖ ω, whence yB2 ∈ 〈y, yB, ω〉.
Let {e1, e2, e3} be a basis for V ∩ Z

5, e′4 and e′5 be vectors such that {e1, e2, e3, e
′
4, e

′
5} is a basis for Z

5. Let
(a1, a2, a3, a4, a4) be the coordinates of ω with respect to this basis. The irreducibility of Im fp for all primes p
implies that a4 and a5 are coprime integers, whence there exist u, v ∈ Z such that a4u+a5v = 1. It follows that we
can replace the vectors {e′4, e′5} by the vectors e4 = (0, 0, 0, v,−u) and ω to obtain a new basis {e1, e2, e3, e4, ω}.
The matrices of our operators with respect to this basis are of the form

A =




−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
∗ ∗ ∗ 1 0
∗ ∗ ∗ 0 1


 , B =




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 0 0 1


 .
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Consider the three-dimensional subspace of Q
5 spanned by the vectors e1B, e2B, and e3B. Its intersection

with V has dimension at least 1. This means that there exists a vector f1 ∈ V ∩Z
5 such that the coordinates of

f1 have no common divisor different from 1 and f1B ∈ V ∩ Z
5. If f1||f1B, then the subspace spanned by f1 is

invariant under both operators A and B. It follows that f1 and f1B span a two-dimensional subspace. Choose
an f1 such that {f1, f2} is a basis for this subspace. Now f2B is a linear combination of f1B and f1B

2. At the
same time, f1B

2 is a linear combination of f1, f1B, and ω (recall that f1 +f1B +f1B
2 is an eigenvector, whence

it is parallel to ω). Therefore f2B is a linear combination of f1, f1B, and ω. Take an f3 such that {f1, f2, f3} is
a basis for V . It is clear that {f1, f2, f3, e4, ω} is a basis for Z

5. The matrices of our operators with respect to
this basis are of the form

A′ =




−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
∗ ∗ ∗ 1 0
b1 b2 b3 0 1


 , B′ =




∗ ∗ 0 0 ∗
∗ ∗ 0 0 ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 0 0 1


 .

Note that b3 = ±1, since otherwise for a certain prime p the subspace fp(〈f1, f2, ω〉) is invariant under the
action of the matrices A′ and B′. Changing the sign of f3 if necessary, we may assume that b3 = 1. Suppose
f ′
3 = f3 + b1f1 + b2f2. The matrices of our operators with respect to the basis {f1, f2, f

′
3, e4, ω} are of the form

A′′ =




−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
∗ ∗ ∗ 1 0
0 0 1 0 1


 , B′′ =




∗ ∗ 0 0 ∗
∗ ∗ 0 0 ∗
k1 k2 k3 k l
∗ ∗ ∗ ∗ ∗
0 0 0 0 1


 .

Let us prove that k = ±1. Otherwise there exists a prime p such that fp({f1, f2, f
′
3, ω}) is invariant under

the maps A and B, and this is a contradiction. Changing the sign of e4 if necessary, we may assume that
k = 1. Suppose f4 = e4 + k1f1 + k2f2 + k3f

′
3. We obtain f ′

3B = k1f1 + k2f2 + k3f
′
3 + e4 + lω = f4 + lω, and

f4B is a linear combination of f ′
3B

2 and ω, while f ′
3B

2 is a linear combination of f ′
3, f ′

3B, and ω (this follows
from the above discussion, which actually applies to any vector y). Therefore f4B is a linear combination of f ′

3,
f ′
3B, and ω. Since f ′

3B = f4 + lω, it follows that f4B = α1f
′
3 + α2f4 + α3ω for some α1, α2, α3 ∈ Q. Hence

f4B
2 = α1(f4+lω)+α2(α1f

′
3+α2f4+α3ω)+lω. On the other hand, f4 = f ′

3B−lω and f4B
2 = f ′

3−lω. Combining
these representations of f4B

2, we arrive at the relations α2α1 = 1, α1 + α2
2 = 0, and α1l + α2α3 + l = −l. Now

it follows that α1 = −1, α2 = −1, and f4B = −f3 − f4 + α3ω. Therefore the matrices of our operators with
respect to the basis {f1, f2, f

′
3, f4, ω} are of the form

A′′ =




−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
β1 β2 ∗ 1 0
0 0 1 0 1


 , B′′ =




∗ ∗ 0 0 ∗
∗ ∗ 0 0 ∗
0 0 0 1 ∗
0 0 −1 −1 ∗
0 0 0 0 1


 ,

where β1 and β2 are coprime integers. Let g1 = (β1, β2, 0, 0, 0) with respect to this basis. Now we can choose
a vector g2 such that {g1, g2} is a basis for 〈f1, f2〉. We have a new basis {g1, g2, f

′
3, f4, ω}, and the matrices of

our operators are of the form

A′′′ =




−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
1 0 ∗ 1 0
0 0 1 0 1


 , B′′′ =




γ1 γ2 0 0 ∗
δ1 δ2 0 0 ∗
0 0 0 1 ∗
0 0 −1 −1 ∗
0 0 0 0 1


 .

Note that γ2 = ±1 (this follows from the irreducibility of Im fp; otherwise the subspace 〈g1, f
′
3, f4, ω〉 would

be invariant). Changing the sign of g2 if necessary, we may assume that γ2 = 1. The matrix
(

γ1 1
δ1 δ2

)
has
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order 3 and trace −1. Let Y be the matrix diag
((

1 0
−γ1 1

)
, 1, 1, 1

)
. Conjugating B′′ by Y , we reduce the

matrices of our operators to the form

A′′′′ =




−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
1 0 r 1 0
0 0 1 0 1


 , B′′′′ =




0 1 0 0 ∗
−1 −1 0 0 ∗
0 0 0 1 ∗
0 0 −1 −1 ∗
0 0 0 0 1


 .

Now let Y ′ = diag
(

1, 1, 1,

(
1 r
0 1

))
. Conjugating B′′′′ by Y ′, we derive that the matrices of our operators

are of the form (we denote them again by A and B)

A =




−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
1 0 0 1 0
0 0 1 0 1


 , B =




0 1 0 0 a
−1 −1 0 0 b
0 0 0 1 c
0 0 −1 −1 d
0 0 0 0 1


 . (2)

4. Further steps
Consider a vector (k, l, 0, 0, 0) ∈ Z

5. The operator A takes it to the opposite one, and the operator B takes it
to the vector (−l, k − l, 0, 0, ka + lb). The latter vector is parallel to the starting one if and only if

ka + lb = 0, k(k − l) = l(−l)

(as before, in fact we need only equality modulo a prime p). First note that we are interested only in the case
where a and b are not both equal to zero (otherwise the first two vectors of the basis span an invariant subspace).
Solving these equations, we obtain k = bt, l = −at, and a2 + ab + b2 = 0. This means that if a2 + ab + b2 ≡ 0
(mod p) for a prime p, then the one-dimensional subspace spanned by (k, l, 0, 0, 0) is invariant. If this is not true
for any prime p, then either a2 + ab + b2 = 1 or a2 + ab + b2 = −1. Solving these quadratic equations, we have
six possibilities for the pair (a, b):

(a, b) = (0, 1), (0,−1), (−1, 0), (−1, 1), (1,−1), or (1, 0).

Consider a vector P = (x, 0, y, 2x, 2y). First note that this is an eigenvector for the matrix A: PA = P . It
can easily be checked that PB = (0, x,−2x, y − 2x, xa + yc + 2xd + 2y), PB2 = (−x,−x,−y + 2x,−y, x(b +
a) + y(d + c) − 2xc + 2y), and P + PB + PB2 = (0, 0, 0, 0, 6y + 2xa + 2yc + 2xd + xb + yd − 2xc). We want
to put P + PB + PB2 = (0, 0, 0, 0, 0); this yields one equation involving x and y. Now consider the vector
PBA = (y− 2x,−x, 2x+ xa+ yc +2xd+ 2y, y− 2x, xa+ yc + 2xd+2y). Let us try to represent this vector as a
linear combination of P and PB. Note that PBA+PB = (y−2x, 0, xa+yc+2xd+2y, 2y−4x, 2xa+2yc+4xd+4y)
and there is a hope that this vector is parallel to P . This hope gives us one more equation: x(xa+yc+2xd+2y) =
y(y − 2x). Therefore, if both equations

{ 6y + 2xa + 2yc + 2xd + xb + yd − 2xc = 0

x(xa + yc + 2xd + 2y) − y(y − 2x) = 0
(3)

hold modulo a prime p, then the vectors P and PB span an invariant subspace (we have just proved that PA,
PB2, and PBA can be expressed as linear combinations of P and PB).

Now we try to solve these equations. The first equation is linear and has the form yh = −xg (where
h = 6 + 2c + d and g = 2a + 2d− 2c + b). First we prove the following fact.

Lemma 1. If g ≡ h ≡ 0 (mod p) for a prime p, then the matrices A and B do not generate GL(5, Z).

Proof. If the assumption holds, then the first equation of (3) has the form 0 = 0, which is always true, and the
other equation is homogeneous and quadratic. This means that we have a quadratic equation for the variable y/x:

−
(y

x

)2

+ (c + 4)
y

x
+ (2d + 1) = 0. (4)
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It may be the case that this equation has no roots in Z/pZ at all, but there is nothing wrong with that. Let
K be the algebraic closure of Z/pZ. This equation has a root in K, whence there exists a vector P ∈ K5 such
that the vectors P and PB span a subspace that is invariant under the action of the matrices A and B as
elements of GL(5, K). Consider, for example, a matrix T ∈ GL(5, Z) that adds the first coordinate of a vector
to the fourth. Of course, this matrix viewed as an element of GL(5, K) does precisely the same. If the matrices
A and B generate GL(5, Z), then T can be expressed as the product of a number of the matrices A and B,
and thus PT belongs to our invariant subspace of K5. Hence, PT is a linear combination of P and PB. But
PT = (x, 0, y, 3x, 2y), where x �= 0, since we solved the quadratic equation for y/x. Therefore, the coefficient of
PB in this linear combination is equal to zero (the second coordinate of PT equals 0), and PT is parallel to P .
This contradiction proves the lemma.

Consider the expression
(a + 2d)h2 + (c4)hg − g2. (5)

Assume that it is not equal to ±1; then there exists a prime p such that this expression modulo p equals 0. If
h ≡ 0 (mod p), then using (5), we obtain g ≡ 0 (mod p), and the assumption of the lemma holds. Thus we may
assume that h �≡ 0 (mod p). Now we take any x �≡ 0 (mod p) and y = xg/h. It is easily shown that the pair
(x, y) is a nontrivial solution of (3) modulo p (the first equation holds by our choice of y, and the second holds
by the choice of p such that (5) equals 0). Thus our hope for an invariant subspace is satisfied.

It remains to exclude the last case: expression (5) is equal to 1 or −1.
Both cases lead to an equation for a, b, c, d. We should solve it in integers. Note that we have already known

all possibilities for a and b. If we introduce a new variable t = 2c+d and substitute t−2c for d in the equation, it
becomes quadratic for t. Then we write down a solution of this equation and note that the discriminant, which
depends on a, b, and t, should be the square of an integer. Substituting known possible values for a and b, we
find the corresponding values of t that satisfy the condition mentioned above and make sure that for these a, b,
and t the solutions of the quadratic equaiton for c is also integer. All this stuff leads to ten possibilities for the
quadruple (a, b, c, d):

(1,−1,−2,−2), (0,−1,−2,−2),

(1,−1,−2, 4), (0,−1, 4,−8),

(−1, 1,−2,−2), (0, 1,−2,−2),

(−1, 1,−2, 4), (0, 1, 4,−8),

(1,−1, 1,−3), (0,−1, 0,−1).

In fact there are only five possibilities: for any pair of matrices (A, B) consider the pair (A, B2), which
generates GL(5, Z) if and only if (A, B) generates GL(5, Z). If we apply our process to the pair (A, B2), we
obtain another quadruple (a, b, c, d). Thus the quadruples are divided into pairs, and it remains to investigate
the generation of GL(5, Z) for only one quadruple in every pair (we put every pair on a separate line).

Translated by A. Yu. Luzgarev.
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