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ABSTRACT. We consider the simply connected Chevalley group G(E7, R) of type
E7 in the 56-dimensional representation. The main objective of the paper is to prove
that the following four groups coincide: the normalizer of the elementary Chevalley
group E(E7, R), the normalizer of the Chevalley group G(E7, R) itself, the trans-
porter of E(E7, R) into G(E7, R), and the extended Chevalley group G(E7, R). This
holds over an arbitrary commutative ring R, with all normalizers and transporters
being calculated in GL(56, R). Moreover, we characterize G(E7, R) as the stabilizer
of a system of quadrics. This last result is classically known over algebraically
closed fields, here we prove that the corresponding group scheme is smooth over
Z, which implies that it holds over arbitrary commutative rings. These results
are one of the key steps in our subsequent paper, dedicated to the overgroups of
exceptional groups in minimal representations.

The most natural way to study general orthogonal group, is to represent it as the
stabilizer of a quadric. In the present paper, we establish a similar geometric char-
acterization of the normalizer of the simply connected Chevalley group Gsc(E7, R)
as the stabilizer of the intersection of 133 quadrics in a 56-dimensional space, and
prove that the above normalizer coincides with the normalizer of the elementary
Chevalley group Esc(E7, R).

The present work is a direct sequel of our papers [42, 23], where a similar exercise
was carried through for the groups of types E6 and F4.

1. INTRODUCTION

In the paper [21] (see also [23, 22]) the second author has started to carry over the
results by the first author and Victor Petrov [45, 46, 28] on overgroups of classical
groups in vector representations, to the exceptional groups E(E6, R) and E(E7, R),
in minimal representations. From the very start, it became apparent, that one the
key steps necessary to carry through a reduction proof in the spirit of the cited
papers, would be an explicit calculation of the normalizer of the above groups in
the corresponding general linear group, GL(27, R) or GL(56, R), respectively.

In our previous paper [42] we have completely solved this problem for the
group E(E6, R), whereas in [23] this problem is solved for the group E(F4, R). In the
present paper, we consider in the same spirit the group of type E7.
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2 NORMALIZER OF THE CHEVALLEY GROUP OF TYPE E7

More precisely, in §4 we explicitly construct an ideal I in the ring of integer
polynomials Z[x1, . . . , x56], generated by 133 quadratic forms f1, . . . , f133, which
has the following property. Denote by FixR(I) the set of R-linear transformations,
preserving the ideal I, see §4 for the precise definitions.

The first main objective of the present paper, is to prove the following result.
Here, GI denotes the affine group scheme such that GI(R) = FixR(I).

Theorem 1. There is an isomorphism GI ∼= Gsc(E7,−) of affine groups schemes over Z.

This result can be viewed as an explicit description of the extended simply con-
nected Chevalley–Demazure group schemeGsc(Φ,−) of typeΦ = E7, by equations.
This scheme was constructed in [2], see also [33, 34, 39] and §2 below. For Φ = E7
the most straightforward way to visualize the scheme Gsc(Φ,−) is to view it as the
Levi factor of the parabolic subscheme of type P8 in Gsc(E8,−), where Gsc(Φ,−) —
is the usual simply connected Chevalley–Demazure groups scheme of type Φ. We
refer the reader to [27] as for the scheme-theoretic definition of parabolic subgroups
and their Levi factors, see also [39] for the above identification itself.

Our results are intimately related to the description of Gsc(E7, R) as the stabilizer
of a system of four-linear forms on V = V($7). Namely, in [24] we gave a new
construction of a four-linear form f : V × V × V × V → R and a symplectic form
h : V ×V → R, invariant under the action of the group Gsc(E7, R). We reproduce the
construction of the form f in §3. The bulk of our system of quadratic forms consists
of the second partial derivatives of the [regular part of] the form f.

It turns out that Gsc(E7, R) is precisely the group of linear transformations pre-
serving both f and h:

G(f,h)(R) = {g ∈ GL(56, R) | f(gu, gv, gw, gz) = f(u, v,w, z),

h(gu, gv) = h(u, v) for all u, v,w, z ∈ V}.

It is only marginally more complicated to describe the extended group Gsc(E7, R)
in terms of the forms f and h. Namely, let

G(f,h)(R) = {g ∈ GL(56, R) | there exist ε, ε ′ ∈ R∗, c2, c3, c4 ∈ R
such that f(gu, gv, gw, gz) = εf(u, v,w, z)

+ c2h(u, v)h(w, z) + c3h(u,w)h(v, z) + c4h(u, z)h(v,w)

and h(gu, gv) = ε ′h(u, v) for all u, v,w, z ∈ V}.

Theorem 2. There are isomorphisms G(f,h)
∼= Gsc(E7,−), G(f,h)

∼= Gsc(E7,−) of affine
groups schemes over Z.

This theorem readily implies that the above definition of the extended group
Gsc(E7, R) can be simplified as follows. Namely, Lemma 10 asserts that

G(f,h)(R) = {g ∈ GL(56, R) | there exists an ε ∈ R∗ such that

f(gu, gv, gw, gz) = εf(u, v,w, z)

and h(gu, gv) = ε2h(u, v) for all u, v,w, z ∈ V}.
Now, let E, F be two subgroups of a group G. Recall that the transporter of the

subgroup E to the subgroup F is the set

TranG(E, F) = {g ∈ G | Eg 6 F}.

Actually, we mostly use this notation in the case where E 6 F, and then

TranG(E, F) = {g ∈ G | [g, E] 6 F}.

In the sequel, we only work with the simply connected groups and omit the
subscript in the notationGsc(Φ,R). By E(Φ,R) 6 G(Φ,R) we denote the elementary
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Chevalley group. Now we are all set to state the main result of the present paper.
Observe, that all normalizers and transporters here are taken in the general linear
group GL(56, R).

Theorem 3. Let R be an arbitrary commutative ring. Then

N(E(E7, R)) = N(G(E7, R)) = Tran(E(E7, R), G(E7, R)) = GI(R).

The interrelation of Theorems 1 and 3 and the general scheme of their proof
are exactly the same, as in our previous paper[42], and some familiarity with
[42] (at least with the introduction and §5) would be extremely useful to facilitate
understanding the proofs in the present paper.

Observe, that after the publication of [42] its subject matter became unexpectedly
pertinent. Namely, recently Elena Bunina reconsidered one of the central classical
problems of the whole theory, description of [abstract] automorphisms of Chevalley
groups, without any such simplifying assumptions as R being Noetherian, or 2
being invertible in R. For local rings she almost succeeded in proving that all auto-
morphisms of the group E(Φ,R) are standard, see [6], etc. Namely, she established
that an arbitrary automorphism of the adjoint elementary Chevalley group is the
product of ring, inner and graph automorphisms. There is a catch, though, that with
her approach the inner automorphisms are taken not in the adjoint Chevalley group
Gad(Φ,R) itself, but rather in the corresponding general linear group GL(n, R). In
this context, the fact that the abstract and algebraic normalizers coincide, means
precisely that all such conjugations are genuine inner automorphisms.

This means that modulo the results of [6] an analogue of the results of [42] and
the present paper, for adjoint representations would then imply that all automor-
phisms of Chevalley groups of types El over local rings — and thus also arbitrary
commutative rings — are standard in the usual sense. We are convinced that our
results on the equations in adjoint representations [25, 26] allow to obtain the requi-
site results for the adjoint case. In cooperation with Elena Bunina, we hope to work
out the details shortly.

The paper is organized as follows. In §2 we recall the basic notation pertaining to
the extended Chevalley group of type E7. In §3 we discuss the invariant four-linear
forms, and in §4 we construct an invariant system of quadrics, which in this case
is significantly trickier than in the case of E6. In §5 we prove that this system of
quadrics is indeed invariant. The technical core of the paper are §§6–10, which are
directly devoted to the proof of Theorems 1, 2 and 3. Due to the limited space, we
do not explicitly list the resulting equations here, this will be done in a subsequent
publication.

2. EXTENDED CHEVALLEY GROUP OF TYPE E7

We refer the reader to [42] as for the general context of the present paper, and
further references. In the papers [27, 31, 35, 36, 47] one can find many further details
pertaining to Chevalley groups over rings, and many further related references.

Nevertheless, to fix the requisite notation, for reader’s convenience below we
reproduce with minor modifications §1 of [42].

Let Φ be a reduced irreducible root system of rank l (in the main body of the
paper we assume that Φ = E7), and P be a lattice intermediate between the root
lattice Q(Φ) and the weight lattice P(Φ). We fix and order on Φ and denote by
Π = {α1, . . . , αl}, Φ+ and Φ− the corresponding sets of fundamental, positive, and
negative roots. Our numbering of the fundamental roots follows [4]. By δwe denote
the maximal root of the systemΦwith respect to this order. For instance, forΦ = E7
we have δ = 234321

2
. Denote by P(Φ)++ the set of dominant weights with respect

to this order. Recall that it consists of all nonnegative integral linear combinations
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of the fundamental weights$1, . . . ,$l, for this order. Finally,W =W(Φ) denotes
the Weyl group of the root systemΦ.

Further, let R be a commutative ring with 1. It is classically known that, starting
with this data, one can construct the Chevalley group GP(Φ,R), which is the group
of R-points of an affine group scheme GP(Φ,−), known as the Chevalley–Demazure
scheme. For the problems we consider, it suffices to limit ourselves with the simply
connected (alias, universal) groups, for which P = P(Φ). For the simply connected
groups we usually omit any reference to the lattice P and simply write G(Φ,R) or,
when we wish to stress that the group in question is simply connected, Gsc(Φ,R).
The adjoint group, for which P = Q(Φ), is denoted by Gad(Φ,R).

Fix a split maximal torus T(Φ,R) in G(Φ,R) and a parametrization of the unipo-
tent root subgroups Xα, α ∈ Φ, elementary with respect to this torus. Let xα(ξ)
be the elementary unipotent element corresponding to α ∈ Φ and ξ ∈ R in this
parametrization. The group Xα = {xα(ξ), ξ ∈ R} is called an (elementary) root
subgroup, and the group E(Φ,R) = 〈Xα, α ∈ Φ〉 generated by all elementary root
subgroups is called the (absolute) elementary subgroup of the Chevalley group
G(Φ,R).

As a matter of fact, apart from the usual Chevalley group, we also consider
the corresponding extended Chevalley group G(Φ,R), which plays the same role
with respect to G(Φ,R) as the general linear group GL(n, R) plays with respect
to the special linear group SL(n, R). Adjoint extended groups were constructed
in the original paper by Chevalley [7]. It is somewhat harder to construct simply
connected extended groups because, unlike the adjoint case, here one must increase
the dimension of the maximal torus. A unified elementary construction was only
proposed by Berman and Moody in [2]. However, for the case of Gsc(E7, R) that we
consider in the present paper, this group can be naturally viewed as a subgroup of
the usual Chevalley group Gsc(E8, R), viz.

Gsc(E7, R) = Gsc(E7, R) · Tsc(E8, R).

In the majority of the existing constructions, the Chevalley group G(Φ,R) arises
together with an action on the Weyl module V = V(ω), for some dominant weight
ω. Denote by Λ = Λ(ω) the multiset of weights of the module V = V(ω) with
multiplicities. In the present paper we consider the group G(E7, R) in the minimal
representation with the highest weight$7. This is a microweight representation, in
particular the multiplicities of all weights are equal to 1. Fix an admissible base vλ,
λ ∈ Λ, of the module V . We conceive a vector a ∈ V , a =

∑
vλaλ, as a coordinate

column a = (aλ), λ ∈ Λ.
In Figure 1 we reproduce the weight diagram of the representation (E7,$7),

together with the natural numbering of weights, used in the sequel. In this number-
ing the weights are listed according to the order determined by the fundamental
root system Π. On the picture, the highest weight is the left-most one. The weight
diagram of the representation (E7,$7) is symmetric, and this symmetry is reflected
in the numbering, the weights are numbered as 1, 2, . . . , 28,−28, . . . , 2, 1. Often, to
save space we write n instead of −n. We refer the reader to [43] for lists of weight in
the Dynkin form, and in the hyperbolic form, as well as other common numberings.

Recall, that in the weight diagram two weights are joined by an edge if their
difference is a fundamental root. The weight graph is constructed similarly, only
that now two weights are joined by an edge provided their difference is a positive
root. In the sequel we denote by d(λ, µ) the distance between two weights λ and µ
in the weight graph. In other words, d(λ, µ) = 0 if λ = µ; d(λ, µ) = 1 if λ− µ ∈ Φ;
d(λ, µ) = 2 if λ 6= µ, λ − µ 6∈ Φ, λ − µ is the sum of two roots of Φ; and finally,
d(λ, µ) = 3 otherwise.
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FIGURE 1. Weight diagram (E7,$7): natural numbering.

The above realization of the representation (E7,$7) as an internal Chevalley
module inside the Chevalley group of type E8 provides a natural identification of
the set of weights Λ with the set of roots of the root system E8, in whose expansion
with respect to the fundamental roots the root α8 occurs with the coefficient 1.
Obviously, the roots of the root system E7 itself are identified with those roots of
E8 in whose expansion α8 occurs with the coefficient 0. There is a unique root
of E8, in whose expansion α8 occurs with the coefficient 2: it is the maximal root
δ = 2465432

3
. In the sequel we always view both the roots of E7 and the wights of

our representation as the roots of E8. We denote by (·, ·) the natural inner product
defined on the linear span of E8. It is convenient to normalize it in such a way that
all roots have length 1. Then for any α,β ∈ E8 the inner product (α,β) can take
values 0, ±1/2 or ±1. With these conventions, the distance d(λ, µ) between the
weights λ, µ ∈ Λ equals

• 0 if (λ, µ) = 1;
• 1 if (λ, µ) = 1/2;
• 2 if (λ, µ) = 0;
• 3 if (λ, µ) = −1/2 (and then λ+ µ = δ).

Thus, for any weight λ ∈ Λ there exists a unique weight at distance 3; this is the
weight δ− λ, which will be denoted by λ.

In [32, 29, 35, 36, 38] one can find many further details as to how to recover, from
this diagram alone, the action of root unipotents xα(ξ), wα(ε), hα(ε), the signs of
structure constants, the shape and signs of equations, etc. These and other such
similar items are tabulated in [43]. Formally, an explicit knowledge of these things
is not necessary to understand the proofs produced in the present paper. However,
in reality all calculations in §3, 4, 7–9, were performed with the heavy use of weight
diagrams, and could hardly be possible without them.

Over a field, and in general over a semilocal ring, the extended Chevalley
group G(E7, R) is generated by the usual Chevalley group G(E7, R) and the weight
elements h$7(η), η ∈ R∗. In the natural numbering of weight the element h$7(η

−1)
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acts on the module V($7) as follows:

diag(η−1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, η, 1, 1, η, 1, 1, η, 1, 1, η,

1, η, η, 1, η, η, 1, η, η, 1, η, η, η, η, η, η, η, η, η, η, η, η, η, η, η, η, η, η2).

Here we assume that the weights are linearly ordered as follows: 1, . . . , 28, 28, . . . , 1).
Observe, that the exponent of η increases by 1 each time we cross an edge marked
α7.

3. THE INVARIANTS OF DEGREE 4

In our paper [42] the simply connected Chevalley group of type E6 acting on
the 27-dimensional module V = V($1) was identified with the isometry group
of a three-linear form T : V × V × V −→ R. There is a similar, but much more
complicated description of the simply connected Chevalley group of type E7 acting
on the 56-dimensional module V = V($7). In this case, to determine the group
one needs to invariants, one of degree 2, and another one of degree 4. First of all,
the module V is self-dual and carries a unimodular symplectic form h. Further,
there exists a four-linear form f : V ×V ×V ×V −→ R such that G can be identified
with the full isometry group of the pair h, f, in other words, with the group of all
g ∈ GL(V) such that h(gu, gv) = h(u, v) and f(gu, gv, gw, gz) = f(u, v,w, z) for all
u, v,w, z ∈ V . The similarities of this pair of forms define the extended Chevalley
group G(E7, R) (see Theorem 2).

It is obvious how to construct h. Construction of the fourth degree invariant is
considerably more complicated, and classically one constructs not the four-linear
form f, but rather the corresponding quartic1. The fact that the group G preserves
a form of degree 4 in 56 variables, was first observed by E. Cartan, at least in
characteristic 0, but his explicit construction of this form was flawed (probably, it
was just a misprint). A very elegant construction of such an invariant over a field K
of characteristic distinct from 2 was given by H. Freudenthal. Namely, he identifies
the module V with the space A(8, K)2, where A(8, K) is the set of antisymmetric
8× 8matrices, and considers the following symplectic inner product and form of
degree 4:

h((a1, b1), (a2, b2)) =
1

2
(tr(a1bt2) − tr(a2bt1)),

Q((a, b)) = pf(a) + pf(b) −
1

4
tr((ab)2) +

1

16
tr(ab)2.

Now, for all characteristics distinct from 2, one can identify the isometry group
of this pair with the simply-connected Chevalley group G of type E7 over K (see
[1, 8]). The constructions of the above form in the papers by M. Aschbacher and
B. Cooperstein is somewhat different. Actually, in [1] the form is constructed
in terms of A6 (the gist of this construction is expressed by the partition 56 =
7+ 21+ 21+ 7), whereas the construction in [8] is closer to Freudenthal’s original
construction, and is phrased in terms of A7 (where 56 = 28 + 28). The isometry
group of the form Q is generated by G and a diagonal element of order 2 (see [8]).
There are no serious complications in characteristic p > 5, whereas characteristic 3
requires some extra-care.

However, in characteristic 2 this approach is almost immediately blocked by seri-
ous obstacles. Obviously, the above construction fails. Apparently, in characteristic

1This form of degree 4 first occurred in a 1901 paper by L. E. Dickson in the context of the 28
bitangents, and thus, of the Weyl group W(E7). Apparently, Dickson has not noticed an explicit
connection with the group of type E7 itself. Otherwise, Chevalley groups could had been discovered
some 50 years earlier!
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2 there are whatsoever no non-trivial symmetric G-invariant four-linear forms on
V , (see [1]). This is related to the fact that in characteristic 2 the four-linear form

f0(u, v, x, y) = h(u, v)h(x, y) + h(u, x)h(v, y) + h(u, y)h(v, x),

obtained by the squaring of the symplectic form, becomes symmetric, which is
not the case in characteristics > 3. Actually, in characteristic 2 M. Aschbacher [1]
constructs a four-linear G-invariant form F, which is symmetric with respect to the
even permutations.

There are other constructions of the form Q, most notably a construction by
R. Brown [5], which works in characteristics 6= 2, 3. Let V be a space with a non-
degenerate inner product. Then to define a three-linear form on V is essentially the
same as to define on V an algebra structure. By the same token, to define a four-
linear form on V is essentially the same as to define on V a ternary algebra structure.
Indeed, there exists a remarkable ternary algebra of dimension 56, constructed in
terms of the exceptional 27-dimensional Jordan algebra J (see [5, 11] and references
there). This algebra consists of 2× 2matrices over J with scalar diagonal entries,
56 = 1+ 27+ 27+ 1.

The orbits of the group G = G(E7, K) on the 56-dimensional module are clas-
sified in [14] in the absolute case, in [19] for finite fields, and in [8] for arbitrary
fields. Basically, these orbits are described in terms of the four-linear form. Again
characteristics 2 and 3 require separate analysis, and to take care of all details
one has to use the notion of 4-forms, introduced by M. Aschbacher (see [1, 8]).
Essentially, a 4-form is a form of degree 4 together with all of its polarizations.
For simplicity, assume that charK 6= 2, 3. Then a vector u ∈ V is called singular,
if F(u, u, x, y) = 0 for all x, y ∈ V ; brilliant, if F(u, u, u, x) = 0 for all x ∈ V ; and
luminous if F(u, u, u, u) = 0. Otherwise, i.e. if F(u, u, u, u) 6= 0, the vector u is called
dark. The orbits of the group G on V are as follows: 0, non-zero singular vectors,
non-singular brilliant vectors, luminous vectors that are non brilliant, and, finally,
one or several orbits of dark vectors, parametrized by K∗/K∗2 (these last orbits fuse
to one orbit under the action of the extended Chevalley group G of type E7).

The feeling that E7 stands in the same relation to E6, as E6 itself stands to
D5, suggests the following definition of the form of degree 4 on V . Take a base
vector vλ. Then the vectors vµ, d(λ, µ) = 2, generates a 27-dimensional module
U, that supports the cubic form related to E6. Let us define tetrads as quadruples
(λ1, λ2, λ3, λ4) of pair-wise orthogonal weights. Let Θ and Θ0 be the sets of ordered
and unordered tetrads, respectively. Clearly, |Θ| = 56 · 27 · 10, whereas |Θ0| =
|Θ|/24 = 630. Now, we can tentatively define the form Qtent of degree 4 by setting
Qtent(x) =

∑
±xλ1xλ2xλ3xλ4 , where the sum is taken over all {λ1, λ2, λ3, λ4} ∈ Θ0,

while the signs are determined by the condition that the resulting form is invariant
under the action of the extended Weyl group W̃. Here, one should be slightly more
cautious then in the case of E6, since now, in addition to the two possible cases that
occurred there, the following possibility occurs: wα moves all 4 weights of a tetrad,
two of them in positive and the other two in negative direction, in which case the
signs does not change. Nevertheless, an expression of the sign in terms of h(λi, µi)
still works. This is essentially the same, as to define the four-linear form Ftent by
Ftent(v

λ1 , vλ2 , vλ3 , vλ4) = (−1)h(λ1,λ2,λ3,λ4), for a tetrad (λ1, λ2, λ3, λ4) ∈ Θ and by
Ftent(v

λ1 , vλ2 , vλ3 , vλ4) = 0 otherwise. By construction, this form is invariant under
the action of W̃, and we only have to verify that it is invariant under the action
of the root subgroup Xα, for some root α ∈ Φ. Unfortunately, this is not the case.
Namely, for any tetrad (λ1, λ2, λ3, λ4) and any elementary root unipotent g = xα(ξ)
the following formula holds

Ftent(gv
λ1 , gvλ2 , gvλ3 , gvλ4) = Ftent(v

λ1 , vλ2 , vλ3 , vλ4).
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As it happens, though, there exist quadruples of weights that are not tetrads,
for which the right hand side equals 0, whereas the left hand side is distinct
from 0. For instance, take the four weights λ1, λ2, λ3, λ4 such that λ1 + α, λ2 + α,
λ3 + α, λ4 − α are weights, and together the 8 above weights form a cube (in other
words, the corresponding weight diagrams is the tensor product of three copies
(A1,$1), see [8, 29]). Then one of the weights λ1, λ2, λ3 will be adjacent with the
other two, say, d(λ1, λ2) = d(λ1, λ3) = 1, so that Ftent(v

λ1 , vλ2 , vλ3 , vλ4) = 0.
At the same time, decomposing the expression Ftent(gv

λ1 , gvλ2 , gvλ3 , gvλ4) by lin-
earity, we get 8 summands, of which exactly one, namely Ftent(v

λ1+α, vλ2 , vλ3 , vλ4),
corresponds to a tetrad, and equals ±1. Thus, the form Ftent is not preserved by the
action of Xα.

In itself, this is not yet critical, since one can hope to save the situation by
throwing in another Weyl orbit of monomials. This is, however, exactly the point
where real problems start. As a matter of fact, in the above counter-example
throwing in another orbit of monomials will produce two non-zero extra summands,
so that the resulting correction will be a multiple of 2. This means that one cannot
define an invariant form of degree 4 by setting its values on the tetrads to be equal
to±1, one should start with±2 instead. This is precisely where serious trouble starts.
In characteristic 6= 2 the above construction is essentially correct, in the sense that it
tells how the relevant part of an invariant form of degree 4 looks like, responsible for
the reduction to E6. Let us fix a vector vλ. Then F(vλ,−,−,−) consists of two parts:
the form Ftent, as defined above, and another part, introduced for the resulting form
to be G-invariant. This second part has the form F(vλ, vλ

∗
,−,−) and does not say

anything beyond the fact that our group preserves the usual symplectic form.
In the works by Jacob Lurie [20] and the second author [24], these difficulties

arising in characteristic 2 were sorted out in a systematic way, but the resulting
four-linear forms are not anymore symmetric. Namely, let g be the Lie algebra of
type E8; recall that

δ = 2465432
3

is the highest root of E8. The coefficient with which α8 occurs in the expansion of a
root α ∈ E8 with respect to the fundamental roots, is called the α8-height of α and
can only take values −2, −1, 0, 1, 2. This defines the following length 5 grading of
the algebra g:

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2.

The 56-dimensional space g1 has a base consisting of the elementary root elements
eα, where α runs over the roots of α8-height 1, i.e. the weights of V($7). Let
λ, µ, ν, ρ be four weights of V($7). Clearly, the element

[[[[e−δ, eλ], eµ], eν], eρ]

has α8-weight 2, so that the resulting element is a multiple of eδ. Denote the
corresponding scalar coefficient by c(λ, µ, ν, ρ) and consider the four-linear form

f(u, v,w, z) =
∑

λ,µ,ν,ρ∈Λ

c(λ, µ, ν, ρ)uλvµwνzρ.

Obviously, this form is invariant under the action of the group G(E7, R) on the
module V($7).

The orbit of the highest weight vector. It is well known that in any representation
of the group G the orbit Gv+ of the highest weight vector v+ is an intersection of
quadrics [18]. Here, as a motivation for the next section, we explicitly describe the
equations defining the orbit of v+ for the microweight representation of E7. For the
microweight representation of E6 this was done in [11]. Of course, for these cases
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the corresponding equations were found by H. Freudenthal and J. Tits more than
40 years ago (see also [43] and references there), but again we wish to show how to
recover the equations directly from the weight diagram.

Let ω = $1 for E6 or ω = $7 for E7, the case of (Φ,ω) = (E6,$6) is dual
to the first case. We use the same interpretation of the modules as in § 1. In
particular, Φ = El, l = 6, 7, ∆ = El+1, and Σ = Σl+1(1). The group G = G(Φ,R)
acts on V = Ul+1(1)/Ul+1(2) ∼=

∏
Xα, α ∈ Σ by conjugation. Since we are only

interested in the equations satisfied by the orbit Gv+, we can assume that R = K is
an (algebraically closed) field2.

In both cases one can take v+ = vρ = xρ(1) as the highest weight vector, where

ρ = 234321
2

or ρ = 2465431
3

is the maximal root of E7, or the unique submaximal root of E8, respectively. Recall
that the vector a = (aα) ∈ V is now viewed as the product x =

∏
xα(aα) ∈

∏
Xα,

α ∈ Σ. In the case of E7 this product is considered modulo U8(2) = Xρ+α8 , the root
subgroup corresponding to the maximal root of E8.

4. CONSTRUCTION OF THE SYSTEM OF QUADRICS

The first set of quadrics defining the highest weight orbit, consists of square
equations; for large classes of representations, their construction and numerology
were described by the first author in [40, 41]. Here, we recall some basic definitions
of [40] in the context of the 56-dimensional representation of (E7,$7).

The set of weights Ω ⊆ Λ is called a square if |Ω| > 4 and for all λ ∈ Ω its
difference λ−µwith all weights µ ∈ Ω, except exactly one, denoted by λ∗, is a root,
whereas the difference λ − λ∗ is not a root (and thus λ ⊥ λ∗). A square maximal
with respect to inclusion is called a maximal square. In [40] it is proven that for our
representation each maximal squareΩ consists of 12weights and the sum λ+ λ∗

does not depend on the choice of λ ∈ Ω. At that, a maximal squareΩ is completely
determined by this sum. Furthermore, in the case of a microweight representation
of E7 maximal squares are in bijective correspondence with the roots of E7, namely,
to a root α ∈ E7 there corresponds the square

Ω(α) = {λ ∈ Λ | λ− α ∈ Λ}.
Let, as above,Ω be some maximal square. Choose orthogonal weights ρ, ρ∗ ∈ Ω

and define the polynomial fρ,ρ∗ ∈ Z[{xλ}λ∈Λ] by

fρ,ρ∗ = xρxρ∗ −
∑

Nρ,−λNρ∗,−λ∗xλxλ∗ ,

where the sum is taken over all orthogonal pairs of weights {λ, λ∗}, except {ρ, ρ∗}
itself. The equation fρ,ρ∗(v) = 0 on the components of a vector v = (vλ)λ∈Λ ∈ V
was called in [40] a square equation, corresponding to the maximal square Ω. In
particular, this equation depends only on the square Ω itself, and not on the
arbitrary choice of a pair ρ, ρ∗ of orthogonal weights: passing to another such pair,
the polynomial fρ,ρ∗ is multiplied by ±1.

Fixing in each maximal squareΩ one such pair of orthogonal weights gives us
126 polynomials, corresponding (up to sign) to the 126maximal squares (or, what
is the same, to the 126 roots of E7).

Finally, for a root α ∈ E7 we consider the polynomial gα ∈ Z[{xλ}λ∈Λ], defined
by

gα =
∑

λ∈Ω(α)

Nλ,λxλxλ.

2For rings, there are further obstacles, related to the fact that the lower K-functors, or their analogues,
can be non-trivial, that we do not discuss here.
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Again, by definition these polynomials are in bijective correspondence with the
roots of E7 (i.e. there are 126 of them), but the following lemma asserts that it
suffices to consider only gα corresponding to α ∈ Π.

Lemma 1. The ideal in Z[{xλ}λ∈Λ], generated by the polynomials {gα}, α ∈ E7, coincides
with the ideal, generated by the polynomials {gα}α∈Π.

Proof. Let α ∈ E7. Observe, that Ω(α) = {λ ∈ Λ | λ − α ∈ Λ} = {λ ∈ Λ | (λ, α) =

1/2}. If λ ∈ Ω(α), then (λ,−α) = (δ− λ,−α) = (λ, α) − (δ, α) = (λ, α), since δ ⊥ α
for all α ∈ E7. Thus,Ω(−α) = {λ | λ ∈ Ω(α)}. We get that

g−α =
∑

λ∈Ω(−α)

Nλ,λxλxλ =
∑

λ∈Ω(α)

Nλ,λxλxλ = −gα.

Now, let α,β, α + β ∈ E7. Let us show that gα+β = gα + gβ. Observe, that
(λ, α + β) = (λ, α) + (λ, β), and each of these inner products equals 0 or ±1/2. If
λ ∈ Ω(α+ β), i.e. (λ, α+ β) = 1/2, then one of the expressions (λ, α), (λ, β) equals
1/2, while the other one is 0. In this case the monomialNλ,λxλxλ is contained either
in gα, or in gβ, but not in both. Conversely, if λ ∈ Ω(α) and at that λ /∈ Ω(α+ β),
then necessarily (λ, β) = −1/2, which implies that (λ, β) = 1/2. It follows that
gα contains the monomial Nλ,λxλxλ, while gβ contains the monomial Nλ,λxλxλ =
−Nλ,λxλxλ, which cancel. �

Set gi = gαi and let I be the ideal generated by the above quadratic polynomials
fµ,µ∗ and the polynomials gi, i = 1, . . . , 7 (altogether, this gives us 126 + 7 = 133
polynomials).

Theorem 4. Denote by FixR(I) the set of R-linear transformations, preserving the ideal I:

FixR(I) = {g ∈ GL(56, R) | f(gx) ∈ I for all f ∈ I}.
Then the elementary Chevalley group E(E7, R) is contained in FixR(I).

5. PROOF OF THEOREM 4

Since we realize the representation of the group of type E7 inside the group E8,
the calculations of this section mostly reproduce the calculations in [25], for the
adjoint representation of E8. However, we cannot directly cite the results of [25],
since we are only interested on the parts of these polynomials that correspond to
the weights of E7 inside E8.

To prove Theorem 4 it suffices to show that if g = xγ(ξ) (here γ ∈ E7, ξ ∈ R),
then fρ,σ(gx) ∈ I for all ρ, σ ∈ Λ, ρ ⊥ σ, and gα(gx) ∈ I for all α ∈ Φ.

The following special case of Matsumoto lemma (see. [27, Lemma 2.3]), describes
the action of an elementary root unipotent xγ(ξ) on the vectors in V .

Lemma 2. Let γ ∈ E7, v ∈ V .
(1) If λ ∈ Λ, λ− γ /∈ Λ, then (xγ(ξ)v)λ = vλ.
(2) If λ, λ− γ ∈ Λ, then (xγ(ξ)v)λ = vλ +Nγ,λ−γξvλ−γ.

In particular, if (γ, λ) 6= 1/2, then (xγ(ξ)v)λ = vλ.

Lemma 2 was stated in terms of the structure constants Nαβ of the Lie algebras
of type E8. It is classically known (see references in [38]), that they satisfy the
following relations:

Nαβ = N−β,−α = −N−α,−β = −Nβα,

Nαβ = Nβγ = Nγα.

Moreover, they are subject to the cocycle identity:

NβγNα,β+γ = Nα+β,γNαβ.
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In the sequel we use these equalities without any specific reference.
Recall that fρ,σ corresponds to the maximal square Ω = Ω(α), for some root

α ∈ E7. The weights of the square Ω can be partitioned into pairs of orthogonal
weights {λ, µ} with λ+ µ = δ+ α; the polynomial fρ,σ consists of monomials of the
form ±xλxµ for all such pairs. Let us trace what happens with such monomials
when x is mapped to gx = xγ(ξ)x. Observe, that (λ, γ) can only take values 0 and
±1/2. If (λ, γ) 6= 1/2, the by Lemma 2 one has (gx)λ = xλ. Calculating the inner
product of λ+ µ = δ+ α by γ and recalling that (δ, γ) = 0, we get that

(λ, γ) + (µ, γ) = (α, γ).

The following cases can possibly occur:
• (α, γ) = −1 or −1/2. Then none of the summands on the right hand side

equals 1/2, and thus fρ,σ(gx) = fρ,σ(x) ∈ I.
• (α, γ) = 1/2. Then exactly one summand on the right hand side equals 1/2,

whereas the second one is 0. Let, for instance, (λ, γ) = 1/2 and (µ, γ) = 0.
Similarly, suppose that (ρ, γ) = 1/2 and (σ, γ) = 0. Then (gx)λ(gx)µ =
(xλ + ξNγ,λ−γxλ−γ)xµ. Expanding these equalities, summing with signs
over all pairs of orthogonal weights, we get

fρ,σ(gx) = fρ,σ(x) + ξNγ,ρ−γxρ−γxσ − ξ
∑

Nρ,−λNσ,−µNγ,λ−γxλ−γxµ.

Observe, that the sum λ− γ+ µ = δ+ α− γ does not depend on λ. Thus,
the pairs of weights {ρ− γ, σ} and {λ− γ, µ} appear in the maximal square
Ω(α− γ). Let us verify that

fρ,σ(gx) = fρ,σ(x) + ξNγ,ρ−γfρ−γ,σ(x).

With this end, it only remains to check that the signs coincide:

Nρ,−λNσ,−µNγ,λ−γ = Nγ,ρ−γNρ−γ,γ−λNσ,−µ.

But this immediately follows from the cocycle identity.
• (α, γ) = 0. Then either both summand on the left hand side are 0, or one

of them equals 1/2, while the other one equals −1/2. The summands, for
which (λ, γ) = (µ, γ) = 0, do not contribute to the difference fρ,σ(gx) −
fρ,σ(x). Now, let (λ, γ) = 1/2 and (µ, γ) = −1/2. Then λ − γ and µ + γ
are weights that sum to λ + µ = δ + α; Moreover, (λ − γ, γ) = −1/2 and
(µ+ γ, γ) = 1/2. Thus, the weights {λ− γ, µ+ γ} are orthogonal and, thus,
belong to the same maximal squareΩ. At that,

Nρ,−λNσ,−µ(gx)λ(gx)µ +Nρ,−λ+γNσ,−µ−γ(gx)λ−γ(gx)µ+γ

= Nρ,−λNσ,−µxλxµ +Nρ,−λ+γNσ,−µ−γxλ−γxµ+γ

+ ξNρ,−λNσ,−µNγ,λ−γxλ−γxµ + ξNρ,−λ+γNσ,−µ−γNγ,µxλ−γxµ.

An easy calculation shows that the summands, containing ξ, cancel. Thus,
fρ,σ(gx) = fρ,σ(x).
• (α, γ) = 1, i.e. α = γ. In this case (λ, γ) = (µ, γ) = 1/2. Thus,

(gx)λ(gx)µ = (xλ + ξNγ,λ−γxλ−γ)(xµ + ξNγ,µ−γxµ−γ)

= xλxµ + ξNγ,λ−γxλ−γxµ

+ ξNγ,µ−γxλxµ−γ + ξ2Nγ,λ−γNγ,µ−γxλ−γxµ−γ.

Altogether, we get 6 summands containing ξ2; the corresponding monomi-
als are of the form±xλ−γxµ−γ, where (λ−γ)+(µ−γ) = λ+µ−2γ = δ−α.
Thus, the 6 pairs of weights of the form {λ−γ, µ−γ} constitute the maximal
squareΩ(−α). It remains to verify that also the signs of these summands
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coincide with the signs in the square equation corresponding to Ω(−α).
Indeed,

Nρ,−λNσ,−µNγ,λ−γNγ,µ−γ = Nγ,ρ−γNγ,σ−γNρ−γ,−λ+γNσ−γ,−µ+γ.

Finally, 12 summands in the above sum contain ξ; the corresponding
monomials are of the form ±xλ−γxµ and ±xλxµ−γ, where (λ − γ) + µ =
λ+ (µ− γ) = δ. It is easy to see that these are precisely the monomials that
occur in gα. It only remains to verify that their signs agree:

Nρ,−λNσ,−µNγ,µ−γ = Nλ,µ−γ.

By summarizing the above, we get

fρ,σ(gx) = fρ,σ(x) + ξNγ,σ−γNρ,σ−γgα(x) + ξ
2Nγ,ρ−γNγ,σ−γfρ−γ,σ−γ.

Next, we look at gα(gx). The monomials that occur in gα, are of the form xλxλ,
where λ runs over the maximal squareΩ(α), whereas λ = δ− λ. Taking the inner
product of λ+ λ = δwith γ, we get:

(λ, γ) + (λ, γ) = (δ, γ) = 0.

Observe, that (λ, α) = 1/2 and (λ, α) = −1/2. The inner product (α, γ) can take the
following values:

• (α, γ) = −1, i.e. γ = −α. But then (λ, γ) = −1/2, and thus (gx)λ = xλ for
all λ ∈ Ω(α). It follows that gα(gx) = gα(x).
• (α, γ) = 1, i.e. γ = α. Then (gx)λ(gx)λ = (xλ + ξNγ,λ−γxλ−γ)xλ, and thus

gα(gx) = gα(x) +
∑

λ∈Ω(α)

ξNλ,λNγ,λ−γxλ−γxλ.

At that (λ−γ)+λ = δ−γ. Observe that if λ ∈ Ω(α), then λ∗ = λ+γ ∈ Ω(α);
thus the weights {λ − γ, λ} form an orthogonal pair of weights and sit in
Ω(−α). Take an arbitrary λ0 ∈ Ω(α) and set ρ = λ0 − γ, σ = λ0. The
equality Nλ,λNγ,λ−γ = Nλ+γ,λ−γNγ,λ implies that the same on the right
hand side equals 2ξNρ+γ,σNγ,ρfρ,σ(x). One can conclude that gα(gx) =
gα(x) + 2ξNρ+γ,σNγ,ρfρ,σ(x).
• (α, γ) = 0. Let λ ∈ Ω(α), i.e. (λ, α) = 1/2. If (λ, γ) = 1/2, then λ − γ is a

weight Moreover, (λ − γ, α) = 1/2, and thus λ − γ ∈ Ω(α). Furthermore,
(λ− γ, γ) = −1/2, and thus (λ− γ, γ) = 1/2.

Let us look at what happens with the monomials in gα corresponding to
the weights λ, λ− γ:

Nλ,λ(gx)λ(gx)λ +Nλ−γ,λ−γ(gx)λ−γ(gx)λ−γ
= Nλ,λxλxλ + ξNλ,λNγ,λ−γxλ−γxλ
+Nλ−γ,λ−γxλ−γxλ−γ + ξNλ−γ,λ−γNγ,λxλ−γxλ.

But Nλ,λNγ,λ−γ = −Nλ−γ,λ−γNγ,λ, so that the summands containing ξ
cancel. This shows that gα(gx) = gα(x).
• (α, γ) = 1/2. Let λ ∈ Ω(α). Look at the weight λ∗ = δ+α− λ ∈ Ω(α). One

has λ + λ∗ = δ + α, and thus (λ, γ) + (λ∗, γ) = (α, γ) = 1/2. This means
that one of the summands on the right hand side equals 1/2, while another
one equals 0. If follows, that for 6 out of the 12 weights λ ∈ Ω(α) one has
(λ, γ) = 1/2. Denote the set of these weights by L. It follows that

gα(gx) =
∑

Nλ,λ(gx)λ(gx)λ

=
∑

λ∈Ω(α)

Nλ,λxλxλ +
∑
λ∈L

ξNλ,λNγ,λ−γxλ−γxλ.
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Observe that the sum (λ − γ) + λ = δ − γ does not depend on λ. This
means that the pairs of orthogonal weights {λ − γ, λ} in the second sum
belong to the maximal squareΩ(−γ), and since there are 6 such pairs, they
exhaust this square. Let us fix one such pair {ρ, σ} and show that up to
sign the second sum equals ξfρ,σ(x). With this end it remains to notice that
Nλ,λNγ,λ−γ = Nρ+γ,σNγ,ρNρ,−λ+γNσ,−λ. Finally, we get

gα(gx) = gα(x) + ξNρ+γ,σNγ,ρfρ,σ(x).

• (α, γ) = −1/2. Observe that g−α = −gα, and thus, replacing α by −α, we
fall into the above case.

6. PROOF OF THEOREM 1: AN OUTLINE

First, let f1, . . . , fs be arbitrary polynomials in t variables with coefficients in
a commutative ring R (in the majority of the real world applications, R = Z or
R = Z[1/2]). We are interested in the linear changes of variables g ∈ GL(t, R) that
preserve the condition that all these polynomials simultaneously vanish. In other
words, we consider all g ∈ GL(t, R) preserving the ideal A of the ring R[x1, . . . , xt]
generated by f1, . . . , fs. This last condition means that for any polynomial f ∈ A
the polynomial f ◦ g obtained from f by the linear substitution g is again in A.
It is well known (see, e.g. [9, Lemma 1] or [48, Proposition 1.4.1]), that the set
GA(R) = FixR(A) = FixR(f1, . . . , fs) of all such linear variable changes g forms
a group. For any R-algebra S with 1 we can consider f1, . . . , fs as polynomials
with coefficients in S and, thus, the group G(S) is defined for all R-algebras. It is
clear that G(S) depends functorially on S. It is easy to provide examples showing
that S 7→ G(S) may fail to be an affine group scheme over R. This is due to
the fact that GA(R) is defined by congruences, rather than equations, in its matrix
entries. However, in [48], Theorem 1.4.3 and further, a simple sufficient condition
was found, that guarantees that S 7→ G(S) is an affine group scheme. Denote by
R[x1, . . . , xt]r the submodule of polynomials of degree at most r. For our purposes
it suffices to invoke Corollary 1.4.6 of [48], pertaining to the case where R = Z.

Lemma 3. Let f1, . . . , fs ∈ Z[x1, . . . , xt] be polynomials of degree at most r and let A be
the ideal they generate. Then for the functor S 7→ FixS(f1, . . . , fs) to be an affine group
scheme, it suffices that the rank of the intersection A ∩ R[x1, . . . , xt]r does not change
under reduction modulo any prime p ∈ Z.

We apply this lemma to the case of the ideal A = I in Z[xλ], constructed in §4.
For any commutative ring Rwe set GI(R) = FixR(I).

Lemma 4. The functor R 7→ GI(R) is an affine group scheme defined over Z.

Proof. Let us show that for any prime p the 133 generating the ideal I are inde-
pendent modulo p. Indeed, specializing xλ appropriately, we can guarantee that
one of these polynomials takes value 1, while all other vanish. Observe, that the
polynomials fλ,µ only contain monomials xνxρ for d(ν, ρ) = 2 and ν+ ρ = λ+ µ,
and that for all 126 polynomials of our generating set the sum λ + µ takes dis-
tinct values. Furthermore, the polynomials gα only contain monomials xνxρ for
d(ν, ρ) = 3. Thus, for fλ,µ is suffices to set xλ = xµ = 1 and xν = 0 for all other
weights, the monomial xλxµ only occurs in fλ,µ. Finally, for gi, i = 1, . . . , 7, one can
set xλi = xλi = 1 and xν = 0 for all other ν, where λi has the following property:
αi is the unique fundamental root such that the difference λi − αi is a weight. As
λ1, . . . , λ7 one can take, for instance, the weights 8, 8, 6, 4, 3, 2, 1 (Figure 2). �

To prove the main results of the present paper, we need to recall some further
well known facts. The following lemma is Theorem 1.6.1 of [48].



14 NORMALIZER OF THE CHEVALLEY GROUP OF TYPE E7

1

2

3

4 6

8

7

6

5

4

43 3

21

8

2 1

FIGURE 2.

Lemma 5. Let G and H be affine group schemes of finite type over Z, where G is flat, and
let φ : G→ H be a morphism of group schemes. Assume that the following conditions are
satisfied for an algebraically closed field K:

(1) dim(GK) > dimK(Lie(HK)),
(2) φ induces monomorphisms on the groups of points G(K)→ H(K) and G(K[δ])→

H(K[δ]),
(3) the normalizer of φ(G0(K)) in H(K) is contained in φ(G(K)).

Then φ is an isomorphism of group schemes over Z.

Here G0 denotes the connected component of the identity in G, GK denotes the
scheme obtained fromG by a change of scalars, and Lie(HK) denotes the Lie algebra
of the scheme HK. Recall that K[δ] = K[x]/(x2) is the algebra of dual numbers over
K.

Observe, that in our case the preliminary assumptions on the schemes are satis-
fied automatically. All schemes considered are of finite type, being subschemes of
appropriate GLn. Flatness follows from the fact that G is connected and after the
change of base to an algebraically closed field, we will get smooth schemes of the
same dimension. Thus, we only have to verify the three conditions of the above
lemma.

7. THE CASE OF AN ALGEBRAICALLY CLOSED FIELD

The following lemma summarizes obvious properties of the minimal representa-
tion π : G(E7,−)→ GL56 of the simply connected Chevalley group of type E7. The
fact that π(G(E7,−)) is irreducible and tensor indecomposable immediately follows
from the fact that π is microweight. Its faithfulness follows from the equality of
weight latticesΛ(π) = P(Φ). The claim about normalizers follows from the classical
description of abstract automorphisms of Chevalley groups over fields (see [31]).
Recall that this description asserts that any algebraic automorphism of an extended
Chevalley group is the product of an inner automorphism, a central automorphism
and a graph automorphism. The ordinary Chevalley group may have diagonal au-
tomorphisms, but they become inner in the extended group. Modulo the algebraic
ones, the only non-algebraic automorphisms are field automorphisms. Clearly,
groups of type E7 do not have any non-trivial graph automorphisms.

Lemma 6. Viewed as a subgroup of GL(56, K), the algebraic groupG(E7, K) is irreducible
and tensor indecomposable. Moreover, it is equal to its own normalizer.

Let us recall the general outline of the proof of the following lemma. It is almost
the same as the proof of Lemma 10 in [42], but there is a minor difference, due to the
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fact that now the extended Chevalley group of type E7 is not maximal in GL(n,K),
but is contained in the general symplectic group GSp(56, K). In a classical 1952
paper, Eugene Dynkin [10] described the maximal connected closed subgroups
of simple algebraic groups over an algebraically closed field of characteristic 0.
More precisely, he reduced their description to the representation theory of simple
algebraic groups. Relying on earlier results by Seitz himself, and by Donna Tester-
man, Gary Seitz [30] generalized this description to subgroups of classical algebraic
groups over an arbitrary algebraically closed field. Theorem 2 of [30] can be stated
as follows. Let V be the vector representation of SL(V), and X be a proper simple
algebraic subgroup of SL(n,K) such that the restriction V |X of the module V to X is
irreducible and tensor indecomposable. Further, let Y be a proper connected closed
subgroup of SL(n,K), that strictly contains X. Then either Y = Sp(V) or Y = SO(V),
or else the pair (X, Y) is explicitly listed in [30, Table 1].

Lemma 7. Theorem 1 holds for any algebraically closed field.

Proof. It suffices to prove that the connected components of the groups in question
coincide. Since G(E7, K) coincides with its normalizer, it will automatically follow
that the group GI(K) is connected. The fact that G(E7, K) stabilizes the requisite
system of forms, follows from Theorem 4. The inverse inclusion can be established
as follows. In Table 1 of [30] the group of type E7 occurs in the column X four
times3 but each time in the embedding E7 < C28. Formally, this only implies
the maximality of G(E7, K) in Sp(56, K), rather then the maximality of G(E7, K) in
GSp(56, K). However, since det(h$7(η)) = η−28, for every algebraically closed
field the determinant of h$7(η) can be arbitrary. Therefore, any connected closed
subgroup that properly contains G(E7, K), contains both Sp(56, K) and matrices of
an arbitrary determinant, and thus coincides with GSp(56, K). It only remains to
observe that the group GSp(56, K) does not preserve the ideal I. Therefore,G(E7, K)
is maximal among all such groups, and thus coincides with GI(K). �

Lemma 8. Theorem 2 holds for any algebraically closed field.

Proof. Completely analogous to the proof of Lemma 7, only that instead the ref-
erence to Theorem 4 one should invoke results of [24], where it is proven that
E(E7, R) stabilizes the pair (f, h). Therefore, G(E7, K) = E(E7, K) is contained in
G(f,h)(K). Moreover, it is easy to see that elements of the maximal torus T(E8, K)
act as similarities of the pair (f, h), and thus G(E7, K) is contained in G(f,h)(K). �

8. DIMENSION OF THE LIE ALGEBRA

In the present section we proceed with the proofs of Theorems 1 and 2. Namely,
here we prove that the affine group schemes GI, G(f,h), G(f,h) are smooth. This is
one of the key calculations in the present paper.

First, consider GI. We should evaluate the dimension of the Lie algebra of this
scheme. It is well known how to calculate the Lie algebra that stabilizes a system of
forms, see, for instance [17]). Of course, before the advent of the theory of group
schemes, in positive characteristic it was not possible to derive any information
concerning the group stabilizing the same system of forms. Morally, our calculation
faithfully imitates the works by William Waterhouse, especially [48], where such
similar calculations were performed in Lemmas 3.2, 5.3 and 6.3. Analogous calcula-
tions for the cases of polyvector representation of GLn, and for the microweight
representation of E6 were carried through in [44, 42].

Let, as above, K be a field. The Lie algebra Lie((GI)K) of an affine group
scheme (GI)K is most naturally interpreted as the kernel of the homomorphism

3Cases II6–II9 in Dynkin notation, [10], no further inclusions arise in positive characteristics.
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GI(K[δ]) −→ GI(K), sending δ to 0 see [3, 16, 37]. Let G be a subscheme of GLn.
Then Lie(GK) consists of all matrices of the form e+ zδ, where z ∈M(n,K), satisfy-
ing the equations defining G(K). In the next lemma we specialize this statement in
the case where G is the stabilizer of a system of polynomials.

Lemma 9. Let f1, . . . , fs ∈ K[x1, . . . , xt]. Then a matrix e + zδ, where z ∈ M(t, K),
belongs to Lie(FixK(f1, . . . , fs)) if and only if∑

16i,j6t

zijxi
∂fh

∂xj
= 0,

for all h = 1, . . . , s.

The following result is proved in exactly the same way as Lemma 5.3 of [48],
and as Theorem 4 of [42]. Clearly, the dimension that arises in this proof, is the
dimension of the Lie algebra of type E7 increased by 1. As also in [42], from the
proof it will be clear, which of the coefficients zλµ correspond to roots, and which
correspond to the Cartan subalgebra. The extra 1 is accounted by an additional
toral summand, since the Lie algebra we consider is in fact the Lie algebra of the
extended Chevalley group, whose dimension exceeds dimension of the ordinary
Chevalley group by 1.

Theorem 5. For any field K the dimension of the Lie algebra Lie(GI(K)) does not exceed
134.

Proof. Our equations take the form∑
λ,µ

zλµxλ
∂fρ,σ

∂xµ
= 0, ρ, σ ∈ Λ, ρ ⊥ σ;

∑
λ,µ

zλµxλ
∂gα

∂xµ
= 0, α ∈ Φ.

Recall, that the partial derivatives look as follows:

∂fρ,σ

∂xµ
=

{
±xρ+σ−µ, if ρ+ σ− µ ∈ Λ,
0, otherwise.

∂gα

∂xµ
=

{
±xµ, if µ+ α ∈ Λ of µ− α ∈ Λ,
0, otherwise.

• If d(λ, µ) = 3, then zλµ = 0. Indeed, in this case µ = λ. There exists a
root α ∈ Φ such that λ + α ∈ Λ or λ − α ∈ Λ. Consider the equation
corresponding to the polynomial gα. It features the monomial zλλxλ

∂gα
∂xλ

=

±zλλx2λ. However, the monomial x2λ does not occur in any generator of the
ideal I. It follows that the coefficient ±zλλ must be 0.
• If d(λ, µ) = 2, then zλµ = 0. Choose a root α ∈ Φ such that µ + α ∈ Λ or
µ− α ∈ Λ. Consider the equation corresponding to the polynomial gα. It
features the monomial zλµxλ ∂gα∂xµ

= ±zλµxλxµ, where d(λ, µ) = 1. Thus,
the monomial xλxµ does not occur in any generator of the ideal I. The
non-zero summand±zλµxλxµ could only possible cancel with the non-zero
summand of the form zµλxµ

∂gα
∂xλ

. However, varying α one can guarantee

that both λ+ α /∈ Λ and λ− α /∈ Λ. For instance, by the transitivity of the
Weyl groups on pairs of weights at distance 2, one can assume that λ = $7
and µ = $7 + α7, in which case one can take α = α6. For this choice of α
the summand ±zλµxλxµ remains the summand containing xλxµ, and thus
zλµ = 0.
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• If d(λ, µ) = d(ν, ρ) = 1 and λ − µ = ν − ρ, then zλµ = ±zνρ. First,
assume that (ν, ρ) 6= (µ, λ). In this case, λ ⊥ ρ, µ ⊥ ν and λ + ρ =
µ + ν. Consider the equation corresponding to the polynomial fλ,ρ =

fµ,ν. It features the monomials zλµxλ
∂fλ,ρ
∂xµ

= ±zλµxλxν and zνρxν
∂fλ,ρ
∂xρ

=

±zνρxνxλ. However, d(λ, ν) = 1, so that the monomial xλxν does not occur
in any generator of the ideal I. This means that these two monomials must
sum to 0, so that zλµ = ±zνρ.
• If d(λ, µ) = d(ν, ρ) = 1 and λ−µ = ν− ρ, then zρρ = ±zλλ± zµµ± zνν. In-

deed, the equation corresponding to the same polynomial fλ,ρ = fµ,ν,
as in the preceding item, features monomials zλλxλ

∂fλ,ρ
∂xλ

= ±zλλxλxρ,

zµµxµ
∂fλ,ρ
∂xµ

= ±zµµxµxν, zννxν
∂fλ,ρ
∂xν

= ±zννxνxµ, and zρρxρ
∂fλ,ρ
∂xρ

=

±zρρxρxλ. Observe, that the monomial xλxρ occurs in exactly one of the
generators of I, viz. in fλ,ρ), and xµxν occurs in the same polynomial, with
the same coefficient, up to sign. Equating the coefficients of the above
monomials, we see zλλ ± zρρ = ±zµµ ± zνν.

Let us summarize what we have just established. The first two items show that
the matrix entries zλµ with d(λ, µ) > 2 do not contribute to the dimension of the
Lie algebra, whereas the entries zλµ with d(λ, µ) = 1 give the contribution equal to
the number of roots ofΦ, namely, 126. Finally, the last item allows us to express all
entries zλλ as linear combinations of the entries zµµ, for µ = µ1, . . . , µt, such that
each fundamental root of Φ occurs among the pair-wise differences of the weights
µi. It is easy to see that the smallest number of such weights is 8, and that one
can use the weights 1, 2, 3, 4, 5, 6, 7, 8 as such. Figure 3 shows their location in the
weight diagram.

1

2

3

4

5

6

7

8

7

6

5

4

43 3

21

FIGURE 3.

Thus, the dimension of the Lie algebra does not exceed 126+ 8 = 134. �

Next, we pass to the schemes G(f,h) and G(f,h). As above, we can identify
the Lie algebras Lie(G(f,h)(K)) and Lie(G(f,h)(K)) with the kernels of homomor-
phisms obtained by specializing δ in the ring of dual numbers K[δ] to 0. Thus,
Lie(G(f,h)(K)) consists of the matrices g = e + xδ, where x ∈ M(n,K), satisfying
the following conditions: f(gu, gv, gw, gz) = f(u, v,w, z) and h(gu, gv) = h(u, v),
for all u, v,w, z ∈ V . Similarly, Lie(G(f,h)(K)) consists of all matrices g = e + xδ,
where x ∈ M(n,K), satisfying the conditions f(gu, gv, gw, gz) = ε(g)f(u, v,w, z)
and h(gu, gv) = ε2(g)h(u, v) for all u, v,w, z ∈ V .

Theorem 6. For any field K the dimension of the Lie algebra Lie(G(f,h)(K)) does not
exceed 133, while the dimension of the Lie algebra Lie(G(f,h)(K)) does not exceed 134.
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Proof. First, observe that the conditions on elements of the Lie algebra Lie(G(f,h)(K))

are obtained from the corresponding conditions for elements of Lie(G(f,h)(K)) by
substituting ε(g) = ε ′(g) = 1 and c2(g) = c3(g) = c4(g) = 0. Let g be a matrix
satisfying the above conditions for all u, v,w, z ∈ V . Plugging in g = e + xδ and
using that the form f is four-linear, whereas the form h is bilinear, we get

f(xu, v,w, z) + f(u, xv,w, z) + f(u, v, xw, z) + f(u, v,w, xz)

= (ε(g) − 1)f(u, v,w, z) + c2(g)h(u, v)h(w, z)

+ c3(g)h(u,w)h(v, z) + c4(g)h(u, z)h(v,w)

and

h(xu, v) + h(u, xv) = (ε ′(g) − 1)h(u, v).

Now we show that the entries of the matrix x are subject to exactly the same linear
dependences, as in the proof of Theorem 5.

• If d(λ, µ) = 3, then xλµ = 0. Indeed, in this case µ = λ. Let (λ, ρ, σ, τ) be
a non-degenerate quadruple of weights containing λ. Set u = eρ, v = eσ,
w = eτ, z = eµ. Then (ρ, µ) = (ρ, δ − λ) = (ρ, δ) = 1/2. Similarly, (σ, µ) =
(τ, µ) = 1/2. This means that µ is not orthogonal and not opposite to any
of the weights ρ, σ, τ. Thus f(xu, v,w, z) = f(u, xv,w, z) = f(u, v, xw, z) =
f(u, v,w, z) = 0. It follows that f(u, v,w, xz) = ±xλµ = 0.
• If d(λ, µ) = 2, then xλµ = 0. Let {λ}⊥ ⊆ Λ be the set of weights orthogonal

to λ. Observe that µ ∈ {λ}⊥. Moreover, |{λ}⊥| = 27, and these weights are
the weights of the 27-dimensional representation of the Chevalley group
of type E6. Take in {λ}⊥ three weight ρ, σ, τ forming a triad (i.e. pair-wise
orthogonal) in such a way that µ /∈ {ρ, σ, τ}. Then (λ, ρ, σ, τ) is a non-
degenerate quadruple of weights. Set u = eρ, v = eσ, w = eτ, z = eµ.
Observe that µ cannot be orthogonal to more than one of the weights
ρ, σ, τ. Indeed, let µ be orthogonal to two of them, say µ ⊥ ρ and µ ⊥ σ.
Since µ ∈ {λ}⊥, and in {λ}⊥ there is a unique weight that is orthogonal
to both ρ and σ, namely, τ. It follows that µ = τ, a contradiction. Thus,
f(xu, v,w, z) = f(u, xv,w, z) = f(u, v, xw, z) = f(u, v,w, z) = 0. It follows
that f(u, v,w, xz) = ±xλµ = 0.
• If d(λ, µ) = 1 and λ− µ = ν− ρ, then xλµ = ±xνρ. By the transitivity of the

action of the Weyl group on the pairs of weights at distance 1, we can move
the pair (λ, µ) to the pair (1, 2). Then ν − ρ = α7. In the weight diagram
there are exactly 12 edges marked 7, which gives us exactly 12 possibilities
for the pair (ν, ρ). This leaves us with the following three cases to examine:
(1) (ν, ρ) = (λ, µ);
(2) d(λ, ρ) = 2;
(3) (ν, ρ) = (µ, λ).

The first of these cases is trivial. Next, we observe that is suffices to prove
the equality xλµ = ±xνρ for the second case, and then to use the chain of
equalities xλµ = ±xνρ = ±xµλ to derive the third case. Thus, we are left
with the analysis of the situation, where d(λ, ρ) = 2. There exists a non-
degenerate quadruple of weights (λ, ρ, σ, τ). Furthermore, we can stipulate
that d(µ, σ) = 2. Indeed, in the case λ = λ1, µ = λ2, ρ = λ16, the choice
σ = λ15, τ = λ14 would do. Now, set u = eµ, v = eρ, w = eσ, z = eτ. Then
d(µ, ρ) = 1, and thus f(u, v, xw, z) = f(u, v,w, xz) = f(u, v,w, z) = 0. It
follows that f(xu, v,w, z) + f(u, xv,w, z) = 0. But f(xu, v,w, z) = ±xλµ and
f(u, xv,w, z) = ±xνρ.
• If d(λ, µ) = 1 and λ − µ = ν − ρ, then xλλ − xµµ = xνν − xρρ. As in the

proof of the preceding item, we can limit ourselves with the analysis of the
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case, where d(λ, ρ) = 2. Again we can find a non-degenerate quadruple of
weights (λ, ρ, σ, τ) such that d(µ, σ) = 2. Setting u = eλ, v = eρ, w = eσ,
z = eτ, we get (xλλ + xρρ + xσσ + xττ − ε(g) + 1)f(eλ, eρ, eσ, eτ) = 0. It
follows that xλλ+xρρ+xσσ+xττ = ε(g)−1. On the other hand, (µ, ν, σ, τ)
is another non-degenerate quadruple. Setting u = eµ, v = eν, w = eσ,
z = eτ, we get (xµµ + xνν + xσσ + xττ − ε(g) + 1)f(eµ, eν, eσ, eτ) = 0. It
follows that xµµ+xνν+xσσ+xττ = ε(g)−1. Comparing these expressions,
we can conclude that xλλ − xµµ = xνν − xρρ.

Thus, as in the proof of Theorem 5, it turns out that the dimension of the Lie
algebra Lie(G(f,h)(K)) does not exceed 126 + 8 = 134. The same arguments are
also applicable for the case of Lie(G(f,h)(K)). It suffices to set ε(g) = ε ′(g) = 1

and c2(g) = c3(g) = c4(g) = 0. Again, we can conclude that the dimension
of Lie(G(f,h)(K)) does not exceed 134: the entries xλµ do not contribute to the
dimension when d(λ, µ) > 2, they make a contribution 126, when d(λ, µ) = 1, and,
finally, they make a contribution 6 8, for d(λ, µ) = 0.

To conclude the proof of the theorem, we have to find a non-trivial relation
among these last entries. From the final paragraph of the proof of Theorem 5)
we know that the entries zλλ are linear combinations of 8 of them, namely zµµ,
for µ = µ1, . . . , µ8. Here, as µ1, . . . , µ8 one can takes the weights 1, 2, 3, 4, 5, 6, 7, 8,
respectively. Now, set u = eµ1 , v = eµ1 . Plugging these entries into the equation
h(xu, v) + h(u, xv) = 0, we get that xµ1µ1 + xµ1µ1 = 0. One the other hand,
µ1 − µ1 = δ = (2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7), and thus the relations
xλλ − xµµ = xνν − xρρ for λ− µ = ν− ρ ∈ Φ imply that

xµ1µ1 − xµ1µ1 = 2(xµ7µ7 − xµ8µ8) + 3(xµ5µ5 − xµ6µ6)

+ 4(xµ5µ5 − xµ7µ7) + 6(xµ4µ4 − xµ5µ5)

+ 5(xµ3µ3 − xµ4µ4) + 4(xµ2µ2 − xµ3µ3)

+ 3(xµ1µ1 − xµ2µ2)

= 3xµ1µ1 + xµ2µ2 + xµ3µ3 + xµ4µ4
+ xµ5µ5 − 3xµ6µ6 − 2xµ7µ7 − 2xµ8µ8 .

Comparing this with the equality xµ1µ1 + xµ1µ1 = 0, we get that xµ1µ1 + xµ2µ2 +
xµ3µ3 +xµ4µ4 +xµ5µ5 −3xµ6µ6 −2xµ7µ7 −2xµ8µ8 = 0. This is precisely the desired
non-trivial linear relation among the elements xµiµi , which, over a field of any
characteristic, shows that the dimension of our Lie algebra is 1 smaller than the
above bound. Thus, dim Lie(G(f,h)(K)) 6 133, as claimed. �

9. PROOFS OF THEOREMS 1 AND 2

Now we are all set to finish the proofs of our main results.

Proof of Theorem 1. Consider the rational representation of algebraic groups

π : G(E7,−)→ GL56

with the highest weight$7. This representation is faithful, and by Theorem 4 its
image is contained in GI. We wish to apply to this morphism π Lemma 5.

Indeed, for an algebraically closed field K and for K[δ] the representation π is
a monomorphism. This means that the condition 2 of Lemma 5 holds. Clearly,
dim(G(E7, K)) = 134, and Theorem 5 implies that also dimK(Lie(GK)) 6 134, so
that the condition 1 of Lemma 5 follows from the fact that by Lemma 6 already the
normalizer of G(E7, K) in GL(56, K) is contained in — and in fact coincides with —
GI(K). This means that we can apply Lemma 5 to conclude that π establishes an
isomorphism of G(E7,−) and GI, as affine group schemes over Z. �
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Proof of Theorem 2. Here again we can use Lemma 5. The situation is completely
analogous to the proof of Theorem 1, only that instead of reference to Theorem 4,
one should invoke the main theorem of [24], and instead of Theorem 5 one should
use Theorem 6. �

Lemma 10. In the definition of the group G(f,h)(R) always ε ′(g) = (ε(g))2 and c2(g) =
c3(g) = c4(g) = 0. In other words,

G(f,h)(R) = {g ∈ GL(56, R) | there exists ε ∈ R∗ such that

f(gu, gv, gw, gz) = εf(u, v,w, z)

and h(gu, gv) = ε2h(u, v) for all u, v,w, z ∈ V}.

Proof. We have already shown that the group G(f,h)(R) coincides with the ex-
tended Chevalley group G(E7, R). Clearly, both ε and ε ′ are homomorphisms from
G(E7,−) to Gm, trivial on the commutator subgroup. Thus, their appropriate pow-
ers should coincide. Calculating their values on the semi-simple element h$7(η),
we see that ε takes the value η2, whereas ε ′ takes the value η. Thus, ε = (ε ′)2.

On the other hand, it is easy to see that ci enjoy the 1-cocycle identity ci(gh) =
ε(g)ci(h) + ci(g)ε(h) and vanish on both the commutator subgroup and the semi-
simple elements of the form h$7(η). As an algebraic group, the extended Chevalley
group is generated by these two subgroups, so that ci are identically 0. �

10. PROOF OF THEOREM 3

Proof of Theorem 3. Clearly, G(E7, R) 6 N(G(E7, R)). It is well known, see, for in-
stance [15]) and references there, that for any irreducible root system Φ of rank
strictly larger than 1, and for any commutative ring R the elementary group
E(Φ,R) is normal in the extended Chevalley group G(Φ,R). Therefore, G(E7, R) 6
N(E(E7, R)). On the other hand, both normalizers N(E(E7, R)) and N(G(E7, R)) are
obviously contained in the transporter Tran(E(E7, R), G(E7, R)). Thus, to finish the
proof of the theorem, it suffices to verify that Tran(E(E7, R), G(E7, R)) is contained
in G(E7, R).

Let g ∈ GL(56, R) belong to Tran(E(E7, R), G(E7, R)). WE pick any root α ∈ Φ
and any ξ ∈ R. Then a = gxα(ξ)g

−1 lies in G(E7, R), and thus f(au, av, aw, az) =
f(u, v,w, z) and h(au, av) = h(u, v) for all u, v,w, z ∈ V . Therefore, substituting
(gu, gv, gw, gz) for (u, v,w, z), we get

f(gxα(ξ)u, gxα(ξ)v, gxα(ξ)w,gxα(ξ)z)

= f(gu, gv, gw, gz) for all u, v,w, z ∈ V.

Consider the form F : V × V × V × V → R, defined by

F(u, v,w, z) = f(gu, gv, gw, gz).

By our assumption, one has

F(xα(ξ)u, xα(ξ)v, xα(ξ)w, xα(ξ)z) = F(u, v,w, z)

for all u, v,w, z ∈ V and for all α ∈ Φ, ξ ∈ R. Root unipotents xα(ξ) generate the
elementary group E(E7, R). It follows that the form F is invariant under the action
of this group. Obviously, the form F is four-linear. Thus, we can apply to this form
the main result of [24, Theorem 2]). It says that in this case the form F has the shape

F(u, v,w, z) = εf(u, v,w, z) + c2h(u, v)h(w, z)

+ c3h(u,w)h(v, z) + c4h(u, z)h(v,w),

for some ε, c2, c3, c4 ∈ R. Plugging in g−1 instead of g, we can conclude that ε ∈ R∗.
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A similar calculation for h shows that h(gu, gv) = ε ′h(u, v) for some ε ′ ∈ R.
Again, plugging in g−1 instead of g, we can conclude that ε ′ ∈ R∗.

This shows that g belongs to the group G(f,h)(R), which by Theorem 2 coincides
with G(E7, R). �

The authors are grateful to Ernest Borisovich Vinberg, who pointed out a serious
error in a preliminary version of this paper. Also, the authors are grateful to the
referee, for the statement and proof of Lemma 10.
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