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ON OVERGROUPS OF E(E6, R) AND E(E7, R) IN THEIR MINIMAL REPRESENTATIONS

A. Yu. Luzgarev∗ UDC 512.5

Overgroups of elementary Chevalley groups of types E6 and E7 in their minimal irreducible representations are dealt
with. One of the first steps toward their description, namely, the construction of a series of perfect intermediate
groups, is performed. Probably all perfect intermediate groups for groups of type E6 are described. A conjecture
concerning the structure of perfect overgroups of type E7 is suggested. Bibliography: 23 titles.

1. Introduction

In this paper, we consider the problem of classifying the overgroups of the elementary subgroup E(Φ, R) in
Chevalley groups of type Φ = E6, E7 in their minimal irreducible representations (R is a commutative ring).
There are many papers devoted to similar problems, but almost all of them consider only classical groups over
fields. These are [9–11, 13–17]. Only in recent papers [4–6] has the standard description for overgroups of
symplectic and orthogonal elementary groups over a commutative ring been obtained, and Petrov’s paper [19] is
devoted to a similar description of overgroups for generalized unitary groups over an arbitrary ring with certain
conditions on the local stable rank.

The proof of such theorems concerning the standard description for exceptional groups would be of great
interest. Let us clarify what this means. We say that the standard description of subgroups in G = GL(n, R)
containing E(Φ, R) holds if for any such subgroup H there exists a unique ideal A � R such that

E(Φ, R)E(n, R, A) ≤ H ≤ NG(E(Φ, R)E(n, R, A)),

where E(n, R, A) = E(n, A)E(n,R) is the relative elementary group and NG denotes a normalizer in G. For
exceptional groups of types E6 and E7 in their minimal irreducible representations (which have dimensions 27
and 56, respectively), it is not known whether the standard description holds, even if R is a field. In this paper,
we prove the existence of the largest ideal A satisfying the condition

E(Φ, R)E(n, R, A) ≤ H.

Moreover, we show that the groups

EE6(27, R, A) = E(E6, R)E(27, R, A)

and
EE7(56, R, A) = E(E7, R)E(56, R, A)

are perfect. Here R is an arbitrary commutative ring in which 2 and 3 are invertible.
For groups of type E7 the standard description seems to be more complicated: we must turn our attention to

the group
EE′

7(56, R, A, B) = E(E7, R)E(56, R, A) Ep(56, R, B),

where A ⊆ B are two ideals of R. This is due to the fact that a group of type E7 can be embedded in a certain
symplectic matrix group. Since this embedding is not unique, we must deal with the conjugation of Ep(56, R, B)
by some special diagonal matrix. In the present paper, we make some steps toward a similar description of
overgroups of E(E7, R).

This paper is organized as follows: in Sec. 2, we introduce some notation and definitions and in Sec. 3 we
state the results in six theorems. The rest of the paper is devoted to their proofs. In Sec. 4, one can find a proof
of the first theorem. In Secs. 5, 6, 7, and 8, the second theorem is proved, which proves Theorem 3 as well (see
the remark before the statement of Theorem 3). Section 9 is devoted to a proof of Theorem 4. The introduction
of the symplectic group in the description of overgroups for E(E7, R) is made in Secs. 10–12. In Sec. 10, we
construct the symplectic group we need, whereas in Secs. 11 and 12 we establish Theorems 5 and 6, respectively.
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2. Notation and definitions

Throughout this paper Φ = E6 or Φ = E7. If statements for Φ = E6 and Φ = E7 are different, we separate
them by the abbreviation “resp.” Let P be a lattice lying between the root lattice Q(Φ) and the weight lattice
P (Φ). For a fixed order on Φ, let Φ+ be the set of positive roots and Φ− be the set of negative roots with
respect to this order. Let Π = {α1, α2, . . . , αl} be the corresponding set of fundamental roots (l = 6 resp.
7). The numbering of fundamental roots follows that from [1]. Given a root system Φ, a lattice P , and a
commutative ring R with 1, one can construct the Chevalley group G = GP (Φ, R), i.e., the group of points over
R of the Chevalley–Demazure affine group scheme. We always consider a simply-connected Chevalley group, i.e.,
P = P (Φ), and we omit P in the notation of the group.

We assume that a Chevalley base is chosen in a complex simple Lie algebra L of type Φ and that the Chevalley
algebra LR is constructed. Therefore, we have a split maximal torus T(Φ, R) in G and a fixed parametrization
of root unipotent subgroups Xα, α ∈ Φ, with respect to this torus. For α ∈ Φ and ξ ∈ R, we denote by
xα(ξ) the corresponding elementary root unipotent. In the sequel we will frequently make use of Steinberg
relations between the elements xα(ξ), in particular, of the Chevalley commutator formula (see [8]). The group
Xα = {xα(ξ), ξ ∈ R} is called the elementary root subgroup; the group E(Φ, R) = 〈Xα, α ∈ Φ〉 that is generated
by all elementary root subgroups is called the (absolute) elementary subgroup of the Chevalley group G(Φ, R).

We assume that the group E(Φ, R) is a subgroup in GL(n, R), where n = 27 resp. 56, in the usual (minimal)
representations. This means that G acts on a Weyl module V = V (ω), where ω is a dominant weight. We
assume that the highest weight ω of V is fundamental and is equal to ω1 resp. ω7. Then the corresponding
modules V are microweight; see [2, 3, 23] for more detailed information and further references. By Λ = Λ(ω) we
denote the set of weights of the module V = V (ω), taking the multiplicities into account. In fact, in microweight
representations all weights have multiplicity one; therefore Λ coincides with the orbit of the highest weight ω
under the action of the Weyl group W .

Let us fix an admissible base vλ, λ ∈ Λ, for the module V . This means that xα(ξ)vλ can be expressed as
a linear combination of vectors vµ, µ ∈ Λ, with integer coefficients. For microweight representations, one can
normalize an admissible base in such a way that xα(ξ)vλ = vλ + cλαξvλ+α, where all the action constants cλα

are equal to 1 or −1 (this is a “Matsumoto lemma,” see [18, 20]). In fact, we always choose a crystalic base,
in which the constants cλα are equal to 1 for α ∈ ±Π (an elementary proof of the existence of this base can be
found in [22]).

We view a vector a ∈ V , a =
∑

aλvλ, as a column of coordinates a = (aλ), λ ∈ Λ. At the same time, an
element b of the contragradient module V ∗ can be naturally regarded as a row b = (bλ), λ ∈ Λ. We index rows
and columns by weights of the module V , that is, by elements of Λ. Therefore, rows and columns of matrices in
GL(V, R) = GL(n, R) are indexed by the weights of the representation, that is, by elements λ, µ, ν, ρ, σ, τ, . . . ∈ Λ.
For x, y ∈ G we denote by [x, y] their commutator xyx−1y−1.

The main tool for our calculations is the following lemma, copied from [3].

Lemma 0. For any g ∈ GL(n, R), α ∈ Φ, and ξ ∈ R, we have

(xα(ξ)g)ρσ = gρσ ± ξgρ−α,σ, (gxα(ξ))ρσ = gρσ ± ξgρ,σ+α.

3. Main results

The aim of this paper is to prove the following two theorems.

Theorem 1. Let A � R. Then
E(n, A)E(Φ,R) = E(n, R, A),

where, as usual, E(n, R, A) = E(n, A)E(n,R).

Theorem 2. Assume that H is a subgroup in GL(n, R) that contains E(Φ, R) and 2, 3 ∈ R∗. For λ, µ ∈ Λ and
λ �= µ, we set Aλµ = {ξ ∈ R | tλµ(ξ) ∈ H}. If ρ, σ ∈ Λ, ρ �= σ, then Aλµ = Aρσ = A, where A � R.

From this theorems we can immediately deduce the following theorem.

Theorem 3. Assume that H is a subgroup in GL(n, R) that contains E(Φ, R) and 2, 3 ∈ R∗; then there exists
a unique largest ideal A � R such that E(n, R, A) ≤ H. Moreover, if tλµ(ξ) ∈ H for some λ, µ ∈ Λ, λ �= µ,
then ξ ∈ A.

Theorem 3 asserts that for any intermediate subgroup between E(Φ, R) and GL(n, R), there exists an ideal
A � R such that H contains the group E(Φ, R)E(n, R, A). In Theorem 3, we prove that the latter group is
perfect.
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Theorem 4. Let R be a commutative ring and A � R. The groups EE6(27, R, A) = E(E6, R)E(27, R, A) and
EE7(56, R, A) = E(E7, R)E(56, R, A) are perfect.

The following theorem is analogous to Theorem 1 for a symplectic group, which we need in the case Φ = E7.

Theorem 5. Assume that A � R and 2 ∈ R∗; then

Ep(56, A)E(E7,R) = Ep(56, R, A),

where, as usual, Ep(56, R, A) = Ep(56, A)Ep(56,R).

We construct the above-mentioned symplectic group Ep(56, R) in Sec. 10.
The last theorem is analogous to Theorem 4.

Theorem 6. Let R be a commutative ring, A � R, B � R, A ⊆ B, and 2 ∈ R∗. The group EE′
7(56, R, A, B) =

E(E7, R)E(56, R, A) Ep(56, R, B) is perfect.

Unfortunately, the author has not yet succeeded in obtaining an analog of Theorem 2 in the symplectic case.
Moreover, we did not make use of the fact that there are many different symplectic groups that contain E(E7, R)
in the minimal representation (see a short comment in Sec. 1).

4. Proof of Theorem 1

Proof. It is obvious that the left-hand group is contained in the right-hand one. To prove the opposite inclusion,
note that for n ≥ 3 the group E(n, R, A) is generated by the elements zλµ(ξ, ζ) = tµλ(ζ)tλµ(ξ) for all ξ ∈ A, ζ ∈ R,
and λ, µ ∈ Λ, λ �= µ (this fact was proved by Tits in [21]). Thus it remains to show that zλµ(ξ, ζ) belongs to
H = E(n, A)E(Φ,R). We do this in Lemmas 1, 2, and 3; in Lemma i we consider the case d(λ, µ) = i, i = 1, 2, 3.
It is obvious that in our representation, 2 resp. 3 is the maximal distance between the weights, and the theorem
will be established if we prove the following three lemmas.

From now on ζ ∈ R and ξ ∈ A. We shall often use the following direct calculation:

zλµ(ξ, ζ) = tµλ(ζ)tλµ(ξ)tµλ(−ζ) = (e + ζeµλ)(e + ξeλµ)(e − ζeµλ) = e + ξeλµ + ξζ(eµµ − eλλ) − ξζ2eµλ.

Lemma 1. Assume that d(λ, µ) = 1; then tµλ(ζ)tρσ(ξ) ∈ H for any ρ, σ ∈ Λ. In particular, zλµ(ξ, ζ) ∈ H.

Proof. First consider the case ρ = λ and σ = µ. Denote µ − λ by α ∈ Φ and consider an element

xα(ζ)tλµ(ξ) = xα(ζ)tλµ(ξ)xα(−ζ) ∈ H.

It easily follows from Lemma 0 that

g = xα(ζ)tλµ(ξ) = e + ξeλµ ± ζξeµµ ± ζeµλ +
s∑

i=1

(−1)εiζeνi+α,νi,

where ν1, ν2, . . . , νs are all distinct weights ν ∈ Λ\{λ} such that ν +α is also a weight. We are not interested in
the signs (−1)εi in this expression; we need only know the sign of action “between” the weights λ and µ, which
we will indicate by the symbols ± and ∓.

It remains to multiply the expression obtained by xα(−ζ) and to look at the matrix elements. It is obvious (see
Lemma 0 once more) that this multiplication changes only elements in positions (τ, τ ′), where τ, τ ′, τ ′ + α ∈ Λ.
But we have already known all τ ′ such that τ ′ and τ ′ + α are both weights: these are precisely λ, ν1, . . . , νs.
We want to know for which τ the element gτ,τ′+α does not equal 0. It is easy to show that the signs of action
“between” the weights νi and νi + α are opposite to each other, whence all expressions containing νi cancel out.
That is why we did not try to know what signs of actions we had there. The remaining expression is

xα(ζ)tλµ(ξ) = gxα(−ζ)e ∓ ξζeλλ + ξeλµ − ξζ2eµλ ± ξζeµµ.

We see that it coincides with the above expression for zλµ(ξ, ζ), except for the signs in the positions (λ, λ)
and (µ, µ), which we can easily change by substituting −ζ for ζ at the outset.

The remaining cases where ρ �= λ or σ �= µ are even easier. Indeed, y = tµλ(ζ)tρσ(ξ) = [tµλ(ζ), tρσ(ξ)] · tρσ(ξ).
If ρ = λ, but σ �= µ, then y = tµσ(ξζ)tρσ(ξ) ∈ E(n, A). The case σ = µ and ρ �= λ can be treated in the same
way. Finally, if σ �= µ and ρ �= λ, then these transvections commute, and y = tρσ(ξ) ∈ E(n, A). The proof is
complete.
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Corollary. Assume that d(λ, µ) = 1; then E(n, A)tµλ(ζ) ≤ H.

Lemma 2. Assume that d(λ, µ) = 2; then zλµ(ξ, ζ) ∈ H.

Proof. Choose α, β ∈ Φ such that λ−µ = α+β, λ−α = µ+β ∈ Λ, and λ−β = µ+α ∈ Λ. We can do this: the
pair (λ, µ) can be translated to the pair (ω,−ω) resp. (ω, ω − 012222

1 ) by the action of the Weyl group. Hence

we can take, for example, α = 12211
1 resp. α = α7 and β = 11221

1 resp. β = 012221
1 .

Set κ = λ − α = µ + β and ν = λ − β = µ + α. We have

zλµ(ξ, ζ) = tµλ(ζ)tλµ(ξ) = tµλ(ζ)[tλν(ξ), tνµ(1)] = [tλν(ξ)tµν (ξζ), tνµ(1)tνλ(−ζ)]

= tλν(ξ)tµν (ξζ) · tνµ(1)tνλ(−ζ)tµν(−ξζ)tλν(−ξ).

Thus, it remains to show that
tνµ(1)tνλ(−ζ)tµν(−ξζ)tλν(−ξ) ∈ H.

Now we restrict our calculations to four weights: λ, ν, µ, and κ. Namely, consider the four-dimensional subspace
W ⊆ V generated by vλ, vν , vµ, vκ. We can perform our calculations inside W , because they will contain only
elementary transvections of the form tρσ(ζ) for ζ ∈ R, {ρ, σ} ⊂ {λ, ν, µ, κ}, and conjugations by the elements
xα(ζ) and xβ(ζ). After these conjugations, we are kept inside this subspace: indeed, consider an element
g ∈ GL(n, R) such that the nontriviality of its action is contained in W ; then the element xα(ζ)g also has this
property. This immediately follows from the fact that our representation is microweight, whence none of the
elements λ + α, ν +α, µ−α, and κ−α is a weight. Therefore, the “actions” between the weights ρ and σ (here
ρ − σ = α) cancel each other in just the same way as was in the proof of Lemma 1. Naturally, this argument
can also be applied to β.

We use matrices in GL(n, R) restricted to W in the base (vλ, vν, vµ, vκ). Let h = tνλ(−ζ)tµν(−ξζ)tλν(−ξ),
g = tνµ(1)h. We want to prove that g ∈ H. Note that, by the corollary to Lemma 1, we have h ∈ H. Let us
denote by g̃ and h̃ the matrices in GL(4, R) that correspond to g|W and h|W in the above-mentioned base. It is
clear that

h̃ =






1 − ξζ −ξ 0 0
ξζ2 1 + ξζ 0 0
−ξζ2 −ξζ 1 0

0 0 0 1




 , g̃ =






1 − ξζ −ξ ξ 0
0 1 0 0

−ξζ2 −ξζ 1 + ξζ 0
0 0 0 1




 , x̃α(ζ) =






1 0 0 ζ
0 1 ζ 0
0 0 1 0
0 0 0 1




 .

Thus, the element xα(1)h ∈ H corresponds to the matrix






1 − ξζ −ξ ξ ξζ
0 1 0 0

−ξζ2 −ξζ 1 + ξζ ξζ2

0 0 0 1




 .

Upon multiplication from the left by tλκ(−ξζ)tµκ(−ξζ2) ∈ E(n, R), we obtain an element of H, which is expressed
by the matrix g̃.

However, the argument above is correct only if the action signs of xα(ζ) restricted to W are the same: in this
case, xα(ζ) has actually the above form. But if the signs are opposite, we should slightly change the argument.
Conjugating h by xα(±1), we obtain almost the same matrix as above; namely, the nondiagonal elements in
the last column will have the opposite sign. It is clear that we need only multiply by the same elementary
transvections with the opposite signs in their arguments; then we obtain precisely the matrix g̃. This means
that in every case we have g ∈ H, and the proof is complete.

Lemma 3. Assume that d(λ, µ) = 3; then zλµ(ξ, ζ) ∈ H.

Proof. Here Φ = E7. Now, as before, we construct a certain configuration of weights for the special case λ = ω,
µ = −ω and “translate” it by an element of the Weyl group into an arbitrary pair of weights with distance 3
between them. Let us set α = α7, β = 123221

2 , and γ = 123321
1 . It is clear that −ω + α + β + γ = ω and

α, β, γ ∈ Φ. Let us denote the weight µ + α by ν.
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A calculation similar to the one at the beginning of the proof of Lemma 2 shows that it suffices to prove the
inclusion

g = tνµ(1)tνλ(−ζ)tλν(−ξ)tµν(−ξζ) ∈ H.

We obtain
g = tνµ(1) · tνλ(−ζ)tλν(−ξ)tνλ(ζ) · tνλ(−ζ)tµν(−ξζ)tνλ(ζ) · tνµ(−1).

Using Lemma 2, we get tνλ(−ζ)tλν(−ξ)tνλ(ζ) ∈ H (note that d(λ, ν) = 2). Consider the expression

tνλ(−ζ)tµν(−ξζ)tνλ(ζ) = tµν(−ξζ) · [tµν(ξζ), tνλ(−ζ)] = tµν(−ξζ)tµλ(−ξζ2) ∈ E(n, A).

Thus we have g = tνµ(1)h, where h ∈ H. Now we proceed as in the final part of the proof of the previous lemma:
we look at the matrices to compare g with xα(1)h ∈ H. The only weights affected by the elements obtained
are λ, µ, and ν. We want to be able to conjugate by xα(1), and thus we need to take the weight κ = λ − α
into account as well. These four weights provide the subspace we need: any addition or subtraction of the root
α does not result in new weights. Therefore we may restrict our calculations to the four-dimensional subspace
W ⊆ V generated by the vectors vλ, vκ, vν , vµ. We express these restrictions by matrices in GL(4, R) in the
base (vλ, vκ, vν, vµ):

h̃ =






1 + ξζ 0 −ξ 0
0 1 0 0

ξζ2 0 1 + ξζ 0
−ξζ2 0 −ξζ 1




 , x̃α(1) =






1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1




 ,

x̃α(1)h =






1 − ξζ ξζ −ξ ξ
0 1 0 0
0 0 1 0

−ξζ2 ξζ2 −ξζ 1 + ξζ




 , g̃ =






1 − ξζ 0 −ξ ξ
0 1 0 0
0 0 1 0

−ξζ2 0 −ξζ 1 + ξζ




 .

Now we can see that, multiplying xα(1)h by

tλκ(−ξζ)tµκ(−ξζ2) ∈ E(n, A)

from the left, we obtain g. Unfortunately, x̃α(1) does not always have the form given above. Action signs may
be different for the pairs of weights (λ, κ) and (ν, µ). It is obvious that there are only two essentially different
cases: these signs are the same (and we dealt with this case above), and these signs are opposite to each other.
We can reduce all the cases to these two ones by substituting xα(−1) for xα(1). Hence if the signs are different,
we may assume that

x̃α(1) =






1 −1 0 0
0 1 0 0
0 0 1 1
0 0 0 1




 ,

whence

x̃α(1)h =






1 − ξζ −ξζ −ξ ξ
0 1 0 0
0 0 1 0

−ξζ2 −ξζ2 −ξζ 1 + ξζ




 ,

and we obtain the final result by multiplying from the left by tλκ(ξζ)tµκ(ξζ2) ∈ E(n, A).

5. Proof of Theorem 2. The beginning

Note that now H is a subgroup in GL(n, R) containing E(Φ, R). The following lemma can be obtained by
direct calculations.

Lemma 4. Assume that λ, µ ∈ Λ, λ �= µ, α ∈ Φ, and λ − µ �= ±α.
(a) If µ − α /∈ Λ and λ + α ∈ Λ, then [tλµ(ξ), xα(ζ)] = tλ+α,µ(±ξζ).
(b) If λ − α /∈ Λ and µ + α ∈ Λ, then [tλµ(ξ), xα(ζ)] = tλ,µ+α(±ξζ).

2562



Lemma 5. Assume that λ, µ ∈ Λ and d(λ, µ) = 1. Then for α ∈ Φ such that λ + α ∈ Λ and λ + α �= µ, we
have µ − α /∈ Λ.

Proof. Let us look at the weight diagram. We may assume that λ = ω and µ = ω − δ. If λ + α ∈ Λ, then
α ∈ Φ− and the root −α1 resp. −α7 must occur in the decomposition of α into the sum of fundamental roots.
But to satisfy µ − α ∈ Λ, the root −α1 resp. −α7 must be between the weights µ − α and µ, which holds only
if α = µ − λ.

Now we can prove part of Theorem 2.

Lemma 6. Assume that λ, µ, ρ, σ ∈ Λ and d(λ, µ) = d(ρ, σ) = 1; then Aλµ = Aρσ = A1 and A1 � R.

Proof. It is obvious that Aλµ is an additive subgroup of R. Part (a) of Lemma 4 says in fact that if λ, µ ∈ Λ,
λ �= µ, α ∈ Φ, λ−µ �= ±α, and µ−α /∈ Λ, then RAλµ ⊂ Aλ+α,µ. Thus, using Lemma 5, we obtain RAλµ ⊂ Aρσ

(we can move “step by step” along the edges of the weight diagram to replace both weights in the indices by
necessary ones). Moreover, Aλµ is an ideal of R. It follows that all such ideals coincide with each other.

The following lemma is a further step toward the theorem.

Lemma 7. Assume that λ, µ, ρ, σ ∈ Λ and d(λ, µ) = d(ρ, σ) = 2; then Aλµ = Aρσ = A2 and A2 � R.

Proof. Let us look at the weight diagram again. We may assume that µ = ω and λ = ω − 22210
1 resp. λ =

ω − 012222
1 (22210

1 resp. 012222
1 is not a root, and thus d(λ, µ) = 2). Hence, for any α ∈ Φ−, we have µ−α /∈ Λ,

and we can use part (a) of Lemma 4 with α ∈ Φ− such that λ+ α ∈ Λ. In this way, ρ = λ +α can be made into
any other weight such that d(ρ, µ) = 2, except for ρ = −ω in the case Φ = E6, therefore obtaining RAλµ ⊂ Aρµ.
However, if Φ = E6 and ρ = −ω, we proceed as follows: first we obtain RAλµ ⊂ Aρµ, where ρ = λ − 01221

1 , and

second we pass to ρ − 00001
0 = −ω. Therefore, conjugating by xα6(±1), we have RAλµ ⊂ Aρµ ⊂ A−ω,µ. The

proof is accomplished in the same way as in the previous lemma.

Now we show that A1 = A2. In the following two lemmas, we prove the necessary inclusions. It is worth
mentioning that the inclusion A1 ⊂ A2 can easily be obtained by the methods used in the proof of Theorem 2.
On the other side, in order to prove the opposite inclusion we rely on the fact that H contains E(Φ, R) (earlier
we used only the fact that H is normalized by E(Φ, R)). Moreover, the restriction 2, 3 ∈ R∗ arises.

Lemma 8. A1 ⊆ A2.

Proof. Take ξ ∈ A1. Using Lemma 6, we obtain tλµ(ξ) ∈ H for any µ = ω and λ = ω−12210
1 resp. λ = ω−012221

1 .
Therefore, using Lemma 4, we get [tλµ(ξ), x−α1(1)] = tλ−α1,µ(ξ) resp. [tλµ(ξ), x−α7(1)] = tλ−α7,µ(ξ). But
d(λ − α1, µ) = 2 resp. d(λ − α7, µ) = 2, and thus ξ ∈ A2.

Lemma 9. Assume that 2, 3 ∈ R∗; then A2 ⊆ A1.

Proof. Now we need to know what happens when we commute a transvection tλµ(ξ) with a root element xα(ζ)
if λ − µ �= ±α, but λ + α, µ − α ∈ Λ (α ∈ Φ). Assume that ξ ∈ A2 and ζ ∈ R (in fact we will set ζ = 1 below).
We may also assume that d(λ, µ) = 2. Using the technique from the proof of Theorem 1, it is easy to obtain

[
tλµ(ξ), xα(ζ)

]
=

(
e + ξeλµ + (−1)εξζeλ,µ−α + (−1)ηζeλ+α,λ + (−1)εζeµ,µ−α

)

×
(
e − ξeλµ + (−1)εξζeλ,µ−α − (−1)ηζeλ+α,λ − (−1)εζeµ,µ−α

)

=e + (−1)εξζeλ,µ−α − (−1)ηξζeλ+α,µ + (−1)ε+ηξζ2eλ+α,µ−α ∈ H. (1)

Note that d(λ + α, µ − α) ≥ 2 (this is readily seen, since we may assume that λ = ω − 22210
1 resp. λ =

ω − 012222
1 and α = α1 resp. α = α7, and look at the weight diagram). Therefore, using Lemma 7, we have

tλ+α,µ−α(±ξζ2) ∈ H, and, multiplying by this element, we obtain e+(−1)εξζeλ,µ−α−(−1)ηξζeλ+α,µ ∈ H. This
means that the product of two transvections tλ,µ−α((−1)εξζ)tλ+α,µ((−1)η+1ξζ) belongs to H. But we need to
find one transvection lying in H.

Now consider the case λ − (µ − α) = (λ + α) − µ = β, where β ∈ Φ is a fixed root. The idea is to take all
transvections tρσ(. . . ) with ρ−σ = β. It is obvious that the number k of such pairs (ρ, σ) is equal to 6 resp. 12.
Let us denote them by (ρi, σi), 1 ≤ i ≤ k.

The last part of our argument is somewhat tricky, so we first consider the case Φ = E6 and next make necessary
corrections to include the case Φ = E7.
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6. Proof of Lemma 9. The case Φ = E6

We claim that for every pair of such pairs (ρi, σi) and (ρj , σj), the expression ρi − ρj = σi − σj is a root.
Indeed, one such pair, say (ρi, σi), can be translated by an element of the Weyl group to a pair (ω, ω − α1).
Then, looking at the remaining five pairs (ρj , σj) on the weight diagram, we see that ρi − ρj = ω − ρj is always
a root. Hence, if we apply the above calculation and set ζ = 1, we derive that the product of transvections
tρi,σi (±ξ)tρj ,σj (±ξ) belongs to H for any 1 ≤ i, j ≤ 6, i �= j. At the same time, we said nothing about the signs
of ±ξ. Obviously, there are two cases: either these signs coincide or they are opposite to each other. Therefore,
we may assume that a certain product tρi,σi(ξ)tρj ,σj (±ξ) belongs to H.

Now we introduce the final idea of the proof. Since a root element xβ is a product of six transvections

xβ(ξ) =
6∏

i=1

tρi,σi (±ξ),

we have a hope to construct a single transvection tρi,σi(±nξ) (for some n ∈ R∗) from this expression of xβ and
our pairwise products. Then we would have ξ ∈ A1, just as we need. Now we set β = δ in order to make positive
all signs in the expression of xβ(ξ).

Now we need some facts about the action signs of the root element xα(1), because without knowing the signs
we cannot execute our idea. We will use Theorem 1 of [22], which says that if α is a fundamental or a negative
fundamental root, then all signs in the decomposition of xα(1) into the product of transvections are equal to 1.
In our case this implies that η = ε = 0 in Eq. (1). Thus, if α is a fundamental or a negative fundamental root,
then the product of transvections that is obtained by using xα(1) has opposite signs at ξ. Recall that we put
β = δ; now we take

ρ1 = ω, ρ2 = ω − 10000
0 ,

ρ3 = ω − 11000
0 , ρ4 = ω − 11100

0 ,

ρ5 = ω − 11110
0 , ρ6 = ω − 11111

0 ,

σi = ρi − δ, 1 ≤ i ≤ 6.

Now note that in considering the product of transvections

xtρi,σi(ξ)tρi+1,σi+1(±ξ),

we used commutation with xα for α = ρi − ρi+1, which is a fundamental root for any i such that 1 ≤ i ≤ 5.
Therefore we obtain the products

y1 = tρ1,σ1(ξ)tρ2,σ2(−ξ) ∈ H, y2 = tρ2,σ2(ξ)tρ3,σ3(−ξ) ∈ H,

y3 = tρ3,σ3(ξ)tρ4,σ4(−ξ) ∈ H, y4 = tρ4,σ4(ξ)tρ5,σ5(−ξ) ∈ H, y5 = tρ5,σ5(ξ)tρ6,σ6(−ξ) ∈ H.

Consider the product h = y1y
2
2y

3
3y4

4y
5
5xβ(−ξ) ∈ H. It is readily seen that h = tρ6,σ6(−6ξ), whence 6ξ ∈ A1 and

finally ξ ∈ A1, which proves the lemma in the case Φ = E6.

7. Proof of Lemma 9. The case Φ = E7

In this case we cannot state that for any pair of pairs (ρi, σi) and (ρj , σj) the expression ρi − ρj = σi − σj

is a root. Consider the pair (ρi, σi) = (ω, ω − α7): the above-mentioned expression is a root only for ten of the
remaining eleven pairs (ρj , σj). However, in the proof for the case Φ = E6 we used not all possible combinations
of pairs, but only five of them, to construct the elements y1, y2, y3, y4, y5. We shall show that for Φ = E7

we need exactly eleven combinations. As above, it can easily be checked that the product of transvections
tρi,σi (±ξ)tρj ,σj (±ξ) belongs to H if ρi − ρj = σi − σj is a root.

The final idea of the proof, described in the previous section, can be applied to our case in the following way.
We again set β = δ to make positive all signs in nondiagonal matrix elements of xβ(ξ). Using Theorem 1 of [22],
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we conclude that if α or −α is a fundamental root, then the action signs of xα(1) are also equal to 1; therefore
we have η = ε = 0 in (1). Now we take

ρ1 = ω, ρ2 = ω − 000001
0 , ρ3 = ω − 000011

0 ,

ρ4 = ω − 000111
0 , ρ5 = ω − 001111

0 , ρ6 = ω − 011111
0 ,

ρ7 = ω − 001111
1 , ρ8 = ω − 011111

1 , ρ9 = ω − 012111
1 ,

ρ10 = ω − 012211
1 , ρ11 = ω − 012221

1 , ρ12 = ω − 012222
1 , σi = ρi − δ, 1 ≤ i ≤ 6.

In composing the product of transvections for successive pairs (ρi, σi), (ρi+1, σi+1), we obtain

tρi,σi(ξ)tρi+1,σi+1(±ξ);

here we used commutation with xα, where α = ρi − ρi+1 is a fundamental root for any i, 1 ≤ i ≤ 11, except for
i = 6. Moreover,

tρ5,σ5(ξ)tρ7,σ7(±ξ)

can be obtained by commuting with xα2 . Since we used only fundamental roots, we get yi = tρi,σi (ξ)tρi+1,σi+1(−ξ)
∈ H for 1 ≤ i ≤ 11 and i �= 6. Denote tρ5,σ5(ξ)tρ7,σ7(−ξ) by y6. Now consider the expression

h = y1
1y2

2y
3
3y4

4y
−1
5 y6

6y
7
7y8

8y
9
9y

10
10y11

11xα(−ξ) ∈ H.

It is clear that h = tρ12,σ12(−12ξ) (here, as in the case Φ = E6 we use the factorization of xβ(−ξ) into twelve
transvections tρi,σi (ξ)), whence 12ξ ∈ A1 and thus ξ ∈ A1. This completes the proof of Lemma 9.

8. Completion of the proof of Theorem 2

Note that the proof of Theorem 2 for Φ = E6 has already been completed (in Sec. 5), since 2 is the maximal
distance between the weights of the microweight representation of E6. In the case Φ = E7, we need to do some
more work to embrace the case where this distance is 3. Denote A = A1 = A2.

Lemma 10. Assume that λ, µ ∈ λ and d(λ, µ) = 3; then RA ⊂ Aλµ.

Proof. The proof is similar to that of Lemma 8. Any pair of weights (λ, µ) with d(λ, µ) = 3 can be transformed
by an element of the Weyl group to the pair (ω,−ω). Therefore we may assume that λ = −ω and µ = ω. Take
ξ ∈ A. By the above, tλ+α7,µ(ξ) ∈ H. Using Lemma 4, we obtain [tλ+a7,µ(ξ), x−α7(±ζ)] = tλ,µ(ξζ) with a
suitable choice of the sign, whence ξζ ∈ Aλµ.

Lemma 11. Assume that λ, µ, ρ, σ ∈ λ and d(λ, µ) = d(ρ, σ) = 3; then Aλµ ⊂ Aρσ .

Proof. Here, as at the beginning of the proof of Lemma 9, we commute the element tλµ(ξ) with xα(ζ) (see formula
(1)) for ξ ∈ Aλµ, ζ ∈ R, and α ∈ Φ. We shall look at the restrictions of our matrices to the four-dimensional
subspace W generated by the base vectors corresponding to the weights µ, µ − α, λ + α, and λ (in the given
order). We assume that α is a fundamental or a negative fundamental root; therefore the nondiagonal matrix
entries of xα(ζ) have equal signs. Now using formula (1) and the information about the signs, we obtain the
matrix of the restriction of h1 = [tλµ(ξ), xα(ζ)]:

h̃1 =






1 0 0 0
0 1 0 0

−ξζ ξζ2 1 0
0 ξζ 0 1




 . (2)

Set ζ = 1, change the sign of ξ, and commute the result with x−α(ζ). Note that, under our choice of α,
all nondiagonal matrix entries of x−α(ζ) have equal signs. Denote [[tλµ(−ξ), xα(1)], x−α(ζ)] by h2. An easy
computation shows that

h̃2 =






1 0 0 0
0 1 0 0
ξζ 0 1 0

2ξζ + ξζ2 −ξζ 0 1




 .
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By construction, h1, h2 ∈ H, and therefore the product h = h1h2tλµ(−2ξζ − ξζ2) belongs to H and can be
written in the form

h̃ =






1 0 0 0
0 1 0 0
0 ξζ2 1 0
0 0 0 1




 .

In the special case ζ = 1, we obtain tλ+α,µ−α(ξ) ∈ H. It is readily seen that the distance between λ + α and
µ − α equals 3. Indeed, two weights with distance 3 between them correspond to centrally symmetric points in
the weight diagram; thus, if λ and µ are centrally symmetric, then λ+α and µ−α are also centrally symmetric.
Finally, we obtain ξ ∈ Aλ+α,µ−α, whence Aλµ ⊂ Aλ+α,µ−α.

Now it is easy to complete the proof of the lemma. Indeed, since we can take α to be any fundamental or
negative fundamental root, we can move step by step along the edges of the diagram and pass from any pair of
weights with distance 3 between them to any other such pair.

Let us denote the set Aλµ for d(λ, µ) = 3 by A3. Note that, in contrast to Lemmas 6 and 7, we have not yet
proved that A3 is an ideal in R. We do not intend to prove this directly; we only show that the subgroup (with
respect to addition) A3 coincides with A. The inclusion A ⊂ A3 is proved in Lemma 10, and now we prove the
opposite inclusion.

Lemma 12. A3 ⊂ A.

Proof. Assume ξ ∈ A3. For the sake of clarity, we fix the weights λ = −ω and µ = ω and the root α = α7. We
use some notation from the proof of the previous lemma: h1 = [tλµ(ξ), xα(ζ)]. Let us put ζ = 1; then, using
formula (2) and multiplying h1 by tλ+α,µ−α(−ξ), we obtain the element h = e− ξeλ+α,µ + ξeλ,µ−α. Fortunately,
in the present case d(λ + α, µ) = d(λ, µ − α) = 2, and thus we need not repeat giddy tricks in the spirit of the
proof of Lemma 9. It suffices to put β = α6 and consider an element [h, xβ(1)] ∈ H (note that we know the
explicit form of xβ(1), since β is a simple root). An easy computation shows that [h, xβ(1)] = e + ξeλ,µ−α−β.
Using the fact that d(λ, µ−α−β) = 2, we obtain ξ ∈ A. This completes the proof of the lemma and Theorem 2.

9. Proof of Theorem 4

Here we show that the group that naturally arises in Theorem 3 is perfect. Assume that n = 27 resp. n = 56
and E = EE6(27, R, A) resp. E = EE7(56, R, A). Since the group E(Φ, R) is perfect (see [22, 7, 12]), it suffices
to show that generators of E(n, R, A) belong to [E, E]. Denote zλµ(ξ, ζ) by x. Recall that

zλµ(ξ, ζ) = tµλ(ζ)tλµ(ξ), ξ ∈ A, ζ ∈ R.

Theorem 1 implies that x ∈ E(n, A)E(Φ,R), and thus x can be expressed as a product

x =
∏

i

xiyix
−1
i for xi ∈ E(Φ, R) and yi ∈ E(n, A) ⊂ E(n, R, A).

We have x =
∏

i[xi, yi]yi, and for any i the commutator [xi, yi] belongs to [E, E]. It remains to prove that
E(n, A) ⊂ [E, E]. This can easily be deduced from Lemma 4 in the proof of Theorem 2. Namely, consider
tρσ(ξ) ∈ E(n, A) and try to find λ, µ ∈ Λ and α ∈ Φ such that the condition of part (a) in Lemma 4 is satisfied,
and at the same time λ + α = ρ and µ = σ. In the case of success, we obtain tρσ(ξ) = [tλµ(ξ), xα(±1)] ∈
[E(n, A), E(Φ, R)] ⊂ [E, E].

To do this, we may assume that µ = σ = ω is the maximal root. If ρ �= ω −α1 resp. ρ �= ω − α7, then we can
take a simple root β for which ρ + β ∈ Λ, and put λ = ρ + β and α = −β. Thus λ + α = ρ and µ−α /∈ Λ, since
α ∈ Φ− and µ is the highest weight. It is clear that λ �= µ and λ − µ �= ±α (since only λ − µ = α may occur,
and thus λ − α, λ, λ + α ∈ Λ, a contradiction).

It remains to consider the case σ = ω and ρ = ω−α1 resp. ρ = ω−α7. Now we can put α = α3 resp. α = α6

and λ = ρ − α, and it is readily seen that all the assumptions of Lemma 4 are satisifed. This completes the
proof.
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10. Embedding of E(E7, R) into the symplectic group

In this section, we describe an embedding of E(E7.R) into a symplectic group of 56 × 56 matrices. Recall
that we have already embedded E(E7, R) into the general linear group GL(56, R), so it suffices to construct a
symplectic bilinear form ϕ in the given base. Our representation of E7 has a symmetric weight diagram: for any
weight λ there is a weight −λ, which is centrally symmetric to λ. We define a symplectic product ϕ(vλ, vµ) = 0
for µ �= −λ. If µ = −λ, decompose ω − λ into the sum of fundamental weights. The number of weights in this
sum equals the “distance” from the weight λ to the highest weight ω in the weight diagram. This distance is
just the number of edges in a minimal path joining these weights (in contrast to the distance d in the weight
graph, which we often used before). For a while we denote this distance by d′(ω, λ). In fact, we need only know
d′(ω, λ) modulo 2; denote ελ = (−1)d′(ω,λ). We call ελ the sign of the weight λ if this does not cause confusion.
It is clear that ε−λ = −ελ, and thus this naming convention makes some sense. Now we define ϕ(vλ, v−λ) = ελ.

It is obvious that, defining the product on the base vectors, we obtain a symplectic bilinear form on the entire
representation space; therefore we have the corresponding symplectic group. Now we recall how the symplectic
transvections look like:

Tλµ(ξ) = T−µ,−λ(−ελεµξ) =

{
tλµ(ξ)t−µ,−λ(−ελεµξ) for µ �= −λ,

tλ,−λ(ξ) for µ = −λ.

We say that the transvection Tλµ(ξ) is a short root transvection if µ �= −λ, and it is a long root transvection
if µ = −λ.

We often use the Chevalley commutator formula for symplectic transvections without special notice. Let us
write down the most important cases:

[Tλµ(ξ), Tµσ(ζ)] = Tλσ(ξζ) if λ �= ±µ, µ �= ±σ, λ �= ±σ,

[Tλµ(ξ), Tµ,−λ(ζ)] = Tλ,−λ(2ξζ) if λ �= ±µ,

[Tλµ(ξ), Tµ,−µ(ζ)] = Tλ,−µ(ξζ)Tλ,−λ(ελεµξ2ζ) if λ �= ±µ,

[Tλµ(ξ), Tρσ(ζ)] = 1 if λ �= µ, ρ �= σ, µ �= ρ, λ �= σ, µ �= −σ, λ �= −ρ.

The other cases of the Chevalley commutator formula can easily be produced from these ones. The elementary
symplectic group corresponding to this symplectic form will be denoted by Ep(56, R) = 〈Tλµ(ξ), λ �= µ, ξ ∈ R〉,
and in addition Ep(56, R, A) = Ep(56, A)Ep(56,R), where Ep(56, A) = 〈Tλµ(ξ), λ �= µ, ξ ∈ A〉 for any ideal A � R.

Now we check that the group E(E7, R) is contained in the constructed symplectic group Ep(56, R). It suffices
to show that xα(ξ) ∈ Ep(56, R) for ξ ∈ R and α ∈ E7. In fact, it suffices to verify this inclusion only for
fundamental roots α ∈ E7 (due to the Chevalley commutator formula). We show that for any fundamental root
α, the root element xα(ξ) is a product of six symplectic transvections. Indeed, using the weight diagram we see
that there are twelve edges labelled by α, situated in a symmetric way: there are six pairs of such edges, and in
every pair the edges are centrally symmetric. Consider such a pair: edges (λ, µ) and (−µ,−λ) with µ − λ = α.
Take a symplectic transvection Tµλ(1) = tµλ(1)t−λ,−µ(1) (it is really a transvection, because the weights λ and
µ are adjacent, whence εµ = −ελ). But we see here precisely two (elementary) transvections that correspond to
the given pair of edges in the decomposition of xα (recall that all action signs of the root element xα are equal
to +1). Repeating the same argument for each pair of edges, we obtain six short-root symplectic transvections.

We have xα(ξ) ∈ Ep(56, R), and therefore E(E7, R) ∈ Ep(56, R). Now we show that for any root α ∈ E7,
the root element xα(ξ) is a product of exactly six symplectic transvections. As above, we can divide all pairs
of weights (λ, µ) such that µ − λ = α into six pairs of pairs, grouping together the pairs (λ, µ) and (−µ,−λ).
But we already know that xα(ξ) belongs to the symplectic group; therefore it satisfies certain simple equations.
It can easily be checked that the action signs in these pairs match each other nicely, just as in the symplectic
transvection Tλµ(±1).

11. Proof of Theorem 5

We will try to follow the line of proof of Theorem 1.

Proof. It is obvious that the left-hand side is contained in the right-hand one. To prove the opposite inclusion, we
recall that for n ≥ 3 the group Ep(n, R, A) is generated by the elements Zλµ(ξ, ζ) = Tµλ(ζ)Tλµ(ξ), where ξ ∈ A,
ζ ∈ R, λ, µ ∈ Λ, and λ �= µ (see [21]). Hence, it remains to show that Zλµ(ξ, ζ) belongs to H = Ep(n, A)E(Φ,R).

2567



The proof is contained in Lemmas 13, 14, and 15; in Lemma 12 + i we consider the case d(λ, µ) = i, i = 1, 2, 3.
It is obvious that 3 is the maximal distance between the weights in our representation, and thus it remains to
prove the lemmas.

Lemma 13. Assume that d(λ, µ) = 1; then Tµλ(ζ)Tρσ(ξ) ∈ H for all ρ, σ ∈ Λ. In particular, Zλµ(ξ, ζ) ∈ H.

Proof. First consider the case ρ = λ and σ = µ. Denote µ − λ by α. We have

Zλµ(ξ, ζ) = Tµλ(ζ)Tλµ(ξ).

Recall that in the proof of Theorem 1 we succeeded in examining the following expression: xα(ζ)tλµ(ξ). Let us
see what we can count on now. In Sec. 10 we showed that the root element xα(ζ) can be expressed as a product
of six symplectic transvections:

xα(ζ) =
6∏

i=1

Tρiσi(±ζ).

But only one transvection plays a role when we conjugate by xα:

xα(ζ)Tλµ(ξ) = Tµλ(±ζ)Tλµ(ξ).

The reason is the same as in the proof of Theorem 1: we have a microweight representation, and of all transvec-
tions Tρi,σi in the decomposition of xα(ζ) we need to consider only the transvections that interact with the
weights ±λ and ±µ. There is exactly one such transvection Tµλ(±ζ), because the others commute with Tλµ(ξ)
by the Chevalley commutator formula. The following necessary result is obtained: by changing the sign of ζ in
xα(±ζ) when needed, the above expression can be made coincident with Zλµ(ξ, ζ).

Now consider the general case: ρ �= λ or σ �= µ. Here we must study more cases than in the proof of Theorem 1.
First suppose ρ = λ and σ �= µ. It can easily be checked that

Tµλ(ζ)Tλ,−λ(ξ) = Tµ,−λ(ξζ) · Tµ,−µ(εiεjξ
2ζ) · Tλ,−λ(ξ) ∈ H; and

Tµλ(ζ)Tλσ(ξ) = Tµσ(ξζ) · Tρσ(ξ) ∈ H if σ �= −λ.

By the same argument we deal with the case where σ = µ and ρ �= λ. We must also consider the cases where
ρ = −µ or σ = −λ. For example, suppose σ = −λ; then if ρ = λ, we have the case discussed above. On the
other hand, if ρ �= −λ, then Tρσ(ξ) is a short-root transvection; therefore we can rewrite it as T−σ,−ρ(−ερεσξ) =
Tλ,−ρ(−εσερξ), and this case was also discussed. It is obvious that for the case where ρ = µ the argument is just
the same. In all remaining cases, the symplectic transvections Tµλ(ζ) and Tρσ(ξ) commute.

Corollary. Assume that d(λ, µ) = 1; then Ep(56, A)Tµλ(ζ) ≤ H.

Lemma 14. Assume that d(λ, µ) = 2; then Zλµ(ξ, ζ) ∈ H.

Proof. We need a closer inspection of the proof of analogous Lemma 2. We shall freely use the notation from that
proof. Using simple calculations, we reduced the problem to proving the fact that a certain element g belongs
to H. In order to do this, we introduced a helpful element h ∈ H such that g = tνµ(1)h and in fact proved that
tλκ(−ξζ)tµκ(−ξζ2) · xα(1)h = g. Next we noted that all interesting things occur in the subspace generated by the
vectors vλ, vν , vµ, vκ, and therefore we were dealing with matrices of order 4. In fact, these direct calculations
of matrices can be expressed as some transformations of a product of transvections. Hence, after some fussing
around, we can obtain the necessary result using only elementary relations between the transvections and the
Chevalley commutator formula. In fact, we perform these calculations in the corresponding Steinberg group.
We can write down this result as follows:

tλκ(−ξζ)tµκ(−ξζ2) · tλκ(1)tνµ(1)h = tνµ(1)h,

where h = tνλ(−ζ)tµν(−ξζ)tλν(−ξ)tνλ(ζ) (we just substituted the expression of g and the restriction of xα(1)
to the chosen four-dimensional subspace).

Now we begin to use symplectic transvections instead of elementary ones. The key observation is that our
proof in fact remains almost the same, because the Chevalley commutator formula holds true if we consider only
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short-root transvections. Let us rewrite the proof of the above relation, using symplectic transvections instead
of elementary ones. As a result, we obtain the formula

Tλκ(−ξζ)Tµκ(−ξζ2) · Tλκ(1)Tνµ(1)h = Tνµ(1)h,

where
h = Tνλ(−ζ)Tµν (−ξζ)Tλν(−ξ)Tνλ(ζ).

Now recall that we got the product tλκ(1)tνµ(1) from the decomposition of the root element xα(1) into the
product of elementary transvections. Similarly, the product Tλκ(1)Tνµ(1) is the restriction of xα(1) to the 8-
dimensional subspace generated by the vectors vλ, vν , vµ, vκ, v−κ, v−µ, v−ν , v−λ, since this root element is the
product of six symplectic transvections, and exactly two of them act in the chosen subspace.

All these actions are legal, because the pairwise distances between the weights κ, λ, µ, and ν are less than or
equal to 2. Therefore all symplectic transvections that we obtain during calculations correspond to short roots.

As in the proof of Lemma 2, so far we have considered only specific sign actions of xα(1). In fact, we have
four possible cases, i.e., the restriction of xα(1) to the chosen subspace has the form Tλκ(±1)Tνµ(±1). As before,
two of the cases can be eliminated by choosing xα(−1) instead of xα(1), and the remaining case can be reduced
to the case considered by changing the signs in the arguments of the additional transvections. The lemma is
proved.

Lemma 15. Assume that d(λ, µ) = 3; then Zλµ(ξ, ζ) ∈ H.

Proof. We again use the notation from analogous Lemma 3. As in the proof of the previous lemma, we use
symplectic transvections instead of elementary ones. Calculations become more complicated, because now long
root transvections come into play. Since d(λ, µ) = 3, we write −λ instead of µ, as stated before. As in the proof
of Lemma 3, we use some additional weights: ν = −λ + α and −ν = λ − α, where α is a root.

We are going to prove that Zλ,−λ(ξ, ζ) = T−λ,λ(ζ)Tλ,−λ(ξ) ∈ H, where ζ ∈ R and ξ ∈ A. First note that since
2 is invertible, we can substitute 2ξ for ξ and get [Tλν(ξ), Tν,−λ(1)] instead of Tλ,−λ(2ξ). Therefore,

Zλ,−λ(ξ, ζ) = T−λ,λ(ζ)[Tλν(ξ), Tν,−λ(1)][[T−λ,λ(ζ), Tλν(ξ)]Tλν(ξ), [T−λ,λ(ζ), Tν,−λ(1)]Tν,−λ(1)]

= [T−λ,ν(ξζ)T−ν,ν(−εiεjξ
2ζ)Tλν(ξ), Tν,λ(−ζ)Tν,−ν(εiεjζ)Tν,−λ(1)].

It suffices to show that

g = Tν,λ(−ζ)Tν,−ν(εiεjζ)Tν,−λ(1)T−λ,ν(−ξζ)T−ν,ν (εiεjξ
2ζ)Tλν(−ξ) ∈ H.

Let f = Tν,λ(−ζ)Tν,−ν (εiεjζ). We have

g = fTν,−λ(1)T−λ,ν(−ξζ)T−ν,ν(εiεjξ
2ζ)Tλν(−ξ)Tν,−λ(−1)f−1

= fTν,−λ(1)T−λ,ν(−ξζ)T−ν,ν(εiεjξ
2ζ)Tν,−λ(−1)Tλ,−λ(2ξ)Tλν(−ξ)f−1

= fTν,−λ(1)T−λ,ν(−ξζ)Tλν(ξ2ζ)Tλ,−λ(ξ2ζ + 2ξ),

Tν,−λ(−1)T−ν,ν(εiεjξ
2ζ)Tλν(−ξ)f−1 = fTν,−λ(1)T−λ,ν(−ξζ)Tλ,−λ(−2ξ2ζ)Tν,−λ(−1),

Tλν(ξ2ζ)Tλ,−λ(ξ2ζ + 2ξ)T−ν,ν(εiεjξ
2ζ)Tλν(−ξ)f−1 = fZ−λ,ν (ξ2ζ, 1)Tλν(ξ2ζ)Tλ,−λ(−ξ2ζ + 2ξ),

T−ν,ν(εiεjξ
2ζ)Tλν(−ξ)f−1 = fh,

where
h = Z−λ,ν(ξ2ζ, 1)Tλν(ξ2ζ)Tλ,−λ(−ξ2ζ + 2ξ)T−ν,ν(εiεjξ

2ζ)Tλν(−ξ).

Note that h ∈ H (the distance between the weights −λ and ν is equal to 1), and therefore Z−λ,ν(ξ2ζ, 1) ∈ H).
Moreover, f = Tνλ(−ζ)[Tνλ(εiεjζ), Tλ,−ν(1)]. Now look at Tνλ(. . . ): since d(ν, λ) = 2, we can find a weight τ
such that d(ν, τ) = d(τ, λ) = 1. Thus Tνλ(x) = [Tντ(x), Tτλ(1)]. We now have an expression for f that uses only
symplectic transvections Tρσ(. . . ), where ρ−σ is a root. Now we again use our trick, restricting the computations
to a four-dimensional subspace. We claim that conjugation by a symplectic transvection from the expression of
f is the same as conjugation by a root element whose decomposition contains this transvection. That is, if we
write xρ−σ(±x) instead of Tρσ(x) in the decomposition of f , then the conjugation of h by f remains the same.
The rule for choosing a sign in this root element is simple: the decomposition of the root element into symplectic
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transvections should contain Tρσ(x) but not Tρσ(−x). First let us see what happens to Tνλ(x). We replaced this
transvection by [Tντ(x), Tτλ(1)] and then by [xν−τ(±x), xτ−λ(±1)]. Now we replace each of these root elements
by the product of six symplectic transvections and consider the subspace spanned by the weight vectors vν , vτ ,
vλ, vκ, v−ν , v−τ , v−λ, v−κ (here κ = λ + (ν − τ)). It is clear that only the symplectic transvections that act
inside this subspace affect each other, and the other transvections commute with these ones and with themselves.
The argument is the same as in the proof of Theorem 1, where we used this trick repeatedly. We derive that
Tνλ(x) is a commutator of two root elements, and thus it belongs to E(E7, R).

Unfortunately, the decomposition of f contains the transvection Tλ,−ν(1) that does not belong to E(E7, R).
But the final part of our calculations uses the conjugation by f , and thus we can use our trick again. Now
we restrict ourselves to the four-dimensional subspace W spanned by the weight vectors vλ, vν , v−λ, and v−ν .
Arguing as above, we can show that conjugation by Tλ,−ν(. . . ) is the same as conjugation by xλ−(−ν)(. . . ) if the
object that we conjugate acts inside the subspace W (which is the case, because all other parts of g behave in
this way).

We have just proved that the conjugation of h by f can be expressed as a sequence of conjugations by elements
of E(E7, R). Thus we remain in the group H, and g = fh ∈ H. The proof is complete.

12. Proof of Theorem 6

Let
E = EE′

7(56, R, A, B) = E(E7, R)E(56, R, A) Ep(56, R, B).

Taking Theorem 4 into account, it remains to show the inclusion Ep(56, R, B) ⊂ [E, E]. We prove that the
generators of Ep(56, R, B) belong to [E, E]. Take x = Zλµ(ξ, ζ) = Tµλ(ζ)Tλµ(ξ), where ξ ∈ B and ζ ∈ R. Using
Theorem 1, we get x ∈ Ep(56, A)E(E7,R). Therefore x can be expressed as a product

x =
∏

i

xiyix
−1
i , where xi ∈ E(E7, R) and yi ∈ E(56, B) ⊂ E(56, R, B).

Thus x =
∏

i[xi, yi]yi and for any i the commutator [xi, yi] belongs to [E, E]. It remains to prove that E(56, B) ⊂
[E, E].

Take a short root transvection Tρσ(ξ) ∈ E(56, B) (here ρ �= ±σ). We try to find a root α ∈ E7 in order to use
the Chevalley commutator formula

Tρσ(ξ) = [Tρ,ρ−α(1), Tρ−α,σ(ξ)],

and then we write xα(±1) instead of Tρ,ρ−α(1):

Tρσ(ξ) = [xα(±1), Tρ−α,σ(ξ)] ∈ [E(E7, R), E(56, B)] ⊂ [E, E].

In order to use this case of the Chevalley commutator formula, it is necessary that −ρ �= ρ− α (this is the case,
because the distance between the opposite weights is always equal to 3 and α is a root), ρ �= ±σ (it was one of
the initial conditions), and ρ − α �= ±σ.

The second step, the substitution of xα(1) for Tρ,ρ−α(1), is possible if the remaining transvections in the
decomposition of xα(±1) do not affect the commutation with Tρ−α,σ(ξ). Thus, σ − α should not be a weight.

We may assume that σ = ω is a highest weight (and then we reduce any other case to this one by the action
of the Weyl group). Consider the case ρ �= σ − α7. Let α be a negative fundamental root such that ρ− α is not
a weight (such an α exists, because ρ is not a highest weight). It is obvious that ρ − α �= ±σ and σ − α is not
a weight, and thus all the conditions for applying the Chevalley commutator formula are fulfilled. On the other
hand, if ρ = σ − α7, we take α = α6, and it is easy to check necessary conditions.

Now consider a long-root transvection Tρ,−ρ(ξ) (ξ ∈ B). Let us take an arbitrary weight σ such that σ−(−ρ) =
α is a root. We have Tρ,−ρ(ξ) = [Tρσ(ξ), Tσ,−ρ(2−1)] = [Tρσ(ξ), xα(±2−1)] ∈ [E(56, B), E(E7, R)] ⊂ [E, E] (this
can easily be verified, arguing as above). The proof is complete.

I wish to express my deepest thanks to my teacher Nikolai Vavilov for his constant support and help during
the research. He was the advisor of the author’s graduation thesis, which became the foundation of this paper. I
am sincerely grateful to the University of Bielefeld for their hospitable atmosphere, in which part of the research
was carried out, and to Antony Bak for his hospitality and fruitful conversations.

Translated by A. Yu. Luzgarev.

2570



REFERENCES
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