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ABSTRACT. LetΦ be a root system of type El, and letG = G(Φ, R) be the Chevalley
group of type Φ over a commutative ring R. Consider the adjoint representation
G(Φ, R) → GL(N, R). We prove that G(Φ, R) can be characterised as the identity
component of the stabiliser of a system of certain quadratic equations. These
equations were previously described by the second-named author as equations on
the orbit of the highest weight vector.

Classical algebraic groups are often viewed as the groups of automorphisms of
some geometric objects; for example, an orthogonal group is the isometry group of
a [non-degenerate] bilinear form. Similar descriptions for exceptional groups are
less known and generally are harder to obtain, see [GG15] for a detailed review of
the situation. In the present paper we identify the [slightly extended] exceptional
groups in their adjoint representations with identity components of groups of linear
transformations preserving certain ideals generated by explicit quadratic forms.
These quadratic forms are exactly the equations on the orbit of the highest weight
vector, which were described by the second-named author in [Luz14]. Note that
our description works for any commutative ring.

We do not try to recall here all the necessary notions and refer the reader to
loc. cit. Let us just fix the notation here. From now on R is a commutative ring,
Φ = El, l = 6, 7, 8. Let {α1, . . . , αl} = Π ⊂ Φ be a fundamental system in Φ (our
numbering of fundamental roots follows Bourbaki [Bou68]). We work with the
adjoint representation of G(Φ,R), which gives us the irreducible action of G(Φ,R)
on a free R-module V of rankN = 78, 133, 248 forΦ = E6, E7, E8 respectively. ByΛ
we denote the set of weights of our representation with multiplicities. More precisely,
Λ = Λ∗ t ∆, where Λ∗ = Φ is the set of non-zero weights, and ∆ = {01, . . . , 0l} is
the set of zero weights. We fix an admissible base eλ, λ ∈ Λ in V . Hence we have
the vectors eα for α ∈ Φ and êi = e0i for i = 1, . . . , l.

Consider the algebra Sym(V∗) of polynomial functions on V . Our choice of basis
in V identifies Sym(V∗) with R[{xα}α∈Φ, {x̂i}li=1]. Now we describe a system of
quadrics in this algebra. All quadrics in our system in fact have integer coefficients,
so they lie in Z[{xα}α∈Φ, {x̂i}li=1].

For the rest of the paper, put k = 4, 5, 7 for Φ = E6,E7,E8, respectively. Recall
that a set of roots {βi}, i = 1, . . . , k,−k, . . . ,−1 such that ∠(βi, β−i) = π/2 for every
i = 1, . . . , k, and ∠(βi, βj) = π/3 for i 6= ±j, is called a maximal square.

The Weyl group W(Φ) acts transitively on the pairs of orthogonal roots in Φ.
Therefore for any pair of orthogonal roots α,β ∈ Φ there is a unique maximal
square containing it. In fact, this square is Ωα,β = {γ ∈ Φ | α + β − γ ∈ Φ}. Put
Ωα,β = Ωα,β \ {α,β}.

Suppose that v ∈ V , α,β ∈ Φ, andΩ = {β1, . . . , β−1} is a maximal square such
that β1 = α, β−1 = β, and βi ⊥ β−i for every i. We need the following notation
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for the polynomials from [Luz14]:

f
π/2
α,β = xαxβ −

∑
i≥2

Nα,−βiNβ,−β−i
xβixβ−i

;

f
2π/3
α,β =

∑
i 6=±1

Nα,−βixα−βixβi − xα

l∑
s=1

〈β,αs〉x̂s;

fπα,β =
∑
i 6=±1

(xα−βixβi−α − x−βixβi) −

l∑
s=1

〈α,αs〉x̂s ·
l∑
s=1

〈β,αs〉x̂s.

Let us denote by I the ideal in Z[{xα}α∈Φ, {x̂s}ls=1] generated by these polynomials,
and let GI(R) = {g ∈ GL(N,R) | f(gx) ∈ I for all f ∈ I} be the corresponding group
of linear transformation preserving this ideal (here N = |Φ|+ l). For an arbitrary
ideal I, GI is not an affine group scheme over Z.

Lemma 1. Let f1, . . . , fs ∈ Z[x1, . . . , xt] be polynomials of degree at most r, and let A be
the ideal they generate. Then for the functor R 7→ {g ∈ GL(t, R) | f(gx) ∈ A for all f ∈ A}
to be an affine group scheme, it suffices that the rank of the intersection A ∩ Z[x1, . . . , xt]r
does not change under reduction modulo any prime p ∈ Z.

Proof. This is [Wat87, Corollary 1.4.6]. �

Lemma 2. Let α,β, γ ∈ Φ be roots such that α is orthogonal to both β and γ. Then

(1) f2π/3α,−β = −f
2π/3
α,β ;

(2) if β+ γ ∈ Φ, then f2π/3α,β+γ = f
2π/3
α,β + f

2π/3
α,γ ;

(3) if β− γ ∈ Φ, then f2π/3α,β−γ = f
2π/3
α,β − f

2π/3
α,γ .

Proof. Note that the left-hand sides make sense: if α ⊥ β and α ⊥ γ, then α ⊥ −β
and α ⊥ (β± γ). We prove the second assertion (the rest are similar). It is obvious
that the term xα

∑l
s=1〈β,αs〉x̂s is linear in β. Other terms in f2π/3α,β can be written

as ∑
δ∈Ωα,β

Nα,−δxα−δxδ.

Consider a monomial Nα,−δxα−δxδ, corresponding to some δ ∈ Ωα,β. We claim
that this monomial appears either in f2π/3α,β+γ or in f2π/3α,γ (with the opposite sign).
Indeed, δ ∈ Ωα,β means that δ+ δ = α+ β for some δ ∈ Φ. Then (γ, δ) + (γ, δ) =

(γ, α) + (γ, β) = −1/2. Note that we cannot have neither γ = −δ nor γ = −δ, since
α ⊥ γ and ∠(α, δ) = π/3. Thus we have two cases:

• (γ, δ) = 0 and (γ, δ) = −1/2. This means that (β + γ, δ) = 1/2. Moreover,
(β + γ, α − δ) = −1/2, therefore α + β + γ − δ ∈ Φ and α + (β + γ) =
δ + (α + β + γ − δ). Thus δ ∈ Ω̄α,β+γ, so there is a term Nα,−δxα−δxδ in
f
2π/3
α,β+γ.

• (γ, δ) = −1/2 and (γ, δ) = 0. This means that δ + γ ∈ Φ, (γ, α − δ) = 1/2
and α + γ = (α − δ) + (δ + γ). Thus α − δ ∈ Ω̄α,γ, so there is a term
Nα,δ−αxδxα−δ in f2π/3α,γ . It remains to show that Nα,−δ = −Nα,δ−α which
follows immediately from identity (C4) in [1].

We proved that every monomial in f2π/3α,β sums up to zero with some monomial in
one of the other two polynomials. Exchanging the roles of β and γ, we can finish
the proof. �

Proposition 3. GI is a group scheme over Z.
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Proof. We want to apply Lemma 1. Note that the polynomials defining I are not
linearly independent, so our first step is to choose a linearly independent subset of
them. Note that any linear combination of fπ/2’s contains only monomials xαxβ
for α ⊥ β; any linear combination of f2π/3’s contains only monomials xαxβ for
∠(α,β) = 2π/3 and monomials xγx̂i; any linear combination of fπ’s contains only
monomials xαxβ for ∠(α,β) = π and monomials x̂ix̂j. This means that it suffices
to choose some linearly independent subsets for each of three types of polynomials.
Now we list the polynomials we choose, and after that we shall prove that they are
linearly independent after reduction modulo any prime.

• A monomial xαxβ for α ⊥ β is contained in several π/2-polynomials, but
all of them come from a single maximal square Ω = Ωα,β (see [Luz14,
Section 2]). Therefore we can take one fπ/2α,β for every maximal squareΩ and
get a linearly independet set such that any other π/2-equation is a linear
combination of the chosen ones.
• Note that any fixed polynomial f2π/3α,β contains only monomials xγxδ such

that γ + δ = α, and monomials xαx̂i. This means that looking at a mono-
mial that came from one of this equation, we can uniquely determine α.
Therefore it remains to choose a linearly independent set of polynomials
f
2π/3
α,β for a fixed α. Let Iα generate an ideal generated by these polynomials.

Consider all roots orthogonal to α; they form a root subsystem Ψ of type
A5, D6, E7 when Φ = E6, E7, E8, respectively. For a given α we choose
some fundamental root subsystem ΠΨ in Ψ and take the polynomials f2π/3α,βi

for βi ∈ ΠΨ. Lemma 2 shows that all the other f2π/3α,β ’s are integer linear
combinations of those. Note that the rank of Ψ always equals l − 1, so in
total we got (l− 1)|Φ| polynomials of type 2π/3.
• We claim that the π-polynomials fπα,β generate a linear space of dimension
(l+2)(l−1)/2. Arguing as in the proof of Lemma 2, we get that fπα,β = fπβ,α.
More over, if β1 ± β2 ∈ Φ, then fπα,β1±β2 = fπα,β1 ± f

π
α,β2

. Note that
(l + 2)(l − 1)/2 is exactly the dimension of the subspace generated by
‘zero parts’ of the π-polynomials. Choose a set of (l + 2)(l − 1)/2 linearly
independent polynomials out of fπα,β.

Now we wish to prove that the chosen polynomials are linearly independent,
and they remain linearly independent after reduction modulo any prime. In order
to do that we show that for any one of them we can substitute some explicit values
of the variables {xα, x̂s} such that a given polynomial takes the value 1 while all the
remaining polynomials vanish.

• For a polynomial fπ/2α,β we can set xα = xβ = 1 and set all other variables to
0. The only non-zero monomial now is xαxβ, which is contained only in
our polynomial fπ/2α,β.
• Fix a root α and choose a base β1, . . . , βl−1 in Φ⊥α = {γ ∈ Φ | γ ⊥ α}. Note

that {fβi } is a generating set for 2π/3-polynomials on Φ⊥. Consider all
monomials of polynomials in Iα involving zero weights. By our choice of
βi’s, these monomials are linear combinations of xαx̂βi . Taking xα = 1,
xβi = 1, and setting all the other variables to zero (including the zero ones),
we see that exactly one of the chosen polynomials is non-zero, and it equals
1.
• Arguing as in the previous case, we can take x̂α = x̂β = 1 and set all the

remaining variables to 0 for every pair of the chosen generators for the ‘zero
parts’.

�
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Theorem 4. G(Φ,R) ≤ GI(R).

Proof. Immediately follows from [Luz14, Proposition 1]. �

Recall the definition of the Lie algebra of an algebraic group G: Lie(G(K)) is the
kernel of the homomorphism G(K[δ]) → G(K) induced by the ring homomorphism
K[δ] → K, δ 7→ 0, where K[δ] = K[x]/(x2) is the ring of dual numbers over K.

Lemma 5. Let K be a field. Suppose the polynomials f1, . . . , fs ∈ K[x1, . . . , xt] generate
an ideal I. Then a matrix e+ zδ for z ∈M(t, K) lies in Lie(FixK(f1, . . . , fs)) if and only
if we have ∑

1≤i,j≤t

zijxi
∂fh

∂xj
∈ I.

for every h = 1, . . . , s.

Proof. Follows from the definition of Lie algebra (see also [Wat87, Section 1.5]). �

Proposition 6. Let K be any field. The dimension of Lie(GI(K)) does not exceed |Φ|+l+1.

Proof. In our case the partial derivatives are

∂f
π/2
α,β

∂xγ
= ±xα+β−γ, if α+ β− γ ∈ Φ;

∂f
2π/3
α,β

∂xα
= −

l∑
s=1

〈β,αs〉x̂s;

∂f
2π/3
α,β

∂xγ
= ±xα−γ, if γ ∈ Ωα,β or α− γ ∈ Ωα,β;

∂f
2π/3
α,β

∂x̂s
= −〈β,αs〉xα;

∂fπα,β

∂xγ
= ±x−γ, if ± γ ∈ Ωα,β or ± (α− γ) ∈ Ωα,β;

∂fπα,β

∂x̂s
= −〈α,αs〉

l∑
t=1

〈β,αt〉x̂t − 〈β,αs〉
l∑
t=1

〈α,αt〉x̂t.

All the other derivatives are zero.
• Suppose that µ = −λ. We claim that zλ,−λ = 0. Take any maximal square
Ω containing −λ and choose α ∈ Ω such that α 6= ±λ. There is a unique
β ∈ Ω such that α ⊥ β. Then the equation corresponding to f = fπα,β
contains a term zλ,−λxλ

∂f
∂x−λ

= ±zλ,−λx2λ, and it is the only term containing
x2λ in this equation. Moreover, the defining polynomials of I do not contain
this kind of term. Therefore zλ,−λ = 0.
• Suppose that ∠(λ, µ) = 2π/3. We claim that zλ,µ = 0. Take any maximal

square Ω containing λ and α = λ+ µ. Let β be the unique root in Ω such
that α ⊥ β. Then the equation corresponding to f = f2π/3α,β contains a term
zλ,µxλ

∂f
∂xµ

= ±zλ,µx2λ. Reasoning as in the first case, we obtain zλ,µ = 0.
• Suppose that ∠(λ, µ) = π/2. We claim that zλ,µ = 0. Consider the equa-

tion corresponding to f = f
π/2
λ,µ . It contains a term zλ,µxλ

∂f
∂xµ

= ±zλ,µx2λ.
Reasoning as in the first case, we obtain zλ,µ = 0.
• Suppose that ∠(λ, µ) = π/3 and ρ, σ ∈ Φ are roots such that ρ− σ = λ− µ.

We claim that zλµ = ±zρσ. Note that 〈λ, ρ〉−〈λ, σ〉 = 〈λ, ρ−σ〉 = 〈λ, λ−µ〉 =
1/2. Our claim is trivial when λ = ρ. Suppose that ∠(λ, ρ) = π/3, so that
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λ ⊥ σ. Than λ, µ, ρ, σ ∈ Ωλ,σ. Consider the equation corresponding to
f = f

π/2
λ,σ . It contains a term zλ,µxλ

∂f
∂xµ

= ±zλ,µxλxρ. There is one other
term in this equation containing xλxρ, namely, zρ,σxρ ∂f∂xσ = ±zρ,σxρxλ.
Since ∠(λ, ρ) = π/3, the defining polynomials of I do not contain xρxλ,
therefore these two terms should cancel, which proves our claim.

Suppose now that λ ⊥ ρ. Then µ ⊥ σ and ∠(λ, σ) = ∠(µ, ρ) = 2π/3.
We claim that there exist ν, κ ∈ Φ such that ν − κ = λ − µ = ρ − σ and
∠(λ, ν) = ∠(ν, ρ) = π/3. Indeed, note that (−λ, µ, ρ) is a basis of a root
subsystem Ψ ⊆ Φ of type A3. By [Luz14, Lemma 4], there exists a root
ε ∈ Φ such that ε ⊥ λ, ε ⊥ ρ and ∠(µ, ε) = 2π/3. But then we can take
κ = −ε and ν = κ + λ − µ. Earlier we proved that in this setting we have
zλ,µ = zν,κ = zρ,σ, as desired.

Finally, the only remaining case is λ = −σ, µ = −ρ. But in this case we
can find two roots ν, κ not in {±λ,±µ} such that ν− κ = λ− µ = ρ− σ. We
already proved that we have zλ,µ = zν,κ = zρ,σ, as desired.
• Suppose that ∠(λ, µ) = π/3 and ρ, σ ∈ Φ are roots such that ρ− σ = λ− µ.

We claim that zλλ = ±zµµ ± zρρ ± zσσ. Our claim is trivial for λ = ρ.
Suppose that ∠(λ, ρ) = π/3 and consider the equation corresponding
to f = f

π/2
λ,σ . It contains terms zλ,λxλ ∂f∂xλ = ±zλ,λxλxσ, zµ,µxµ ∂f

∂xµ
=

±zµ,µxµxρ, zρ,ρxσ ∂f
∂xσ

= ±zρ,ρxρxµ, zσ,σxσ ∂f
∂xσ

= ±zσ,σxσxλ. There is
only one polynomial among those defining I that contains a term xλxσ
(namely, f), and the same polynomial contains xµxρ. Therefore our four
terms should add up to some multiple of this polynomial, which implies
that zλ,λ ± zµ,µ ± zρ,ρ ± zσ,σ = 0.
• Similar analysis shows that if α,β, α − β ∈ Φ, then zα,β = ±zα−β,0β .

Moreover, z0α,0α = zα,α. This shows that we do not need new variables for
dealing with zero weights.

Let’s sum up. The first three points show that the variables zλ,µ for (λ, µ) ≤ 0 are
not involved in the Lie algebra at all. Next, the variables zλ,µ for λ−µ ∈ Φ generate
a subspace of dimension |Φ|. Finally, the variables zλ,λ generate a subspace of
dimension l+ 1. Indeed, we can express any zλ,λ as a linear combinations of zµ,µ’s,
where µ = µ1, . . . , µt are such roots that every simple root is among the pairwise
differences between µi’s. It is easy to see that we can take µ1, . . . , µt with this
property such that t = l+ 1. Therefore, the total dimension of the Lie algebra is no
more than |Φ|+ l+ 1. �

We need to use the following lemma by Waterhouse [Wat87, Theorem 1.6.1].

Lemma 7. Let G and H be affine group schemes of finite type over Z with G flat, and
let ϕ : G → H be a homomoprhism. Suppose that the following conditions hold for any
algebraically closed field K:

(1) dim(G(Φ,−)K) ≥ dimK(Lie(G0I (K));
(2) π is injective on Spec(K)-points and on Spec(K[x]/(x2))-points;
(3) the normaliser of π(G0(K)) in G0I (K) is contained in π(G(K)).

Now let G0I denote the identity connected component of GI, and G(Φ,−) =

G(Φ,−)×Cent(GL(N,−)), where Cent denotes the center. In other words, G(Φ,R)
is the product of our Chevalley group G(Φ,R) and the group of non-zero diagonal
matrices in GL(N,R).

Theorem 8. G(Φ,R) = G0I (R).

Proof. The adjoint representation together with the inclusion of scalar matrices
gives us a homomorphism π : G(Φ,−) → GL(N,−). Theorem 4 (and a trivial
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remark that scalar matrices preserve the ideal I) shows that its image lies in GI.
G(Φ,−) is a connected group scheme, therefore its image lies already in G0I . Now
we apply lemma 7 to π. Our group schemes are affine of finite type over Z, since
they are closed subschemes of GL(N,−). Moreover, G = G(Φ,−) is flat, since it is
smooth. It remains to check the three conditions of the lemma. The first follows
from the fact that dim(G(Φ,−)K) = |Φ| + l + 1, and by Proposition 6 we have
dimK(Lie(G0I (K)) = dimK(Lie(GI(K)) ≤ |Φ| + l + 1. The second condition is true
since π is a faithful representation. Finally, it follows from the tables in [Sei87] that
there are [almost] no connected algebraic subgroups N such that G(Φ,K) ≤ N ≤
GL(N,K). On the other hand, G0I is such a subgroup. Therefore, either we have
G0I (K) = G(Φ,K), or G0I (K) ≥ SO(Φ,K). It is trivial to show that SO(Φ,K) does not
preserve the ideal I, so the second possibility is excluded. It remains to note that
G(Φ,K) coincides with its own normaliser in GL(N,K), which is well known. �
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