Marc Levine

23.10.2014

k is a base field, char $k = 0, k \hookrightarrow \mathbb{C}$. We have a category $\operatorname{Spt}_{\mathbb{P}^1}(k)$. An object here is a gadget $\mathcal{E} = (\mathcal{E}_0, \mathcal{E}_1, \dots)$ where $\mathcal{E}_n \in \operatorname{Spc}_{\bullet}(k)$. $\mathcal{E}_n \colon \operatorname{Sm}/k \to \operatorname{Spc}_{\bullet}$ (category of pointed spaces) with $\varepsilon_n \colon]_n \wedge \mathbb{P}^1 \to \mathcal{E}_{n+1}$. $\operatorname{Spt}_{\mathbb{P}^1}(k)$ is a stable model category; ${}_sWE_{\mathbb{A}^1}$ are weak equivalences (isomorphisms on the bi-graded \mathbb{A}^1 -homotopy sheaves $\pi_{a,b}^{\mathbb{A}^1}$ for all a, b). Then we have $\operatorname{SH}(k) = \operatorname{Ho}(\operatorname{Spt}_{\mathbb{P}^1}(k))$; a triangulated \otimes -category. From our embedding $k \hookrightarrow \mathbb{C}$ we get a realisation functor $\Re_B \colon \operatorname{SH}(k) \to \operatorname{SH} = H_0(\operatorname{Spt}_{\mathbb{S}^2})$.

For $\mathcal{E} \in \mathrm{SH}(k)$ we have $\pi_n(\mathcal{E}, \mathbb{Z}/N) = \pi_{n,0}(\mathcal{E}/N)(\overline{k})$, where $\mathcal{E}/N = \operatorname{cone}(\mathcal{E} \xrightarrow{\cdot N} \mathcal{E})$. Similarly, if $E \in \mathrm{SH}$, we get $\pi_n(E, \mathbb{Z}/N) = \pi_n(E/N)$. $\Re_B \colon \pi_n(\mathcal{E}, \mathbb{Z}/N) \to \pi_n(\Re_B \mathcal{E}; \mathbb{Z}/N)$. $\mathrm{SH}^{\mathrm{eff}}(k)$ is a localising subcategory of $\mathrm{SH}(k)$ generated by $\Sigma_{\mathbb{P}^1}^{\infty} X_+$ for all $X \in \mathrm{Sm}/k$.

Теорема 0.1. For \mathcal{E} : SH^{eff}(k) the realisation map $\Re_B \colon \pi_n(\mathcal{E}, \mathbb{Z}/N) \to \pi_n(\Re_B \mathcal{E}, \mathbb{Z}/N)$ is an isomorphism.

Note that this is a generalisation of the Suslin–Voevodsky theorem:

Теорема 0.2 (Suslin–Voevodsky, 1994). If X is a finite type scheme over $k = \overline{k} \subseteq \mathbb{C}$, then

$$H_n^{Sus}(X;\mathbb{Z}/N) \cong H_n^{sing}(X(\mathbb{C});\mathbb{Z}/N).$$

By definition the right hand side is $H_n(C^{Sus}_*(X) \otimes \mathbb{Z}/N) = \operatorname{Hom}_{DM^{\operatorname{eff}}(k)}(\mathbb{Z}(0), M(X)/N[n]).$

Recall that $C_m^{Sus}(X)$ is a free abelian group spanned by the subschemes $W \subseteq X \times \Delta^m$ such that W is integral, finite, and surjective over Δ^n . It is made into a complex by the maps $\partial = \sum_{i=0}^m (-1)^i d_i \colon C_m^{Sus}(X) \to C_{m-1}^{Sus}(X).$

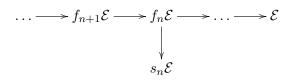
Corollary (of Theorem): if $X \in \mathrm{Sm}/k$, then $\pi_n(\Sigma_{\mathbb{P}^1}^{\infty}X_+; \mathbb{Z}/N) \cong \pi_n(\Sigma^{\infty}X(\mathbb{C})_+; \mathbb{Z}/N)$. Key ingredients:

0. Suslin–Voevodsky theorem;

1. Voevodsky's slice tower

Consider $i_n \colon \Sigma_{\mathbb{P}^1}^n \operatorname{SH}^{\operatorname{eff}}(k) \hookrightarrow \operatorname{SH}(k)$ for $n \in \mathbb{Z}$. This inclusion map admits a right adjoint r_n (Neeman).

Let us define a truncation functor $f_n: \operatorname{SH}(k) \to \operatorname{SH}(k)$ as $f_n = i_n \circ r_n \to \operatorname{id}$. We have the maps $f_{n+1} \to f_n$. Hence we get a 'slice tower': if $\mathcal{E} \in \operatorname{SH}(k)$, then



Теорема 0.3 (Pelaez–Voevodsky,Röndigs–Østvær). There exists a unique $\pi_n^M \mathcal{E} \in DM(k) \xrightarrow{EM_{\mathbb{A}^1}} SH(k)$ with a canonical isomorphism $s_n \mathcal{E} \cong \sum_{p=1}^n EM_{\mathcal{A}^1}(\pi_n^M \mathcal{E}).$

 $s_n \mathcal{E}$ is called the 'nth slice' of \mathcal{E} .

This construction is a kind of analog of the classical Postnikov tower for SH. There you take a spectrum E and define $E\langle n\rangle - (n-1)$ -connective cover of E which has zero homotopy groups in degrees less than n. Again we have $i_n: \Sigma^n \operatorname{SH}^{\operatorname{eff}} \hookrightarrow \operatorname{SH}$. In this case $E\langle n\rangle = i_n r_n E$. Then we define $E\langle n+1\rangle \to E\langle n\rangle \to \Sigma^n EM(\pi_n E)$. Note that f_n , s_n are exact functors. Hence $f_n \mathcal{E}/N = f_n(\mathcal{E}/N)$ and $s_n \mathcal{E}/N = s_n(\mathcal{E}/N)$.

Strategy for the proof: a) use Suslin–Voevodsky's theorem to show that for $q \ge 0$ we have $\pi_{n,0}(s_q \mathcal{E}; \mathbb{Z}/N)(\overline{k}) \cong \pi_n(\Re_B s_q \mathcal{E}, \mathbb{Z}/N)$ (note that $s_q \mathcal{E}$ is effective for q > 0);

show that the spectral sequences b)

$$E_2^{p,q}(AH) = \pi_{p+q,0}(s_{-q}\mathcal{E}, \mathbb{Z}/N)(\overline{k}) \Rightarrow \pi_{p+1,0}(\mathcal{E}, \mathbb{Z}/N)(\overline{k})$$

and c)

$$E_2^{p,q}(ReAH) = \pi_{p+1}(\Re_B s_{-1}\mathcal{E}, \mathbb{Z}/N) \Rightarrow \pi_{p+q}(\Re_B \mathcal{E}; \mathbb{Z}/N)$$

are convergent and bounded for $\mathcal{E} \in SH_{fin}(k)$.

Part (a): we interpret Suslin–Voevodsky theorem to say that

$$\pi_{n,0}(EM_{\mathbb{A}^1}(M(X));\mathbb{Z}/N) = \operatorname{Hom}_{DM(k)}(\mathbb{Z}(0), (M(X)/N)[n])(\overline{k}) = H_n^{sing}(M(X);\mathbb{Z}/N),$$

and $H_n^{sing}(M(X); \mathbb{Z}/N) \to H_n^{sing}(X(\mathbb{C}); \mathbb{Z}/N)$ is iso by S–V. Then \Re_B maps $\pi_{n,0}(EM_{\mathbb{A}^1}(M(X)); \mathbb{Z}/N)$ to

$$\pi_n(\Re_B EM_{\mathbb{A}^1}(M(X)); \mathbb{Z}/N) \cong H_n^{sing}(X(\mathbb{C}), \mathbb{Z}/N),$$

and this is an isomorphism. Note that $DM^{\text{eff}}(k)$ is generated as a localising category by M(X). It follows that for all $M \in DM^{\text{eff}}$ the realisation map $\Re_B : \pi_{n,0}(EM_{\mathbb{A}^1}(M);\mathbb{Z}/N)(\overline{k}) \to \pi_n(\Re_B EM_{\mathbb{A}^1}(M);\mathbb{Z}/N)$ is an isomorphism. Recall that $s_q \mathcal{E} = EM_{\mathbb{A}^1}(\pi_q^M \mathcal{E}(q)[2q])$, so we proved (a).

Part (c): if \mathcal{E} is sufficiently connected (say, N-connected), then $\Re_B(f_q\mathcal{E})$ is (q + const)connected ((q + N)-connected). If \mathcal{E} is finite, then $\mathcal{E} = f_{-q}\mathcal{E}$ for some q large enough. So what does it mean for \mathcal{E} to be N-connected? We say that \mathcal{E} is topologically N-connected if $\pi_{m+q,q}\mathcal{E} = 0$ for all $m \leq N, q \in \mathbb{Z}$.

Sketch of the proof: Morel's connectedness theorem says $\Sigma_{\text{top}}^{N+1} \operatorname{SH}(k)$ (full subcategory of topologically *N*-connected objects) is generated by $S^m \wedge \Sigma_{\mathbb{P}^1}^{\infty} X_+$ for $m \ge N+1$. Hence $\Sigma_{\mathbb{P}^1}^1 \operatorname{SH}^{\text{eff}}(k)$ is generated by $S^a \wedge \mathbb{G}_m^{\wedge m} \wedge \Sigma_{\mathbb{P}^1} \infty X_+$ for $m \ge q$. Then $f_q \mathcal{E}$ is going to be a cell complex build out of $S^q \wedge \mathbb{G}_m^b \wedge \Sigma_{\mathbb{P}^1}^{\infty} X_+$ for $a \ge N+1$, $b \ge q$. Hence the realisation of it gives you something like $S^{a+b} \wedge \Sigma^{\infty} X(\mathbb{C})_+$ for $a+b \ge q+N+1$.

Now take a finite spectrum \mathcal{E} (we may assume that it is effective)

$$\cdots \to f_q \mathcal{E} \to \cdots \to f_1 \mathcal{E} \to f_0 \mathcal{E} = \mathcal{E}.$$

Let us fix a field F finitely generated over k; we need F = k(X) for some variety X. We look at $\pi_{a,b}(f_q \mathcal{E})(F)$; it is zero for sufficiently large $q \ge q(a, b, \mathcal{E}, F)$. We can always assume that b = 0 (by shifting). Assume also that \mathcal{E} is topologically (-1)-connected. Necessary assumption: the cohomological dimension of k is finite: $n_0 = c.d.(k) < \infty$. If $tr.deg_k F = d$, then $c.d(F) \le n_0 + d$. If L/F is finite, then c.d(L) = c.d(F).

Лемма 0.4. There is an integer $d(\mathcal{E})$ such that $\pi_{m+d,d}(\mathcal{E})_{\mathbb{Q}} = 0$ for all $d > d(\mathcal{E})$ and all $m \in \mathbb{Z}$. For example, if $\mathcal{E} = \sum_{\mathbb{P}^1} \infty X_+$ for X/k smooth projective, then $d(\mathcal{E}) = \dim_k X$.

 \mathcal{A} okasamentemeo. Since \mathcal{E} is finite, we reduce the problem to the case $\mathcal{E} = \Sigma_{\mathbb{P}^1} \infty X_+$ for X/ka smooth projective variety of dimension $d = \dim_k X$. Here we use a theorem by Cisinski– Deglise: $c.d.(k) < \infty$ implies $\mathrm{SH}(k)_{\mathbb{Q}} \cong DM(k)_{\mathbb{Q}}$. (Note that $I^n/I^{n+1} = H^n(k, \mathbb{Z}/2)$, therefore $I^n/I^{n+1} = 0$ for n > c.d.(k). On the other hand, $\bigcap_{n>0} I^n = 0$ by Arason–Pfister.) It follows that

$$\begin{aligned} \pi_{a+b,b,b}(\Sigma_{\mathbb{P}^1}^{\infty}X_+)_{\mathbb{Q}}(k) &= \operatorname{Hom}_{DM(k)}(\mathbb{Z}(b)[a], M(X))_{\mathbb{Q}} \\ &= \operatorname{Hom}_{DM(k)}(M(X)(-d)[-2d], \mathbb{Z}(-b)[-a])_{\mathbb{Q}} \\ &= \operatorname{Hom}_{DM(k)}(M(X), \mathbb{Z}(d-b)[2d-a])_{\mathbb{Q}} \\ &= H^{2d-a}(X, \mathbb{Q}(d-b)), \end{aligned}$$

and if d-b < 0, this equals zero. Then we pass from k to F, from X to X_F , and work in DM(F). We showed that $\pi_{a,b}(\Sigma^{\infty}X)(F) = 0$ for $b > \dim_k X$. We need a concrete model for $f_q \mathcal{E}$, $\mathcal{E} \in \mathrm{SH}^{\mathrm{eff}}(k)$. Consider $E = \Omega_{\mathbb{P}^1}^{\infty} \mathcal{E}$ – a presheaf of spectra on Sm /k. Take $b \geq 0$. $(\pi_{a,b}\mathcal{E})(F)$ is related to $(\pi_{a,b}E)(F)$, which is the Nisnevich sheaf associated to the presheaf $U \mapsto \pi_{a-b}(E(U_+ \wedge \mathbb{G}_m^{\wedge b}))$. We have an inclusion functor $\Sigma_{\mathbb{P}^1}^n \mathrm{SH}_{S^1}(k) \to \mathrm{SH}_{S^1}(k)$, its right adjoint r_n , put $f_n = i_n \circ r_n$, and get the slice tower

$$\cdots \to f_{n+1}E \to f_nE \to \cdots \to f_0E = E.$$

It turns out than $f_n E = \Omega_{\mathbb{P}^1}^{\infty} f_n \mathcal{E}$.

In fact, E satisfies two nice properties:

- 1. Nisnevich excision;
- 2. \mathbb{A}^1 -homotopy invariance: $E(X) \to E(X \times \mathbb{A}^1)$ is iso.

Then we get a nice model for $(f_{\bullet}E)(X)$: a homotopy coniveau tower $f_nE(X) = \operatorname{Tot}(m \mapsto E^{(n)}(X,m))$ (Bloch cycle complexes applied to a presheaf of spectra). Here Tot is a kind of geometric realisation. What is $E^{(n)}(X,m)$? Take $W \subseteq X \times \Delta^m$ and consider $E(X \times \Delta^m)$ restricted to $X \times \Delta^m \setminus W$. The fiber of that is $E^W(X \times \Delta^m)$. Now we take a colimit of those where $\operatorname{codim}_{X \times F}(W \cap X \times F \ge n \text{ for any face } F \subseteq \Delta^m, \text{ and get } E^{(n)}(X,m)$. For any map $m' \to m$ in the order category we get a map $E^{(n)}(X,m) \to E^{(n)}(X,m')$.

Take $X = \operatorname{Spec} F$; now we look at the closed subsets of Δ^m . Suppose we have a simplicial spectrum $m \mapsto E_m$. Then we have a spectral sequence

$$E_{a,b}^1 = \pi_b E_a \Rightarrow \pi_{a+b} \operatorname{Tot}(m \mapsto E_m)$$

In particular, in our case $E_m = E^{(n)}(F,m)$ is 0 if m < n (then we have to take $W \subseteq \Delta^m$ with codim W = n > m, hence $W = \emptyset$, and its fiber is just a point). Hence we get a surjection $\pi_b E^{(n)}(F,n) \twoheadrightarrow Fil_n \pi_{b+n} f_n E(X) \subseteq \pi_{b+n} f_n E(X)$. We assumed the spectrum was (-1)-connected, so essentially this filtration is going to be finite, and we can use induction.

Fix $r \in \mathbb{Z}$ and look at contributions to $\pi_r f_n E(X)$ from $\pi_{r-m} E^{(n)}(F, m)$. Recall that $\pi_{r-m} E^{(n)}(F, m)$ is a colimit over good $W \subseteq \Delta^m$ of $\pi_{r-m} E^W(\Delta_F^m)$. For a fixed W we can pass to the direct sum over all generic points $X_i \in W$ such that $\operatorname{codim}_{\Delta^m} X_i = n$ of $\pi_{r-n} E^{X_i}(\Delta_F^m)$. This passage is an inclusion map. Hence for a point x of codimension n we have $\pi_{r-m} E^x(\Delta^m) = \pi_{r-m} \operatorname{Hom}(S_{F(x)}^{2n,n}, E) =$ $(\pi_{r-m+2n,n} E)(F(x))$. The degree here gets smaller as m gets bigger, and for minimum m = n we have $(\pi_{r+n,n} E)(F(x))$. This contributes to $Fil^n(\pi_r f_n E)(F)$, and the map $\bigoplus_x(\pi_{r+n,n} E)(F(x)) \to$ $Fil^n(\pi_r f_n E)(F)$ is surjective. Let us map that to $\pi_r E(F)$. Now we are going to construct $\rho_n: Fil^n(\pi_r f_n E)(F) \to \pi_r E(F)$.

The idea is to use that spectral sequence plus an explicit bound (depending on d(E), c.d.(F), r) such that $Fil^n \to 0$ in $\pi_r E(F)$; then replace E with $f_n E$, etc., to show that $Fil^n = 0$.

Suppose $\alpha \in (\pi_{r+n,n}E)(F(x))$ for a closed point $x = (x_0, \ldots, x_n), x_i \in F(x)$. Consider the symbol $[-x_1/x_0, \ldots, -x_n/x_0] \in K_n^{MW}(F(x)) = \pi_{-n,-n}(\mathbb{S})(F(x))$. Cupping with this element gives us a map $(\pi_{r+n,n}E)(F(x)) \xrightarrow{\cup} (\pi_{r,0}E)(F(x))$. We have a canonically defined norm map $(\pi_{r,0}E)(F(x)) \to (\pi_{r,0}E)(F)$. The image of α here is exactly what we need.

Let us define

$$Fil_{MW}^{n}\pi_{r,0}E(F) = \operatorname{im}((\pi_{r+n,n}E)(F(x)) \otimes K_{n}^{MW}(F(x)) \to (\pi_{r,0}E)(F))$$

(summing over all closed points $x \in \Delta_F^n$). We've shown that

$$\rho_n(Fil_{sing}^n \pi_{r,0} f_n E(F)) \subseteq Fil_{MW}^n \pi_{r,0} E(F)$$

The task is to find a bound n_0 so that $Fil_{MW}^n \pi_r E(F) = 0$ for $n > n_0$.

If n > d(E), we know that $(\pi_{r+n,n}E)(F(x))$ is torsion, say,

$$(\pi_{r+n,n}E)(F(x)) = \bigcup_{N} (\pi_{r+n,n}E)(F(x))_{N-tors}.$$

Consider an exact sequence

$$0 \to I^{n+1}(F(x)) \to K_n^{MW}(F(x)) \to K_n^M(F(x)) \to 0.$$

We know that $I^{n+1}(F(x)) = 0$ for $n \ge cd(F(x)) = cd(F) = cd(k) + trdeg_k F$. $\bigcup_N (\pi_{r+n,n}E)(F(x)) \otimes K_n^M(F(x))/N \to \pi_{r,0}E(F)$ factors through $Fil_{MW}^n(\dots)$. We use Bloch– Kato and get that the left-hand side is $H^n(F(x), \mu_N^{\otimes n}) = 0$, so its image is zero.