Гомотопическая инвариантность нестабильных K_i-функторов

R — ком. колыбель

G/R — простая алгебраическая изотропная группа
(или редуктивная!)

$P \in G$ — пары изоморфная подгруппа

$\text{rk} \phi_R \geq 2 \implies E(R) = E_P(R) \subseteq G(R)$

E_R-частицы,

$E_{\phi_R}(R)$

$G(R)/E(R) = K_1^G(R)$ — нестабильный K_1-функтор
(группа Уайтхеда)

A — R-алгебра $\sim G(A)$, $E(A)$, $K_1^G(A)$, поэтому K_1^G-функтор
частный случай: $G = GL_n$, $K_1^{GL_n}(R) = GL_n(R)/E_n(R)$

$K_1(R) = \lim_{\to \infty} GL_n(R)/\lim_{\to \infty} E_n(R)$

Басс, 1964
Суслин 1977
Абе 1983
"Whitehead groups of Chevalley groups"
"то там ошибки"

Теорема 1

$G(k[x_1, \ldots, x_n]) = G(k)E(k[x_1, \ldots, x_n]) \forall n \geq 1$

— здесь уже нужно требовать $\text{rk} \phi_R \geq 2$, иначе контрапример (Сокн)

K_1 для общего случая не определено (можно определить по Ван Офелю,
но это нигде не написано)

(или $K_1^G(A^n) \cong K_1^G(k^n)$)

Теорема 2 — A^n-инвариантная

Пусть k—совершеннохоле, A — регулярная k-алгебра.
Тогда $K_1^G(A^n) \cong K_1^G(A)$ (для A^n, конечно, это тоже верно)
(t.1 — локальная (в топологии Нисселя) часть теоремы 1)

Доказательство теоремы 1

— как у Абе; по индукции.

База: Теорема Марю-Суле: $G(k[x]) = G(k)E(k[x])$

// для групп (ебаные с Steinberg, лесом...

// можно ли это перенести? нужен представления

Переход: использует теорему 3:
Теорема 3 (слейс для $P^1 = A^2 \cup A^2$)

Пусть A — коммутирующее кольцо, G/A — простая группа, $P \leq G$ — т.ч. $H \Phi_P \geq 2$

Если $x \in G(A[t,x], x)$ и $y \in G(A[t^{-1}])$ т.ч.

Сокращение

$G(A[t,x], x A[t])$

$x y^{-1} \in E(A[x,x^{-1}])$,
то $x \in E(A[x])$

При чендали P^1? Негрудно проверить, что это равносильно точности последовательности

$1 \xrightarrow{k_4(A)} k_4(A[x]) \xrightarrow{\phi_{(g, g)}} k_4(A[x], x^{-1}) \xrightarrow{\psi_{(g, g)}} k_4(A[x], x^{-1})$

$G_m \rightarrow A^1$ — похожа Матера-Векторса

$A^1 \rightarrow P^1$

Если A — поле, это очевидно. Если нет — сводим к случаю поля.

Достаточно доказать для локального кольца (дек-локально-модульный принцип)

$g: A \rightarrow A/I$, $I \triangleleft A$ — максимальный идеал

$E^*(A[x], x^{-1}, I) = E^*(A[x], I) \ast E^*(A[x^{-1}], I)$

$Ker g \cap E(A[x], x^{-1}, I)$

Теорема 0.

Пусть A — локальное кольцо, G/A — как выше.

Тогда

$E(A[t,x], x^{-1}) = E(A[t,x]) \ast E(A[t^{-1}], x)$

Если A не локально, можно ли взять подобное сопоставление?

Следствие

(*) Верно:

$x \in E(A[x], x^{-1}, I)$, $x = x_1 y x_2$, $g(x) = 1 \Rightarrow g(y) = g(x_1 x_2^{-1})$

$E(c[t,x]) \cap E(c[t,x]) = E(c)$

$y \in E(A) \ast E(A[x^{-1}], I)$, $x \in E(A[t,x]) \ast E(A[x^{-1}], I) E(A[t,x])$.
Далее нужно доказать, что
\[E^*(A[x^{-1}], I) = E(A[x]) E^*(A[x^{-1}], I) \]
- это некая работа (разложение Ягоса)
(у него здесь разложение Брюса, а для изотропных групп его нет — есть только для
или параллеконечной)
(см. Borel - Tits)

Доказательство теоремы 0

\[Z = E(A[x]) E(A[x^{-1}]) E(A[x]) \]

\[E(A[x, x^{-1}]) = \langle x_0(u), \sigma \in \Phi, u \in \mathbb{V}_d \otimes A[x, x^{-1}] \rangle \]

Считаем, что \(P \) — минимальная параллеконечная

Доказано, что \(x_0(x^{-k}u) \in Z \) для \(k \in \mathbb{N}, u \in \mathbb{V}_d \)

Идея доказ. Используем \(G \in \mathcal{A}^+(G(A[x, x^{-1}])) \)
такое, что \(\sigma|_{L_P} = \text{id}_{L_P} \), \(\sigma(x_0(u)) = x_0(x^{m_1(g)}u) \)

\(m_1(g) \) — коэффициент в разложении \(g \) при первом корне.

Канон из них первые?

\[P \mapsto \Phi_P = A_{\mathfrak{g}} - G_2, B & C, \mathfrak{l} \geq 2 \]

\(\alpha_i \) — канониический корень, что \(U_{\Phi_P} \) абелев или

Экстраполиция, если абелева нет.

Если один из корней
с номером 2
то этот корень
совпадает со старшим
и различной
диаграммы Дынкина)

Модификация, что \(\sigma^{+1}(Z) \in Z \).

Тогда все просто:
\[x_0(x^{-k}u) \in \sigma \in \mathcal{A}^+(G(A[x, x^{-1}, u, z])) \]

\[A[x^{m_1(u)}] \in \mathcal{A}[x, x^{-1}] \]

\[\begin{aligned}
\sigma^+\text{ - характер на сингуляр]
\alpha \rightarrow x^{m_1(u)} \in \mathcal{A}[x, x^{-1}]
\end{aligned} \]

Лемма 1

\[\sigma^{+1}(E(A[x], x)) \subseteq \{ E(A[x]), \text{ если } U_{\Phi_P} \text{ абелев} \}
\]

т.е. \(x_0(xu) \xrightarrow{\sigma} x_t(u) \)

\(x_2(xu) \xrightarrow{\sigma} x_2(x^{-1}u) \)
Порядок $E(A[X], X)$.

Если R, Y и $R - Y$ прямые, $P \leq G, \Phi_P$

Ориг. $w_\alpha : Z_\alpha \cap \Phi_P = \{-w_\alpha x, \ldots, -x, 2x, \ldots, w_\alpha x\}$

$E_\alpha(a, u_1, u_2, \ldots, u_m) = a \cdot \left(\prod_{i=1}^{m} X_i^{u_i} (u_i)\right) a^{-1}$

$E_\alpha(R) = \left\{ X_i^{u_i} (V_i) \right\}, -w_\alpha \leq i \leq w_\alpha$

Лемма 2

$E_\alpha(R, Y) = \left\{ E_\alpha(R, Y) : a \in \Phi_P \right\}$

$= \left\{ Z_\alpha(a, u_1, \ldots, u_m) : a \in E_\alpha(R), 1 \leq i \leq w_\alpha, u_i \in Y \otimes_k V_i \right\}$

Доказательство: обобщенная комм. формула Шварца.

Лемма 3

$E(A[X], X) = \left\{ Z_\alpha(a, u_1, \ldots, u_m) : a \in \Phi_P, a \in E_\alpha(A), u_i \in XA[X] \otimes_k V_i \right\}$

Замечание $E^*(A[X], X) = E(A[X], X)$

$E(A[X]) = E(A) \cdot E(A[X], X)$ — тоже некоторо доказывается

Лемма 4 (вернулась в случае локального колец A)

Пусть $a \in \Phi_P, 2a \in \Phi_P, m_1(a) = \pm 1$.

Тогда $G(E_\alpha(A[X], X)) \subseteq E(A[X])$

Доказательство

$E_\alpha(a) = 1 \Rightarrow G(Z_\alpha(a, u)) = G(a) X_\alpha (X^m u) G^{-1}(a)$

$E_\alpha(A) \cdot XA[X] \otimes_k V_x$

$E_\alpha(\cdot)$ — элементарная подгруппа в некоторой

редуцированной подгруппе $G_\Phi \subseteq G_a$

в которой есть параэдрическая подгруппа $L \otimes_k X_\alpha$, а

$E_\alpha(A) = 1 \Rightarrow X_\alpha^{-1}$

докажем

Предположим, что $m_1(a) = 1, a \neq -1$ (запишем $m(a)$ и a)

4
В случае разложения Гаусса,

\[E_d(A) \ni a \in (L^2(A) \cap B_d(A)) \times \gamma_1(u_1) \gamma_{-\alpha}(u_2) \gamma_{\alpha}(u_3) \]

\[u_1, u_3 \in V_d, u_2 \in V_{-d} \]

\[\nabla(a) \in E_d(A[xI]) \gamma_{-d}(x^u U_2) \gamma_d(x U_3) \]

\[\gamma(a) \gamma_d(x^w u \gamma) \in E_d(A[xI]) \left(\gamma_{-\alpha}(x^u U_2) \gamma_{\alpha}(x^w) \right) \]

\[V_d \otimes A[xI] \otimes V_d \]

\[\gamma_{-\alpha}(x^w) = \left[\gamma_{d+\beta}(x U_2), \gamma_{-\beta}(x U_2) \right] \]

\[V_{d+\beta}, -\beta, 2, 1, 2 : V_d \otimes \gamma_{-\beta} \rightarrow V_d \]

Если \(d \) - непарный, а \(\beta \) - делимое,

\[(\alpha + \beta) - (-\beta) \] - не непарное

Лемма ([LSS], 1.2, (18)):

\[\gamma_d(x^w) = \left[\gamma_{d+\beta}(u), \gamma_{-\beta}(x^u) \right] \gamma_{3d+\beta}(x^w U_2) \]

\[\times \gamma_{3d+2\beta}(x^w U_2) \gamma_{3d+\beta}(x^w U_5) \]

\[\gamma_{-d}(x^{-\beta / 3}) \gamma_{3d+2\beta}(x^w U_2) = \gamma_{3d+2\beta}(x^w U_2) \]

\[\gamma_{-d}(x^{-\beta / 3}) \left[\gamma_{d+\beta}(u), \gamma_{-\beta}(x^u) \right] = \left[\gamma_{d+\beta}(u) \gamma_{\beta}(x^{-\beta / 3} U_3), \gamma_{-\beta}(x^u) \gamma_{-\beta}(x U_3) \gamma_{3d-\beta}(x U_3) \gamma_{3d-2\beta}(x U_5) \right] \]

\[\times \gamma_{2d-\beta}(U_3) \gamma_{3d-\beta}(x U_3) \gamma_{3d-2\beta}(x U_5) \]