Подгруппы группы Шевалле, содержащие группу точек максимальной групповой подсхемы

Алексей Степанов

10.05.2016

1

Нас часто интересуют такие вопросы: описать промежуточные подгруппы в

$$EO_{2n}(R) \le \cdots \le \operatorname{GL}_{2n}(R)$$

или, скажем,

$$E_n(R) \otimes E_m(R) \leq \cdots \leq \operatorname{GL}_{mn}(R).$$

Рассмотрим вообще

$$D(R) \le \cdots \le G(R),$$

где G — группа Шевалле, а D — групповой подфунктор в G.

Теорема 1.1. Если D и G удовлетворяют условиям (1)–(8), то для любого кольца R и для любой подгруппы H такой, что $D(R) \leq H \leq G(R)$, существует единственный идеал $I \leq R$ такой, что

$$D(R) \cdot E(R, I) \le H \le N(R, I),$$

где
$$N(R, I) = N_{G(R)}(D(R) \cdot E(R, I).$$

Пусть Φ — система корней группы Шевалле G. Обозначим N(R)=N(R,0). Пусть A — аффинная алгебра $G,\,g\in A$ — общий элемент. Перечислим упомянутые в теореме условия.

- 1. Функтор D сохраняет сюръективность и коммутирует с прямыми пределами.
- 2. Для любых $r \in R$, $\alpha \in \Phi$ выполнено $\langle x_{\alpha}(r), D(R) \rangle = D(R) \cdot E(R, rR)$.
- 3. Для любого $I \leq R$ выполнено [D(R), D(R)E(R, I)] = D(R)E(R, I).
- 4. N замкнутая подсхема в G.
- 5. Если $h \in G(R)$ таков, что $D(R)^h \le N(R)$ следует, что $h \in N(R)$.
- 6. Если F поле, то теорема верна: если $D(F) \leq H \leq G(F)$, то либо $H \leq N(F)$, либо $E(F) \leq H$.
- 7. В подгруппе G(A), порожденной D(A) и g, содержится $x_{\alpha}(a) \notin D(A)$ для некоторых $\alpha \in \Phi, \ a \in A$, и для любого поля F существует $z \in E(F)$ такой, что $z(a) \neq 0$.
- 8. Если $h \in G(R, \operatorname{Rad} R) \setminus N(R)$, то $\langle h, D(R) \rangle$ содержит $x_{\alpha}(r) \notin D(R)$.

Пусть H — подгруппа в G(R), содержащая D(R). Обозначим

$$I_{\alpha} = \{r \in R \mid x_{\alpha}(r) \in H \text{ для некоторого } \alpha\}.$$

Потом мы показываем, что $I=I_{\alpha}$ не зависит от α и является идеалом в R. Положим $\overline{R}=R/I$ и обозначим через $\rho_I\colon R\to \overline{R}$ каноническую проекцию. Пусть $\overline{H}=\rho_I(H)$. Тогда $D(\overline{R})\leq \overline{H}$ по условию (1).

Предположим, что $x_{\alpha}(\overline{r}) \in \overline{H}$. Тогда $D(\overline{R})E(\overline{R},\overline{r}\overline{R}) \leq \overline{H}$, и потому $D(R)E(R,rR) \leq H \cdot G(R,I)$, а отсюда следует (можно доказать!), что $D(R) \cdot E(R,rR) \leq H \cdot E(R,I) \leq H$. Поэтому $x_{\alpha}(r) \in H$, и, стало быть, $r \in I$, то есть, $\overline{r} = 0$.

Теперь можно считать, что $I=0,\ R=\overline{R},\ H=\overline{H}$: если $x_{\alpha}(r)\in H$, то r=0. Возьмем $a\in A$ из условия (7), и $h\in H\leq G(R)$. Это означает, что $h:A\to R$. Рассмотрим $h(a)\in R$. Тогда $x_{\alpha}(h(a))=h(x_{\alpha}(a))\in h(\langle D(A),g\rangle)\leq H$, и потому h(a)=0.

Пусть S — подсхема в G, определенная уравнением a=0. Мы получили, что $H \leq S(R)$. Пусть $\mathfrak{m} \leq R$ — максимальный идеал, $F=R/\mathfrak{m}$. Мы знаем, что $E(F) \not\subseteq S(F)$ (по условию (7)), но $\rho_{\mathfrak{m}}(H) \leq S(F)$, откуда (по условию (6)) следует, что $\rho_{\mathfrak{m}} \leq N(F)$.

Таким образом, $\rho_{\mathfrak{m}} \leq N(R/\mathfrak{m})$ для любого максимального идеала $\mathfrak{m} \leq R$. По условию (4) из этого следует, что $\rho_{\operatorname{Rad} R}(H) \leq N(R/\operatorname{Rad} R)$. Тогда $D(R/\operatorname{Rad} R)^{\rho_{\operatorname{Rad} R}(H)} \leq D(R/\operatorname{Rad} R)$. Значит, $D(R)^H \leq D(R) \cdot G(R,\operatorname{Rad} R)$. Возьмем $uv \in D(R)^H$, где $u \in D(R)$, $v \in G(R,\operatorname{Rad} R)$. Тогда $v \in D(R)^H \cap G(R,\operatorname{Rad} R)$, и $\langle v,D(R)\rangle \leq D(R)^H$. По условию (8) теперь $v \in N(R)$ (иначе бы H содержала нетривиальный корневой унипотент). Мы получили, что для любого $h \in H$ выполнено $D(R)^h \in N(R)$, откуда $h \in N(R)$.