3anuCKy HAYIHBIX
cemurapos [TOMU
Towm 373, 2009 r.

N. Vavilov, A. Luzgarev, A. Stepanov

CALCULATIONS IN EXCEPTIONAL
GROUPS OVER RINGS

ABSTRACT. In the present paper we discuss a major project, whose goal
is to develop theoretical background and working algorithms for calcula-
tions in exceptional Chevalley groups over commutative rings. We recall
some basic facts concerning calculations in groups over fields, and indicate
complications arising in the ring case. Elementary calculations as such are
no longer conclusive. We describe basics of calculating with elements of
exceptional groups in their minimal representations, which allow to reduce
calculations in the group itself to calculations in its subgroups of smaller
rank. For all practical matters such calculations are much more efficient,
than localisation methods.

The present paper is based on our talks at the ACA-2008, SNSC-2008
and PCA-2009. In these talks we described a major project whose goal
is to systematically develop both theoretical background and working al-
gorithms for calculations in exceptional groups over rings [17, 18, 50-53,
68-72, 91, 92, 112, 113, 127-145].

This project was started some 10 years ago, in cooperation with Mikhail
Gavrilovich, Roozbeh Hazrat, Victoria Kazakevich, Sergei Nikolenko, Vik-
tor Petrov, Igor Pevzner, Nikita Semenov and Anastasia Stavrova, see also
[78,79,81-87,95, 102, 103]. It is a successor of the previous project carried
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forward by the second and the third authors jointly with Eugene Plotkin,
since late 1980-ies [143, 125, 142, 112, 126].

Due to space limitations in the present paper we can only scratch the
surface, and give a very rough outline of our methods. In part, this is
indemnified by an extensive bibliography, where one can find references
addressing both the theoretical background and technical details of cal-
culations.

§1. THE GROUPS

Groups of Lie type are subdivided into two large classes.
e Classical groups, such as linear, orthogonal, symplectic and unitary.

e Exceptional groups. In the first approximation, when we are look-
ing at the split forms (= Chevalley groups), there are 5 types of exceptional
groups G, Fy, Eg, E7r and Eg. Actually, groups of type Eg and E; come
in two denominations, as adjoint and simply-connected ones.

It is easy to calculate in classical groups using their small degree matrix
representations. In the present paper we mostly focus on the calculations
with elements of the three large exceptional groups of types Eg, E7, Eg as
matrices of size 27 x 27 or 78 x 78, 56 x 56 or 133 x 133, and 248 x 248,
respectively. The message is that with a right approach such calculations
can be efficiently carried over an arbitrary commutative ring. The group
of type Fy4 is also most naturally considered in the 27-dimensional repre-
sentation, as the twisted group of type Eg.

However, simultaneously we pursue also alternative approaches based
on reduction to classical subgroups by elementary calculations and/or
on localisation and dimension reduction, which eventually lead to groups
over semilocal rings, where everything can be again handled by elementary
calculations.

On the other hand, the group of type G, is not very interesting in
this context. Firstly, it is so closely related to the groups of types Bz
and Dy, that it should be considered a classical group. Secondly, for this
group direct matrix calculations in the 7-dimensional or the 8-dimensional
representations can be performed by (a very clever) hand, see [41, 15, 101].
Thirdly, many other results we are interested in simply do not hold for
the group of type Gs since it is too small.

More precisely, let & be a reduced irreducible root system, R be a
commutative ring with 1. We study the following three closely related
groups, associated to the pair (®, R):
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e The (simply-connected) Chevalley group G(®, R);

e The (simply-connected) elementary Chevalley group E(®, R);

e The Steinberg group St(®, R).

For definitions of these groups, and further references, see [1-11], [20],
[26-33], [57, 62], [73-76], [88-92], [100, 104], [106-109], [117, 118, 125,
126, 129, 130, 142, 145].

Recall that G(®, R) is the group of points of an affine group scheme
G(®,—), the so called Chevalley—Demazure group scheme. In other
words, G(®, R) is defined by algebraic equations.

On the other hand, the elementary subgroup E(®,R) < G(®,R) is
generated by elementary generators x4 (£), where o € ® and £ € R. These
generators are subject to the following Steinberg relations,

(R1) Additivity

T (§)Ta(n) = za(§ +n),

(R2) Chevalley commutator formula

[Cﬂa (5)7 LB (77)] = H Lia+jB (Naﬁijfinj)a

where [z,y] = zyz~'y~! denotes the commutator of # and y, the product
is take over all roots of the form ia + j5 € ®, 4,57 € N, in a fixed order,
and the structure constants Nag;; do not depend on £ and 7, see [20, 26,
107, 141].

In fact, the elementary generators z,(£) may be subject to further
relations, not implied by (R1) and (R2). For rk(®) > 2 the Steinberg
group St(®, R) is an abstract group admitting a presentation in terms of
the generators y,(£), a € ®, £ € R, subject to defining relations (R1) and
(R2). Since we are only interested in exceptional cases, we do not discuss
extra-relations necessary in the case rk(®) = 1.

The interrelations among these groups may be described as follows. By
definition E(®, R) is a subgroup of G(®, R),

1— E(®,R) — G(®,R) — K{(®,R) — 1,

where
Kl((PaR) = G((I)a R)/E(@aR)

is the K;-functor.
In turn, by von Dyck theorem E(®, R) is a quotient of St(®, R),

1— K»(®,R) — St(®,R) — E(®,R) — 1,

the kernel of the natural projection being the Ks-functor.
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§2. ON THE FIELD SIDE

Calculations in groups of Lie type over a field, especially over a finite
field, form a vast area in computational group theory. There are several
specialised Computer Algebra Systems, such as GAP, Lie, Chevie, Magma,
MeatAxe, and various packages developed within general purpose CAS
such as Mathematica or Maple, see references in [21], [35-39], [43, 44, 48,
54, 55, 63, 93, 94, 127, 138, 140].

These calculations rely on several fundamental results, which we now
recall very briefly. In fact, most of these results readily generalise to semi-
local rings and other rings of dimension 0. First of all, the following the-
orem [1, 11, 73, 106], implies that in this case calculations in Chevalley
groups reduce to calculations with elementary generators z4(§), a € @,
¢ eR.

Theorem 1. Let R be a semi-local ring. Then K;(®,R) = 1. In other
words, G(®, R) = E(®, R).

Better still, over fields and semi-local rings there are canonical forms
such as Bruhat decomposition and Gaufl decomposition, which give sharp
upper bounds for the length of such expressions. Namely, let N = |®*| be
the number of positive roots. The following results provide upper bounds
for the length of elementary expressions with leading terms 2NV or 3N,
respectively.

Fix a split maximal torus T'(®, R) of G(®, R) and a fundamental root
system II in ®. As usual, B(®, R) denotes the standard Borel subgroup
of G(®, R) corresponding to such a choice, U(®, R) denotes its unipotent
radical, U~ (®, R) denotes the unipotent radical of the standard opposite
Borel subgroup B~ (®, R). Further, we fix a[ny] lifting of the Weyl group
W(®) to the normaliser N(®, R) of T(®, R).

Theorem 2. Let K be a field. Then

G(®,K) = B(®, K)W(3)U(®, K).

Theorem 3. Let R be a semi-local ring. Then
G(®,R) = B(®,R) U~ (®,R)U (P, R).

In other words, over fields and semi-local rings there are VERY VERY
VERY SHORT expressions of arbitrary elements in terms of elementary
generators.
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Similar facts hold at the level of K. As usual, for any a € ® and
€ € R*, we set,

Wa(e) = 2a(E)T_a(—e Naa(e), hale) = wa(e)wa (1)

Calculation in SL(2, R) shows that these semi-simple root elements h,,(¢)
are subject to the following relation.

(R3) Multiplicativity, hq(e)ha(n) = ha(en)-

The first Steinberg theorem [107-110] asserts that over a field these
(together with the definition of wy(g) and hq(€)) are the only relations
that should be added to (R1) and (R2) to obtain a presentation of G(®, R).
This result can be phrased slightly differently. Namely, define elements
ha(e) of the Steinberg group St(®, R) by the same formulae as above, but
in terms of y,(¢) instead of z,(g). Steinberg symbols

{esn) = ha(gn)ha(fs)ilhs(n)ila

measure the failure of these new h,(€) to be commutative.

Theorem 4. For any field K one has K»(®, K) is central and is generated
by Steinberg symbols {e,n}, where e,n € K*.

The second Steinberg theorem [107, 108] asserts that over a finite field
Steinberg symbols are trivial.

Theorem 5. For a finite field K = F, one has K»(®,F,) = 1.

Essentially, this amounts to saying that for Chevalley groups of rank
> 2 over fields all relations among the elementary generators follow from
VERY VERY VERY SHORT ones. Similar, but slightly fancier results in terms
of Dennis—Stein or similar symbols hold also over semi-local rings.

These facts allow to completely reduce calculations in Chevalley groups
over fields and semi-local rings to what we call elementary calculations
— calculations with elementary generators using only Steinberg type rela-
tions [20, 26, 104, 108, 142].

In turn, canonical forms readily reduce such calculations to calculations
in the unipotent groups U(®, R) and in the Weyl group W(®), this is
essentially the viewpoint adopted by Cohen, de Graaf, Haller, Murray,
Roényai, Taylor in [38, 39, 48, 93].



CALCULATIONS IN EXCEPTIONAL GROUPS OVER RINGS 53

§3. ON THE RING SIDE

However, many applications outside of group theory, say in algebraic
geometry, theory of algebraic groups, algebraic K-theory, number theory,
topology and physics, require calculations over rings, especially over such
classes as

e semi-local rings,

e Hasse domains Rg,

e polynomial rings K[z1,... ,z,] and Z[z1,... ,x,)],
e rings of geometric origin Ox, etc.

As we have seen in the preceding section, semi-local rings are not very
much different from fields. However, over rings of dimension > 1 the above
beautiful picture breaks spectacularly. Let us mention some of the most
striking phenomena.

Pitfall 1. The group K;(®, R) is usually non-trivial.

In fact, it may be non-trivial already for principal ideal domains. Let
us mention two such examples, [46, 56, 64].

e Let R = Z[z] and S C R be the multiplicative system generated by
cyclotomic polynomials ®,,, n € N. Then S~!R is a principal ideal ring
with SK; (S7'R) # 1.

e Let K be a field of algebraic functions in one variable over a perfect
field k. Then R = K®k(z1, ... ,2m) is a principal ideal ring. If, moreover,
m > 2, and the genus of K is distinct from 0, then SK;(R) # 1.

In other words, there are more elements in a Chevalley group, than
mere products of elementary generators. However, over rings the situation
is terribly much more tragic than that. Even at the level of elementary
groups there are no analogues of Bruhat and Gaufl decompositions.

Pitfall 2. Even when the group K;(®, R) is trivial, there are no canon-
ical forms, expressing an arbitrary element in terms of the elementary
generators.

In fact, no such forms can possibly exist, since even over principal ideal
domains there is no bound for the length of such an expression [59]. Even
when there is such a bound, it may be unreasonably large, [12, 24, 25, 77,
98], [119-121].



54 N. VAVILOV, A. LUZGAREV, A. STEPANOV

Pitfall 3. The group K»(®, R) may be far too large.

Moreover, even when Ko (®, R) is not too large, complete sets of its gen-
erators are not known, except in some very special cases. In other words,
there is little hope to abstractly control relations among the elementary
generators.

In fact, there is another very serious complication. To explain it, we
have to recall the notion of relative subgroups. For type F4 one should
define relative subgroups in terms of two ideals, rather than one, but
in this exposition we limit ourselves to the classical case of one relative
parameter.

Namely, let I < R be an ideal of R. Then I defines the reduction
homomorphism

pr : G((I)a R) - G(@aR/I)a
The kernel of p; is denoted by G(®, R, I) and is called the principal con-
gruence subgroup of level I. The group

E(®,R,I) = (2,(6), ac®, 1) ™M

is called the relative elementary subgroup of level I. The quotient
Ki(®,R,I)=G(®,R,I)/E(®,R,I).

is called the relative K;-functor.
There are many important examples, when the absolute K (n, R), n >
3, itself is trivial. Let us cite two such paramount examples.

o R = Ok,s is a Hasse domain, i.e. the ring of S-integers of an algebraic
number field K. This is part of the solution of the congruence subgroup
problem by Bass—Milnor—Serre [19].

e R = K[zy,...,Z,] is a polynomial ring over a field. This is the
positive solution of the Kj-analogue of Serre’s problem by Suslin, see
(114, 115, 61, 80, 3, 4].

However, here comes a mighty final blow.

Pitfall 4. Even when the group K, (®, R) itself is trivial, the correspond-
ing relative groups K, (®, R, I) for an ideal I < R are usually not.

At this point one gets impression, that apart from zero-dimensional
rings and some very special examples, there is no hope to achieve anything
useful with the help of elementary calculations.
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§5. THEORETICAL BACKGROUND

In fact, THERE ARE SOME VERY POWERFUL STRUCTURE RESULTS,
which make situation slightly less desperate, than it seems.

First of all, there is the following crucial theorem, originally established
by Suslin, Kopeiko and Taddei [114, 115, 61, 117, 118], which essentially
reduces calculations in G(®, R) to calculations in E(®, R).

Theorem 6. Let rk(®) > 2. Then the elementary subgroup E(®, R,I) is
normal in G(®, R).

Several different proofs of this result are discussed in [16-18, 49, 51,
52, 112, 116, 125]. The very final step towards the proof of the definitive
result with two relative parameters was — modulo the previous work by
Abe and Stein [1, 5, 6, 8, 11, 104] — accomplished in [50]. In [53] one can
find further generalisations with several relative parameters and many
further references.

Thus, K;(®,R) and K;(n,R,I) are indeed groups, and a conjugate
974(£)g™! of an elementary generator can be expressed as a product of
elementary generators.

In fact, for finite dimensional rings reduction from G(®, R) to E(®, R)
is further enhanced by the following powerful result due to Bak, Hazrat
and the second author [16, 17, 49, 51, 52]. If you are not sure, what the
Bass—Serre dimension §(R) of a ring is, you are welcome to substitute it
by the Jacobson dimension j-dim(R) = dim(Max(R)) instead.

Theorem 7. Let rk(®) > 2 and let the Bass—Serre dimension 6(R) be
finite. Then the group K;(®, R, I) is nilpotent.

In fact, in these papers we establish much more specific results, which
in particular imply that E(®, R) is fully characteristic in G(®, R).

Another very powerful and useful result is the description of E(®, R)-
normalised subgroups of G(®, R), first established by Abe, Suzuki, and
Vaserstein [1, 5, 6, 8, 11, 124]. Not to go into technical details, related
to relativisation with several parameters, we only state it for the case of
simply-laced systems.

Theorem 8. Let ® be a simply laced system such that rk(®) > 2. Then
for any subgroup H < G(®,R) normalised by E(®,R) there exists a
unique ideal I < R such that

E(®,R,I)< H<C(®,R,I).
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Of course, for classical groups similar results are known since 1970-ies,
while the original proofs by Abe, Suzuki, and Vaserstein used localisation.
Similar results for multiply laced systems should be stated in terms of
admissible pairs, or ideals of the corresponding Chevalley algebra. We
refer to [41, 112, 125, 133, 134, 139, 141, 144], where one can find new
generation proofs of these results for arbitrary commutative rings, and
many further references.

Further, it turns out, that most elementary calculations do not depend
on the size of Ky(®, R), should it be central. The following outstanding
result has been established by van der Kallen, Tulenbaev, Bak and Tang.

Theorem 9. Let ® = A;, Il > 3 or ® = C;, Dy, | > 4, Then the group
K2(®, R) is central in St(®, R).

However, as of today, a complete proof of this fact is published in
[58, 33] only for the case ® = A;. The proof for other classical cases was
announced some 10 years ago, but due to its enormous size and complexity
is still not published. See comments on the status of this proof in [52]

In [130, 132] the second author launched a subproject which [hopefully]
should result in the centrality proof for the cases ® = Eg, E;. We are
certain that centrality proof for Eg can be also obtained along these lines,
though at present there is little to no hope to treat Fy with the existing
methods.

6. WEYL MODULES

As opposed to the field case, most of our calculations are carried
through using representations of the groups, rather than their presen-
tations. Observe, that such viewpoint is sometimes taken by the authors,
working over fields, for instance by Howlett, Rylands, Taylor, Ryba, and
Testerman in [55, 93, 94], and [122].

Let P(®) be the cone of integral dominant weights. Fix a weight w €
P(®)+4 and consider the Weyl module V = V(w) of the group G(®, R).
It is obtained by reduction of the (integral form of the) irreducible module
with highest weight w in characteristic 0. The resulting module need not
remain irreducible over a field of small positive characteristic, but for small
modules it usually is. Usually, only characteristics 2 and 3 may constitute
noticeable trouble.

In fact, for applications in structure theory one needs only to have a
thorough understanding of one module for each group. We mostly work
in the following modules.
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e The 27-dimensional microweight module V(w;) or V(w;), for the
simply connected group of type Eg.

e The 78-dimensional adjoint module V' (ws), for the adjoint group of
type Esg.

e The 56-dimensional microweight module V (wy) for the simply con-
nected group of type E7.

e The 133-dimensional adjoint module V (w), for the adjoint group of
type E7.
e The 248-dimensional adjoint module V' (zwsg) for the group of type Es.

e The 27-dimensional module being the restriction of V(w;) from Eg
to Fy for the group of type Fy.

This last module is not irreducible, generically it decomposes into the
direct sum of the 26-dimensional short-root module, and the trivial 1-
dimensional module. However, larger symmetry of defining equations and
the possibility to use results for Eg more than compensate for the increase
in dimension.

Let V =V (w) be such a module and let A(w) be the set of its weights
with multiplicities. Recall, that for microweight representations all weights
are extremal, in other words A(w) = Ww. Thus, in this case all weights
have multiplicity 1. Similarly, for adjoint representations non-zero weights
are the roots of ® and have multiplicity 1. On the other hand, in this case
the zero weight has multiplicity I = rk(®). For actual calculations we fix
an appropriate admissible base v*, A € A(w), in V. Practically, it is very
advantageous to make the following choices.

e For microweight representations, crystal base.
e For adjoint representations, positive Chevalley base.

Recall, that the action of root elements in a crystal base is described
by the following simple formula

wa(f)vA =M + c>\7av>‘+a,

where v’ = 0 if A + a is not a weight. Action structure constants cy o

enjoy the following nice properties:
o cyo=x1forall A € A(w) and o € ® provided A + a € A(w).
o c) o = 1if a € £1I is a fundamental or a negative fundamental root.
The action of root elements in a Chevalley base is expressed by similar,

but slightly more complicated formulae, see [20, 26, 125, 128, 142] for
details.
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Calculations in terms of the action of G on a rational module are re-
ferred to as stable calculations. The name is due to the fact, that over
rings techniques of such calculations was first developed by Matsumoto
[73] and Stein [106] in the context of stability of lower K-functors.

We have started to implement practical algorithms in Mathematica and
Maple, based on our methods, and to tabulate explicit results concerning
explicit action of the groups on their minimal modules, including action
constants, root elements, multilinear invariants, equations, and the like
[127, 128, 131, 138, 140, 72].

§7. EQUATIONS

In the natural coordinates, the membership of an individual matrix
g € GL(V) to the Chevalley group G(®, R) is described by equations of
degrees 3 and 4. These equations can be explicitly retrieved from the mul-
tilinear invariants of G-action on V. In characteristic 0 such invariants are
classically known, but making them characteristic free oftentimes requires
considerable work, compare [13, 14, 40, 47, 67]. A thorough discussion of
these invariants, and many further references can be found in [70-72],
[85-87], [91, 96, 125, 126, 131, 136, 137, 142].

As an illustration, let us reproduce from [136] explicit equations,
defining the normaliser of G(Eg, R) in the 27-dimensional representation
V(wl)

Theorem 10. A matrix g € GL(27, R) lies in N(G(Eg, R)) if and only if
it satisfies the following types of equations.

e Equations on pairs of adjacent columns. For all A\, u,v € A such that
d(u,v) <1, one has

f)\(g*[l,ag*l/) =0.

e Equations on two pairs of non-adjacent columns. For all \, i, v, p, 0, T
€ A such that d(u,v) = d(o,7) = 2, one has

(*1)h(uoy’”’y)gLou,Afp (950> gur) = (*1)h(JOT’J’T)g£ror,pf/\(g*ua )

The occuring polynomials fy are in fact first partial derivatives of the
invariant cubic form F on V(w). Below, we list them with respect to the
natural (= height-lexicographic) numbering of weights.

fi(z) = z13297 — T16T26 + T18T25 — T20T24 + T22T23

fo(x) = —z11%27 + T14T26 — T17Ta5 + T19T24 — T21T23
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= X9Ta7 — T12T26 + T15T25 — T19T22 + T20T21
= —X7T27 + T10T26 — T15T24 + T17T22 — T18%21

= XgT2a7 — TX26 + T15%23 — T17X20 + T18%19

(2)

(z)

(2)

() = Tsx27 — T10T25 + T12T24 — T14T22 + T16T21
(%) = —T4%27 + TeTas — T12T23 + T14T20 — T16T19
(%) = —T5%26 + TrT25 — ToTag + T11T22 — T13%21
(x) = x3war — TgTas + T10T23 — T14T18 + T16T17

0 = T4%26 — T6T25 + T9Taz — T11220 + T13%19
= —Z2T27 + TgTa2 — T10%20 + T12718 — T15T16
= —T3T26 + T6T24 — T7T23 + T11T18 — T13T17
= T1%27 — T8T21 + T10T19 — T12%17 + T14%15
= T2%26 — T6T22 + T7T20 — T9T18 + T13T15

= T3X25 — T4T24 + T5X23 — T11X16 + T13%14
= —Z1T26 + TeT21 — T7T19 + T9X17 — T11T15

= —Z2%25 + T4T22 — T5T20 + T9T16 — T12T13

(z)
(z)
(x)
(z)
(z)
(x)
(x)
(z)
8(T) = X125 — T4To1 + T5T19 — ToT14 + T11T12
(T) = w2294 — T3T22 + T5T18 — T7T16 + T10T13
() = —T1224 + T3T21 — T5T17 + TrT14 — T10T11
(T) = —Tax23 + T3T20 — TaT18 + TeT16 — TT13
(T) = 1293 — T3T19 + TaT17 — TeT14 + TeT11
() = 21722 — 22221 + T5T15 — TrT12 + TeT1o
(T) = —21220 + 2219 — TaT15 + TeT12 — Ty Ty
(z) = m1218 — T2T17 + T3T15 — TeT10 + TrTs
Jo6(7) = —w1216 + ToT14 — T3T12 + TyT10 — T5T8
for (%) = 21213 — 2211 + T3T9 — T4T7 + T5T6
Projectively, these quadratic forms are in fact equations defining the Cay-
ley plane (= projective octave plane). Explicit equations defining G(F4, R)
easily follow [69].
We have obtained similar geometric and combinatorial description of
such equations for all other relevant cases. This, as well as their connection
with Groebner bases, and standard bases, is thouroughly discussed in [34,

72]. Explicit equations defining groups of type E; and Eg are derived in
our papers [71, 72, 131, 137].
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Classically, for (E7, ) characteristic 2 presented considerable difficul-
ties here. Lately, these difficulties were completely surmounted by Lurie
and the first author [67, 70].

§8. DECOMPOSITION OF UNIPOTENTS, AND BEYOND

Most types of calculations in G(®, R) can be reduced to calculations in
groups G(®,Z[x1,... ,z,]) over integer polynomials. Even so, straight-
forward calculations with matrices 27 x 27, 56 x 56 or 248 x 248, using
equations of degree > 3 almost immediately run into formidable difficul-
ties:

e large number of variables, like 61504 variables for Eg,

e large number of equations, ~200000 equations for Eg,

e 24360 monomials in the quartic form for E7,

e growth of coefficients in the intermediate results.

What you do with these things? Here we describe a crucial idea, which
allows to dramatically reduce complexity of calculations actually occuring
in the majority of practical situations.

Many usual calculations in Chevalley groups can be reduced to cal-
culations with elements of the form gz, (£)g~' or [g,24(£)], where g €
G(®,R), a € &, £ € R. As we know, over fields g itself is a product of
elementary generators. Let us list various ideas that have been used to
treat such elements in general.

e Historically, the first idea that would work in reasonable generality,
was proposed by Bass, and was based on decomposition of g. However,
such decompositions only exist under stability conditions, see references
in [106, 89-92, 52, 125].

e Suslin’s initial approach factorisation and patching [114, 115,
61] consisted in decomposing gz, (£)g~" itself. It works marvelously for
classical groups. However, it requires the whole matrix gz, (£)g~! and,
despite considerable effort, no one succeeded in pushing this approach to
exceptional groups.

e Localisation methods consists in decomposing &. Two most popular
such methods are Quillen—Suslin’s localisation and patching [114] and
Bak’s localisation—completion [16].

e Finally, in decomposition of unipotents, proposed by the second
author and the third authors [112] and developed jointly with Plotkin
[143, 125, 126, 142] one decomposes x4 (&)
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The following result expresses the gist of decomposition of unipotents
in the simplest cases (Eg,w1) and (E7, wy), see [143, 125, 126].

Theorem 11. Let ® = Eg,E; and further, let w = w;(Eg) or w =
wr(Er), respectively. Then for any fixed element g € w(G) the elementary
group E(®, R) is generated by the root type elements z € E(®, R) such,
that 2g., = g« for some column of the matrix g.

More precisely, there exists a formula polynomial in £ and the entries
of g and g=!, that expresses z,(£) as a product of 27 or 56 root type
elements z), A € A(w), respectively, such that the conjugates of these
elements gzg~' by g fall into parabolic subgroups of type P, or P.

To an outsider this result might seem to be a whimsical formal exercise.
In reality, it is a extremely powerful structure result, which, within half a
page, implies majority of classical structure theorems. Moreover, it gives
a working method of calculations in exceptional groups.

Its true significance consists in the fact that A LARGE CLASS OF CALCU-
LATIONS IN THE GROUP G = G(®,R) ITSELF ARE REDUCED TO THE
FOLLOWING THREE FAMILIAR TYPES:

e elementary calculations,
e stable calculations,
e calculations in G(A, R), for proper subsystems A C ®.

Originally, decomposition of unipotents as described in [125, 142] de-
pended on extensive computer calculations. Later we succeeded in getting
rid of most of them [126] replacing them by visual aids such as weight
diagrams [91].

Specifically, the proof of Theorem 11 in [126] is an Aj-proof for Eg and
an A;-proof for E7, see [134] for a thorough discussion of these concepts.
In other words, this proof gives a working algorithm for the following
reductions.

e Use calculations in G(As, R) = SL(6, R) to reduce calculations in
G(Es, R) to those in G(Ds, R) = Spin(10, R).

e Use calculations in G(A7,R) = SL(8,R) to reduce calculations in
G(Er, R) to those in G(Es, R).

What is really amazing here, is that such reductions work for arbitrary
commutative rings, without any finiteness or stability conditions whatso-
ever.

Another striking aspect of this result is that it only depends on the
quadratic equations on an individual column or row of a matrix g € G
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and does not invoke fancier cubic or quartic equations mentioned in the
previous section!

For adjoint representations a similar result is much more demanding,
both in terms of prerequisites, and in terms of actual computational com-

plexity, see [142], many details of actual calculations are still not fully
published.

e Use calculations in G(Ds, R) 2 Spin(10, R) to reduce calculations in
G(Es, R) to those in G(As, R) = SL(6, R).

e Use calculations in G(Dg, R) 22 Spin(12, R) to reduce calculations in
G(Er, R) to those in G(Ds, R).

e Use calculations in G(Dg, R) 2 Spin(16, R) to reduce calculations in
G(Es, R) to those in G(E7, R).

For F, there is a similar interplay between subsystems of types Bs and
Cs. However, in this case we could only prove generation (and even that
with terribly much work, and only under additional assumption 2 € R*),
and could never get an actual polynomial formula, see [143, 112] and [141]
for some indications concerning this case.

Unfortunately, the above form of the decomposition of unipotents relied
on the presence of huge classical subgroups. Recently we discovered two
amazing twists to this approach, one together Gavrilovich and Nikolenko,
another one together with Kazakevich, see [133, 134, 141, 130, 132], and
[135].

e These approaches refer only to the presence of such small classical
subgroups as Ay, A3 or D3,

e They only invoke linear equations on the Lie algebra of G.

e They give a much larger flexibility in terms of how to actually decom-
pose unipotents, by varying not only a subsystem, but also its parabolic
subgroup.

Thus, from our current viewpoint, all above proofs are (A;, P;)-proofs, or
(Dy, Py )-proofs, respectively. Already an (As, P»)-proof, as described in [],
gives enormous additional freedom.

It is impossible to discuss any further details here, but after these
improvements CALCULATIONS FOR Eg AND Fy AS 27 x 27 MATRICES OR
FOR E7 AS 56 X 56 MATRICES CAN BE PERFORMED BY HAND, with some
determination [28, 33]. We still have some trouble with Eg as 248 x 248
matrices, though.
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§9. STABILITY, AND LOCALISATION METHODS

Simultaneously we entertained, with variable success, competing ap-
proaches. Their essence consists in reducing dimension rather than rank.

For small-dimensional rings one can use stability conditions [106], [88—
90], [92] to obtain decompositions such as the Bass—Kolster decomposition
of G(®, R) or the Dennis—Vaserstein decomposition of E(®, R).

Thereby one usually can completely reduce calculations in the group
G(®,R) itself to calculations in its parabolic subgroups. However, this
reduction involves shortening of long products of factors from opposite
unipotent radicals. Such an exercise, performed by Loos and Stavrova
[66, 103] is rather non-trivial even at the conceptual level, not to say as
implementation.

There is another approach, localisation, which works for arbitrary com-
mutative rings, and in many cases gives shorter, and more uniform, proofs
than geometric methods described in the previous section.

Namely, localisations consists in reduction of calculations in a Cheval-
ley group G(®,R) over a commutative ring R to similar calculations
in G(®,Rpr) over localisations Rps of the ring R at all prime ideals
M € Max(R). As we know from §3, over local rings one

Standard tricks reduce most problems to principal localisations R con-
structed by inverting one non-nilpotent element s € R. Let Fy : R — R
be the corresponding reduction homomorphism.

The papers [51, 17, 113, 53] develop conjugation calculus and commu-
tator calculus (also known as the yoga of conjugation, and the yoga of
commutators, respectively). Several new simplifications and strengthen-
ings have been proposed in [53]. Let us state a typical result, that embodies
the gist of these methods, [51].

Theorem 12. Let rk(®) > 2. Then for any finite number of elements
J1,--- s 9n € G(®, R) and any k > 2 there exists an m > 0 such that

|90 FL(G(®, B, R)| < E(®, Fy(s"R)).

Again, though seemingly of a technical nature, this is an extremely
powerful result, which generalises many classical results. For example,
Theorem 6 is the very special case of Theorem 12, when n =1 and s = 1.

For example, using this result we obtained formulae, expressing com-
mutators as products of elementary generators [113]. However, for all prac-
tical matters LOCALISATION IS DRASTICALLY LESS EFFICIENT, THAN GE-
OMETRIC METHODS. Namely, for classical groups, using decomposition of
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unipotents, one gets expressions of polynomial length [97]. For exceptional
groups, all such expressions we succeeded in obtaining so far via localisa-
tion methods are of hyperexponential length [113], and unfeasible for any
practical purpose.

Let us cite one typical problem that accounts for this staggering dif-
ference. Denote by E™(®, R) the subset (in general, not a subgroup) of
E(®, R) consisting of products of not more than m elementary root unipo-
tents.

PI‘Oblem. Lel
.’IfGE @’_k]i 5 yGE (}, _Sn.“ 5

the exponents | and n being at our disposal. Compute the exact bound
for the number L of factors necessary to rewrite the commutator [z,y]
without denominators.

Let us mention two estimates, one of them based on elementary cal-
culations alone, another one using explicit matrix calculations in small
representations.

e The use of elementary calculations [113] based on Chevalley commu-
tator formula gives ridiculous bounds

L < 585, L < 61882, L < 797647204

depending on whether the system is simply laced, doubly laced or triply
laced.

e The use of representations gives L < 42, in all cases.

We believe that this example alone amply illustrates the advantages of
representation theoretic/geometric techniques.

§10. CONCLUSION

The above can be summarised as follows.

e Calculations in exceptional groups over rings, as matrices of degrees
27, 56 and 248 are possible.

e Such calculations are inevitable, since purely ring theoretic methods
give unrealistic bounds.

e We have already applied these methods to the proof of the main
structure theorems and the study of various classes of subgroups.
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e We are positive, that these methods may have many further applica-
tions in the study of automorphisms, generators and relations, etc., etc.

We are amateur programmers, for us the system of a few thousand
equations of degree 3 in 729 variables (arising in the junior case of Eg)
is a huge system of equations. Thus, we would be MOST INTERESTED in
starting long-term cooperation with accomplished programmers, able to
convert our methods and algorithms into efficient implementations.

The following outstanding problem is not solved in general, not even
over fields.

Problem. Develop working methods of calculations in the groups of
points of all (isotropic) reductive groups — not just the split ones (=
Chevalley groups).

We would like to mention two recent contributions. There is the Thesis
by Haller [48] which addresses computations in forms of algebraic groups
over fields. On a completely different slope, there is the paper by Petrov
and Stavrova [81], which [under some mild restrictions on ranks] proves
normality of the elementary subgroup in isotropic reductive groups over
arbitrary commutative rings. With this end, they develop extensive frag-
ments of general theory. Their work clearly indicates that with some effort
and determination one could obtain in this setting all general results on
which our approach relies.
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