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0. INTRODUCTION

The aim of this project is to provide a complete — and as saitained as possible — proof
of the so-called "almost purity” theorem, originally praléy Faltings in[[34]. In a second
stage, we plan to apply almost purity to establish genenadpawison theorems between the
étale and the de Rham cohomologies of a scheme defined @véelih of fractions of a rank
one valuation ring< " of mixed characteristic.

In our formulation, the theorem states that a certain Q¥ir), consisting of an affiné"-
schemeX and a closed subsét C X is almost pure(see definitiol 8.2.25), in analogy with
the notion that is found in_[44].

The proof follows the general strategy pioneered by Fadtibgt our theorem is stronger than
his, since we allow non-discrete valuation rings. The price to pay for this extra generality
is that one has to extend to this non-noetherian context taisenumber of standard tools
and results from commutative algebra and algebraic gegmeEsspecially, chaptdr]5 gives a
rather thorough treatment of local cohomology, for ringd aohemes that are not necessarily
noetherian.

The complete proof is found in chapfér 9. The case wliere Oy (X) has Krull dimension
one had already been dealt with in our previous work [36]. @dbpurity in dimension two
is theoren{ 9.1.31. Theorelm 9.2.16 takes care of the case mbatk K "-scheme of Krull
dimension strictly greater than three; the main featureghisfcase are the use of the Frobenius
endomorphism of the ring/pR, and a notion of normalized length for arbitraRymodules.

In truth, one does not really need to consider separatelgabe of dimensior 3, since the
argument given in sectidn 9.4 works uniformly for every dimsien> 3. However, the case of
dimension> 3 is considerably easier, and at the same time illuminatesibre difficult case
of dimension3. For the latter, one constructs a ridg R)™ with a surjection onto the-adic
completionR” of R, and an endomorphisary, that lifts the Frobenius endomorphism®fpR.
This construction was originally found by Fontaine, who lexed it in caseR is the ring of
integers of a local field of characteristic zero.
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1. CATEGORIES

1.1. Basic category theory. The purpose of this section is to fix some notation that stall b
used throughout this work, and to collect, for ease of refegea few well known generalities
on categories and functors, which are frequently used. Gum neference on general nonsense
is the treatise [10], and another good reference is the necent[51]. For homological algebra,
we mostly refer tol[75].

Sooner or later, any honest discussion of categories ara tmgis tangled up with some
foundational issues revolving around the manipulationanfi¢ sets. For this reason, to be
able to move on solid ground, it is essential to select froendtitset a definite set-theoretical
framework (among the several currently available), areckg0 it unwaveringly.

Thus,throughout this work we will accept the so-called Zermetadhkel system of axioms
for set theory (In this version of set theory, everything is a set, anddh®no primitive notion
of class, in contrast to other axiomatisations.)

Additionally, following [3, Exp.l,50], we shall assume that, for every sgtthere exists a
universeV such thatS € V. (For the notion of universe, the reader may also/lseegfiLQ).)

Throughout this section, we fix some univet$e A set.S is U-small (resp. essentiallyu-
small, if S € U (resp. ifS has the cardinality of B-small set). If the context is not ambiguous,
we shall just write small, instead tfsmall.

1.1.1. Recall that aategory% is the datum of a s&db(%’) of objectsand, for everyA, B €
Ob(%), a set oimorphismdrom A to B, denoted :

Homg¢ (A, B).

This datum must fulfill a list of standard axioms, which we arftor anyA € Ob(%), we write
1,4 for the identity morphism ofi. We also often use the notation :

Endg(A) := Homg (A, A).

Likewise, Auty(A) C End¢(A) is the group of automorphisms of the objett Furthermore,
we denote byorph(%’) the set of all morphisms i

The category of all small sets shall be denote@et or just Set, if there is no need to
emphasize the chosen universe.

We say that the catego# is small, if both Ob(%") andMorph(%’) are small sets. Somewhat
weaker is the condition th&t’ has smallHom-sets i.e. Homy (A, B) € U for everyA, B €
Ob(%). The collection of all small categories, together with thedtors between them, forms
a categoryJ-Cat. Unless we have to deal with more than one universe, we sbadllly omit
the prefixU, and write jusiCat. If o7 and% are any two categories, we denote by

Fun(</, )

the set of all functors? — A. If o7 is small andZ has smalHom-sets, theun (<, %) € U;
especially,Cat is a category with smallom-sets. Moreover, there is a natural fully faithful
imbedding :

Set — Cat.
Indeed, to any s&f one may assign igiscrete categorglso denoted, i.e. the unique category
such thatOb(S) = S andMorph(S) = {1 | s € S}. If S andS’ are two discrete categories,
the datum of a functof — S’ is clearly the same as a map of séis(S) — Ob(5’).

1.1.2. Theopposite categoryg™ is the category witltOb(%°) = Ob(%’), and such that :
Homyo (A, B) := Homg (B, A) for every A, B € Ob(%).

Given an objectd of ¥, sometimes we denote, for emphasis,Afythe same object, viewed
as an element oDb(%°); likewise, given a morphisnf : A — B in €, we write f° for the
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corresponding morphism° — A° in €°. Furthermore, any functaf" : &/ — % induces a
functor F° : &7° — 98°, in the obvious way.

1.1.3. A morphisny : A — Bin % is said to be anonomorphisnif the induced map :
Homy (X, f) : Homy (X, A) - Homy(X,B) : g~ fog

is injective, for everyX € Ob(%’). Dually, we say thaf is anepimorphisnif f°is a monomor-
phism in&°. Obviously, an isomorphism is both a monomorphism and amegghism. The
converse does not necessarily hold, in an arbitrary cagegor

Two monomorphismg : A — B and f’ : A’ — B areequivalent if there exists an
isomorphismh : A — A’ such thatf = f’ o h. A subobjecof B is defined as an equivalence
class of monomorphismé — B. Dually, aquotientof B is a subobject of3° in €.

One says thait” is well-poweredf, for every A € Ob(%), the set :

Sub(A)
of all subobjects ofd is essentially small. Dually” is co-well-poweredif € is well-powered.

Definition 1.1.4. Let ' : &/ — £ be a functor.

(i) We say thatF’ is faithful (resp. full, resp. fully faithful), if it induces injective (resp.
surjective, resp. bijective) maps :

Hom, (A, A") = Homyg(FA, FA) : [ Ff

for every A, A" € Ob(<7).

(i) We say thatF’ reflects monomorphisnisesp. reflects epimorphismsesp.is conser-
vative if the following holds. For every morphisth: A — A’ in o7, if the morphism
F f of # is a monomorphism (resp. epimorphism, resp. isomorphigraj the same
holds for f.

(i) We say thatF' is essentially surjectivé every object of# is isomorphic to an object
of the formF' A, for someA € Ob(«).

(iv) We say thatF' is anequivalenceif it is fully faithful and essentially surjective.

1.1.5. Let«Z, £ be two categoried;, G : o — 2 two functors. Anatural transformation
(1.1.6) a:F=(G

from F' to G is a family of morphismga, : FA — GA | A € Ob(«)) such that, for every
morphismf : A — B in <7, the diagram :

FA—2-GA

Ffl le

FB—2~GB

commutes. lfv, is an isomorphism for everyt € o7, we say thaty is anatural isomorphism
of functors. For instance, the rule that assigns to any objethe identity morphismliz, :
FA — FA, defines a natural isomorphists : F' = F. A natural transformatiori (1.1.6) is
also indicated by a diagram of the type :

AN
o Vo 2.
G



6 OFER GABBER AND LORENZO RAMERO
1.1.7. The natural transformations between functgrs> % can be composed; namelyqif:
F = G andp : G = H are two such transformations, we obtain a new natural toamsftion
foa:F=H bytherule: A~ Saoay for everyA € Ob(<).
With this compositionFun(.e7, £) is the set of objects of a category which we shall denote
Fun(«/, A8).

There is also a second composition law for natural transdtions : if ¢ is another category,
H K : 4 — % two functors, and? : H = K a natural transformation, we get a natural
transformation

fxa:HoF =KoG : Aw PgaoH(as) = K(aa)ofPBra for every A € Ob(«)

called theGodement produatf o and 5 ([10, Prop.1.3.4]). Especially, ifl :  — € (resp.
H : ¢ — <) is any functor, we writdd x o (resp.a * H) instead ofl ; x a (resp.a * 1x).

These two composition laws are related as follows. Supposed, 2 and % are three
categoriesFy, Gy, H, : &/ — A andFy, Go, Hy : 8 — € are six functors, and we have four
natural transformations

o; - F, = G; G » G; = H; (1=1,2).
Then we have the identity :

(B2 % B1) o (g x ) = (B2 0 a) * (B1 0 ax).
The proof is left as an exercise for the reader (se2 [10, P1®p]).

1.1.8. Let« andZ be two categories; : o7 — Z a functor. Recall that a functer : 4 —
</ is said to bdeft adjointto F' if there exist bijections

Yap : Homy, (GB, A) = Homgy(B, FA) for everyA € Ob(«/) andB € Ob(%)

and these bijections are natural in bothand B. Then one says thdft is right adjointto G,
and that(G, F') is anadjoint pair of functors

Especially, to any objedB of % (resp. A of <), the adjoint pai(G, F') assigns a morphism
Yepe(lgs): B— FGB (resp.ﬂg’}A(lA) : GFA — A), whence a natural transformation

(1.1.9) n:lg=Fo(G (resp.e :Go F = 1,)

called theunit (resp.counif of the adjunction. These transformations are related eyrifin-
gular identitiesexpressed by the commutative diagrams :

nxF Gxn
F'=— FGF G=—GFG

F G.
Conversely, the existence of natural transformatiomsdn as in [1.1.9), which satisfy the
above triangular identities, implies th@ats left adjoint toF' ([10, Th.3.1.5] orl[51, Prop.1.5.4]).

Remark 1.1.10.Let (G, F') be an adjoint pair as if_(1.1.8), with unjitand counit.

(i) Suppose thatH,, H,) is another adjoint pair, withf, : Z — ¢, H, : € — % (for some
category?’), and letny (resp.cg) be a unit (resp. a counit) for this second adjoint pair. Then
clearly (G o Hy, H; o F) is an adjoint pair, and the transformation

g:=co(Gxegx F) (resp. 1 := (Hy *n* Hy) ongy)

is a counit (resp. a unit) for this adjunction. We say thahde are theunit and counit induced
by (n,e) and (g, ex) -
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(i) Suppose thatG’, F’) is another adjoint pair, witl” : o/ — %, G’ : # — </, and
let " (resp. ¢’) be a unit (resp. a counit) for this second adjoint pair. ®ggpmoreover that
7 : = F’is a natural transformation. Then we obtain an adjoint faansationr' : G’ = G,
by the composition :

' G'(nB) / G'(raB) Anl €GB
G'B———— G'FGB ——— G'F'GB — GB.
Conversely, from such’ we can recover, hence the rule — 7' establishes a natural bijection
from the set of natural transformatiohs=- F”, to the set of natural transformatio6$ = G.
Notice that this correspondence depends not onlfarf') and(G’, F”), but also on(n, ¢) and
(', €").
(iii) Moreover, using the triangular identities of (1.1L.8)is easily seen that the diagram :

G/OF%G/OF/

TT*Fﬂ ﬂa’

GoF——1,.

commutes.

(iv) Furthermore, suppog&:”, F") is another adjoint pair witht"”’ : o/ — %8, G" : # —
</ andn”, " are given units and counit for this pair. Let also: F' = F” be a natural
transformation; then we may uég, ') and(n”, ") to definew’, and we have :

(wOT)T:TTOWT

provided(n, ¢) and(n”, ") are used to define the left-hand side.

(v) Lastly, let(H;, Hs) and the unit and counity, ey be as in (i), and suppose moreover that
we have another adjoint paif{;, H,) whereH;| : # — ¢ andH), : € — %, with respective
unit j; and counits’;, and furthermore we are given a natural transformationd, = Hj.
Then we get as in (ii) the natural transformation H)} = H,, and we have the identity

(vxr) =70 %01

provided the left hand-side is defined Vi@ ) and via the unit and counit for the adjoint pair
(H,o G',H] o F') induced by(r/, ") and (1, €’y )-
(vi) Especially, if we usén, €) and(7, £) to define( H, = )7, we have :

(Hyx 7)1 =71 % H,
(all these assertions are exercises for the reader : sefl$0.6]).

Proposition 1.1.11.Let F : &/ — 9 be a functor.

() The following conditions are equivalent :

(a) F is fully faithful and has a fully faithful left adjoint.
(b) Fis an equivalence.

(i) Suppose that’ admits a left adjointz : 4 — o/, and lety : 14 = F o G and
e:GoF = 1, be aunitand respectively counit for the adjoint p&i¥, F'). Then :
(a) F (resp. G) is faithful if and only ifex (resp. ny) is an epimorphism for every

X € Ob(&) (resp. a monomorphism for eveYye Ob(A)).

(b) F (resp.G) is fully faithful if and only ife (resp.n) is an isomorphism of functors.

(i) Suppose that” admits both a left adjoint: : 8 — < and a right adjointH : & —
<. ThenG is fully faithful if and only ifH is fully faithful.

Proof. These assertions afe [10, Prop.3.4.1, 3.4.2, 3.4.3]; seeHl, Prop.1.5.6]. O
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1.1.12. A standard construction associates to any oBjeetOb(%’) a category :
C/X

as follows. The objects &§/X are all the pair$ A, ) whereA € Ob(%) andy : A — X is any
morphism of¢’. Foranyy : A — X, andy : B — X, the morphismslomyx ((4, ), (B, 1))

are all the commutative diagrams :
N
X

of morphisms ofg’, with composition of morphisms induced by the compositem bf 2. An
object (resp. a morphism) &f/X is also called anX-object(resp. anX-morphism of %
Dually, one defines

A

B

X/€ = (€¢°/X°)°
i.e. the objects ofX/% are the pairgA, ¢) with A € Ob(%) andy : X — A any morphism of
% . We have an obvious faithflourcefunctor :
(1.1.13) CIX - € (A,p) — A
and likewise one obtainstargetfunctor X/4 — %. Moreover, any morphisnfi : X — Y in
% induces functors :
fo: € X —-%Y : (A, g: A= X))~ (A figi=fog:A=Y)

WL e Ve X/ - (Bh:Y — B)es (B, f'h=hof: X — B).

Furthermore, given a functdr : ¥ — %, any X € Ob(%) induces functors :

Fix :¢/X - BFX : (Ag) — (FAFg)

(1.1.15) < F X/¢ — FX/% : (B,h)w— (FB,Fh).

1.1.16. The categorieg /X and X /% are special cases of the following more general con-
struction. LetF : &/ — 2 be any functor. For anyg € Ob(%), we definel'</ /B as the
category whose objects are all the pdirs f), whereA € Ob(e/) andf : FA — Bisa
morphism in%. The morphismg : (A, f) — (A, f) are the morphismg : A — A’ in o/
such thatf’ o Fg = f. There are well-defined functors :

F/IB:Fd//|B— %B/B : (A, f)— (FA,[) and p:Fd/B— o . (A f)— A
Dually, we define :
B/Fdf .= (F°a/°/B°)°
and likewise one has natural functors :
BJF : B/Fof — B/%# and (p:B/Fo — .

Obviously, the category’/X (resp.X/%) is the same a$,% /X (resp.X/14,%).
Any morphismg : B — B induces functors :

g/Fo/ : BIJFf — B'/JFo/ . (A, f)— (A, fog)
Fd|g: Fd|/|B — Fa /B : (A f)— (Agolf).
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1.1.17. Let# be acategory; the categories of the fogitk’ and.X/% can be faithfully embed-
ded in a single categofMorph(%’). The objects oMorph(%’) are all the datdA, B, ¢), where
A, B € Ob(¥¢)andy : A — Bisany morphismo#. If f: A— Bandf' : A’ — B’ are two
such morphisms, the sélommornis)((A, B, f), (A', B, f')) consists of all the commutative
diagrams of morphisms &f :

A—1-pB
(1.1.18) gl lg,
aLep

with composition of morphisms induced by the composition & ¢, in the obvious way.
There are two naturalourceandtargetfunctors :

%€ < Morph(¢) = ¢

such thats(A — B) := A, t(A — B) := B for any objectA — B of Morph(%’), and

s(I.II8) = ¢, t(I.1I8) = ¢'. Especially, the functof (1.1.113) is the restrictionsofo the
subcategoryg’/X .

1.1.19. Let% be a category; a very important construction associated itthe category
%, = Fun(%”°, U-Set)

whose objects are called thkepresheavesn . The morphisms irg)} are the natural trans-
formations of functors. We usually drop the subsctiptinless we have to deal with more than
one universe. Let us just remark thatyifis another universe, and C U’, the natural inclusion
of categories :

6, — 6
is fully faithful. If € has smalHom-sets (se€ (1.1l.1)), there is a natural functor
h:€¢ — €¢"
(the Yoneda embeddifgvhich assigns to anx € Ob(%) the functor
hx : €° — Set Y — Homg (Y, X) foreveryY € Ob(%)
and to any morphisnf : X — X’ in ¢, the natural transformatio; : hx = hx such that
hiy(g) = fog for everyY € Ob(%’) and everyy € Homg (Y, X).

Proposition 1.1.20(Yoneda’s lemma)With the notation of{1.1.19) we have :

(i) The functorh is fully faithful.
(i) Moreover, for every' € Ob(¢"), and everyX € Ob(%’), there is a natural bijection

F(X) :> Homg/\(hx, F)
functorial in bothX and F'.

Proof. Clearly it suffices to check (ii). However, the sought bijectis obtained explicitly as
follows. To a giveru € F'(X), we assign the natural transformatign: ~x = F such that

Tay (f) = Ff(a) for everyY € Ob(%) and everyf € hx(Y).

Conversely, to a given natural transformation hx = F we assignrx(1yx) € F(X). As an
exercise, the reader can check that these rules establisialigunverse bijections. The functo-
riality in F'is immediate, and the functoriality in the argumaéhaamounts to the commutativity
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of the diagram

~

Homgn (hy:, F') — F(X’)
Hom A (hﬂ)l lF«a)
Homgn (hx, F) —— F(X)
for every morphisnp : X — X’ in ¢ : the verification shall also be left to the reader. [

An object I’ of ¥ is arepresentable presheaff it is isomorphic tohy, for someX €
Ob(%). Then, we also say thdt is representable ir¢’.

1.1.21. We wish to explain some standard constructionsasftaves that are in constant use
throughout this work. Namely, let be a small category” a category with smalHom-sets,
and X any object ofs’. We denote by.x : I — % theconstant functoassociated t :
cx(i) .= X foreveryi € Ob(I) cx(p) :==1x foreveryy € Morph([]).
Any morphismf : X’ — X induces a natural transformation
CpCxr = Cx by the rule :(cy); := f for everyi € I.

Definition 1.1.22. With the notation of[(1.1.21), lef' : I — % be any functor.
(i) Thelimit of F'is the presheaf o# denoted

li}nF 1 6° — Set

and defined as follows. For any € Ob(%), the setlim; F'(X) consists of all the
natural transformationsy = F'; and any morphisnf : X’ — X induces the map

h}nF(f) ; li}nF(X) — li}nF(X') T— Tocy foreveryr:cx = F.

(i) Dually, the colimit of F' is the presheaf o
colim F' := lim F°.
1 I°

(i) We say that% is completg(resp.cocompletgif, for every small category and every
functor F' : I — ¥, the limit (resp. the colimit) of” is representable i (resp. in
©°).

Remark 1.1.23.(i) In the situation of [(1.1.21), lef, F’ : I — % be two functors, and
g : F' = F’" anatural transformation; we deduce a morphism of preskeave’

li}ng : li}nF — li}n F’ T gor foreveryX € Ob(%¢)andeveryr:cx = F.

(i) Likewise, g induces a morphism of presheaves®h

collimg : Collim F — collimF 7%+ 1%0¢° foreveryX € Ob(¥¢)andr :cy = F.

(iii) With the notation of (ii), suppose that the colimits &f and F’ are representable by
objectsC'¢, respectively”?, of €. Then the colimit ofy corresponds to a morphisdf., — C¥.
in ¢°, i.e.a morphisnCyr — Cp in %

(iv) If p: I' - I andH : ¥ — ¥’ are any two functors, we obtain a natural transformation

lim H : li}nF = (hlm HoFog)oH’
) /

by ruling thatlim, H(X)(7) := H = 7 x ¢ for everyX € Ob(¥) and everyr : cx = F. The
reader may spell out the corresponding assertion for ctdimi
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(v) Let] asmall categoryl’: ¥ — ¢’ andH : [ — % two functors, and suppose the limit
of H is representable by an objelttof %, so there exists an isomorphism of presheaves

under which, the image df;, € h;(L) corresponds to a natural transformation ¢, = H
from the constant functar;, : I — ¢, to H. There follows a natural transformation

Fxt:.:cpp=FoH

of functors/ — %”’. In this situation, we say thal commutes with the limit off, if F' % 7
induces an isomorphism of functors (defined as in (i))

li}nF*T chpo = li}ncL = li}nFoH

in which caseF' L represents the limit of’ o H. Likewise, we say that’ commutes with the
colimit of H, if the dual condition holdg,e. if F° commutes with the limit of{°.

Example 1.1.24.(i)) Fori = 1,2, let f; : A — B, be two morphisms in a catego# with
smallHom-sets; thgoush-oubr coproductof f; and f; is the colimit of the functofF’ : I — ¥,
defined as follows. The s€ib(/) consists of three objects ¢,, to andMorph(/) consists of
two morphismsp; : s — t; for i = 1, 2 (in addition to the identity morphisms of the objects of
I); the functor is given by the ruleE's :== A, F't; := B; andFp,; := f; (fori =1, 2).

If C' € Ob(%) represents the coproduct §f and f>, we have two morphism§g : B; — C
(¢ = 1,2) such thatf] o f; = f; o fo; in this case, we say that the commutative diagram :

Ai>Bl

fQ\L lf{

By, —=(

is cocartesian Dually one defines thigbre productor pull-backof two morphismgy; : A; — B.
If D € Ob(%¥) represents this fibre product, we have morphigins D — A; such that
g1 © g1 = g2 o g5, and we say that the diagram :

DLA1

gk

AQLB

is cartesian The coproduct off; and f> is usually called the coproduct @, and B, over
A, denotedB; 1y, 1,y B, or simply B, I1, B,, unless the notation gives rise to ambiguities.
Likewise one writesd; x,, .y Az, Or justA; x g A, for the fibre product of;, andgs..

(i) As a special case, iB := B; = By, the coproducB 114 B is also called theoequalizer
of f; and f,, and is sometimes denoté€tequal( fi, f2). Likewise, if A := A; = A, the fibre
productA x g A is also called thequalizerof g; andg,, sometimes denotddqual(g;, g2).

(i) Furthermore, letf : A — B be any morphism if¢’; notice that the identity morphisms
of A andB induce natural morphisms of presheaves

my : Coequal(f, f) = B vy A — Equal(f, ).

and it is easily seen thgtis a monomorphism (resp. an epimorphism) if and only ifresp.
7¢) is an isomorphism if6”* (here we abuse notation, by writingand B instead of the corre-
sponding presheaves, andhg).

(iv) Let I € U be any small set, an®® := (B; | i € I) any family of objects ofg. We
may regard/ as a discrete category (sée (111.1)), and then theirute B; yields a functor
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I — %, whose limit (resp. colimit) is called theoduct(resp.coproducj of the family B, and
is denoted [, B; (resp.[[,.; Bi).

(v) Inthe situation of[(1.1.21), let : F' = cx be a natural transformation, apd Y — X
any morphism irfi¢’. Suppose that all fibre products are representabt€,iand consider the
functor

FXXYZ]%% Z'>—)F(Z')X(fi7g)y

(which means that for every € Ob(/) we pick an object of¢ representing the above fibre
product, and to a morphism: i — j in I, we attach the morphisifi(y) x x 1y, with obvious
notation.) The projections induce a commutative diagram

FxxY=—=F

|, b

Cg

Suppose moreover that the colimit bfis representable by an object of ¥°, and for every
X € Ob(%¥), and everyf, g as above, the colimit of' x x Y is representable by an objec{
of ¢°. By remark 1.1.23(iii) we deduce a natural morphisrin

We say that the colimit of” is universalif the resulting morphisni(1.1.25) is an isomorphism
for everyX € ¥ and everyf andg as above. In this case, cleatlyx y Y represents the colimit
of I/ Xx Y.

(vi) Let f : X — Y be a morphism ir¢’, and suppose that, for every other morphism
Y’ — Y, the fibre productX xy Y is representable if¥’. In this case, we say thgtis a
universal monomorphisrfresp. auniversal epimorphisinf f xx Y : X xy Y’ — Y'isa
monomorphism (resp. an epimorphism) for every morphiSm- Y in €.

(vii) Suppose that all fibre products are representabi€;im this case, notice that, in view
of (iii), the morphismf is a universal epimorphism if and only jfis an epimorphism and the
coequalizer off and f is a universal colimit.

(viii) Suppose that is complete and well-powered (sée (111.3)). Then, for em@yphism
f: X — Y we may define thenageof f, which is a monomorphism :

Im(f) =Y

defined as the smallest of the famif§) of subobjects” — Y such thatf factors through a
(necessarily unique) morphisid — Y’. Indeed choose, for every equivalence class .7,
a representing monomorphisy — Y, and let/ be the full subcategory o&/Y such that
Ob(I) ={Y. — Y | c € #},; thenI is a small category, and the image jofs more precisely
the limit of the inclusion functor : I — %7/Y (which is representable, sin@is complete).

As an exercise, the reader can show that the resulting nerpkii — Im(f) is an epimor-
phism.

Example 1.1.26.Let ¥ be a category, and € Ob(%).

(i) We say thatX is aninitial (resp.final) object of¢” if Hom (X, Y") (resp.Homy (Y, X))
consists of exactly one element, for evéfye Ob(%).

(i) Itis easily seen that an initial objedf of ¥ represents thempty coproduah %, i.e. the
coproduct of an empty family of objects @f, as in example_1.1.24(iv). Dually, a final object
represents thempty producin %'.

(iii) We say thatX is disconnectedf there exist4d, B € Ob(%), neither of which is an initial
object of¢’, and such thak represents the coprodudtIl B. We say thatX is connectedif
X is not disconnected.



FOUNDATIONS OFp-ADIC HODGE THEORY 13

Example 1.1.27.(i) The categorSet is complete and cocomplete, and all colimitsSiex are
universal. Hence, all epimorphisms®ét are universal, in view of example 1.1124(vii).
(i) Alsothe categoryCat is complete and cocomplete. For instance, for any pair aftuns

d L&z
the fibre product (in the categofyat) of /' andG is the category :
of X(F7(;) B

whose set of objects (9b(.«/) x o) Ob(£); the morphisms$A, B) — (A’, B') are the pairs
(f,g9) wheref : A — A’ (resp.¢g : B — B’) is a morphism ineZ (resp. in%), such that
Ff = Gg. If the notation is not ambiguous, we may also denote thisgmaly by.oZ x4 A.
In caseZ is a subcategory ¢ andG is the natural inclusion functor, we also write *%
instead ofe7 x4 A. Seel[10, Prop.5.1.7] for a proof of the cocompletene<sSaaf.

1.1.28. Letl/, ¥ be two small categorie$; : I — ¢ a functor, and~ any presheaf ofa”. We
deduce a functor

Homgn (G, ho F) : I — Set i — Homgn (G, hpgy) foreveryi e I
and by inspecting the definitions, we find a natural isomanphi

(1.1.29) li}n Homen (G, h o F) = Homgn (G, li}n F)

(more precisely, the limit on the left is represented by t#teos the right). Likewise, we have a
natural isomorphism :

(1.1.30) liIIOn Homgn (h o F,G) = Homgna (coljim F.G).

1.1.31. Suppose thdt : &7 — A is right adjoint to a functotz : 4 — /. Then itis easily

seen tha#' commutes with all representable limits.ef, in the sense of remark 1.1]23(v). Du-

ally, G commutes with all representable colimits®f It is also easy to check thattransforms

monomorphisms into monomorphisms, ardransforms epimorphisms into epimorphisms.
Conversely, we have the following :

Theorem 1.1.32.Let .7 be a complete category, : o/ — 2 a functor, and suppose that’
and % have smalHom-sets (se€l.1.1). The following conditions are equivalent :

(a) F admits a left adjoint.

(b) FF commutes with all the limits a7/, and every objecB of # admits asolution set
i.e. an essentially small subsg; C Ob(<7) such that, for everyl € Ob(«/), every
morphismf : B — F'A admits a factorization of the forth= Fho g, whereh : A” —
A'is a morphism ine7 with A’ € S, andg : B — F'A’ is a morphism inA.

Proof. This is [10, Th.3.3.3]. Basically, one would like to constira left adjointGG explicitly
as follows. For any3 € Ob(#) and any morphisnf : B' — B, set:

GB := lim tp Gf:= lim 1,.

B/F g f/Faf

(notation of [(1.1.16)). The problem with this is that theetmiriesB/F </ and f / F.< are not
necessarily small, so the above limits do not always exike iflea is to replace the category
B/ F </ by its full subcategory’s, whose objects are all the morphisfis— F'Awith A € Sp;
then it is easily seen that this is isomorphic to a small acatgegand the limit ovewsz of the
restriction of. yields the sought adjoint : séec.cit. for the details. O

Of course, the “dual” of theorem 1.1]32 yields a criteriontfee existence of right adjoints.
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1.1.33. The notion oKan extensiomf a given functor yields another frequently used method
to produce (left or right) adjoints, which applies to thddeling situation. Letf : &/ — % be
a functor, ands” a third category. Then we deduce a natural functor

[ :Fun(A,¢) - Fun(«,¢) @ G—Gof (a:G=G)—axf.
Proposition 1.1.34.1In the situation of(1.1.33) suppose that7 is small,Z and% have small
Hom-sets, ands’” is cocomplete (resp. complete). Th&nadmits a left (resp. right) adjoint.

Proof. Indeed, if¢ is cocomplete, a left adjoint : Fun(«/,¢) — Fun(%, %) to f* is given
explicitly as follows. For a given functadr' : &/ — ¢, definef, F' by the rule :

B+ colim F op ¢ — (colim 1¢ : colim F o tp — colim F o 1p/)
fed B fel [ fed /B fod | B

for everyB € Ob(%) and every morphism : B — B’ in % (notation of (1.1.16)). This makes
sense, since — under the current assumptions — the categarieB and f <7 /o are small.

The construction of a right adjoint, in cagéis complete, is dual to the foregoing, by virtue
of the isomorphism of categories :

Fun(2,%¢) = Fun(2°,4°)°  for every category.
Seel[[10, Th.3.7.2] of [51, Th.2.3.3] for the detailed veadifions. OJ

1.1.35. As an application, suppose tlitis a small category, and a category with small
Hom-sets; any functof : 4 — % induces a functor

L €) > BY FresFofe

and it is easily seen thgf, commutes with all limits and all colimits. From propositifil.34
we obtain both a left and a right adjoint f@j, denoted respectively :

fU! . @(J\ — Cglj\ and fU* . e@o — Cglj\

As usual, we drop the subscrigt unless the omission may cause ambiguities.
Notice that the diagram of functors :

B 2= g/
(1.1.36) w w
¢ —> g
(whose horizontal arrows are the Yoneda imbeddingsysentially commutatiyee. the two

compositionsf, o h, andhy o f are isomorphic functors. Indeed — by of proposifion T.1iP0(
— for everyB € Ob(B), the objectsf\hz andh g both represent the functor

¢ —Set : Frs F(fB).

Definition 1.1.37. Let ¥ be a category.
(i) We say that#’ is finite if both Ob(%") andMorph(%’) are finite sets.

(i) We say that# is path-connectedf Ob(%’) # @ and every two objectX, Y can be
connected by a finite sequence of morphism®’jrof arbitrary length :

X—=Z1—Zy— - —2,—Y

(iii) We say that% is directed if for every X, Y € Ob(%) there existZ € Ob(¥) and
morphismsX — Z,Y — Zin ¢. We say thats’ is codirected if € is directed.

(iv) We say that# is locally directed(resp.locally codirectedl if, for every X € Ob(%),
the categoryX /¢ is directed (resp. codirected).
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(v) We say thats’ is pseudo-filteredf it is locally directed, and the following holds. For
any X, Y € Ob(%), and any two morphismg ¢ : X — Y/, there existsZ € Ob(%)
and a morphismy : Y — Z suchthatho f = hog.

(vi) We say that#’ is filtered if it is pseudo-filtered and path-connected (in which cé&8e,
Is also directed). We say th@t is cofilteredif € is filtered (in which case?’ is also
codirected).

(vii) A limit lim¢ F' is path-connectedresp. codirected resp. locally codirected resp.
cofiltered resp. finite), if ¥ is path-connected (resp. codirected, resp. locally codi-
rected, resp. cofiltered, resp. finite). Dually, one defipath-connecteddirected
locally directed filtered andfinite colimits.

(viii) We say that a functof”’ : o7 — A is left exact if F' commutes with all finite limits,
in the sense of remafk 1.1]23(v). Dually,is right exactif it commutes with all finite
colimits. Finally, £ is exactif it is both left and right exact.

Remark 1.1.38.(i) Notice that, if/ is a filtered category, ands any object of/, the category
i/1 is again filtered; dually, if is cofiltered, the categor¥/i is again cofiltered. Furthermore,
let F : I — </ be any functor; there follow functot8 ot : i/ — o andF os: [/i — <
(notation of (1.1.1l7)), and we have natural identifications
colim F' = colim F ot lim F = lim F os.
I i/I I 1/i

(i) Let ¥ be a small category. There is a natural decompositiddan :
¢ > ]]%

el
where eacly; is a path-connected category, ahts a small set. This decomposition induces
natural isomorphisms in/" :

CO%mF_)gCO%mFOBZ héﬂF—)El}glFoez
for any functorF’ : ¥ — <7, wheree; : 6; — % is the natural inclusion functor, for eveine 1.
The details shall be left to the reader. These simple obsengoften simplify the calculation
of limits and colimits.

(i) Let ¥ be a complete category (more generally, a category in wHidibee products
are representable), arfd : ¥ — % a left exact functor. If follows formally from example
[1.1.24(iii) thatF" transforms monomorphisms into monomorphismg:' i also conservative,
then a morphisnp : X — Y in € is a monomorphism if and only if the same holds fop.

(iv) Dually, if F is right exact, and all coproducts are representabt€,iexamplé_1.1.24(iii)
implies thatF’ transforms epimorphism into epimorphisms, and'ifs also conservative, then
a morphismp : X — Y in T is an epimorphism if and only if the same holds fop.

(v) In the situation of[(1.1.33), suppose that the categbsy/B is finite for everyB €
Ob(4); then, by inspecting the proof of proposition 1.1.34, wethe¢/* admits a left adjoint,
provided all finite colimits of¢” are representable affdhas smalHom-sets. Likewise, we can
weaken the condition for the existence of the right adjofot the latter, it suffices that all finite
limits of ¢ are representable afid has smalHom-sets.

1.2. Tensor categories and abelian categoriedn this section we assemble some basic defi-
nitions and results that pertain to abelian categories #met oelated classes of categories with
extra structure.

Definition 1.2.1. A tensor categorys a datunt’ := (¢, ®, ®, ¥) consisting of a category’,
a functor
R:CxEC—% : (X)Y)—=XQY
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and natural isomorphisms :
Pxyz: XY ®2)S(XQY)®Z Uxy: XY 3Y®X

forevery X, Y, Z € Ob(%), called respectively thassociativityandcommutativity constraints
of ¢, that satisfy the following axioms.

(a) Coherence axiomthe diagram

®x v,zeT ®xev,z,T

XY ®((ZeT)) (XoY)®(ZaT) (XY)®2Z)®T
X®¢szl T¢Xyz®T
Xo((Ye2)®T) Pxvent (XY ®Z)eT

commutes, for everX, Y, Z, T € Ob(%).
(b) Compatibility axiont the diagram

[ 4
X@YoZ)—2 s (XoY)®Z —" > 70 (X®Y)
X®szl l¢zxy

[ v Y
X®ZoY)—2 L (Xe2)9Y —2 . (Z@X)®Y

commutes, for everX, Y, Z € Ob(%).

(c) Commutation axiomwe have¥y y o ¥xy = 1xgy foreveryX,Y € Ob(%)

(d) Unit axiom: there exists an objeét € Ob(%) and an isomorphism : U = U @ U
such that the functor

(1.2.2) C—¢ : X—U®X
is an equivalence. One says tli&t «) is aunit objectof %

Lemma 1.2.3.Let% := (¢, ®, ®, ¥) be any tensor category. The diagram

[ > v Z
XeYeZ) —  (XeY)eZ—"",(YoX)aZ
X®szl Témxz
(] v
X®ZY)—22 » (X02)9Y —22 oY @ (X ® Z)

commutes, for ever), Y, Z € Ob(%).

Proof. To ease notation, we shall omit the tensor synmibdietween objects, and we shall drop
the subscript from® and¥ when we display a diagram. It suffices to consider the diagram

Y(XZ) 2 YX)Z

lm Wl

VY(ZX) 2 (Y2) X —25 L (Z2v)X <2 Z(vyX) \"¥

E @ zov|

(X2)Y 22 (ZX)Y 2(XY) <2 (XY)Z
X(ZY) Ak X(y2)

whose two triangular subdiagrams commute by naturality pand whose three rectangular
subdiagrams commute by compatibility. O
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Definition 1.2.4. Let € := (¢, ®,®, V) and¥’ := (¢’,®’,®’, V') be two tensor categories.
A tensor functorg — €' is a pair(F, c¢) consisting of a functof’ : ¥ — ¢’ and a natural
isomorphism
cxy  FX®@FY S F(X®Y) forall X, Y € Ob(%)
such that the following holds.
(a) For every objectX, Y, Z of ¢, the diagram

FX®(FY®FZ) 2222 FX @ F(Y ® Z) —2 . F(X & (Y ® Z))
Prx py, Pz l lF(q)X,Y,Z)
(FX®FY) o FZ " pxev)oFz—"2" . F(X®Y)® 2)
commutes.
(b) For all objectsX, Y of ¢, the diagram
FX®FY —> > F(X®Y)
S o
FY®FX —= ~ F(Y ® X)

commutes.
(c) If (U,w) is a unit object ofg, then(FU, c(}}U o Fu) is a unit object ofg”.

Remark 1.2.5. (i) Lemmal1.2.B illustrates a general principle valid ingmvensor categdz”:
namely, say thak(,, ..., X, is a sequence dafistinctobjects of¢, and X’ and X" are obtained
from these two sequences by taking tensor products sevwmied,tand in any order, in which
case we say thaX’ and X” have no repetitionsNow, there will be usually various ways to
combine the associativity and commutativity constraimsyder to exhibit some isomorphism
X' 5 X". However, the resulting isomorphism shall be independetiteoway in which it is
expressed as such a combination. This follows from a theofdvtac Lane. To formalize this
result, one could observe that, for any Sethere exists a universal tensor categbyy‘gener-
ated by>", i.e. such that — for any other tensor categ@ty- any mapping: — Ob(%’) extends
uniquely, up to isomorphism, to a tensor funcigr — . Then Mac Lane’s theorem says that,
for every set®, and every objecK € Ob(Ty) that has no repetitions, the grovmtr (X)

is trivial. Instead of relying on such a general result, wallsmakead hocverifications, as in
the proof of lemma_1.213 and of the forthcoming propositicA@. However, in view of this
principle, in the following we shall often omit a detailedsdeption of the isomorphism that
we choose to connect two given objects that are thus related reader will be able in any
case to produce one isomorphism, and the principle say#tbse choices cannot be source of
ambiguities.

(i) Let 2 be any category, and a tensor category. Then notice tiin(Z, ¥) inherits
from & a natural tensor category structure : we leave to the readdanask of spelling out the
details. Moreover notice that, {f, ¢) : €, — ¢ and(F’, ) : €2 — %3 are any two tensor
functors between tensor categories, then the composition

(F'oF,(F'xc)o(d % (F x F))): €1 — €3
is again a tensor functor.

Proposition 1.2.6.Let (U, u) be a unit object of a tensor categdey. Then there exists a unique
natural isomorphism

ux: X >U®X  foreveryX € Ob(%)
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such that.;; = u, and such that the diagrams

UXRY ux Y

X®Y

U (X®Y) X®Y UeX)eY

\ \L‘bmxg/ X®UY\L l\I’U’X(@Y
ux®Y

UeX)oY XeolUeY)—" . (XeU)eY

commute for ever),Y € Ob(%).

Proof. Since [1.2.R) is an equivalence, there exists a unique igamsmu y fitting into the
commutative diagram

uRX

UX

(UU)X
U®ux Té
UUX).

With this definition, the naturality of the ruleX — wux is clear. In order to check the commu-
tativity of the first diagram, it suffices to show that

(1.2.7) U®Pyxy)o(URuxy)=U® (ux ®Y).
However, se® = (Ppyx ®Y) o Py pyxy; we have :
Oo(UR(ux®Y))=(Puux®@Y)o(U®ux)®Y)obyxy
=(u®X)®Y)odyxy
= Oy xy o (u® (XY))
= Pyux,y o Puuxy o (U@ uxy)
=00 (U®Pyxy)o (U®uxy)

where the first and third identities hold by naturalitydgfthe second and fourth by the definition
of ux and respectively. y sy, and the fifth by coherence. Sin€eis an isomorphism, we get
(@.2.7). Next, in light of the foregoing, the second diag@mmutes if and only if the diagram

Xy —X L U(XY)—2~ (UX)Y

(1.2.8) m lmy

X(UY)—2— (XU)Y

commutes, and it suffices to check tliatz (1.2.8) commutes. To this aim, we consider the
diagram

U®(XQuy) U®®

U(XY) UX(UY)) U(XU)Y)
WA lU@(\IJ@Y)

u(XY) U(U(XY)) uee U((UX)Y)

(UU)(XY) ? (UU)X)Y —"5—— (U(UX))Y.

whose lower subdiagram commutes by the coherence axiorfiAdr, X, Y'), whose upper
subdiagram is equivalent t6 (1.2.8), sinﬂz@}X = Wy, and whose triangular subdiagram
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commutes by definition of xy. Hence, we are reduced to showing that the outer rectangular
subdiagram of the above diagram commutes. However, we hevemmutative diagram :

UR(X®uy) u®(XY)

U(X(UY)) U(XY) (UU)(XY)
Wwx)UY) <2 pxyy MO o)Xy
veUY) vRY Y
(XUY(UY) <202 ey XY couy)y
o X({UY) >
X(U(UY)) == X(UU)Y)

so we are further reduced to checking the commutativity efdiagram :

U(xX(UY) L2 u(xU)y) —L p(UX)Y)

S |
Uew Ue®
U(UeY)

(UX)(UY) U(UY)X) L2 U(U(Y X)) UU(XY)) UUX)Y
qz@(UY)l o ® @l lcb@y

(XOUY)  ©uyNx ooy x)—2 ooy xy) =2 (U0)X)Y

N4 P
] PRX QY

X(U(UY)) (UYY)X (X(UU))Y
) X(UUYY).

However, the leftmost and the lower triangular subdiagreommute by compatibility, and the
upper rightmost subdiagram commutes by coherence. The lefimost subdiagram com-
mutes by naturality of, and the central square sudiagram commutes by naturaliby dhe
remaining central subdiagram commutes by coherence, anphrectangular subdiagram is
of the formU ® D, whereD is a diagram that commutes by virtue of lemma1.2.3.

The uniqueness afy is clear by inspecting the second diagram, with= U. U

Remark 1.2.9. (i) Keep the notation of propositidn 1.2.6. As a consequarfd¢be naturality
of uyx, we get a commutative diagram

ux

X U®X
UXl lu®ux
U X —2 .U ((U®X)

for every objectX of . In other words :

urgx = U @ ux for every X € Ob(%).
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(i) Let X =Y = U in the second diagram of proposition 1]2.6; we obtain a cotative
diagram
u@U

UU UU)U

U®ul l@mU@U
QyuU

U (UeU) Uel)oU

Sinceu = uy, we may combine with (i), to deduce théit,y ® U = 1yer)er = lugy @ U.
By naturality of U, it follows thatU @ ¥y = U ® 1ygu, and sincel(1.2]12) is an equivalence,
we conclude that

‘I’U,U = lygu.
Example 1.2.10.Let ¥’ be any category with smallom-sets, in which finite products are
representable. For every pdiX, Y') of objects of#’, pick an objectX ® Y representing their
product, and fix also two projections;y : X ® Y — X, ¢xy : X ® Y — Y inducing an
isomorphism of functors
hxey = hxxhy o= (pxyop,qxyop) for everyZ € Ob(%¢’) andy € hxxy(Z)
(notation of (1.1.19)). If( X", Y”) is another such pair, and, %) : (X,Y) — (X', Y’) any
morphism in%” x ¢, then there exists a unique morphigm X ® Y — X’ ® Y’ such that
(pxryro foqxyr o f) =(gopxy,hopxy)
and we sey ® h := f. These rules define a functar: ¥ x ¥ — %. For every three objects
XY, Z there is a natural isomorphisf® (Y ® Z) = (X ®Y)® Z that yields an associativity
constraint for®; namely, we let
Oy y = (Pxyez® (Pyz Q@ qxyez)) ® (QY,Z °qxyeZ)-
Likewise, we get a commutativity constraint by setting
Uyy :=qxy @pxy forevery X, Y € Ob(%).

The verifications of the axioms of definitign 1.P.1 are leygtiut straightforward, and shall
be left to the reader. It/ is any final object of6” (example1.1.26(i)), then there exists a
unique morphism; : U — U ® U which is easily seen to be an isomorphism, and the pair
(U, u) yields a unit for®. In this way, any category with finite products and sniilin-sets is
naturally endowed with a structure of tensor category. d¢¢otinat, for this tensor structure on
% (and indeed, for most of the tensor categories that are fouagplications), the existence of
functorial isomorphisms x fulfilling the conditions of proposition 1.2.6, is self-eMnt.

Definition 1.2.11. Let (¢, ®, ®, V) be a tensor categonX € Ob(%’) any object, and suppose
that the functor

- ®RX:¥—>%F Y—Y®X
admits a right adjoint :

Hom(X,—):C€ — € Y — Hom(X,Y).
Then, we call’Zom (X, —) theinternal Hom functorfor the objectX.

Remark 1.2.12. (i) As usual, the internaHom functor is determined up to unique isomor-
phism, if it exists. The counit of adjunction is a morphismicof

evxy : Hom(X,Y)@ X =Y

called theevaluation morphism
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(i) Suppose that every object @f admits an internallom functor; then we say briefly that
¢ admits an internaHom functor, and clearly we get a functor

C°xC—%C : (X,)Y)— Hom(X,Y) for everyX,Y € Ob(%).
Moreover, for everyX, Y, Z € Ob(%) the composition

~

(Hom(X,Y)® Hom(Y,Z)) @ X (Hom(X,Y)® X) @ Hom(Y, Z)
levx’y@)jfom(Y,Z)

Y @ stom(Y, Z)

~

Z 22 Hom(Y,Z2)RY
corresponds, by adjunction, to a unigqremposition morphism
Hom(X,Y)® Hom(Y,Z) — Hom(X,Z).

(i) In the situation of (ii), notice that the functo¥ — % given by the rule : 7 +—
Hom(X, #om(Y, 7)), for everyZ € Ob(%¥), is right adjoint to the functor given by the
rue:Z— (Z@X)®Y 5 T® (X ®Y). There follows a natural isomorphism

Hom(X, #om(Y,Z)) = Hom(X ®Y,Z)  foreveryX,Y,Z € Ob(%¥).
(iv) Moreover, for any uni{U, u) of ¢, we get natural bijections :
Homg (U, #om(X,Y)) = Homg (U ® X,Y) = Homyg(X,Y) foreveryX,Y € Ob(%).

Also, for every object” of ¢, denote byuy : Y = U®Y the isomorphism given by proposition
[1.2.6; for everyX € Ob(X), itinduces natural bijections

Hom% (uy O\I/Uyy 7)()

Homy (Y, #om(U, X)) = Homg (Y @ U, X)
which correspond, via the Yoneda embedding, to a naturalasphism
Hom(U,X) = X  foreveryX € Ob(%).
(v) Let X, Y, Z be any three objects &; the natural transformation
Homy (W @ X,Y) - Homy (W @ (X ® Z),Y ® Z) o (pRZ)o Py xz
corresponds, via the Yoneda imbedding, to a unique morphism
txyz: Hom(X,Y)— HAom(X @ Z,Y @ Z).
The reader can check thaty » also corresponds, by adjunction, to the morphism
(evxy ® Z) 0 P ypomx,yv)x,z : Hom(X,Y)R(X®Z) =Y ® Z.

(vi) In the situation of remark 1.2.5(ii), suppose ti@aadmits an internalom functor; then
it is easily seen that the resulting tensor catedouy (2, ¢) inherits as well an interndlom
functor, in the obvious way.

Home (Y, X)

The formalism of tensor categories provides the languageabuniformly with the notions
of algebras and their modules that occur in various consettangs.

Definition 1.2.13. Let (¢, ®, ®, V) be a tensor categoryl and B any two objects of’.

(i) A left A-module(resp. aright B-modulg is a datum(X, i.x), consisting of an object
X of &, and a morphism ¥ :

px ARX - X (resp.ux : X ® B — X)

called thescalar multiplicationof X.
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(i) A morphism of leftA-modules X, ux) — (X', ux/) isa morphismf : X — X' in ¥
which makes commute the diagram :

Ao X X x

|

Ao X' 2 x

One defines likewise morphisms of rightmodules.
(iii) An (A, B)-bimoduleis a datum(X, u’, u%) such that(X, il ) is a left A-module,
(X, i) is aright B-module, and the scalar multiplications commiite,the diagram

1A®u%
A® (X ® B) L A® X
CDA,X,Bl ph
ph®1p 15
(A X)® B X®B X

commutes. Of course, a morphism(ef, B)-bimodules must be compatible with both
left and right multiplication.

We denote byA-Mod, (resp. B-Mod,, resp. (A, B)-Mod) the category of leftA-modules
(resp. rightB-modules, resp.(A, B)-bimodules). For any two leftl-modules (resp. right
B-modules, resp(A, B)-bimodules)X and.X’, we shall write

Hom 4, (X, X") (resp.Homp (X, X')) (resp.Hom4 ) (X, X))

for the set of morphisms of lefl-modules (resp. of righB-modules, resp. ofA, B)-
bimodules)X — X'.

1.2.14. In the situation of definitidn 1.2]13, notice that

Homp, (X, X') = Equal( Homg (X, X') == Homy (X ® B, X') )
B

wherea (resp.f3) is given by the rule :
fr foux (resp.f — ux o (f® B)) for every f € Homg (X, X')

and similarly for leftA-modules. Now, suppose that all equalizer&irare representable, and
that% admits an internalom functor; then we may define

HHomp, (X, X') := Equal( #om(X, X’) — Hom(X ® B, X))
B

wherea = Jom(ux,X') and f = som(X ® B,ux/) o tx xp (notation of remark
[1.2.12(v)). Then, it is easily seen that the bijections ofaek[1.2.12(iv) induce natural identi-
fications

Home (U, ##omp, (X, X')) = Homp, (X, X') for every X, X’ € Ob(B,-Mod).

Likewise we may represent i@ the set of morphisms between two leftmodules, and two
(A, B)-modules (details left to the reader).
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1.2.15. Let# be atensor category as [n(1.2.14) ahd3, C' any three objects of’; suppose

that(X, u', %) is an(A, B)-bimodule, and X', iily.,, u%) a(C, B)-bimodule. Then we claim
that 7 = omp, ((X, 1), (X', 1)) is naturally a(C, A)-bimodule. For this, we have to
exhibit natural morphisms

CoH s v oA

fulfilling the condition of definitior 1.2.113(iii). Howeveby adjunction, the datum ¢f; is the
same as that of a morphis@ — J#om/(s¢,.7), and since the functogZom (X, —) is left
exact, the latter is the same as a morphism

Hom(H o)

C — Equal( Hom (s, #om(X, X)) Hom (A, Hom(X ® B, X))

Hom/(H ,B)
which in turn — by remark 1.2.12(iii) — corresponds to a masph
Hom(HQa,X")

C — Equal( Hom(# @ X, X') Hom(H @ (X ® B), X’)
Hom (A RB,X")

and again, the latter is the same as an element of

Home (C®(#®a),X')
Equal( Home (C'® (/# ® X), X') Home (C'@ (A @ (X @ B)), X').
Home (CR(#R8),X")

By unwinding the definition, it is easily seen that the conipos

ev

1
h,:Co#X) X cox X X

lies in the above equalizer, and it provides a &ftnodule structure fog?. Likewise, ., shall
be the morphism corresponding to the composition

; l ev ’
I (A RX)RADH @ (AR X) 2 o X XX, X,

Then, the condition that’7, y,, 11,-) is a bimodule, comes down to the commutativity of the
diagram

1o®,

C®((# @ X)o A) CoX

C®¢%,X,Al ‘/MZX/
CR(AR(pho¥x a) Hy

C®(# (X A) WISUx ) o (@ X) — s X

which is immediate (details left to the reader). We have thitained a bifunctor :
(1.2.16) Homp,(—,—) : (A, B)-Mod® x (C, B)-Mod — (C, A)-Mod.
Likewise, we may define a bifunctor :

Homa,(—, —) : (A, B)-Mod® x (A, C)-Mod — (B, C)-Mod.
1.2.17. Keep the situation df (1.2]15), and suppose moretbat all coequalizers ifF” are
representable. Fix am, B)-bimodule( X, i, u%); the functor

(C,B)-Mod — (C,A)-Mod : X'+ Homp (X,X)

admits a left adjoint, théensor product

(C,A)-Mod — (C, B)-Mod (X', ks, pix)) = (X', piber, pixr) @a (X, il p'x)
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given by the coequalizer (i#) of the morphisms :

, 1X/®,LLlX ,
X'® (A X) X'®X

(W ®1x)oPxr 4 x

with scalar multiplications induced hy;, andyl;,. Likewise, we have a functor :
(Av C)'MOd - (370)'M0d : (X,nulX’nulX’) = (X7 :uanurX) ®a (X,nulX’leX’)

which admits a similar description, and is left adjoint te@ tlunctor X’ — JZomy, (X, X')
(verifications left to the reader).

1.2.18. Let(U,u) be unit object fofg. Notice that, for any object of %, the rule(Y’, uy ) —
(Y,uy', py) (Whereuy : Y — U ® Y is the natural isomorphism supplied by proposition
[1.2.8), induces a faithful functot-Mod, — (U, A)-Mod. LettingC := U in (1.2.17), we see
that any(A, B)-bimoduleX also determines a functor :

A-Mod, - B-Mod, : Y=Y ®4X
and likewise for leftA-modules.

Example 1.2.19.If € = Set is the category of sets (regarded as a tensor category aanmpéx
[1.2.21), then a lefti-module is just a seX’ with aleft actionof A, i.e. a map of sets

Ax X' - X" (a,2)—a-x.

An (A, A)-bimodule X is a set with both left and right actions df, such thata - z) - o’ =
a-(x-d) for everya,a’ € A and everyr € X. With this notation, the tensor product
X' ®4 X is the quotien{ X’ x X)/~, where~ is the smallest equivalence relation such that
(2'a,x) ~ (', ax) foreveryz € X, 2’ € X’ anda € A.

Definition 1.2.20.Let % := (¢, ®, ®, V) be a tensor category, ad, «) a unit for%’.

(i) A Z-semigroups a datum(M, u,,) consisting of an object/ of ¥ and a morphism
w2 M@ M — M, themultiplication lawof M, such that M, pay, par) is a(M, M)-
bimodule. A morphism of£-semigroups is a morphism : M — M’ in €, such
that

par o (P ® ) = p o .

(i) A €-monoidis a datumM := (M, up, 1pr), Where(M, pyr) is a semigroup, and

1y : U — M is a morphism irg, called theunit of M, such that

par © (I @ Lpg) o upr = 1pp = pupg 0 (1 @ Lag) o upy

whereu,; : M = U ® M is the natural isomorphism provided by proposifion 1.2.6.
We say thatl/ is commutativeif

pnr = s © Warare

A morphism of monoids\/ — M’ is a morphism of semigroups : M — M’ such
thathO ]-M == 1M"

Example 1.2.21.(i) Let ¥ be any category with smallom-sets, in which finite products
are representable, endo with the tensor category structure described in exampleld,2
and pick a final object, of ¥. Then, ag-monoid is a datum\/ := (M, upr, 1ar), Where
par - M x M — M andly, : 14 — M are morphisms o#’, and the axioms fog,, and1,,
can be rephrased as requiring that, for every ohjedf ¢, the setM (X) := Homy (X, M),
endowed with the composition law :

M(X) x M(X) 5 Homeg (X, M x M) 22200 nroxy (mym!) e m-m!
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is a (usual) monoid, with uniim 1,,(X) € M(X). Of course M is commutative, if and only
if m-m’ =m' - m for all objectsX of ¢ and everym, m’ € M(X).

(i) Inthe situation of (i), &-monoid shall also be called simplyZmonoid. The category
of ¥-monoids admits an initial object which is also a final objeatmelyl, := (14, 1, 11),
wherey; is the (unique) morphismy, x 14 — 14. (Most of the above can be repeated with the
theory of semigroups replaced by any "algebraic theoryhangense of [11, Def.3.3.1E.g.in
this way one can defin&-groups,%-rings, and so on.)

1.2.22. Let¥ andU be as in definition 1.2.20, andl/ := (M, upr, 15) @ €-monoid; of
course, we are especially interested in #diemodules which are compatible with the unit and
multiplication law of A/. Hence we define keft M/-moduleas a leftA/-module(S, ug) such
that the following diagrams commute :

U@S=—U®S M®(M®S) =il M®S
1M®1sl ]Us <I>M,M,sl ns
MoSs—5sg (MeoM)®s—22 _ pos—t5 g

whereug is the isomorphism given by proposition 1]2.6. Likewise weéirte right)/-modules,
and (M, N)-bimodules, ifN is a secon@’-monoid; especially(M/, M)-bimodules shall also
be called simplyM -bimodules.

A morphism of leftM -modules(S, us) — (57, pus/) is just a morphism of leff\/-modules,
and likewise for right modules and bimodules. For instarddels a M -bimodule in a natural
way, and andeal of M is a subA/-bimodulel of M. We denote by/-Mod, (resp.M-Mod,.,
resp.M-Mod) the category of left (resp. right, resp. bitJ-modules; more generally, iV is
a secon’-monoid, we have the categofy/, V)-Mod of the corresponding bimodules.

Example 1.2.23.Take% := Set, regarded as a tensor category, as in example 1.2.10. Then a
%-monoid is just a usual monoit!, and a left\/-module is a datuniS, 5) consisting of a set
S and ascalar multiplicationM x S — S: (m, s) — m - s such that

l-s=s and z-(y-s)=(z-y)-s for everyx,y € M and every € S.
A morphismy : (S, us) — (T, pur) of M-modules is then a map of sefs— 7" such that
z-p(s) =p(x-s) for everyz € M and everys € S
Likewise, an ideal of\/ is a subsel C M suchthat -z, z-a € I whenever € [ andx € M.

Remark 1.2.24.Let ¥ be a complete and cocomplete category, whose colimits aversal
(see example I.1.24(v)), and a¢-monoid (see example 1.2121(ii)).

(i) The categories\/-Mod,, M-Mod, and (M, N)-Mod are complete and cocomplete,
and the forgetful functo/-Mod, — % (resp. the same for right modules and bimodules)
commutes with all limits and colimits.

(i) Notice also that the forgetful functa¥/-Mod; — % is conservative. Together with (i)
and remark_1.1.38(iii,iv), this implies that a morphism eft [\/-modules is a monomorphism
(resp. an epimorphism) if and only if the same holds for thdeutying morphism iri” (and
likewise for right modules and bimodules).

(i) For each of these categories, the initial object ig g initial objectz, of ¥, endowed
with the trivial scalar multiplication. Likewise, the finabject is the final object, of ¢, with
scalar multiplication given by the unique morphisvh x 14 — 14. Moreover, the forgetful
functor M -Mod, — % admits a left adjoint, that assigns to ady= Ob(%’) thefree M/-module
M® generated by; as an object o¥, the latter is jusf)/ x ¥, and the scalar multiplication
is derived from the composition law @f, in the obvious way.
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For instance, for any. € N, and any left (or right or bi-)/-moduleS, we denote as usual
by S®" the coproduct of. copies ofS.

Remark 1.2.25.Let € be a tensor category/, N, P, @ four €-monoids.

(i) Let S be a(M,N)-bimodule,S" a (P, N)-bimodule andS” a (P, M )-bimodule. Then
it is easily seen that théP, M)-bimodule (resp. théP, N)-bimodule).7Zomy, (S, S’) (resp.
S" @y S) is actually a(P, M)-bimodule (resp. dP, N)-bimodule) and the adjunction of
(@.2.17) restricts to an adjunction between the corresipgndategories of bimodules : the
details shall be left to the reader.

(i) We have as well the analogue of the usual associatiwtystraints. Namely, for ev-
ery (M, N)-bimoduleS, every(N, P)-bimoduleS” and every( P, Q)-bimoduleS”, there is a
natural isomorphism o

(Soy S )@pS" = Sy (S ®@pS") in (M, Q)-Mod
and natural isomorphism¥ ®,; S = S = S @y N in (M, N)-Mod.

(iii) Also, if M is commutative, every left (or right)/-module is naturally §M, M )-
bimodule, and we have a commutative constraint

Sou S =8 @yS  forallleft (or right) AM-modules
And taking into account (ii), it is easily seen thdt-Mod,;, ®,,) is a tensor category.
1.2.26. Letp: M, — M, be a morphism o#-monoids; we have the\/,, M, )-bimodule :

My := (M, piar, © (0 @ 1ag,), fiar,)-
Letting X := M, » in (1.2.18), we obtain Base change functdor right modules :

Ml'MOdr — MQ'MOdT : X=X R, M2 =X R MLQ.
The base change is left adjoint to thestrictions of scalarsissociated tg, i.e. the functor :
M,-Mod, — M,-Mod, : (X, ux) — (X, pux) ) = (X, px o (1x ® ¢))

(verifications left to the reader). The same can be repeatedsual, for left modules; for
bimodules, one must take the tensor product on both sidess M, @5, X @, Mo.

Example 1.2.27.Take ¢ = Set, and letM be any monoidY. any set, and/®*) the free
M-module generated by. From the isomorphism

M® @y {1} 5 {11® =%
we see that the cardinality &f is an invariant, called theank of the freeM/-module)M *), and
which we denotek,; M.
Definition 1.2.28. (i) A non-empty categoryy is additive if the following holds :

(a) For everyA, B € Ob(«/), the setHom,, (A, B) is small and carries an abelian group
structure (especially, it is not empty).
(b) For everyA, B, C € Ob(«/), the composition law

Hom, (A, B) x Homy (B, C) — Hom (A, C)
is a bilinear pairing.

(i) A functor F' : o/ — 2 between additive categories aslditiveif it induces group
homomorphisms

Hom, (X,Y) — Homgyg(F X, FY) p— Fo
for everyX,Y € Ob(</).
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Remark 1.2.29.Let <7 be any additive category.

(i) If A € Ob(«) is any object, denote b, the neutral element of the abelian group
End, (A). Suppose that the equalizer of the pair of morphigm® 4 : A — Aisrepresentable
by an objec® of <7 (see example_1.1.24(ii)). Then, the datum of a morphism> 0 is the
same as that of a morphism : B — A that factors througl® ,. By the bilinearity of the
Hom-pairing, the latter condition holds if and only.fis the neutral element dfom,, (B, A).
We conclude that is a final object ine/. Dually, if the coequalizer of the pail4,04) is
representable by some objéXtof o7, then(' is initial in .«7. Moreover, if.Z admits a final
object0, theniitis easily seen that the unique morphi$m: 0 is also the coequalizer of the pair
(14,04), so0 is also an initial object. Conversely,4# admits an initial object, then this object
is also final ineZ, and for any two objectd, B of <7, the neutral elemertt, 5 of Hom,, (A, B)

Is the unique morphism that factors through/Ne say that is azero objecfor <.

(i) Suppose thater admits a zero objedi, and moreover that the produdt x A, is
representable irm7 for given A;, A, € Ob(«7). Denote byp; : A; x Ay — A; (1 = 1,2) the
projections; then, there are unique morphismsA; — A; x Ay (i = 1, 2) such that

(1.2.30) pioe; = 1g, fori =1,2 and  p;oe; = 0y, 4, fori # j.
Notice that

(1.2.31) eropr+esope =144,

Indeed, we have

pio(eropr+exops) = (piceropy)+ (pioeyops) =p; 1=1,2

by bilinearity of theHom pairing, andl 4, « 4, iS the unique endomorphismof A; x A, such
thatp; o p = p; for ¢ = 1,2. It follows that A; x A, also represents the coprodutt 1T A,.
Indeed, say thaf; : A, — B, fori: = 1,2, are two morphisms to another objggtof <7, and
setf := fiop1 + faops : A} X Ay — B itis easily seenthat o ¢; = f; fori = 1,2, and by
virtue of (1.2.31), the morphisryi is the unique one that satisfies these identities. Conyersel
if the coproduct ofd; and A, is representable, a similar argument shows that dlse A, is
representable. We say that x A, is abiproductof A; andA,, and denote it byl; & As.

(iii) Notice that the morphismsp;,e; | i = 1,2) with the identities[(1.2.30) and(1.2]31)
characterized; & A, up to unique isomorphism. Namely, say tlais another object of7,
for which exist morphismg; : B — A; ande], : A, — B (i = 1,2) such thap, o e, = 14, for
i = 1,2, andp; o € = 04,4, for i # j, and moreovee) o p| + €, o p; = 1. Then the pair
(e}, €5) (resp.(p), py)) induces a morphisml : A; & Ay — B (resp.p’ : B — A; @ Ay) with

pjopocoe;=pioe=pjoe fori,j=1,2

which — by virtue of the universal properties of the biproduémplies thaty’ o ¢/ = 14,44,
Likewise, we may compute

dop' =('oeop+eoesopy)o(eropiop +eyopyop)
=c oeciopiop +e oegopyop
=eiopyteyopy=1p
whence the contention.
(iv) Suppose thaBB; and B, are any other two objects o¥ such thatB, © B, is also

representable; given two morphismis: A; — By andf, : Ay, — By, we denote byf; @ f5 :
A1 & Ay — B; & B, the uniqgue morphism such that

pBio(fi® f2)oea;=fi fori=1,2,and pp;o (fi® fa)oea; =04, fori#j.
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Notice that

(1232) fl D f2 = (fl D 0A2,32> + (OALBI D f2)

(where the sum is taken in the abelian grdéigpn,, (A; ® As, B; @ By)); indeed, by bilinearity
of theHom pairing, it is easily seen that the right-hand sidelof (2 &so satisfies the same
identities above that defing & fs.

(v) If f: A— Bisany morphism ok7, then we define thkernel(resp.cokerne) of f as
the equalizer (resp. coequalizer)

Ker f := Equal(f, 04, 5) Coker f := Coequal(f,04 ).
Suppose thaker f andCoker f are representable ¥ for every suchf, and denote by
Ly Kerf— A 7y B — Coker f

the natural morphisms. Notice thatis a monomorphism, and, an epimorphism. Notice also
that f factors uniquely as a composition

(1.2.33) A Coker Ly 1y Ker T B

(vi) Suppose thaks admits a zero objed, and letf : A — B be any morphism; by
definitionKer f is the presheaf such that

Ker f(C)={9:B—=Clgof=go04a5 =040}

If fis a monomorphism, the identityo f = 04 = 05 ¢ o f implies thatgy = 05 ¢, SOKer f
is represented by. Dually, if f is an epimorphism, the@oker f is represented by.

Remark 1.2.34.Let </, & be any two additive categories that admit a zero object, /and
o/ — % afunctor.

() If F is additive, remark 1.2.29(iii) immediately implies th&ttransforms representable
biproducts into representable biproducts. The latterrtiesestill holds in caseF' is not nec-
essarily additive, but is either left or right exact. Indesdppose thaf' is left exact, let
A1 @ A, be any biproduct, and let;, e; be the morphisms described in rembark 1.2.29(ii); by
left exactnessF'(A; @ F'As) represents the product 6fA; and F'A,, and any isomorphism
FA, ® FA, = F(A, @ FA,) identifiesFp; and Fp, with the natural projections. Moreover,
F transforms the final object of/ into the final object ofZ (see example_1.1.26(ii)); then, by
inspecting the argument in remark 1.2.29(ii), it is easdgrsthat?” identifies as wellF'e; with
the natural injection$’'A; — FA; & F Ay, fori = 1,2, so the assertion follows from remark
[1.2.29(iii). A similar argument works in cageis right exact.

(i) Suppose moreover, that all biproducts.@f are representable. Then we claim that the
abelian group structure difiom,, (A, B) is determined by the category, i.e. if £ is any other
additive category, and’ : o/ — 2 is any equivalence of categories, thennduces group
isomorphisms (and not just bijections) Hiom sets. Indeed, lett and B be any two objects of
o/, and denote bA, : A - A® A (resp.up : B@® B — B) the unique morphism such that
pioAx =14 (resp.ugoe; =1pg)fori =1,2. Then we have

fi+ fo=ppo(fi®fr)oA,  foreveryf,, f,: A— B

wheref; + f» denotes the sum in the abelian grddipm,, (A, B). Indeed, since clearl§,, 5, &
04,8, = 04,64, 8108, identity (1.2.32) reduces to checking thfat= o (f1 ©04,.5,) 0 A4
(and likewise forfy), which follows easily from[(1.2.31) : details left to theader.

(iif) Combining (i) and (ii) we see that, if all biproducts ef are representable, ardis
either left or right exact, theh' is additive. More generally, we see that #6rito be additive, it
suffices thatF’ sends the zero object of to the zero object of4, and ' commutes with the
biproducts of the formd @ A, for everyA € Ob(<).
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Definition 1.2.35. An abelian categorys an additive category such that the following holds:

(a) All the kernels and cokernels of are representable (especially, admits an initial
and final objecd).

(b) For every morphisnf of <7, the morphisng; of (1.2.33) is an isomorphism.

(c) The product of any finite family of objects @f is representable irn7 (see example

[1.1.24(iv)).

Remark 1.2.36.Let <7 be any additive category.

(i) For any other additive category, let us denote byAdd(4#, <) the full subcategory of
Fun(4%4, /) whose objects are the additive functors. Notice that, i§ a small category, then
Fun(%¢, <7) is an additive category; indeed,7fo : F' = G are two natural transformations
between functorg”, G : ¥ — o/, then we obtain a natural transformation+- o from F to
G, by therule : (7 + 0)x := 7x + ox for every X € Ob(%¥’) (where the sum denotes the
addition law ofHom,, (F' X, GX)). Clearly, this rule yields an abelian group structure, el
composition of natural transformation defines a bilinearipg (7, ') — 7o 7’ on the resulting
groups of natural transformations (verification left to teader).

(i) Especially, if  is a small additive category, then aldald (%4, <) is an additive cate-
gory. Moreover, ife7 is an abelian category, thdun (%, «7) is an abelian category, for every
small categorys” : details left to the reader.

(iii) By definition, for everyA, B € Ob(«/), the set 4(B) carries an abelian group structure,
such that the presheaf, factors through an additive functi’zf4 : @/° — Z-Mod from o/° to
the category of abelian groups, and the forgetful funztdvlod — Set. Hence, the Yoneda
imbedding factors through a fully faithfgiroup-valued Yoneda imbedding

h': o/ — Add(«/°, Z-Mod).

In view of (ii), we conclude that every small additive categis a full subcategory of an abelian
category. Moreover, Yoneda’s lemma extendgbatimto the group-valued case : namely, by
inspecting the proof of proposition 1.1]120, we see thatetery A € Ob(<7) and everyadditive
functor I’ : o7° — Z-Mod there are natural isomorphisms of abelian groups

(1.2.37) F(A) = Homadd(vo,z-Mod)(ha, F).

(iv) Suppose thaf : o — £ is any functor between small additive categories; then the
arguments of (1.1.35) exteng@rbatimto the present situation : namely, the induced functor

f*: Fun(#°,Z-Mod) — Fun(</°, Z-Mod)
admits both left and right adjoints, denoted respectiyebnd f., and we have :

Proposition 1.2.38.1n the situation of remark.2.36(iv) suppose thaf is additive. Then :
(i) Both f*, fi and f, are additive functors, and restrict to functors

*

Add(#°, Z-Mod) Add(«7°,Z-Mod).

i f+
(i) The resulting diagram of functors

o o Add(«7°, Z-Mod)

| I

B """~ Add(2°, Z-Mod)

is essentially commutative.
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Proof. (i): Since every left (resp. right) adjoint functor is rigfresp. left) exact, remark
[1.2.34(iii) says thatf*, f. and f, are additive. Next, a simple inspection shows tfiatrans-
forms additive functors into additive functors. Let ndw: «/° — Z-Mod be an additive
functor, B € Ob(%) any object, and se&¥ := f,F'; from the proof of proposition 1.1.84, we
see that

GB = colim FA
W:BfA

where the colimit ranges over the small categfry°/B of all pairs (A, ¢) consisting of an
object A of o7, and a morphism : B — fA in 4. Denote by),, and04 the zero objects of
</ and#; we wish to show that; is additive, and according to remark 1.2.34(iii), it suffite
check that7(04) = 0, and that the natural morphist B @ B) — GB & G B (deduced from
the projectiong; : B ® B — B) is an isomorphism, for everi¢ € Ob(%).

However, notice that the functes, : f<7°/04 — </° is an isomorphism of categories
(notation of (1.1.16)); whence a natural isomorphism

G(0z) = colim F S F(0,) =0

where the last identity holds, sinééis additive. Next, for anyB;, B, € Ob(%) consider the
functor

S (f?/B1) X (fH°)Bs) = f°/Bi® By ((A1,¢1), (A2, 19)) = (A1 B Az, b1 B1a).

Claim 1.2.39 For any category’, and any functo#l : f</°/B; @ B, — €, the functord
induces an isomorphism
colim Hod® >S5 colim H.
(fa°/B1)x(f«/°/B2) fe/°/(B1®B2)

Proof of the claimLet X be any object o¥’, andr : H o ® = H ocx a natural transformation,
wherecy : f@7°/B; @ By — % is the constant functor with valu¥; since® is faithful, it
suffices to check that extends uniquely to a natural transformation H = cy.

However, let(A,v) : By @ By — fA) be any object off«7°/B, @ Bs, and denote by
v« B; — fA (for i = 1,2) the composition of) with the natural monomorphise : B, —
B; @ Bs. Sincef is additive, the morphism, : A ® A — A defines a morphism

pa s (A) = (AD A ¢ & i) in fo/°/ B © By
and we may set

T(A,¢) = T(ADA Y1 @Y2) © H(u%).

Suppose that® : (A,v) — (A,¢') is any morphism inf</°/B; @ Bs; there follows a
commutative diagram ¥

N L /Y

@
P fB fﬁl J{fﬁ

fADfA—" s faA

B

which allows to compute

7'(/,4/,¢/) o H () T(A' @A’ @) © H(p%) o H(3°)
TaeA W oy © H(B° @ B°%) o H(u%)
T(A®A b1 DY2) © H(p%) = T(/A,w)

so7’ is indeed a natural transformation, and clearly it is thejuaione extending. O
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In light of claim[1.2.39, we are reduced to checking that thtural morphism

colim Fouigaep,o®— GB & GB,
(far°/Br)x(f/°/B2)
is an isomorphism, for ang,, B, € Ob(4%). The latter assertion follows easily by inspecting
the definitions, since’ is additive. Lastly, a similar argument shows thfaf" is additive,
whenever the same holds fér: the reader can spell out the proof as an exercise.
(il): One may argue as N (1.1.85) : in view 6f (1.2.37), we 8&#, for every objectl of <7,
both h} 4 and f,hf4 represent the same functor : details left to the reader. O

Definition 1.2.40. An abelian tensor categong a tensor categorys’, @, ®, ¥) such thaté is
an abelian category, and the functoinduces bilinear pairings

Homy (A, B) x Homg (A, B') — Homg(A® A, B B') : (f,9)—~ f®yg
foreveryA, A’, B, B' € Ob(%).

Remark 1.2.41.Let (&, ®, ®, ¥) be a tensor category, such thdtis abelian. If<7 admits an
internalHom functor, then the functor ® A is right exact, and the functoom (A, —) is left

exact for everyd € Ob(«/), so both are additive, by virtue of remdrk 1.2.34(iii). Esipdy,

</ 1s an abelian tensor category, in this case.

Lemma 1.2.42.Let </ be any abelian category, aa C Ob(«/) a small subset. We have :

() There exists a small full abelian subcatego#yof <7 such that> C Ob(%).
(i) If o is small, there exists a complete and cocomplete abelissotarategory(%’, ®)
with internalHom functor, and a fully faithful additive functay’ — %'.

Proof. (i): Let %, be the full subcategory of/ such thatOb(%,) = 3; clearly %, is small.
Next, for any subcategory of <7, denote by?’ a subcategory oés/ obtained as follows. For
every morphismp of &, we pick objects inZ representing the kernel and cokernelgfand
for any two objects of7, we pick an object i/ representing their product; I1& C Ob(%)
be the resulting subset. Thért is the full subcategory o7 such thaODb(%') = Ob(Z) U Y.
It is easily seen tha®’ is small, whenever the same holds far Then we set inductively
B = A, for everyi € N. The full subcategory? of o7 with Ob(#) = |J,.y Ob(%;) is
still small, and it is abelian, by construction.

(i): We let ¢ := Fun(«/,Z-Mod). Then% is an abelian category, by virtue of remark
[1.2.36(ii), and sinc&-Mod is complete and cocomplete, the same holdsfomoreover, the
standard tensor product of abelian groups defines a tentsgorg structure with internalom
functor onZ-Mod, and the latter is inherited & (remark$ 1.2)5(ii) and 1.2.112(vi)). It is clear
that these two structures amount to an abelian tensor e¢gfeyad the group-valued Yoneda
imbedding is the sought fully faithful functor. O

1€EN

1.2.43. Lets be a small abelian category, ahll : &/ — &7 := Fun(«/°, Z-Mod) the
fully faithful group-valued Yoneda imbedding. For everyedan groupG, denote byG,, :

o/° — 7Z-Mod the constant functor with valu@ : so,G.(A) := A for everyA € Ob(</),
andG () := 1, for every morphisnp in 7. Since</" is an abelian tensor category (see the
proof of lemmad_1.2.42(ii)), we may form the tensor product

Gy A:=G,®hl,  foreveryA e Ob(«).

We claim that, ifG is finitely generated;’ ®; A lies in the essential image éf. Indeed, this
is clear if G is free of finite rank, since in that cagé®;, A is a finite direct sum of copies of
A; in the general case, we may writeas a cokernel of a map, — L, of free abelian groups
of finite rank, and since the functer ® hL is right exact, we see thét ®; A is the cokernel
of a morphism ofe7, so it is represented by an object.af. Moreover, ify : G — H is any
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morphism of abelian groups, we have an obvious induced nwrpp,, : G, — H,., whence
a morphismp @7 A == ¢, ® hl,.
Thus, after replacing’ ®; A by an isomorphic object, we obtain a well defined functor

(1.2.44) Z-Mody, x o — o (G, A)— Gz A

whereZ-Mody, is the full subcategory oZ-Mod whose objects are the finitely generated
abelian groups. This functor is not unique, but any two suclctors are naturally isomorphic.

Remark 1.2.45.Keep the notation of (1.2.43); we have :

(i) From the construction, itis clear that (1.2.44) isiadditivefunctor,i.e., for every abelian
groupG, and everyd € Ob(«), the restrictiongy ® — and— ® A of (1.2.44) are additive.

(i) Suppose that? is cocomplete; since the tensor product is right exact b easily
that (1.2.4%) extends to the whole®fMod : details left to the reader.

(iii) On the other hand, using Zorn’s lemma, (1.2.44) can éfingéd even in case’ is not
small : again, we leave the details to the reader.

1.3. 2-categories. In dealing with categories, the notion of equivalence is momre central
than the notion of isomorphism. On the other hand, equicalai categories is usually not
preserved by the standard categorical operations disttisss far. For instance, consider the
following :

Example 1.3.1.Let ¢ be the category witlb(%¢") = {a, b}, and whose only morphisms are
1,,1,andu : a — b, v : b — a. Then necessarily ov = 1, andv o u = 1,. Let%, (resp.
%) be the unique subcategory &f with Ob(%,) = {a} (resp. Ob(%,) = {b}). Clearly both
inclusion functorss, — ¢ < %, are equivalences. Howeveéf, x4 %, is the empty category;
especially, this fibre product is not equivalentdo= ¢ x4 €.

It is therefore natural to seek a new framework for the maaipan of categories and functors
“up to equivalences”, and thus more consonant with the vairit 8f category theory. Precisely
such a framework is provided by the theory2eategories, which we proceed to present.

1.3.2. The categorgat, together with the category structure on the déts(—, —) (as in
(@.1.7)), provides the first example oRecategory The latter is the datum of :

e A setOb(«/), whose elements are called thigjects ofer .

e For everyA, B € Ob(«/), a categorye/ (A, B). The objects ofeZ (A, B) are called
1-cellsor arrows, and are designated by the usual arrow notationA — B. Given
f,g9 € Ob(</(A, B)), we shall writef = ¢ to denote a morphism fronfi to g in
o/ (A, B). Such morphisms are calledcells The composition oR-cellsa : f = ¢
andg : g = h shall be denoted by ® o : f = h.

e ForeveryA, B,C € Ob(«/), acomposition bifunctor

CABC %(A, B) X %(B,C) — %(A, C)

Givenl-cellsA L B % ¢, we writeg o f := capc(f, g)-
Given two2-cellsa : f = gandpj : h = k, respectively inZ (A, B) and.</ (B, C),
we use the notation
Bxa:=capc(a,B):hof=kog.
Also, if his anyl-cell of o7 (B, C'), we usually writeh « « instead ofl, x «. Likewise,
we setd « f := 3 * 1y, for everyl-cell f in @7 (A, B).
e For every elementl € Ob(./), aunit functor:

ua: 1 — /(A A)
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wherel := (x,1,) is the terminal element dfat. Henceu 4 is the datum of an object:
1, € Ob(# (A, A))

and its identity endomorphism, which we shall denoté by1, — 1 4.
The bifunctors: 4 g are required to satisfy associativity axionwhich says that the diagram:

(A, B) x o/(B,C) x o (C,D) —=E° . o/(A, B) x (B, D)
cAchll \LCABD

(A, C) x @ (C,D) caob o/ (A, D)

commutes for everyl, B, C, D € Ob(.«/). Likewise, the functor 4 is required to satisfy anit
axiom namely, the diagram :

1 x o (A, B) ~—= ~ . /(A B)x1

UAXIM(A,B)\L H lld(/\ B)XUuB
o (A, A) x o (A, B) 228 o/ (A, B) <22 o/ (A, B) x o/ (B, B)
commutes for everyl, B € Ob(«).

1.3.3. In a2-category<Z, it makes sense to speak adljoint pair of 1-cells or of theKan
extension of d-cell : see[[10, Def.7.1.2, 7.1.3] for the definitions. In the samiawve say that
al-cell f : A — B of & is anequivalencef there exists d-cell g : B — A and invertible
2-cellsgo f =14andfog = 1p.

Definition 1.3.4. ([10, Def.7.5.1]) LeteZ and % be two2-categories. Apseudo-functor :
o/ — 2 is the datum of :

e For everyA € Ob(«7), an objectt’A € Ob(4).
e For everyA, B € Ob(«), a functor :

Fap: (A, B) — B(FA, FB).

We shall often omit the subscript, and write oflyf instead ofFapf : FA — FB,
foral-cell f: A — B.

e For everyA, B,C € Ob(«), a natural isomorphism,zc between two functors
(A, B) x o (B,C) — B(FA, FC) as indicated by the (not necessarily commu-
tative) diagram :

(A, B) x o/ (B,C) —— o (A,C)
FABXFBCl WABC}/ lFAC

B(FA,FB) x B(FB,FC) B(FA,FC).

CFA,FB,FC

To ease notation, for evely, g) € o/(A, B) x </ (B, C), we shall writey; , instead
of (YaBc)(t) : crarBrc(Fasf, Feeg) = Fac(cape(f,9)).

e ForeveryA € Ob(«), a natural isomorphis@y between functors — A(FA, FA),
as indicated by the (not necessarily commutative) diagram :

(A, A)

H lFAA

1 %’(FA FA).
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The systentd,, V... ) is called thecoherence constrairior F'. This datum is required to satisfy:
e A composition axionwhich says that the diagram :

Fh*Yf,g

FhoFgoFf1:>Fho(F(gof))

“/g,h*lFf“ H'Ygof,h

F(hog)oFf =22 F(hogo f)

commutes for every sequence of arrow$ LBLCch Ding.
e A unit axiom which says that the diagrams :

*0, oo
Ffolpy=—Z2 o FfoFl,  lppoFf——e F(1)0 Ff
1Ff“ \H/'YlA,f 1Ff\H/ \H/'Yf,lB

Ff— F(foly) Ff ——"— F(1z0f)

commute for every arrowf : A — B (where, to ease notation, we have writien
instead of(04). : 1p4 — Faala, and likewise fowg).

Definition 1.3.5. Consider two pseudo-functors G : o — % betweerk-categories, 4.
A pseudo-natural transformatiom : F' = G is the datum of :
e For every objecd of o7, al-cella, : FA — GA.
e For every pair of objectsl, B of .7, a natural isomorphism, z between two functors
o (A, B) — #(FA,GB), as indicated by the (not necessarily commutative) diagram

o/ (A, B) Fan B(FA,FB)
GAB\L "B J/,%u@,ag)
B(GA,GB) —— B(FA,GB)
Blaa,lz)

where Z (a4, 14) is the functor obtained by fixing4 in the first argument of the
composition bifunctorp gacp : B(FA,GA) x B(GA,GB) — #(FA,GB), and
likewise for #(14, ag). The datunv,, is called thecoherence constrairfor «.

This datum is required to satisfy the followirgpherence axiomén which we denote by
(67, ~F) and(6¢, ) the coherence constraints fBrand respectively:) :

e For everyA € Ob(«), the diagram :

1o, JE*IQA
Qg === 1ga oy =———G(la) oy

10‘A“ HTlA
laA*(Sf

ag0lpy g0 F(1a)

commutes.
e For each pair of arrowd % B % C'in <7, the diagram :

1o *T Tgx1
GgonoaA%GgoaBong:f>acoFgoFf

fyﬁg*laAﬂ Hlac*yﬁg

G(go f)oay =l acoF(gof)
commutes.
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If o : F = G andp : G = H are two pseudo-natural transformations, we may define the
compositions ® « : FF = H which is the pseudo-natural transformation given by the rul
A B4 0y foreveryA € Ob(«7). The coherence constraint 8f> « is given by the rule :

(A,B) — (Bp *755) © (Th; xas)  foreveryA, B € Ob(«/)
wherers (resp.72) denotes the coherence constraintdfesp. of3).

Example 1.3.6.(I) Any category</ can be regarded aecategory in a natural way : namely,
for any two objectsd and B of <7 one lets</ (A, B) be the discrete categoiyom,, (A, B);
hence the only-cells of o7 are the identitied; : f = f, for every morphisny : A — B.
The composition bifunctor 4z is of course given (ori-cells) by the composition law for
morphisms ofe/. Likewise, the functor. 4 assigns to every objeet its identity endomorphism.

(i) Inthe same vein, every functor between usual categpisea pseudo-functor between the
correspondin@-categories as in (i); of course, the coherence constraimdists of identities.
Finally, every natural transformation of usual functoras t& regarded naturally as a pseudo-
natural transformation between the corresponding pséwaltors.

(i) As it has already been mentioned, the categ@et is naturally a2-category. Namely,
for any three small categorieg, % and¥’, thel-cells inCat (<7, #) are the functors from?
to 4, and the2-cells are the natural transformations between thesedunclhe composition
law c., »¢ is defined ori-cells by the usual composition of functors, andecells as in[(1.117).

(iv) The standard constructions on categories admit ana®fpr2-categories. However, if
</ is a2-category, there are several inequivalent candidateshéopposite2-category.«7° :
one can reverse thiecells, one can reverse tRecells,i.e. replace the categorieg (A, B) by
their opposites, or do both. We leave to the reader the tasgeadling out the definition(s).

(v) Likewise, if X is any object ofe7, one may define a-category<//X. Its objects are the
arrows inZ of theformf : A — X. If g : B — X is another such arrowy/X(f, g) is the
subcategory o/ ( f, g) whose objects are all the arrokks A — B such thatyo h = f, and
whose morphisms are all tlzecellsa of 27( f, g) such thatl, x & = 1;. The composition and
unit functors fore7/X are the restrictions of the corresponding onesdr

(vi) Consider2-categoriese”, %. For every objeciB of %, one may define theonstant
pseudo-functowith value B : this is the pseudo-functor

FB A = A such that FB(A) =B FB(f) =1p FB(a) ‘= 1R

for every A € Ob(«7), everyl-cell f, and every2-cell « of o/. The coherence constraint for
F g consists of identities. Given a pseudo-funckor 7 — %, apseudo-cone oA’ with vertex
B is a pseudo-natural transformatibp = F. Especially, every-cell f : B — B’ induces a
pseudo-cone :

Fr:Fp=Fp : (Fpa:=f foreveryA e Ob(«)

whose coherence constraint consists of identities.
Dually, apseudo-cocone oA’ with vertexB is a pseudo-natural transformatiéh=- Fp,
andF; can thus be viewed as a pseudo-coconé’amth vertex5'.

Definition 1.3.7. Consider two pseudo-functofs G : &/ — % betweer2-categoriess, 4,
and two pseudo-natural transformatiens’ : F' = . A modification= : o ~ g is a family :
Eaaa = Ba

of 2-cells of £, for every object4 of 7. Such a family is required to satisfy the following
condition. For every pair of-cells f,g : A — A’ of &/, and every2-cell v : f = g, the
equality

(Ea*x Fy) O iy 5 = TjA/,g © (Gy x E4)
holds in%, wherers, (resp.72) denotes the coherence constraintdaresp. fors3).
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1.3.8. If Z,0: a ~ [ are two modifications between pseudo-natural transfoonsti, 3 :
F = G of pseudo-functor$’, G : &7 — %, we may define the composition

ZEoB:awf : A—=Z,0600,4 foreveryA € Ob(A).
We may then consider the category :
PsNat(F, G)

whose objects are the pseudo-natural transformatiors G, and whose morphisms are the
modificationsa. ~~ [ between them. For instandesNat(Fp, F') (resp. PsNat(F, Fg)) is the
category of pseudo-cones (resp. pseudo-coconeB)with vertex B (examplé_1.316(vi)).

1.3.9. Leto/, % be two 2-categories; using the modification, we can endow the cayego
PsFun(«7, %) of pseudo-functorsy — 2, with a natural structure di-category. Namely,
for any two pseudo-functorg8, G : &/ — 4, thel-cells F — G of PsFun(</, %) are the
pseudo-natural transformatioAS=- G of two such functors; of course, for fixdd andG, the
category structure on the set bitells ¥ — G is precisely the one dPsNat(F, G), i.e. the
2-cells of PsFun (<7, &) are the modifications. The composition functor

PsNat(F, G) x PsNat(G, H) — PsNat(F, H)

assigns, to any two modificatiois: oo ~~ § andz’ : o’ ~» (', the modification

=/
=

xZ:adoa~ fof A 2 %2y for everyA € Ob(«%).

With this notation, we say that a pseudo-natural transfaonaf pseudo-functorsy — %
is apseudo-natural equivalendtit is an equivalence in the-categoryPsFun(.e, #) (in the

sense of[(1.313)).

Definition 1.3.10. Let .« and % be two2-categories, and’ : .« — % a pseudo-functor.

(i) We say thatF' is a2-equivalencdrom 7 to 4 if the following holds :
e For everyA, B € Ob(«), the functorF4z is an equivalence (notation of defini-
tion[1.3.4).
e For everyA’ € Ob(#) there existsA € Ob(«/) and an equivalencEA — A'.
(i) Let G : & — o be a pseudo-functor. We say tha@ltis right 2-adjoint to F if the
following holds.
e For everyA € Ob(«/) andB € Ob(4A) there exists an equivalence of categories

Uap : Homg(FA, B) - Homy (A, GB).

e Foreverypairofi-cellsf : A’ — Ain </, g: B — B’ in A, there exists a natural
isomorphism of functors

Hom g (F'f,
Hom(FA, B) 20D Homy(FA, B)
YaB l Tf’gf7 lﬂA’B’
Homﬂ(faGg)

Hom, (A, GB)

Hom (A", GB’).
o For every pair of compositions dfcells A” 25 A’ & Aineo/, B % B % B,
we have the identity

(Tpr.g * Homg(F f, g)) o (Homy (f', Gg') * Tf4) = Trofr grog-
In this case, we also say th@t, G) is a2-adjoint pair of pseudo-functors.
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Remark 1.3.11.Let F : &/ — 9% be a pseudo-functor.

() The reader may show thatis a2-equivalence if and only if there exists a pseudo-functor
G : # — o and two pseudo-natural equivalendes= G o F'andF o G = 14.

(i) Suppose thatF' admits a right2-adjointG : &/ — %, and letd,, and 7,, be the
corresponding data as in definition 1.3.10(ii). Using thds®, one can define a upit 1., =
F o G and counit : G o F' = 14, that are pseudo-natural transformations fulfilling tgalar
identities as in[(1.118).

(i) Conversely, the existence of pseudo-natural trams&dione, n as in (ii), fulfilling the
above mentioned triangular identities, implies thais right 2-adjoint to £ (details left to the
reader).

Definition 1.3.12. Let ¥ be a2-category,f' : &7 — % a pseudo-functor.
(i) A 2-limit of F'is a pair :
2-10i/mF = (L,n)
consisting of an objedt of % and a pseudo-cone: F;, = F, such that the functor :
HB(B,L) — PsNat(Fp, F) : fr—=71OF;

is an equivalence of categories, for evétye Ob(%).

(i) Dually, a2-colimit of F'is a pair :
2-0(2/1imF = (L, )

consisting of an objedt of # and a pseudo-cocone: F' = F, such that the functor:
HB(L,B) — PsNat(F,Fg) : f—F;on
is an equivalence of categories, for evéhye Ob(4).
As usual, if the2-limit exists, it is unique up to (non-unique) equivalenée (L', ') is another
2-limit, there exists an equivalenée: L — L’ and an isomorphisri : 7’ ®F;, = 7; moreover,
the pair(h, 5) is unique up to unique isomorphism, in a suitable sensettieatader may spell
out, as an exercise. A similar remark holds 2ecolimits.
(i) We say that# is 2-complete(resp. 2-cocompletgif, for every small2-category.ss,
every pseudo-functoy — 2 admits a&-limit (resp. a2-colimit).

Remark 1.3.13.To be in keeping with the terminology of [10, Ch.VII], we shdwrite pseudo-
bilimit instead of 2-limit (and likewise for 2-colimit). Téaterm 2-limit” denotes inloc.cit. a
related notion, which makes it unique up to isomorphism justtup to equivalence. However,
the notion introduced in definitidn 1.3]12 is the one thatwsenost frequently in applications.

The following lemma&1.3.14 indicates that the frameworR-categories does indeed provide
an adequate answer to the issues raised i (1.3).

Lemma 1.3.14.Let &/ be a2-category,F, G : o/ — % two pseudo-functors,) : F' = G a
pseudo-natural equivalence, and suppose thakthmit of F' exists. Then the same holds for
the2-limit of GG, and there is a natural equivalence s :

2-lim F' = 2-lim G.
o o
More precisely, if L, 7) is a pair with . € Ob(#) and a pseudo-cone: F;, = F' representing

the2-limit of F', then the pair( L, w o 7) represents the-limit of G.
A dual assertion holds fdi-colimits.

Proof. It is easily seen that the rute— w ® « induces an equivalence of categories :
PsNat(Fp, F') — PsNat(Fg, G).
The claim is an immediate consequence. O
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Proposition 1.3.15. For every small category?, the 2-categoryCat /% is 2-complete and
2-cocomplete.

Proof. We only show2-completeness, and we leave the proof@ocompleteness as an exer-
cise for the reader. Notice that, in the special case where the terminal object o€at, the
assertion means thétat is 2-complete an@-cocomplete. Let :

F:o -Cat : a—F, for everya € Ob(</)

be a pseudo-functor from a smalcategory<; we define a category’ as follows :

e The objects ofZr are all the systemé&X,, £X), whereX, € Ob(F,) for everya €
Ob(«7) and &y : Fo(f)(Xa) — X, is an isomorphism inFy, for every morphism
f:a—bing. The data X,, &) are required to fulfill the following conditions.
@) If f:a— bandg : b — care any two morphisms 7, the diagram :

Fye(g) o Fup(f)(Xa) Fye(9)(Xo)
’Y(f,g)(Xa)l lif
€257 (Xa)
FaC(gof)(Xa) Xe

commutes, where denotes the coherence constrainfof
(b) Moreover,(y = 1y, for everya € Ob(«/), wherel, is the image of the unit
functoru, : 1 — &7
e The morphismgX,,£X) — (Y, £Y) in £ are the systems of morphisms:= (, :
X, — Y, | a € Ob(«)) such that the diagram :

Fap(f)(ta)

Fop(f)(Xa) Fop(f)(Ya)
i o
X, o Y,

commutes for every morphisifi: « — bin <.
Next, we define a pseudo-cone F . = F as follows.
e Foreverya € Ob(«), we letr, : £ — F, be the functor given by the rule :

(Xo, &)= X, and ., t,.

e For every morphisny : a — bin &7, we letry : Fy,(f) o m, = m, be the natural
transformation given by the rule :

(77) (x0.c2) = &F-

The verification thatr,, 7, ) satisfies the coherence axioms for a pseudo-natural transfion,
is straightforward, using the foregoing conditions (a) émd We claim that ., =) is a2-limit
of F. Indeed, suppose thét is another small category, and: F, = F'is a pseudo-cone with
vertex% . By definition,« is the datum of functors, : € — F, for everya € Ob(«/), and
natural isomorphisms; : F,(f) o a, = o, for every morphisny : a — b in & fulfilling the
usual coherence axioms. To such datum we attach a fuftars — £ by the following
rule. For everyX € Ob(%), we set :

Zo(X) = (X, (04)x)

and to every morphism : X — Y we assign the compatible systém,g | « € Ob(%)). Itis
then immediate to see that® F ¢, = o, and.Z,«¢, = G for every functolG : ¢ — Zp. 0O
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1.3.16. Letw be any2-category. We shall say that a diagram of objects and arnows i

A—1-p
(1.3.17) gl l .

c—"~D
is essentially commutatiyéf there exists an invertible-cell« : ho f = kog. Let L be
the small category witltob(L) := {0,1,2}, and whose set of arrows consists of the identity
morphisms, and two more arrows— 0 and2 — 0. An essentially commutative diagram
(L1.3.17) can be regarded as a pseudo-comégth vertex A, on the functorF : L — 7 such
that 7(0) := D, F(1) .= B, F'(2) :== C, F(1 - 0) :== handF'(2 — 0) := k. We say that
(L.317) is2-cartesianif (A, ) is a2-limit of the functor £,

For instance, lete := Cat; by inspecting the proof of propositidn_1.3115, we see that
(I.317) is &-cartesian diagram, if and only if the functofsandg and the2-cell « induce an
equivalence from the small catega#y to the category whose objects are all data of the form
X = (b,c,§), whereb € Ob(B), ¢ € Ob(C), and¢ : h(b) = k(c) is an isomorphism. If
X' = (V,d,¢) is another such datum, the morphisidis— X’ are the pairgy, v)), where
w:b— b (resp.y : ¢ — ) is amorphisminB (resp. inC), and{’ o h(p) = k(¢') o €.

This category shall be called tAdibre productof the functors: andh, and shall be denoted

B x C
(h,k)

2
or sometimes, jusB x p C, if there is no danger of ambiguity.

1.4. Fibrations. We keep the assumptions and notation of se¢tian 1.1; ediye€iat is syn-
onimous withU-Cat. Lety : &/ — % be a functor,f : A’ — A a morphism inge/, and
set

g=o@f : pA" — pA.
We say thatf is p-cartesian or — slightly abusively — thaf is #-cartesian if the induced
commutative diagram of sets (notationof (1.1.14)) :

Hom,, (X, A") ! Hom,, (X, A)

‘| |

Homy (X, pA') —2= Homy (X, pA)

is cartesian for every)X' € Ob(.«/). In this case, one also says thfais an inverse image ol
overg, or — slightly abusively — thatl’ is an inverse image ol overg. One verifies easily that
the composition of twa#-cartesian morphisms is aga#i-cartesian.

Definition 1.4.1. Let p : &/ — % be a functor, and3 any object of#.

(i) Thefibre of over B is the category ! B whose objects are all thé € Ob(&/) such
thatyA = B, and whose morphismg: A’ — A are the elements diom,, (A, A)
such thatp f = 15. We denote by :

g9 ‘B — o

the natural faithful imbedding af~! B into <7

(i) We say thaty is afibration if, for every morphismg : B’ — B in 4, and every
A € Ob(p'B), there exists an inverse image: A’ — A of A overg. In this case,
we also say that7 is afibred %-category

Example 1.4.2.Let € be any categoryX any object of#.
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(i) The functor [1.1.IB) is a fibration, and all the morphism®’/X are%-cartesian. The
easy verification shall be left to the reader.

(i) The source functos : Morph(%¢) — % is a fibration (notation of((1.1.17)); more
precisely, the-cartesian morphisms are the square diagrams (1.1.18)ighwhis an
isomorphism. For any3 € Ob(%), the fibres~! B is the categonB/¥.

(i) Suppose that all fibre products are representabl& inThen also the target functor
t : Morph(¥¢) — ¥ is a fibration; more precisely, thtecartesian morphisms are the
square diagram$ (1.1]18) which are cartesian ibred). For anyB € Ob(%), the
fiboret™' B is the category/B.

Definition 1.4.3. Let «7, &/’ and % be three small categories,: o — B andy’ : &' — £
two functors, which we regard as objects@at/#; let alsoF' : o/ — /' be aZ-functor,
i.e. a morphismpy — ¢ in Cat/%. We say that' is cartesian(resp.strongly cartesiajy if it
sends#-cartesian morphisms of (resp. all morphisms o), to %-cartesian morphisms in
<7'. \We denote by :

Carty (o, ")

the category whose objects are the strongly cartegfanctorsF : &/ — /', and whose
morphisms are the natural transformations :

(1.4.4) a:F=G suchthat ¢ xa=1,.

Remark 1.4.5. The reader might prefer to reserve the notatiant 4 (<7, </’) for the larger
category of all cartesian functors. However, in our appiaes only the categories of strongly
cartesian functors arise, hence we may economize a fewlalver

Besides, in many cases we shall consigécategoriesez whose every morphism i$-
cartesian (this happens,g. when .o/ is a subcategory of4); in such situations, obviously
every cartesian functaw’ — &7’ is strongly cartesian.

1.4.6. Letp: .o/ — % beafibration, ang : B’ — B any morphism inZ. Suppose we have
chosen, for every object € Ob(x~!B), an inverse image :

ga:gA— A

of A overg (sog*A € Ob(p~'B’) andy(ga) = g). Then the ruled — g* A extends naturally
to a functor :

¢ ¢ 'B— ¢ 'B.

Namely, by definition, for every morphisin: A’ — A in ¢! B there exists a unique morphism
g*h: g*A’ — g* A, such that :

(1.4.7) hoga =gaogh
andifk : A” — A’ is another morphism ip~—! B, the uniqueness af'k implies that :
g'kog"h=g*(koh).
Moreover, [1.4.I7) also means that the rdle+ ¢, defines a natural transformation :
go ity 0g =B

(notation of definitio 1.4]1(i)).
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1.4.8. Letp : &/ — % be a fibration between small categories, @ B % B two
morphisms inZ. Proceeding as ih_(1.4.6), we may attacly tandh three functors :

¢ 9 'B = ¢ 'B R o' B — o 'B (goh) : 9o 'B — ¢ 'B
as well as natural transformations :
Jo:lp 0g" = 1p he : tpr o h™ = 1p (goh)e:tpro(goh) = p
and by inspecting the constructions, one easily finds a emtural isomorphism :
Yhg:h*og" = (goh)”
which fits into a commutative diagram :

hexg*
LB//Oh*Og*.:LB/ O'g>k

132 *'Yh,gﬂ/ U!]o
(goh)e

Lpr O (g (@) h>* Ei——— 300

It follows that the rule which assigns to eaghe Ob(%) the small category !B, to each
morphismyg in £ a chosen functay*, and to each pair of morphisnig, ) as above, the natural
isomorphismy, ,, defines a pseudo-functor

(1.4.9) c: #° — Cat.

Notice as well that, for everyg € Ob(%), we may choosél)* to be the identity functor of
¢~ B; then the isomorphism

(0p)s i@ 'B— ¢ 'B
required by definitio_1.3l4, shall also be the identity. i@Have view %° as a2-category,
as explained in example_1.8.6(i); also, the nat@rahtegory structure ofat is the one of
example_1.316(iii))). The datum of a pseudo-functoas in [1.4.9) is called aleavage(in
french: “clivage”) for the fibrationp.

Example 1.4.10.Let £ be any category.

() Let p : &/ — X be afibration, and) : ¥ — % any functor. Then the induced
functor.a/ x, ) € — ¢ is also a fibration. The cartesian morphismsa0fx , ;) ¢
are the pairg f, g) where f is a cartesian morphism &¥, g is a morphism of#’, and
o(f) = 1(g).

(i) A composition of fibrations is again a fibration. Alsoffo= 1, 2, let o7, — % be two
fibrations; combining with (i) we see that; x 4 <% — Z is also a fibration.

(i) Let I be a presheaf og. To F we may attach a fibratiopy : o — % as follows.
The objects ofez are all the pairg X, s), whereX € Ob(#) ands € F(X). A mor-
phism(X,s) — (X', s') isamorphisny : X — X’ in %, suchthat”’(f)(s') = s. The
functorp is defined by the rule p (X, s) = X for every(X, s) € Ob(«7r). For any
X € Ob(A), the fibrep ' (X) is (naturally isomorphic to) the discrete categéiyX )
(seel(d.1.1)). Notice also that every morphismeip is cartesian. This construction is

a special case of (1.4.15).

(iv) Let F andG be presheaves a®. With the notation of (iii), there is a natural bijection:
Homc,om (F, G) :> Cart:@(%p, fog)
Namely, to a morphismp : F' — G one assigns the functey,, : «/» — <7; such that
y(X, s) = (X, (X)(s)) for every(X, s) € Ob(er).
(v) For instance, it has smalHom-sets, andF' is representable by an obje&t of 4,

then one checks easily that- is naturally isomorphic t&/X and the fibrationz is
equivalent to that of example 1.4.2(i).
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(vi) Furthermore, foi = 1, 2, letG; — F be two morphisms of presheaves.ah then we
have a natural isomorphism of fibrations owér.

e, X ot Dzy = 15 oG
(details left to the reader).

1.4.11. Let&” — % be another smalg-category, and” : &/ — &’ any #-functor; we
obtain a natural functor :

Carty(F, ") : Carty(', ") — Carty(, ") G+— GoF.

To any morphisna : G = G’ in Cart4(«7’, &/”), the functorCart4(F, «/”) assigns the natural
transformatiorv « ' : Go ' = G’ o F.
Likewise, any cartesiagg-functorG : &7’ — /" induces a functor :

Carty (o, G) : Carty(, ') — Carty(, ") F+—GoF

which assigns to any morphisp : F' = F’ in Cartyh(</, /"), the natural transformation
G+xp:GoF = GoF'.
Furthermore, in casg’ : @/’ — A is a fibration, we have a natural equivalence of categories

(1.4.12) Carty (o, p') : Carty (o, o Xy ') = Carty(d, ')
(wherep' : o7 %, . 2/' — </' is the natural projection functor).

Proposition 1.4.13.Lety : &/ — Zandy’ : &7 — % be two fibrations, and” : o/ — &/’ a
cartesian#-functor. We have :

(i) The following conditions are equivalent :

(@) F is afibrewise equivalencd.e. for any B € Ob(%) the restrictionp='B —
©'~1 B of the functorF, is an equivalence.

(b) Fis a #-equivalencej.e. an equivalence in the-categoryU’-Cat /% (in the
sense of(1.3.3) wherel’ is any universe relative to which the categorigs <7’
and % are small.

(i) If the equivalent conditions df) hold, the functoiCart (%', F’) is an equivalence, for
everyZ-categorys — A.

Proof. Condition (b) means that admits a quasi-inversg which is az-functor. The proof is
similar to that of [11, Prop.8.4.2], and shall be left as aereise for the reader. O

Definition 1.4.14. Let # be any small category.

(i) A split fibrationover % is a pair(p, c) consisting of a fibrationp : &/ — % and a
cleavage: for ¢, such that is a functor.

(i) Fori = 1,2, let(y; : o — A, c;) be two splitfibrations, and’ : </, — <% a cartesian
functor. For everyB € Ob(%), let Fiz : o' B — o, ' B denote the restriction af .
We say thatF' is a split cartesian functofyy,c;) — (2, ¢2) if the rule : B — Fp
defines a natural transformation=- c,.

1.4.15. Let# be a small category. Clearly, the collection of all fibratosr — % (resp.
of split fibrations(y : &/ — %, c)) with &7 small, forms a categorlyib(%) (resp. sFib(%))
whose morphisms are the cartesian functors (resp. thecsptésian functors). Furthermore,
we have an obvious forgetful functor :

(1.4.16) sFib(#) — Fib(A) (p,€) — .
On the other hand, we have as well a natural functor
C: Fib(#) — sFib(A)
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defined as follows. For a fibration: &7 — %, we letC(.«7 /#) be the category whose objects
are all the pairgB, G), whereB € Ob(#) andG : #/B — </ is a cartesian functor (recall
that /B is fibred over#, by examplé 1.412(i)). The morphisni®, G) — (B’,G’) are the
pairs(f,«), wheref : B — B’ is a morphism of%, anda : G = G’ o f,. is a morphism
of Cart»(%/B, </). The rule(B,G) — B defines a functoC(y) : C(«/ /%) — %, and it
is easily seen thai(y) is a fibration; indeed, for any morphisfn: B’ — B and any object
(B,G) of C(<f /A), the pair(B’,G o f,) is an inverse image diB, G) over f (details left to
the reader). Notice that, with this choice of inverse imagies resulting cleavage f@(y) is
actually a functor. Notice as well that the rulé«/ — %) — C(</ /) is functorial in the
fibration .«#. Namely, every cartesian functér : o/, — <% of fibred #-categories induces a
cartesian functo€(F /%) : C(<4/B) — C(ata/A) viathe rule :(B,G) — (B, F o G) for
every object( B, G) of C(« /%), and if [ : o/, — <75 is another cartesian functor of fibered
AB-categories, we have the identity

C(F'oF/%)=C(F'|%)o C(F/%).
Let us spell out the cleavage 6fy) : this is the functor
Carty(B/—, o) : $° — U'-Cat
(for a suitable univers®’) that assigns to an € Ob(%°) the categorfart4(%/B, <), and
to any morphismB’ % B in 4 the functor :
Carty(g., ) : Carty(%B/B, /) — Carty(B/B', o).
Moreover, letl’ : @/, — o be a cartesian functor of fibore#-categories. Then we obtain a
natural transformation of cleavages :
Carty(B/—, o) = Carty(B/—, ob) B — Carty(%4/B, F).

Summing up, this shows that the rulg : &/ — %) — (C(y), Carty(#/—, <)) defines the
sought functoKC.
Theorem 1.4.17.With the notation of1.4.15) we have :

(i) The functorC is right 2-adjoint to (1.4.16)(see definitiod.3.10(ii).

(i) The counit of this pair oR-adjoint functors is a pseudo-natural equivalence.

Proof. According to remark 1.3.11(iii), it suffices to exhibit a iehd a counit fulfilling trian-
gular identities as in(1.1.8). To this aim, let <7 — % be a fibration, and consider the natural
cartesian functor of4-categories

eve : C(A /| B) — o

that assigns to every objecB, G) of C(«&/ /%) its evaluationG1lz € Ob(¢~!'B), and to any
morphism(f,«) : (B,G) — (B, G"), the morphismyg : G1z — G'f.

Claim1.4.18 The functorev, is a#-equivalence.

Proof of the claimlt suffices to show thadv, is a fibrewise equivalence (proposition 1.4.13(i)).
However, for evenyB € Ob(4), an inverse equivaleng®; : ¢ ' B — Cart4(%/B, /) can be
constructed explicitly by choosing, for a fixede Ob(p~!B), and every objed} : B’ — B of
/B, an inverse image, : g*A — A of A overg. These choices determirig on objects, via
the rule :

Be(A): Ob(#B/B) — Ob(«) : g~ g A.
Then the image ofz(A) is uniquely determined on every morphism#fB, by the universal
property ofg4 (cp. (1.4.6)). By the same token, one sees thdtd)(f) is #-cartesian, for
every morphisny of #/B, i.e. Bg(A) is a cartesian functor. Finally, the rule — 5(A) is
functorial ony~! B : for the details, seé¢ [11, Prop.8.2.7]. O
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Clearly every cartesian functdf : o/, — <7 of fibred #-categories yields a commutative
diagram of%-categories :

C(F/%)
Clan)B) —2 o C(aty) B)
o, r A

henceev, is our candidate pseudo-natural counit, and claim 114.¥8ié® that (ii) holds for
this choice of counit. Next, l€ty : &7 — £, c) be any split fibration. To define a unit, we need
to exhibit a natural split cartesian functor :

(1.4.19) (p,¢) = (C( | B), Carty( B/ —, 7).

This is obtained as follows. Let be any object ofe7, and setB := p(A); to A we assign
the unique cartesian functdt, determined on objects by the ruléy(f) := f*A, for every

f € Ob(#A/B); of course,f* denotes the pull-back functor provided by the split cleavag
c. Itis easily seen that the rulé — F, extends to a unique split cartesian funcfor (1.4.19).
Lastly, we entrust to the reader the verification that théamd counit thus defined do fulfill the
triangular identities. O

Remark 1.4.20.Let p : &/ — % be a fibration. Since the equivalensg of claim[1.4.18 is
independent of choices, one might hope that the rite- (ev, : C(¢) ™' B — » ! B) extends
to a natural isomorphism between functe#s — U’-Cat. However, since[(1.4.9) is only a
pseudo-functor, the best one can achieve is a pseudo-hedquiigalence :

ev: Carty(#B/—, o) =c
which will be uniquely determined, for every given choiceaafleavage for the fibrationy.

Proposition 1.4.21.Let F : o/ — % be a functor,¥’ — % a fibration, and suppose that,
for every B € Ob(£), the induced functoCart4(F/B, %) is an equivalence (notation of
(L116). Then the functo€art,(F, €) is an equivalence.

Proof. Let 2 denote the category whose objects are all the ddi<~), whereB € Ob(%)
andG : Fo//B — ¥ is a strictly cartesian functor. The morphismsnare defined as for
the categoryC(%¢) introduced in the proof of theorem 1.4117. It is easily sdwt the rule :
(B,G) — G determines a fibratioy — 2. Moreover, the natural transformation

Carty(F/—,€) : Carty(B/—,€¢) = Carty(Fod |—,F)
induces a cartesian functor #-categoriesr : C(¢) — 2, whence a commutative diagram :

Cartg (F,%)

Carty(4,%)
(1.4.22) al

Carty (o, €)

lﬁ
Cart»(4,G
_

Cart(#, C(%)) L Carty(B, 2).

Namely, « assigns to any strongly cartesiag#-functor F' : 4 — % the strongly cartesian
functora(F) :  — C(¥), given by the rule :
Bw (Fosg:%/B— %) for everyB € Ob(%)

wheresg : /B — 2 is the functor[(1.1.13). Likewisegi sends a strongly cartesian functor
G : o/ — % to the strongly cartesian functg(G) :  — & given by the rule :

B~ (Fowg:Fo//B— %) for everyB € Ob(%)
whereip : F.o/ /B — < is defined as in(1.1.16).
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Our assumption then means tl@tis a fibrewise equivalence, in which case, proposition
[1.4.13(ii) ensures that the bottom arrow [of (1.4.22) is amwedence. We leave to the reader
the verification that both vertical arrows are equivalenagsvell, after which the assertion
follows. O

1.5. Sieves and descent theoryThis section develops the basics of descent theory, in the
general framework of fibred categories. For later use, ibis/enient to introduce the notion

of n-faithful functor, for all integersn < 2. Namely : ifn < 0, every functor isn-faithful;

a functorF' : &/ — % (between any two categorieg and %) is 0-faithful, if it is faithful
(definition[L.1.4);F" is 1-faithful, if it is fully faithful; finally, we say thatF is 2-faithful, if it is

an equivalence.

Definition 1.5.1. Let # and¥ be two categories; : 4 — % a functor.
(i) A sieveof % is a full subcategory” of ¥ such that the following holds. Il €

Ob(.), andB — A is any morphism ir¢’, thenB € Ob(.%).

(i) If S C Ob(¥) is any subset, there is a smallest siexeof ¢ such thatS C Ob(.%);
we call.#s thesieve generated hy.

(i) If . is a sieve of¢, theinverse image of” underF is the full subcategory'—. of
P with Ob(F~1¥) = {B € Ob(%) | FB € Ob()} (notice thatF"~1¥ is a sieve).

(iv) If f: X — Y is any morphism ir¢, and.” is any sieve ofs/Y, we shall write
< xy f for the inverse image of” under the functoy, (notation of (1.1.14)).

Example 1.5.2.For instance, suppose that is the sieve of6/Y generated by a family :
{Yi=Y|iel} COb(E/Y).

If the fibre productX; := X xy Y; is representable i@ for everyi € I, then.” xy f is the

sieve generated by the family of induced projecti¢as — X |i € I} C Ob(€/X).

1.5.3. Let% be a category with smallom-sets, X an object of¢’, and.” a sieve of the
categorys/X; we define the presheaf, on % by ruling that

ha(Y) :={f € Homg (Y, X) | (Y, f) € Ob(.¥)} for everyY € Ob(%).

For a given morphisnf : Y’ — Y in €, the maph.»(f) is just the restriction oHome (f, X).
Henceh o is a subobject ofix (notation of [1.1.1I9)), and indeed the ruté — h sets up
a natural bijection between the subobjectsigfin " and the sieves 0&/X. The inverse
mapping sends a subobjdctof Ay to the full subcategory”r of /X such that :

ob(r) = |J {vHIfeFm)}
Y €Ob(%)

In the notation of[(1.1.16), this is naturally isomorphidhe categoryy%’/F and it is easy to
check that it is indeed a sieve &f.X .

Example 1.5.4.In the situation of[(1.513), lef := {X; — X | i € I} be any family of
morphisms ir¢’. ThenS generates the siev# if and only if :

hy =|JIm(hx, = hx).
i€l
(Notice that the above union is well defined even in cagenot small.)

In the same way, one sees that the sieves afe in natural bijection with the subobjects of
the final objectl, of €. Moreover, it is easy to check that, for every siexeof /X, and
every morphisny : Y — X in &, the above correspondence induces a natural identification
subobjects ofiy :

hyfxxf = hyf Xhx hy.
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Since the Yoneda imbedding is fully faithful, we shall ofegsuse notation, to identify an object
X of & with the corresponding representable prestiggfwith this notation, we may write
hYXXf = hy X x Y.

1.5.5. Let% be a small category, ane’ the sieve of¢’ generated by a subsétC Ob(%).
Say thatS = {S; | i € I} for a set/ of the universeJ; for every: € I, there is a faithful
imbeddinge; : €/S; — ., and for every pai(i, j) € I x I, we define

CK/SU = CK/SZ X(a,’,a]-) %/SJ

(notation of [1.1.2I7)). Hence, the objects@fS;; are all the triple{ X, ¢;, g;), whereX ¢
Ob(%) andg, € Homcg(X S;) for I = 4, j. The natural projections :

U* 1 €/Si; — 6/S; 1 €)Si; — 6/S;
are faithful imbeddings. We deduce a natural diagram ofgcates :

]_[95/52] T ]_[cg/s 5

Z_]*

(i,9)eIxI iel
where :
) 0 )
=1 oa=[]=. =]
(i,5)eIxI (3,5)€IXI i€l

Remark 1.5.6. Notice that, under the current assumptions, the prodyct= S; x S; is not
necessarily representable#n In case it is, we may consider another category, also dénote
%/S;;, namely the category df;;-objects of¢” (as in [1.1.1R)). The latter is naturally isomor-
phic to the category with the same name introduced in (1.8V&reover, under this natural
isomorphism, the projectioné) andwzj* are identified with the functors induced by the natu-
ral morphiser?j :S;; = S; and respectlvelyr}j : S;; — S;. Hence, in this case, the notation

of (I.5.B) is compatible witH (1.1.14).

Lemma 1.5.7. With the notation of(1.5.5) the functor= induces an isomorphism betweefi
and the coequalizer (in the categoBat) of the pair of functorgd,, o).

Proof. Let &7 be any other object dfat, andF : [[,., ¢/S; — </ afunctor such thak' o0, =

F o 0,. We have to show that factors uniquely through. To this aim, we construct explicitly
a functorG : .¥ — & such thatz o ¢ = F. First of all, by the universal property of the
coproduct,F' is the same as a family of functofs; : €/S; — < | i € I), and the assumption
on F' amounts to the system of identities :

(1.5.8) F;o %* =Fjo %* for everyi,j € I.

Hence, letX € Ob(.¥); by assumption there exists I and a morphisnf : X — S;in ¢, so
we may seGX := F;f. Incaseg : X — S, is another morphism if’, we deduce an object
h = (X, f,g) € Ob(€)S;;), sof = nj;.h andg = m;.h; then [L5.B) shows thdf; f =

i.e. GX is well-defined.

Next, lety : X — Y be any morphism in”’; choosei € I and a morphisnyy : Y — S,
and setfy = fy op. WeletGy = Fi(¢ : fx — fy). Arguing as in the foregoing,
one verifies easily that/y is independent of all the choices, and then it follows eatsibt
G o p) = Gy o Gy for every other morphism : Y — Zin . Itis also clear that
G1x = 1qgx, whence the contention. O

Example 1.5.9.Let % be any category and any object of%.

() Let p : &7 — A be a fibration, and” any sieve ofe/. By restriction,y induces a
functory» : ¥ — 2%, and itis straightforward to see that, is again a fibration.
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(i) In the situation of example_1.4.10(iii), suppose that= h . for some sieve¥ of
/X (notation of (1.5.B)). Ther is naturally isomorphic t¢”, andyr is naturally
identified to the restriction” — 4% of the functor[(1.1.13).

1.5.10. Inthe situation of (1.5.5), suppose that the seenégatorsS is the whole ofOb(.%);
in this case, the augmentatieran also be used to produce the followitigategorical presen-
tation of.. Consider the functor

Gy > Catfe : YooY (Z2-LY)=(@/72-15%/v).
We have a natural cocone
£: Gy = Fy
whereF » is the constant functo” — Cat/% with value.”, andey : /X — .7 is the
faithful imbedding as in[(1.515), for evety € Ob(.#). We may then state :

Lemma 1.5.11.The functoz induces an equivalence of categories :
2-0(3}1m Gy — <.
Proof. For a given smalls’-category</, a pseudo-cocong, : G» = F,, is the datum of a

system of functors
ox €)X > o for everyX € Ob(.¥)

and natural isomorphisms
Tf 9z = @y o f. forevery(f: Z —Y) € Morph(.¥)
such that
(1.5.9) Ty = (7, f)o7s  forevery compositio?Z Y % X in ..
To suchy, we associate a functer' : .7 — o7, by the rule :
©'(X) = px(lx)  foreveryX € Ob(.¥).

Letg : Y — X be any morphism in”, and denote byg,/x : ¢ — 1x) € Homy/x(g,1x)
the element corresponding gowe have a morphism,(1y) : ¢y (1y) = ©x(g:1y) = ©x(9),
and we set

0l(g) = px(g/x) 0 Ty(1y) : P (Y) = ¢l (X).
Let us check that' is indeed a functor oo : for any two morphismsf : Z — Y and
g :Y — X we may compute

©'(g) 0 (f)

px(g9/x) 0 14(1y) o oy (fv) o 74(12)

=wx(g/x) o px(f/x) o 7y(f) o 74(12)

=@x(g0 fx) o Tgp(1z)

=¢f(go f)
where the second identity follows from the naturalityrpf and the third follows from[(1.519).
It is easily seen that the rules, — ¢! defines a functor

PsNat(G ¢, F) — Fun(Y, &)

such that(F,, o &)1 = ¢ for every functory) : ./ — <. Lastly, for everyp, as above, the
pseudo-coconé,; o £ is naturally isomorphic tg,, so the claim follows (details left to the
reader). O

Definition 1.5.12. Let ¢ : &/ — % be a fibration between small categori&san object of%,
. a sieve of%/B, and denote by : . — /B the fully faithful imbedding.
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(i) Fori € {0,1,2}, we say that” is asieve ofp-i-descentif the restriction functor :
Carty(ry, o) : Carty(B/B, o) — Carty(S, o)

is i-faithful. (Here/B is fibred over# as in example&1.4.2(i).)

(i) Fori € {0,1,2}, we say that” is asieve of universap-i-descenif, for every mor-
phismf : B — B of %, the sieve¥ xp f is of p-i-descent (notation of definition
[L.5.1(v)).

(iii) Let f: B’ — B be amorphisming. We say thaff is amorphism ofp-i-descen{resp.
amorphism of universap-i-descen if the sieve generated bfyf} is of p-i-descent
(resp. of universap-i-descent).

Example 1.5.13.()) Consider the fibration : Morph(%’) — ¢ of examplé_1.4]2(ii). A sieve of
s-1-descent (resp. of universall-descent) is also called @pimorphic sievéresp. auniversal
epimorphic sievg and a sieve o§-2-descent (resp. of universaR-descent) is also called a
strict epimorphic sievéresp. auniversal strict epimorphic sieye

(i) Notice that, for everyX € Ob(%¥) there is a natural equivalence of categories :

X /€ = Carty(€/X, Morph(%)).

Namely, to a morphisnf : X — Y in ¢ one assigns the cartesian funcfor /X — ¢/Y C
Morph(%’) (notation of (1.1.14)). An essential inverse for this e@léwce is given by the rule :
F — F(1x) for every cartesian functdr : /X — Morph(%).

(iii) More generally, for every sieve” C €/X there is a natural faithful functor :

(1.5.14) hy/h€ — Carty (7, Morph(%)).

Indeed, denote by~ : . = h%/hy the isomorphism of categories provided by (11.5.3).
Then [1.5.14) assigns to any object h» — hy of h»/h% the functor

(h€ /o) ohy S = hE/hy  (9:Z = X)— polys(g)

(notation of [1.1.16), and the Yoneda imbedding identiffess ¢ategoryh@/hy with €/Y C
Morph(%)). Under the faithful imbeddind (1.5.14) and the equiva&en€ (i), the restriction
functor Cart4 (., Morph(%’)) corresponds to the composition :

X/€ L hy /W6 -5 hy /W
wherei : h» — hy is the natural inclusion of presheaves.

1.5.15. In the situation of definitidn 1.5]12, suppose t#ais the sieve generated by a set of
objects{S; — B |i € I} C Ob(Z#/B). There follows a natural diagram of categories (notation

of (L.5.5)):
Carty(S, ) = || Carta(#Si, o) —= [ Carts(%/Sy;, )

i€l i (4,5)eIxI
wheres* := Carty(e, &) and9; = Carty(0;, ), for i = 0,1. With this notation, lemma
[1.5.7 easily implies that* induces an isomorphism betwe€art 4(.7, o/) and the equalizer
(in the categoryCat) of the pair of functorgd;;, ;).

Example 1.5.16.A family of morphisms(f; : X; — X | i € I) in a category# is called an
epimorphic(resp. strict epimorphig resp. universal strict epimorphicfamily if it generates a
sieve of4/X with the same property. In view df (1.5]15) and exaniple BGi)l we see that
such a family is epimorphic (resp. strict epimorphic) if amly if the following holds. For
everyY € Ob(%), the natural map

[ fi : Homg(X,Y) — [ [ Home (X5, )

el i€l
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is injective (resp. and its image consists of all the systefmsorphismsg; : X; —» Y |i € I)
such that, for every, € Ob(%), everyi,j € I, and every pair of morphisns : 7 — X,
h; : Z — X; with f; o h; = f; o hj, we havey; o h; = g; o h;).

We say that the family f; | « € I) is effective epimorphicif it is strict epimorphic, and
moreover the fibre products; x x X, are representable & for everyi,j € I. This is the
same as saying that the mp,_; fi. identifiesHom¢ (X, Y") with the equalizer of the two
natural maps

[T Home (X, V) == [ Home(X; xx X;,Y).

i€l (4,5)eIxI

Afamily (f; | i € I) as above is calledniversal epimorphigresp.universal effective epimor-
phic) if (a) the fibre producty; := X; x x Y are representable i#, for everyi € I and every

morphismY” — X in &, and (b) all the resulting familie; — Y | i € I) are still epimorphic

(resp. effective epimorphic).

1.5.17. We would like to exploit the presentation (1.5.168art (.7, «7), in order to trans-
late definition_1.5.12 in terms of the fibre categorjes S; and¢~1S;;. The problem is that
such a translation must be carried out via a pseudo-natgualaence (namelgv), and such
equivalences do not respect a presentation as above ind¢eqgsalizers in the categofyat.
What we need is to upgrade our presentatioryotfo a new one, which is preserved by pseudo-
natural transformations. This is achieved as follows. Resthe general situation df (1.5.5).
Foreveryi, j, k € I, set€/S;;, := €/S;; X« €/S,. We have a natural diagram of categories :

9o )
(1.5.18) [T %5 =z [ €55 == ][ ¢/s >~
(i,j,k)€I3 92 (el O er

whereg, is the coproduct of the natural projectio;r%‘k* : 6)Sijk — €/S;ji foreveryi, j. k € 1,
and likewised, (resp. d;) is the coproduct of the projectionsjk* : €/)Sijk — €/Si (resp.
Tk © €Sy — €/Si;). We can view[(1.5.18) as amugmente@-truncated semi-simplicial
objectin Cat /¢, i.e. a functor :

Fy: (E@)O%Catfg.

from the opposite of the categoy, whose objects are the ordered sets{0}, {0,1} and
{0, 1,2}, and whose morphisms are the non-decreasing injective (ttapss a subcategory of

the categony\j of (4.2)).

Remark 1.5.19. Suppose that finite products are representabi®imand for everyi, j, k € I,
setS;; 1= 5; x S;, andS;j; ;= S;; x S. Just as in remark_1.5.6, the categ@i}p; ;i of S; ;-
objects of¢ is naturally isomorphic to the category with the same nartrediuced in[(1.5.17),
and under this isomorphism, the functat},, are identified with the functors arising from the
natural projectionsr);; : Six — Sy (@nd likewise forr};, . and,,). For this reason, even
in case these products are not representalstg, we shall abuse notation, and wrie — S;
(resp.X — S,j) to signify an object of6/S;; (resp. of€/S;;x).

With this notation, denote by, the full subcategory of) whose objects are the non-empty
sets; we have the followingrcategory analogue of lemrha 1.5.7 :

Proposition 1.5.20.The augmentation induces an equivalence of categories :

2-colim Fly = ..
%3
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Proof. Here we regard:$ (resp.Cat /¢) as a2-category, as in example 1.8.6(i) (resp. example
[1.3.6(iii),(v)). Now, for a given smal¥’-category.«/, a pseudo-cocone, : F'v = F, is a
datum(y., v, ) CONsisting of a system &f-functors :

©o : ]_[%”/SZ — o o1 H C)Si; — o o : H C/Sij — <
iel (4,5) €12 (i.,k)el?
together with naturak’-isomorphismsi(e. invertible2-cells inCat /%) :
a; 1Py 00y = @ Bj 100 = o (1=0,1 57=0,1,2)
related by the simplicial identities :
Bro (ag* 01) = By o (ag * Do)
B o (g * O2) = Bo o (aq * Dp)
Ba o (a1 % 0z) = P10 (ar x ).
We consider the natur&f-isomorphism :
Wy =y oag g0 dy = @0 0.
The above simplicial identities yield :
w,* 0o = (g x )" o Byt o By o(ag )
Wy * 0 = (a1 % 0y) toBytoBo(ag*d)
which in turn imply the (cocycle) identity :
(wy * 02) 0 (wy * 0y) = wyy * 0.

Hence, let us denote by(.<7) the category whose objects are all pdigsw) consisting of a
¢-functory : [[,.; ¢/S; — </ and a natural’-isomorphismu : ¢ o dy = ¢ o 0, fulfilling the
cocycle identity :(w * dy) o (w * Jy) = w * J1; the morphismsy : (p,w) — (¢, w') IN d()
are the naturab’-transformationsi(e. 2-cells inCat /&) o : ¢ = ¢/, such that the diagram :

poly == pod

a*@oﬂ Ha*@l
!

¢ 00y == ¢ 00,
commutes. Itis easily seen that the rfe, a., 8.) — (¢ := a; 'oag,w,,) extends to a functor:
dy : PsNat(Fy,F) — d(<).
The functord,, is an equivalence ¢f’-categories; indeed, a quasi-inve#sdunctor :
ey d(e/) — PsNat(Fy, F)
can be constructed as follows. Given any objectv) of d(<7), set :
Yo = @ ©1:=pody P2 =100
o oy = w ! Bo =1y, =: A1 Ba = % 0p.

Using the cocycle identity fow, one verifies easily that the datwy (¢, w) = (Pe, (e, )
is a pseudo-cocone; moreover, the construction is obwidusktorial in (¢, w), and there are
natural isomorphismg,, o e, = 1 ande,, o d,, = 1.

Next, consider th&’-category# whose objects are the same as the objectg] of, ¢/S;,
and with morphisms given by the rule :

Homgp(X — 5, Y — 5;) := Homg (X, Y)

ap =1
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for any pair of object$X — S;, Y — S;). We have obvioug’-functors

e J[¢s5i—+2 and 62— : (X—=S)—X
i€l
wheree’ is the identity on objects, and it is clear thiails an equivalence ¢&’-categoriesi(e.
it is an equivalence, when regarded as-eell in Cat/¢). Moreover, there is a natur&-
isomorphism :
i:€00y=¢€ 00

which assigns to every objeaf — S;; of €/S;; the identity mapi(x_,s,,) := 1x. Itis easily
seen that the pair’, /) is an object ofi(#), whence a pseudo-cocone

el i=ez(c i) Fy = Fgy.
Clearlye = § o ¢/, hence it suffices to show that the composed functor :
(1.5.21) Cat/6(#,) — PsNat(Fy,F,) —»d() : G dy(Fgoe)

Is an isomorphism for every smadf-category</. By inspecting the construction, we see that
the latter assigns to evewy-functorG : # — <7 the pair(G o €', G % ). To conclude, we shall
exhibit an inverse fo (1.5.21).

Namely, let(p, w) be any object ofl(.«7); we set :

Gf:=opf for everyf € Ob(Z%).

Now, suppose thaty : X — S; andfy : Y — S; are two objects ofZ, andh : X — Y is
an element oHomy(fx, fv); the pair(fx, f% := fy o h) determines a morphisrtff, x fx :
X — Sj;with 9y (f% x fx) = fx andd;(fyx x fx) = f (notation of remark’1.5.19); hence
we may defingzh as the composition :
Yrkexfx / h/S;
Gh:GfXLMD XM)QO]CY:G]CY
whereh/S; denotes, regarded as an elementldébme s, (f%, fv ).

Next, letf, : Z — Sy be another object o, andg : Y — Z any element oHomy( fy, f7);
we have to verify tha(goh) = GgoGh. As in the foregoing, we deduce morphisiis— S,
X — SpandY — S;, as well as their producty — Sj;, X — Sy;, andY — Si;, whence a
diagram :

W(X—S;) (h/S;)
Gfx = (X = ) S p(X = §j) — s Gy = (Y = )
\ lW(XﬁSkj) lW(YﬁSkj)
W(X—5Sk;) (h/Sk)
(1.5.22) (X = Sp) —— (Y — S)
Sk
o(gohIBn ls@(g/ k)

Gfz :=w(Z — Sk).

The sought identity amounts to asserting that (115.22) cotes) which can be easily verified,
using the cocycle condition fas, and the obvious identities :

80(h/5k]) = h/S] and 81(h/Sk]) = h/Sk

Finally, notice thalG1l; = G(1;0 1) = G1; 0 G1y, for everyf € Ob(Z); sinceG1; is an
isomorphism, it follows that:1,; = 1.

HenceG is a functorZ — «7; furthermore, the rulép, w) — G is clearly functorial, and a
simple inspection shows théto ¢’ = p andG x i = w. Conversely, if we apply the foregoing
procedure to a pair of the ford+ o ¢’, G « i), we obtain back the functar. O
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1.5.23. Resume the situation bf (1.5.15), and notice thtt@tategories appearing (n(1.5.18)
are fibred over : indeed, every morphism in each of these categories isstantehence all
the functors appearing i (1.5118) are cartesian. Let usidennow the functor :

Carty(—, &) : (Cat/AB)° — Cat

that assigns to everyg-categoryé the categoryCart4(%¢, /). With the notation of[(1.5.15),
we deduce a functor :

Carty(Fy, o) : ¥y — Cat
and in light of the foregoing observations, proposifion.Z0easily implies tha€art 4 (s, &)
induces an equivalence of categories :

(1.5.24) Q-gm Carty(Fy, o) = Carty(S, o).

Next, suppose that the fibre produéts := S; x §; and S, := S;; x S are representable in
% (see remark 1.5.19); in this case, we may compose with thedpsequivalencev of remark

: combining with lemmia_1,.3]14 we finally obtain an &glénce between the category
Carty (., &), and the2-limit of the pseudo-functod :=evo Carty(Fy, o) : ¥y — Cat :

H wilsz:; H 90_152] _819 H (,071»51”]g

iel (i,5)€I? (i,5,k)€I?

Of course, the coface operata@rson ][], , ¢~'S; decompose as products of pull-back functors:

Ty TS TSy TS 0TSy

attached — via the chosen cleavag# ¢ — to the projections?j 0 Sy =S andw}j 0S5 — S
(and likewise for the componenﬁ%*.k of the other coface operators).

1.5.25. By inspecting the proof of propositibn 1.3.15, weyngéave the following explicit
description of thi-limit. Namely, it is the category whose objects are the data

X = (Xo, Xig, Xigne, &, & Sie | 4,5,k € Irs € {0, 1} u,t € {0,1,2})
where :
X, € Ob(¢p'S;)) X;; € Ob(¢p™'Sy;) Xijx € Ob(¢™'Syx)  foreveryi,j kel
and for everyi, j, k € I :

5? : (ﬂ'Zkﬂ'”k) X, > Xijk ?j : W%»*Xj 5 Xij fzjk szk ik 5 Xijk
fjl : (ﬂjkwijk) X; =5 Xijk lej : 7TZ~1j*Xi =5 Xij fzjk leszk =5 Xijk
& (ﬂ-?kﬂ-?jk)*Xk = Xijn Efjk szkX = Xijk
are isomorphisms related by the cosimplicial identities :
fz]k © Trz]kgjk = §k © 79(0 @bk © %k zk = fk © 79(1
gzgk © ﬂ-zﬂc zoj = §j © 79(2 @]k © Wzgkgjk f o 7}(0
fzjk ij:gzj 5? 07}(2 @]k Z]kgzk 5? OVX

wherey™ = y495)a(at) : d(0%) 0 d(9") = d(0° o 9") denotes the coherence constraint of the
cleavage, for any pair of arrowgo®, 9") in the category:,. The morphisms{ — Y in this
category are the systems of morphisms :

(X —>Y X — Y., lekﬁnjk‘i,j,kEI)

K
that are compatible in the obvious way with the various isgphisms. However, one may
argue as in the proof of proposition 1.5.20, to replace taisgory by an equivalent one which
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admits a handier description : given a datimone can make up an isomorphic datifh :=
(X X7 Xf}k, Mis Mijs Th‘jk), by the rule :

Z_]’
* . lx oy * 1 \* v
Xij =T Xi ngk ( T © Tiin) X

ijk

n =1 ny =1 Mok =1 07X
nj = (&) o = (&) o & Mgk == VX
m= (&) o &} Mok = Tx-

The cosimplicial identities for this new object are subsdnmo a single cocycle identity for
wq; = 155 Summing up, we arrive at the following description of @dimit :

e The objects are all the systems:= (X;,w;; | i,j € I) whereX; € Ob(x'S;) for
every: € I, and

%- 0*X —)7T1*X

is an isomorphism ip—'5;;, for everyi, j € I, fulfilling the cocycle identity :
Piwis o pnwi = piwi.  foreveryi j kel
where, for every, j, k € I, andt = 0, 1,2 we have set :

ngkwﬁ = ’YX © Trzykwoo (’YX) 1'

e The morphisms{ — Y are the systems of morphisiig : X; — Y; | i € I) with :

(1.5.26) whomy fi=m fiow)  foreveryi jel.

1.5.27. We shall call any pafrX,, w,) of the above form, @escent datum for the fibratian
relative to the familyS := (m; : S; — B | € I) and the cleavage. The category of such
descent data shall be denoted:

Desc(¢p, S, c).
Sometimes we may also denote itDysc(.«7, S, c), if the notation is not ambiguous. Of course,
two different choices of cleavage lead to equivalent caiegmf descent data, so usually we
omit mentioning explicitlyc, and write simplyDesc(¢p, S) or Desc(.«7, S). The foregoing dis-
cussion can be summarized, by saying that there is a comweudiEigram of categories :

Cart () B, o) — 22D Cart f(F, o)
(1.5.28) evBl lzss
1 PS
v B Desc(¢p, S, c)
whose vertical arrows are equivalences, and wpgiie determined by. Explicitly, ps assigns
to every objectC' of »~'B the pair(C,,w) where C; m;C, andwy is defined as the
composition :
W(:rtlj’ﬂ)

mif omiC

)
T o m:C #) (mjo 7r0) C=(mo ﬁ}j)*C i

ij
wherey(ﬁgjm) andy(ﬁm) are the coherence constraints for the cleava(gee [(1.418)). The

descent daturniX,, w,) is said to beeffective if it lies in the essential image ofs.
We also have an obvious functor :

s:Desc(p,S) = [[e'S  (Xiwiylijel)— (Xi|iel)

el

psops= [ ¢ B=]]¢ 'S

el i€l

such that :
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1.5.29. Furthermore, for every morphisin B" — B in 4, set
§XBfZI(7TZ' XBB/ISi XBB/—>B/‘Z'€[)

which is a generating family for the sievw® x g f (notation of [1.1.1R)); then we deduce a
pseudo-natural transformation of pseudo-func{e#aB)° — Cat :

p:coif = Desc(p,S xp—,c) (f: B = B) > psxpr
(whereig : /B — A is the functor[(1.1.13)) fitting into a commutative diagram :

Cart_@(byxB_,J?f)

Carty(B/—, o) oi% Carty (S xp —, )

ev*i%ﬂ ﬂéﬁxB

coiy £ Desc(y, S x5 —,¢)

using which, one can figure out the pseudo-functorialityhefrtule : f +— Desc(p, S x5 f,c).
Namely, every pair of objects : C — B andf’ : C' — B, and any morphism : C" — C'in
A/ B, yield a commutative diagram :

~0 =1
"ij Tij i
Sy xp O <2 Sy % O e 8y %y O —m
hj::Sj XBhl/ hijlsinBhl lhi:SiXBh lh

Sj XBCTSU XBCT)SZ‘ XBC?C.
ij ij

Hence one obtains a functor :
Desc(¢, h,c) : Desc(p, S xp f,c) — Desc(p, S x5 f',¢)
by the rule :
(Xi,wiy | 4,5 € 1) (i X;, ;5 |i,j € 1)
whered;; is the isomorphism that makes commute the diagram :

Yh:: 0. RICIUNY
* 0% (Rijomij) 0 * (Fijoha) ~0x% *
hijﬂ-ij X] (Trij o) hz]) XJ 7Tij ¢) h]X]
hjjwijl l@fg
* 1 ’y(hijmilj) 1 * ’y(%ilfhi) ~1x *
hijﬂ-ij Xz (Trij o) h’z_]) Xz 7Tij @) h’z XZ

and if f” . C” — B is a third object, with a morphism : C¢” — C’, we have a natural
isomorphism of functors :

Desc(¢p, g,c) o Desc(¢p, h,c) = Desc(p,ho g,c)
which is induced by the cleavagein the obvious fashion.

Theorem 1.5.30.Fori = 1,2, letyp; : o7, — 2 be two fibrations}' : @/, — «f a cartesian
functor of #-categories,B an object of# and . a sieve of#/B generated by the family
(S; = B i€ I). We assume that;; and.S;;;, are representable i, for everyi, j. k € I (see
remark1.5.19; then we have :
(i) Forn € {0,1,2} and everyi, j, k € I, suppose that

(a) .~ is a sieve both ofy;-n-descent and of,-(n — 1)-descent.

(b) The restrictionF; : o, 'S; — ¢, 'S; of F is n-faithful.

(c) The restrictionF;; : o, 'S;; — 5 'S, of Fis (n — 1)-faithful.

(d) The restrictionF;, : o7 'Sijx — @5 ' Siji Of Fis (n — 2)-faithful.

Then the restrictioF’s : ¢;'B — ¢, ' B of F is n-faithful.
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(if) Suppose that the functors; are fully faithful, and the functor$;;;, are faithful, for
everyi, j, k € I. Then the natural commutative diagram

Cartg (S, F)

Carty (S, )

HiEI 9017152‘

is 2-cartesian.

Carty (S, )

|

Hi 1 Fi _
- Hiel 90215@'

Proof. (i): In view of theoreni_1.4.17, we may assume that hethand .7, are split fibrations
(with a suitable choice of cleavages), ahds a split cartesian functor. Recall that the latter
condition means the following. For every morphigmX — Y in %4, the induced diagram

_ g* _
¥1 Y —— ¥1 'X

r| |r

_ g* _
(2 Y —— (2 'X

commutes (where the horizontal arrows are the pull-backtirngiven by the chosen cleav-
ages). In this situation, we have a commutative diagram

¢1'B = Desc(¢1,5)
(1.5.31) FBl lp

0, 'B 5, Desc(ips, S)
whose right vertical arrow is the functor given by the rule :
X = (Xywij|i,jel)— F(X) = (FX;, Fjwj|i,j€l).

for every objectX of Desc(y1,.S). By assumption, the top horizontal arrow bf (1.5.31)is
faithful, and the bottom horizontal arrow (& — 1)-faithful. We need to prove that the left
vertical arrow isn-faithful, and it is easily seen that this will follow, oncesvhave shown that
the same holds for the right vertical arrow.

Suppose first that = 0; we have to show that’ is faithful. However, letX andY” be two
objects ofDesc(¢1,.5), andh,, h, : X — Y two morphisms. By definitior, (for ¢t = 1,2) is
a compatible systerth,;, : X; — Y; | i € I), where eaclh,; is a morphism inp;1.S;. Then,
F(h,) is the compatible systeti¥;h,; | ¢ € I). Thus, the conditio'(k,) = F(h,) translates
the system of identitie$;h,; = Fihy,; for everyi € I. By assumption, each; is faithful,
thereforeh, = h,, as stated.

Forn = 1, assumption (d) is empty, (b) means ttatis fully faithful, and (c) means that
F;; is faithful for everyi, 57 € I. In light of the previous case, we have only to show tRat
is full. Hence, letX,Y be as in the foregoing, and; : F;X; — F;Y; | € I) a morphism
F(X) — EF(Y)inDesc(ps,.S). By assumption, for everyc I we may find a unique morphism
fi + X; — Y; such thatF; f; = h;. It remains only to check that the systéify | : € I) fulfills
condition [1.5.26), and since the functdrs are faithful, it suffices to verify thaf’;(1.5.26)
holds. However, sincé’ is split cartesian, we have :

Fjomifi=myoFf;  Fjom)fi=mokFlf

J J

hence we reduce to showing thét;w,;)om) h; = }*h;o(Fj;w;Y ), which holds by assumption.
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Next, we consider assertion (ii) : the contention is thatftimetorsF’ and :

p1s : Desc(1,S) — [ [ er'S:
i€l
as in [1.5.2I7), induce an equivalenge g, F) betweenDesc(<P1, S) and the categor¥’ con-
sisting of all data of the fornGG := (G;, H;,a;,wf! | i,j € I), whereG; € Ob(¢;'S)),
H; € Ob(p,'S)), a; : F;G; = H; are isomorphisms ip,'S;, andH := (Hz,w |i,jel)is
an object oDesc(ps, S). However, given an object as above, set :

wh' = (ﬂl*a Dow

ij i (mijag).

7T0z]

Sincey, is a split fibration, one verifies easily that the datilin.= (H; : FGZ,w i, j€T)

is an object ofDesc(y,, S) isomorphic toH, and the new datur(‘uE, Ll w] "i,j el

is isomorphic to7; hence? is equivalent to the categofs’ whose objects are all data of the
form (Gi,wy; | 3,5 € I) whereG; € Ob(e;'S;), and (F;G;,w;; | i,j € I) is an object of
Desc(p, S). By assumptior¥;; is fully faithful, and £ is a split cartesian functor; hence we
may find unique isomorphismg’ : m)*G; = 7} G; such thaty;; = F;;& . We claim that
the datum(G;,w( | i,j € I) is an object ODesc(gpl, 9), i.e. the isomorphlsms;ij satisfy the
cocycle condltlon

(1.5.32) Tows o mwS = Thwg  foreveryi j ke 1.

To check this identity, since by assumption the functggs are faithful, it suffices to see that
F;;1(1.5.32) holds, which is clear, since the cocycle conditioids for the isomorphisms;;
(and sincel” is split cartesian). This shows th@t; s, /) is essentially surjective. Next, since
the functorp, ¢ is faithful, the same holds fdp, s, F). Finally, let

G = (Gj,wij 1,7 €1) G = (Gj,wi|i,j €1)
be two objects ofs”. A morphismG — G’ consists of a systerfw; : G; — G% | i € I) of
morphisms such thdt;«; | ¢ € I) is a morphism
in Desc(y9,S). To show that(pls, ) is full, and since we know already that this functor is
essentially surjective, we may assume that there éSisto’ |i,j € 1), (Gj,wS |i,j€I)in

Desc(p1,S) such that;; = F”w andw;; = ”w " for everyi, j € I;in this case it suffices
to verify the identity

(1.5.33) w omia; =mta; 0w  foreveryi,je I.

Again, the faithfulness of;; reduces to checking thd;(1.5.33) holds, which is clear, since
Fis split cartesian.
Lastly, notice that the case= 2 of assertion (i) is a formal consequence of (ii). O

1.5.34. Inthe situation of (1.5.27), let be the sieve generated by the fanfilyandg : B —
B any morphism inZ. We let :

BZ{Z:B,XBSZ' B;] I:B,XBS" B/

i = B’ x5 Siji for everyi, j,k € I

and denote; : B; — S;, gi; : Bj; — Sy andgyjy, : By, — Sijx the induced projections.

ijk
Corollary 1.5.35. With the notation 0f{1.5.34) letn € {0, 1, 2}. The following holds :
(i) .7 is a sieve ofp-n-descent, if and only jis is n-faithful (see(1.5.28).
(i) Suppose that :
(a) .7 is a sieve of universab-n-descent.
(b) The pull-back functorg; : ¢=1S; — ! B! are n-faithful.
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(c) The pull-back functorg;; : v ~'S;; — ¢~ ' Bj; are (n — 1)-faithful.
(d) The pull-back functorg};, : ="' Six — ¢~ Bj;;, are (n — 2)-faithful.
Then the pull-back functar* is n-faithful.
(iii) Suppose that the functogg; are fully faithful, and the functorg;;, are faithful, for
everyi, j, k € I. Then the natural essentially commutative diagram :

Desc(yp, S) Descle.o) Desc(p, S x5 B')
Psl l Psx pB’
-1 HiEI g? -1 /
Hie] © 5 Hie] v B;
is 2-cartesian (se¢1.3.16).

Proof. (i) follows by inspecting[(1.5.28).
(ii): Thanks to theorern 1.4.17, we may assume thit a split fibration. Now, set

¢ := Morph(%) G = C X)) oy = C X(s,p) A
wheres,t : ¥ — % are the source and target functors ($ee (111.17)). Thealaixgjections
v; » o, — € (for i = 1,2) are two fibrations (see example 1.4.10(i)). Moreovenduces a
functort, : 4/g — %/B (notation of [1.1.15)) and we le¥/g := t‘;ly, which is the sieve of
%/ g generated by the cartesian diagrams

i

D; l l for every: € I.
Bl —g> B
Notice that the product®;; := D, x D, are represented f&/ g by the diagrams
gij
Bj; —— Sy
l l for everyi, j € I

B—1-pB
and likewise one may represent the triple produets := D;; x Dy,.
By definition, the objects ok# (resp. %) are the pair§h : X — Y, a), whereh is a
morphism in# anda € Ob(¢ 1Y) (resp.a € Ob(p~1X)). A morphism of«; (resp. ofas)

(h: X =Y,a)—= (0 :X'"=>Y' d)

is a datum(fi, fo,t), wheref; : X — X' andf, : Y — Y’ are morphisms inZ with
fooh="Nno fi,andt : a — fya’ (resp.t : a — fia')is a morphismino=1Y (resp. inp~1X).
Now, we define a functoF : <7} — o, of ©¥-categories, by the rule :
e (h,a)— (h,h*a) for every(h,a) € Ob().
e (fi1, fo,t) — (f1, f2, h*t) for every morphisn f1, f2,t) of </ as above. Notice that,
if t : a — f;a’is a morphism ing~'Y, thenh*t : h*a — h*fid’ = fih/*d' is a
morphism ofp~1Y”, sincey is a split fibration.
Notice that a morphisnifi, f,t) of either.«; or <% is cartesian if and only if is an iso-
morphism; especially, it is clear thadf is a cartesian functor. Moreover, for every object
h: X — Y of €, the restrictionp; 'h — 5 'h of I is isomorphic to the pull-back functor
h* : o~'Y — ¢ 'h. Especially, conditions (b)—(d) say that the restriction ¢ g; — ©5 'g;
(resp. F; : o1 g — ©5'gij, 1€SP. Fijie - 07 gijr. — 5 ' gi;1) aren-faithful (resp. (n — 1)-
faithful, resp.(n — 2)-faithful). In light of theoreni 1.5.30(i), we are then reeéddo showing
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Claim1.5.36 .#/g is a sieve both of;-n-descent and op,-n-descent.

Proof of the claim. Let ¥ be any (small) category; we remark first that a funcior— <,
is the same as a pair of functaff : ¥ — &/, K : 9 — %) such thatp o H = t o K, and
likewise one can describe the functars— o%. Then, it is easily seen that the functors
Carty(#B/B, o) — Carty (€ /g, ) G+ (Got,t)
Carty(B/B', o) — Carty (€ /g, ) G+ (Gos,s)
are equivalences, and induce equivalences
Carty (S, o) — Carty (S /g, )
Carty( xp g, o) — Carty (S /g, os)
(details left to the reader). The claim follows immediately O

1.5.37. Quite generally, ip : &/ — £ is a fibration over a category that admits fibre
products, the descent data fo(relative to a fixed cleavagg also form a fibration :

Dy : p-Desc — Morph(£).
Namely, for every morphisnf : 7 — T of %, the fibre overf is the categorbesc(yp, f)
of all descent dataf, A, £) relative to the family{ f}, and the cleavage so A is an object of
e 1T and¢ : ptA = psA is an isomorphism in the categopy ! (T" x 1 T") satisfying the
usual cocycle condition (hegg, p, : T" x+T" — T’ denote the two natural morphisms). Given
two objectsA := (f : T" — T,A,&), A" :== (g : W — W, A’ () of p-Desc, the morphisms
A — A’ are the datdh, o) consisting of a commutative diagram :

W T
|
W——T
and a morphism : A — A’ such thatp(a)) = h andpi(a) o & = ¢ o pi(a).
We have a natural cartesian functor of fibrations :
A X (er) Morph(%) d p-Desc
P

\ A/sa
Morph(%)

wheret : Morph(#) — £ is the target functor (see(1.1117) and exariple 111.27{i@mely,
to any pair(7, f : S — ¢T) with T € Ob(</) and f € Ob(Morph(%)), one assigns the
canonical descent datudi’, f) := p;s;(T) in Desc(¢p, f) associated to the pair as [N (1.5.28).

Corollary 1.5.38. In the situation of(1.5.37) let f : B’ — B be a morphism of4, and.” a
sieve of#4/ B, generated by a familyS; — B | i € I). Letn € {0, 1,2}, and suppose that :

(@) .77 is a sieve of universap-n-descent.

(b) For everyi € I, the morphisnbd; x g f is of p-n-descent.

(c) For everyi, j € I, the morphisnd;; xz f is of p-(n — 1)-descent.

(d) For everyi, j, k € I, the morphisnd,j;. x g f is of p-(n — 2)-descent.
Thenf is a morphism of-n-descent.

Proof. In view of corollaryL1.5.35(i), it is easily seen thata magshg : 77 — T in A is of -
n-descent if and only if the restrictiop 'T — Dy g of d is n-faithful. Set% := Morph(%);
as in the proof of corollary 1.5.85(ii), the functoinduces a functor; : ¢/f — %/B, and
we let./f .= t‘}ly. With this notation, theoren 1.5.30(i) reduces to showing :
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Claim1.5.39 The sieve?/f is both ofp-n-descent and dDy-n-descent.

Proof of the claim. By claim[1.5.36, it is already known that/f is of p-n-descent. To show
that.”/f is of Dp-n-descent, we consider the commutative diagram

Carty(#/B', o/ ) — Carty(€/f, p-Desc)

| l

Carty (Y xp f, o) — Carty(L/f, p-Desc)

whose left (resp. right) vertical arrow is induced by theluson.” xp f — %/B’ (resp.
LIf — & xpf)and whose top horizontal arrow is defined as follows. Giveargesian functor
G:A/B — o/, weletDG : €/f — ¢-Desc be the unique cartesian functor determined on
the objects of6/f by the rule :

——
l l — d(G(h), 9).
B’—f>B

We leave to the reader the verification the rdle— DG extends to a well defined functor,
and then there exists a unique (similarly defined) bottonzbatal arrow that makes commute
the foregoing diagram. Moreover, both horizontal arrowstlobtained are equivalences of
categories. The claim follows. O

1.6. Profinite groups and Galois categories.Quite generally, for any profinite group, let
P-Set denote the category of discrete finite sets, endowed witm#remus left action ofP
(the morphisms inP-Set are theP-equivariant maps). Any continuous group homomorphism
w : P — @ of profinite groups inducesrastriction functor

Res(w) : Q-Set — P-Set

in the obvious way. In case the notation is not ambiguousywoiies aIsoResg for this functor.
For any two profinite group® and(, we denote by

Homcont(P7 Q)

the set of all continuous group homomorphisfs—+ Q. If ¢, ¢, are two such group homo-
morphisms, we say that; is conjugateto p,, and we writep; ~ s, if there exists an inner
automorphisnw of GG, such thatpy, = w o ;. Clearly the trivial mapr — G (whose image is
the neutral element a¥), is the unique element of a distinguished conjugacy class.

1.6.1. LetP be any profinite group; for any (discrete) finite gradpconsider the pointed set
Hom, o (P, G)/~ of conjugacy classes of continuous group homomorphiBms G. This is
also denoted

Hclont (P7 G)
and called the firghon-abelian continuous cohomology graafpP with coefficients inG' (soG
is regarded as B-module with trivial P-action). Clearly the formation off} (P, G) is covariant
on the argument;, and controvariant for continuous homomorphisms of prtgigroups.

Lemmal.6.2.Lety : P — P’ be acontinuous homomorphism of profinite groups, and sugpos

that the induced map of pointed sets :
Hclont(P,7 G) — Hclont(Pv G) : f = f o

IS bijective, for every finite grou@. Theny is an isomorphism of topological groups.
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Proof. First we show thap is injective. Indeed, let € P be any element; we may find an open
normal subgroug? C P such thatr ¢ H; takingG := P/H, we deduce that the projection
P — P/H factors throughy and a group homomorphis: P' — P/H, hencer ¢ Ker ¢, as
claimed. Moreover, letl’ .= Ker f; clearly H' NP = H, so the topology of is induced from
that of P’. It remains only to show that is surjective; to this aim, we consider any continuous
surjectionf’ : P’ — G’ onto a finite group, and it suffices to show that the restnictd f’

to P is still surjective. Indeed, letr be the image ofpP in G’, denote byi : G — G’ the
inclusion map, and lef : P — G be the unique continuous map such thatf = [’ o ¢; by
assumption, there exists a continuous group homomorphis#’ — G such thatf = g o ¢.
On the other handj o g) o ¢ = [’ o ¢, hence the conjugacy classiaf g equals the conjugacy
class off’, especiallyi o g is surjective, hence the same holdsfoas required. O

1.6.3. LetG be a profinite group, anéf C G an open subgroup. It is easily seen thats
also a profinite group, with the topology induced fréimMorever, the restriction functor

Resd : G-Set — H-Set

admits a left adjoint
Ind% : H-Set — G-Set.

Namely, to any finite sef with a continuous left action off, one assigns the s&id$y =
G x ¥/ ~, where~ is the equivalence relation such that

(gh,0) ~ (g, ho) foreveryg € G, h € H ando € ¥..

The leftG-action onlnd% X is given by the rule (¢, (¢,0)) — (¢'g, o) for everyg, ¢’ € G and
o € X. Itis easily seen that this action is continuous, and théaemay check that the functor
Ind% is indeed left adjoint tdRes”.

1.6.4. Moreover, let denote the final object dff-Set; notice thafind%1 = G/H, the set of
orbits of G under its right translation action by. Hence, for any finite set with continuous
H-action, the unique maf; : ¥ — 1 yields aG-equivariant map

Ind%ty - Ind — G/H
and thereforénd$, factors through a functor
(1.6.5) H-Set — G-Set/(G/H).

It is easily seen thaf (1.6.5) is an equivalence. Indeedobt&ns a natural quasi-inverse, by
therule :(f : ¥ — G/H) — f~'(H). The detailed verification shall be left to the reader.

Definition 1.6.6. ([42, Exp.V, Def.5.1]) Lets” be a category, anfl : ¥ — Set a functor.

(i) We say that# is a Galois categoryif ¢ is equivalent toP-Set, for some profinite
group P. We denoteGalois the category whose objects are all the Galois categories,
and whose morphisms are the exact functors between Gategorees.

(i) We say thatF' is afibre functor if £ is exact and conservative, ahd X) is a finite set
for every X € Ob(%).

(i) We denotefibre.Fun the2-category of fibre functorslefined as follows :
(a) The objects are all the paif#’, ') consisting of a Galois catego#/ and a fibre
functor F for .
(b) Thel-cells (%1, F1) — (%, F») are all the pair§G, ) consisting of an exact
functorG : ¢, — %, and an isomorphism of functofs: F; = I, 0 G.
(c) And for every pair ofl-cells (G', '), (G, B) : (€1, F1) — (62, F3), the2-cells
(G',8) — (G, B) are the isomorphisms: G’ = G such thal I, ) o 3’ = 3.
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Composition ofl-cells and2-cells is defined in the obvious way. We shall also denote
simply by G a 1-cell (G, 3) as in (b), such that; = F» o G andf is the identity
automorphism of.

1.6.7. Notice that any Galois categagyadmits a fibre functor : indeed, i is any profinite
group, the forgetful functor

fp : P-Set — Set
fulfills the conditions of definitiom_1.616(ii), thereforbé same holds for the functég o S,

if 5 : ¢ — P-Set is any equivalence. For any Galois categ@yand any fibre functor
F : ¢ — Set, we denote

1 (Cg, F)
the group of automorphisms éf, and we call it thdundamental group o¥%” pointed atF'. By
definition, for everyX € Ob(%), the finite setF'(X) is endowed with a natural left action of
m (€, F). For everyX € Ob(%) and every € F(X), the stabilizetHx, C m (¢, F)is a
subgroup of finite index, and we endow(%’, F') with the coarsest group topology for which
all suchH x ¢ are open subgroups. The resulting topological greyf#’, £') is profinite, and its
natural left action on every'(X) is continuous. Thug” upgrades to a functor denoted

F': € 5 1(%, F)-Set.
A basic result states that' is an equivalencel([42, Exp.V, Th.4.1]).
Example 1.6.8.Let P be any profinite group. Then there is an obvious injective map
P — m(P-Set, fp)

and [42, Exp.V, Th.4.1] implies that this map is an isomosphof profinite groups. In other
words, the groupP can be recovered, up to unique isomorphism, from the catefefet
together with its forgetful functofis.

Remark 1.6.9. Let %, ¢’ be two Galois categories, arid: € — Set a fibre functor.
(i) Any exact functorG : 4" — % induces a continuous group homomorphism :

m(G):m (€, F) = m (¢, FoQ) w— wxG.

(i) Furthermore, any isomorphism : F’ = [ of fibre functors of¢ induces an isomor-
phism of profinite groups :

Wl(ﬁ):Wl(CglaF)ﬁﬂ-l(Cg,vF) w’_)ﬁ_lowoﬁ

(seel42, Exp.Vg4] for all these generalities).
(i) Letnow (G, () : (61, F1) — (63, F3) be al-cell of fibre.Fun. Combining (i) and (i),
we deduce a natural continuous group homomorphism

T (G ™1
7T1(G75) 371(%27172) A 71(%17}72 OG) ﬂ) Wl((glaFl)'

Proposition 1.6.10.With the notation of remaik.6.9 the rule that assigns :
e To any objec{¥’, F') of fibre.Fun, the profinite groupr,(%¢, F')
e To anyl-cell (G, 5) of fibre.Fun, the continuous map, (G, )
defines a pseudo-functor
m : fibre.Fun — pf.Grp’

from the2-category of fibre functors, to the opposite of the categdrgrofinite groups (and
continuous group homomorphisms).
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Proof. (Here we regargf.Grp as a2-category with trivial2-cells : see example1.3.6(i)). Let

G.B H,p
(61, F) 5% (G, By) 7 (65, F)
be any pair of (composabléjcells; functoriality onl-cells amounts to the identity :

7T1<G76G) O7T1(H, BH) = 7T1(HO G, (ﬁH * G) Oﬁg)

whose detailed verification we leave to the reader. Nextylet(G',3") — (G, ) be a2-
cell betweenl-cells (G', ), (G, B) : (€1, F1) — (%, F,); we have to check that; (G, 5)
m (G, p). This identity boils down to the commutativity of the diagra

w1 (G’
7T1(<52,F2) L Wl(cglaFQoG/)
wl(G)l w1 (Faxy) lﬂ'l(ﬁl)
m1(8)

Wl(ch,FQOG) Wl(cgl,Fl).

However, the commutativity of the lower triangular subdéayg is clear, hence we are reduced
to checking the commutativity of the upper triangular salgdam; the latter is a special case of
the following more general :

Claim 1.6.11 Let ¥ and %’ be two Galois categories;, G' : €' — % two exact functors,
B :G" 5 G anisomorphism, and’ : 4 — Set a fibre functor. Then the induced diagram of
profinite groups

(5! <(57 F)
(€, FoQ) ) (€, F o)
commutes.
Proof of the claim. Left to the reader. O

Example 1.6.12.Letw : P — (@ be a continuous group homomorphism between profinite
groups. Clearlyf» o Res(w) = fg, and it is easily seen that the resulting diagram

L
7T1(P-Set, fp) Wl(Q'Set, fQ)

commutes, where the vertical arrows are the natural ideatifins given by example 1.6.8 : the
verification is left as an exercise to the reader.

71 (Res(w))

1.6.13. LetP := (P, | i € I) be a cofiltered system of profinite groups, with continuous
transition maps, and denote Bythe limit of this system, in the category of groups. Theins
naturally a closed subgroup ¢f:= [],.; £, and the topology” induced by the inclusion map
P — () makes it into a compact and complete topological group. E\ge since the topology
of @ is profinite, the same holds for the topology (details left to the reader). It is then easily
seen that the resulting topological group .7) is the limit of the systen® in the category of
profinite groups.

Proposition 1.6.14.1n the situation of(1.6.13) the natural functor
2-c‘ollim P;-Set — P-Set
1€

is an equivalence.
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Proof. The functor is obviously faithful; let us show that it is aledl. Indeed, letj € I be any
index, %, >’ two objects ofP;-Set, andy : ¥ — ¥’ a P-equivariant map; we need to show that
v Is alreadyP;-equivariant, for some index< [. To this aim, we may as usual replatéy
I/, and assume thatis the final element of. We may also find an open normal subgroup
H; C P; that acts trivially on bottt andX’. Then, for everyi € I, we letH, C P, be the
preimage ofP;, and we selP; := P,/H;,. Let alsoP := P/H, whereH C P is the preimage
of H;; by constructiony is P-equivariant. Clearly, we may finde I such that the image a?

in the finite groupP; equals the image aP;, and for such index, the induced map’ — P; is

an isomorphism. Especially, is P;-equivariant, as sought.

Lastly, we show essential surjectivity. Indeed Mdbe any object of’-Set; we have to show
that theP-action onX is the restriction of a continuou3-action, for a suitablé € . However,
we may find a normal open subgrodipC P that acts trivially or. Then there exists a normal
open subgroud. C @ (notation of [1.6.13)) such th@& N L. ¢ H. We may also assume that
there exists a finite subsétC [ and for everyi € J an open normal subgroupp C P; such
thatL = [];c; Li X [];cp, - Pick anindex € I that admits morphism : j — iin 1, for
every: € J, and letL; C P; denote the preimage @f; under the corresponding map — P,.
Finally, set; := (,., L;. By constructionI contains the preimage @f; in P, and we may
therefore assume thét is this preimage. We may replace as usuby //j, and assume that
is the final element of. Then, for every < I, we letH, denote the preimage @f; in P;, and
we setP; := P;/H,. Set as wellP := P/H. Clearly, there exists € I such that the image of
the induced ma@ — P; equals the image a?;; for such index, the induced map’ — P; is
an isomorphism. Thug; the restriction of an object af;-Set, as wished. O

1.6.15. We consider now a situation that generalizes $jigihat of (1.6.18). Namely, lef be
a small filtered category, and

(6., F,) : I — fibre.Fun i — (6, F))
a pseudo-functor. By proposition 1.6110, the compositiom;and(%., F,) is a functor
(%, Fy) : 1° — pf.Grp i— P =m (%, F;).
Let P denote the limit (inpf.Grp) of the cofiltered systern®,, and set
€ = 2-C(}lim i
where the2-colimit is formed in the2-category of small categories. We may then state :
Corollary 1.6.16. In the situation of(1.6.15) there exists a natural equivalence :
¢ = P-Set.
Proof. Recall that(%,, F.,) is the datum of isomorphisms
By : F; = F; 06, for every morphismp : j — iin [

and2-cells :

Tt (Cpop, Buop) — (€, By) 0 (€, B,) for every compositionj £ i 2
that — by definition — satisfy the identities :

(1.6.17)  (By *6,) 0 By = (Fi * Tyy) © Byoy for every compositio —= i ek

as well as the composition identities :

(Gos B) * ) © Tusop = (Tus # (€5, B,)) 0 Tuowny  Tor compositiongi 25 i 25 k2 1.

Let P,-Set : I — Cat denote the functor given by the rulé e~ P;-Set for everyi € Ob(1),
andy — Res(P,), whereP, := m(%,, ,) for every morphismp of /. In view of proposition
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[[6.13 and lemma 13114, it suffices to show that the riles: | for everyi € Ob(I) (notation
of (1.6.7)), extends to a pseudo-natural isomorphism

Fl: %, 5 P,-Set.
Indeed, lety : j — 7 be any morphism of, and X any object of¢;; we remark that the
bijection
Bo(X) : ReS(PsO)(P}TX) S Flo o (X)
is P;-equivariant; the proof amounts to unwinding the definisicemd shall be left to the reader.
Hence we get an isomorphism of functgts: Res(P,) o F| 5 F o %,,, and from [16.17) we
deduce the identities :
(B, * €,) o (Res(P,) x 1) = (Ff x7y,) 0 B,  for every composition = i s k.

The latter show that the systesp fulfills the coherence axiom for a pseudo-natural transerm
tion, as required. O

Remark 1.6.18. (i) Keep the situation of((1.6.15), and le{ : 4, = % be the universal
pseudo-cocone induced by the pseudo-funetorWe may regard the pseudo-functéf,, )
as a pseudo-cocong : ¢, = Set whose vertex is the categoBet. Then, by the universal
property of colimits, we get a functdr : ¥ — Set and an isomorphism

0o : Fxay = F,.

On the other hand, let, : P,-Set = P-Set be the natural cocone (39 is the restriction
functor corresponding to the natural m&p— P, for everyi € Ob([)); the equivalencé&; of

corollary[1.6.16 is deduced from the pseudo-cocaneF : ¢, — P-Set (WhereF] is as in
the proof of corollary 1.6.16), so we have an isomorphismsefyalo-functors

te: G % Gy —> 740 F)
whence an isomorphism
fpxte: (prG)*CL.ng*(T.OF.T) = F,

(notation of [1.6.17)). There follows an isomorphigi a, — (fp o G) * a,; by the universal
property of the2-colimit, the latter must come from a unique isomorphigm F = fp o G.
Especially, we see thdf is also a fibre functor, and we get a pseudo-cocone

(G, 08) : (Ca, Fo) = (€, F).

It is now immediate that%’, F) is the2-colimit (in the 2-categoryfibre.Fun) of the pseudo-
functor (%., F,), and(a., 0,) is the corresponding universal pseudo-cocone.
(i) Likewise, r, may be regarded as a universal pseudo-cocone

Te : (P.-Set, fp.) = (P-Set, fp)

(with trivial coherence constraint), and the coherencestraimt3] as in the proof of corollary
[1.6.16 yields a pseudo-natural equivalence

Fl:(%.,F.,) > (P,-Set, fp,)

as well as an isomorphism
(G, V) * (e, 04) = 740 FJ.
Thus, for everyi € Ob(I) we get &-cell of fibre.Fun :

(G,9) o (a;,0;) = 1;0 FZT



FOUNDATIONS OFp-ADIC HODGE THEORY 65

whence — by propositidn 1.6.J10 — a commutative diagram dfrpte groups :

P P
T (G’,ﬁ)l lﬂ.l (F:)
w6, F) % (6, F).

1.6.19. Let(%, F) be a fibre functor, anX a connected object & (example_1.1.26(iii));
pick anyé € F(X), and letH, C m (%, F) be the stabilizer of for the natural left action of
m (%, F)onF(X). For every objecf : Y — X of /X, we set

Fe(f) = F(f)"'(§) C F(Y).

It is clear that the rulef — F¢(f) yields a functong . ¢/X — H-Set, which we call the
subfunctor off|x selected by.

Proposition 1.6.20.In the situation of(1.6.19) we have :
(i) €/X is also a Galois category, anf := fy, o Fg is a fibre functor forg’/X .
(i) The functong induces a natural isomorphism of profinite groups :
m(FY) : He 5 m(€/X, Fy).
Proof. The fibre functorf” induces an equivalence of categories
€/X = m (€, F)-Set/F(X).
On the other hand, sinc€ is connected, there exists a unique isomorphisnt'(X) = G/ H;
of G-sets such that(§) = H, and then the discussion 6f (1.6.4) yields an equivalence
(€, F)-Set/F(X) = H¢-Set.
A simple inspection shows that the resulting equivale#it§ — H¢-Set is none else than the
functong , SO the assertion follows from remark 116.9(i) and exarnmedl O

1.6.21. Let(%, F')be afibre functor, and let us now fix a cleavages™® — Cat for the fibred
categoryt : Morph(%¢) — € (see example_1.4.2(iii)). Also, Idtbe a small cofiltered category,
andX, : I — ¥ a functor such thak; is a connected object 6f, for everyi € Ob(/); we
pick an element
o € li}nF o X,.
In other words¢, = (& € F(X;) | ¢ € I) is a compatible system of elements such that
F(p)(&) =¢& for every morphisnp : j — iin [I.
For everyi € I, we denote by; C m1(%, F) the stabilizer of; for the left action ofr, (%, F)
on F(X;). Clearly, any morphism — ¢ induces an inclusiof/; C H;. Furthermore, let
Fl:6/X; — H-Set  foreveryi € I
be the subfunctor selected by and sett; := fy, o Fj. Lety : j — i be a morphism of ; to
the corresponding morphisii, : X; — X;, the cleavage associates a pull-back functor
Especially, for any object” € Ob(%’/X;) we have the cartesian diagramn:

X;(Y)—vY

)

X, X,

2
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whence, sincé’ is exact, a natural bijection :
FXZ(Y)) = F(Y) xpx,) F(X)
which in turns yields a bijection :
FI(X3(Y)) 5 F(Y) xpx) (&) = FI(Y) x {&}.
That is, we have a natural isomorphism of functors :
(1.6.22) al,: FjT o X; = Resgf o Ff

and since theX; are exact functors, it is easily seen that the isomorphispms- f; * ajp yield
a pseudo-functor

(1.6.23) [ —fibreFun i (€)X, F) ¢ (X5 ap).

Moreover,a/, can be seen asacell of fibre.Fun : F] o (X}, o) Resgj, o F!', whence a
commutative diagram of profinite groups :

Hj Hi
LmFJ)

m(F]) l
m(€/X;, Fj)

1 (X:;vaw)

whose top horizontal arrow is the inclusion map. Especialbtice that the map, (X}, )
does not depend on the chosen cleavage; this can also beysesndrking that any two cleav-
agesc, ¢’ are related by a pseudo-natural isomorphisf ¢’ (details left to the reader).

1.6.24. Let(¢/X, F) be the2-colimit of the pseudo-functof (1.6.23), as in remark I86i)
and fix a corresponding universal pseudo-coc@neo,) : (¢/X,, F,) = (¢/X, F¢). We may
then state :

Corollary 1.6.25. In the situation of(1.6.24) there exists a natural isomorphism of profinite
groups :
H:= () H > m(%X F)

icOb(I)
which fits into a commutative diagram :
H H;
(1.6.26) l lm(FJ) for everyi € Ob(I)
T (€)X, Fe) %) o (€)X, F)

whose top horizontal arrow is the inclusion map.

Proof. By corollary[1.6.15, we have an isomorphismmef¢/X, F¢) with the limit of the cofil-
tered systentm, (6/X F}) | i € Ob([)); on the other hand, the discussion[of (1.6.21) shows that
the latter system is naturally isomorphic to the systéfm| : € Ob(7)). Lastly, the commuta-
tivity of (I.6.28) follows from remark1.6.18(ii). O

2. STES AND TOPOI

In this chapter, we assemble some generalities concerné@sgesd topoi. The main reference
for this material is[[3]. As in the previous sections, we fixraverseU, and small mean-
small throughout. Especially, a presheaf on any categamstas values itJ, unless explicitly
stated otherwise.
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2.1. Topologies and sites.Let ¥ be a small category; we wish to begin with a closer investi-
gation of the category’™” of presheaves off, introduced in[(1.1.719). First, we remark tiat
is complete and cocomplete, and for evafy= Ob(%’), the functor

¢ —Set : Frs F(X)

commutes with all limits and all colimits (in other wordsetlimits and colimits ir¢”" are com-
puted argumentwise) : see [10, Th.2.5.14 and Cor.2.15glh @orollary, a morphism i#” is
an isomorphism if and only if it is both a monomorphism and pimerphism, since the same
holds in the categorget. Likewise, a morphism of presheaves— G is a monomorphism
(resp. an epimorphism) if and only if the induced map of $&t&) — G(X) is injective (resp.
surjective) for everyX' € Ob(¥%) : seel[10, Cor.2.15.3]. Furthermore, the filtered colimitg™
commute with all finite limits, again because the same haldet ([10, Th.2.13.4]). For the
same reason, all colimits and all epimorphisms are univarsa” (see examplie 1.1.24(v,vii)).

It is also easily seen th&t” is well-powered : indeed, for every preshdabn ¢, and every
X € Ob(%), the set of subsets df(X) is small, and a subobject @ is just a compatible
system of subset8’(X) C F(X), for X ranging over the small set of objectséf Likewise
one sees that™” is co-well-powered.

Hence, for every morphisrfi : FF — G in €”, the image off is well defined (see example
[L.1.24(viii)); more concretelyim(f) C G is the subobject defined by the rule :

X —Im(F(X) = G(X)) for every X € Ob(%).

Denote by{x} a final object ofSet (i.e. any choice of a set with a single element); the initial
(resp. final) object o%™" is the presheab, (resp.14) such thatr,(X) = & (resp.14(X) =
{x}) for every X € Ob(%).

Lemma 2.1.1.Let% be a small category’ a presheaf or¥’. We have a natural isomorphism:

limh/F 51 in the categorys” / I’
C;%p%l/ — 1r gorys™" /

whereh : € — %) is the Yoneda embedding (notation@f1.16)and (T.1.19).

Proof. To begin with, notice that, under the current assumptib@$,F is a small category. Let
s: €"/F — " be the source functor as in(1.11.13); (¢be any presheaf dd’; according to
(1.1.30) we have a natural bijection :

Homgn (colim so h/F,G) = S := lim Homgn(so h/F,G).
WG /F (h% | F)e

By inspecting the definitions, we see that the elementS afe in natural bijection with the

compatible systems of the for(if, € G(X) | X € Ob(¥),0 € F(X)), such thatGv)(f,) =

f(ry)(0) for every morphismy : X’ — X in . Such a system defines a unique natural

transformationt” = G, henceF and the above colimit represent the same presheaf on the

category(¢}))°, and the assertion follows. O

As a special case of lemna 2.11.1, consider any objecif a small category’, any sieve
< of ¢/X, and takeF' := h (notation of [1.5.B)); recalling the isomorphism of cateége
h¢/F = ., we deduce a natural isomorphisnfdt! :

(2.1.2) Colyimhosg hy

wheres : . — % is the restriction of the functor (1.1.113).
Proposition 2.1.3.1n the situation of(1.1.35) let F' be any presheaf om. We have :
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() fiF is naturally isomorphic to the presheaf @nhgiven by the rule :

2.1.4 Y +— colim F o — (colim 14 : colim F oy — colim F o9,
(2.1.4) SapFod o (colimle: colim Foi = collm Fou)
for everyY € Ob(%) and every morphism : Y’ — Y in ¢ (notation of (1.1.16).
(i) f.F is naturally isomorphic to the presheaf @nhgiven by the rule :

Y~ lim Fou —( lim 1z: lim Fou — lim Fo,
am Few e (lim 1a: Im Foig — lm Fosg)
for everyY € Ob(%) and every morphism : Y’ — Y in .
(ii) If all the finite limits of # are representable, and is left exact, then the functqgf is
left exact.

Proof. (i), (ii): The above expressions are derived directly frdva proof of proposition 1.1.34.
(iii): Under these assumptions, the categbryf 4 is cofiltered for everyy” € Ob(¥’), hence

(Y/f2)° is filtered. However, the filtered colimits in the categSt commute with all finite

limits, so the assertion follows from (i). O

2.1.5. Inthe situation of (1.1.85), Ietbe a universe such thatC V. As a first corollary of
propositiori 2.1.13(i,ii) we get an essentially commutathiegram of categories

Cglj\ fU* @(J\ fU! Cglj\

L

Cglj\ fV* @\//\ fV! Cg\;\

whose vertical arrows are the inclusion functors. Let usamm

Lemma 2.1.6.Let f :  — ¥ be a functor between small categories. We have :

() f is fully faithful if and only if the same holds fgft, if and only if the same holds for
e

(i) Suppose thaf admits a right adjointy : 4 — 2. Then there are natural isomor-
phisms of functors :

ff =g fiog"

Proof. (i): By propositior 1. 1.1 (iii),f, is fully faithful if and only if the same holds fof,.

Now, suppose that is fully faithful. We have to show that the unit of adjunctiéh— f*f, F’
is an isomorphism, for every’ € Ob(%") (proposition1.1.71(ii)). Since botli* and f,
commute with arbitrary colimits, lemma 2.1.1 reduces todhse where” = hy for some
Y € Ob(4) In this case, taking into account (1.1.36), we see that titeofiadjunction is the
map given by the composition :

hy(Z) = Homg(Z,Y) = Homy(fZ, fY) = (f*hsy)(Z)  foreveryZ € Ob(2A)

wherew is the map given by, which is a bijective by assumption, whence the claim.
Conversely, iff; is fully faithful, then [1.1.36) and the full faithfulnes$ the Yoneda imbed-
dings, imply thatf is fully faithful.
(ii): It suffices to show the first stated isomorphism, sinee second one will follow by
adjunction. However, leX € Ob(%), F € Ob(¢"), and lets : h¢/F — % be the functor
given by the rule :(hy — F) — Y. Taking into account lemnfa2.1.1 and (1.1.36), we may
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compute .
FP(X) = F(/X) 5 colim Home (F(X). 5

= colim Hom (X
C}?(mﬂl/r;l omg(X,go0s)

— C}?((ll/r;l (grohos)(X)

= g F(X)
whence the contention. 4

Example 2.1.7.(i) Let ¢ be a categoryX any object of¢’, denote by.x : /X — ¥ the
functor of (1.1.1B), and suppose thétis V-small, for some univers¥ containingU. By
inspecting[(2.1}4) we obtain a natural isomorphism :

(2.1.8) (tx ) EF(Y) S {(a, ) | ¢ € Homg (Y, X), a € F(p)}

for everyV-presheaff’ on ¢/X and everyy” € Ob(%). If ¢ : Z — Y is any morphism off,
the corresponding mapx )wiF(Y) — (tx)wF(Z) is given by the rule :

(2.1.9) (a,) — (F(¢)(a),p o)) for every(a, ¢) € (tx)wF(Y).

(i) Especially, if € has smallHom-sets andF’ is a U-presheaf org/X, then we see that
(tx)wF' is aU-presheaf. Since the inclusid@/X ), — (¢/X) is fully faithful, we deduce
that the target of (2.11.8) can be used to define a left adjoint, : (/X)) — € to (tx)j- (As
usual the latter shall often be denoted jug). We also deduce fromi (2.1.8) that; transforms
monomorphisms to monomorphisms, and more generally,tthammutes with fibre products.
On the other hand, it does not generally preserve final abjbence it is not generally exact.

(iii) More precisely, [2.1.B) yields a natural isomorphism

LX!(lc,qﬁ/X) :) hx.

It follows that. x, is the composition of a functor

ex (CK/X)A — Cg/\/hx
and the functor,, : €"/hx — €. Let F be any presheaf g&/X; in view of (2.1.9), we see
that the corresponding morphistg (F') : tx:F' — hx is given by the rule :(a, ¢) — ¢ for
everyY € Ob(%) and every(a, ¢) € tx1F(Y). We claim thaky is an equivalence. Indeed, let
G be another presheaf &fy.X, andf : ex(F) — ex(G) a morphism ir6”/hx; the foregoing
description ok (F') shows thaf is the datum of a system of magis : F'(¢) — G(y), for ¢ :
Y — X ranging over the objects &f/X, subject to the condition thdt..,, o F'(v)) = G(¢)) o f,,
for every morphism) : Z — Y of X-objects. Such a datum is obviously nothing else than a
morphismF’ — G in (¢/X)", so this shows already thay; is fully faithful.

Next, the datum of a morphism : ' — hx in " amounts to a compatible system of
partitions F'(Y) = U, F(Y),, for everyY € Ob(%), with ¢ ranging overHom (Y, X);
namely, F(Y), := g(Y) '(y¢) for every suchy; the ruley — F(.x(Y)), then defines a
presheaiG on /X with a natural isomorphismy (G) — F, all of which shows thaty is

essentially surjective, as claimed. The quasi-inversegosstructed, can be described more
compactly as the functor that assigngjtof’ — hyx the presheaf given by the rule :

he
(Y i> X) — Hom(g/\/hx((hy — hx),g)

Definition 2.1.10. Let " be a category.

(i) A topologyon ¥ is the datum, for ever)X € Ob(%), of a setJ(X) of sieves of6/X,
fulfilling the following conditions :
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(a) (Stability under base change) For every morphfsmY” — X of ¥, and every
< € J(X), the sieve” x x fliesinJ(Y).

(b) (Local character) Lek be any object o¥’, and.”, .’ two sieves ofs’/X, with
& € J(X). Suppose that, for every objeft Y — X of ., the sieve¥” xx f
liesinJ(Y). Then”’ € J(X).

(c) ForeveryX € Ob(%), we haveg/X € J(X).

(i) In the situation of (i), the elements of(.X) shall be called theieves coveringX.
Moreover, say that” is the sieve of6/X generated by a familyf, : X; — X |i € I)
of morphisms. If.¥ is a sieve coverind(, we say that the familyf; | i € I) covers
X, or that it is acovering family ofX .

(iii) The datum(%, J) of a categorys” and a topology/ := (J(X) | X € Ob(%)) on¥ is
called asite, and therts is also called theategory underlyinghe site(%’, J). We say
that(¢, J) is asmall site if ¢ is a small category.

(iv) The set of all topologies o# is partially ordered by inclusion: given two topologiés
and.J, oné, we say that/; is finerthan.Jy, if J5(X) C J;(X) for everyX € Ob(%).

Remark 2.1.11.Let (¢, J) be any site.

(i) Itis easily seen that any finite intersection of sievegxing an objecfX, again covers.
Indeed, say that”} and.; are two sieves covering; set. := .y N.% andletf : Y — X
be any object of;. Then. xx f = .% xx f.

(i) Also, any sieve of6/X containing a covering sieve is again a covering sieve. ladée
S C S theny’ xx f =€ /Y for every objectf : Y — X of ..

(i) Let (f; : YV; — X | € I) be a family of objects of/X that generates a siev#
covering.X, and for everyi € I, let(g;; : Z;; — Y; | ¢ € J;) a family of objects of¢’/Y; that
generates a sieve; coveringY;. Then the family(fiog;; : Z;; = X |i € I, j € J;) generates
a sieve.”’ covering X. Indeed, say thaf : Y — X lies in.”, and picki € [ such thatf
factors througly; and a morphisng : Y — Y;; then itis easily seen that; xy, g C .’ xx f.

Example 2.1.12.Let F' : o/ — 2 be a fibration between two categories. For ev&ryc
Ob(4), let Jp(X) denote the set of all sieve® C Z/X of universalF'-2-descent. (To make
this definition, we have to choose a univekéasuch thatey and % areV-small, but clearly
the resulting/r does not depend ovi.) Then we claim that/ is a topology on#. Indeed,
it is clear thatJ fulfills conditions (a) and (c) of definition 2.1.10(i). Inaer to conclude, it
suffices therefore to show the following :

Lemma 2.1.13.In the situation of exampl.1.12 let.”” C . be two sieves a4/ X, and
suppose that, for every obje¢t: Y — X of .7, the sieve?”’ xx f liesin Jg(Y). Then
S € Jp(X)ifand only if.¥ € Jp(X).

Proof. Up to replacingJ by a larger universe, we may assume taand% are small. Notice
then that our assumptions are preserved under any basesckang X in %, hence it suffices
to show that¥” is a sieve off'-2-descent if and only if the same holds feft. To this aim, for
every small category” we construct a functor

Y Cart,@(y/, %) — 2-1yi}m Cal’t,@(Gey, ﬂ)
whereG» : ¥ — Cat/4% is the functor introduced in 1.5.110. Indeed, et .¥" — &7 be a
cartesian functor; for every obje¢t: Y — X of ., denote
BY L S f L
the natural functors. By assumption, there exist cartdsiactorsy : /Y — </, and natural
isomorphisms

Qf 1 @QpOJp = pOoiy



FOUNDATIONS OFp-ADIC HODGE THEORY 71

for every suchf. Moreover, for every morphism : Z — Y in ., there exists a unique
isomorphism of functors

Wrg : PfOYx = Pfog
fitting into the commutative diagram :

©f 0 gx © Jfog ©fOJf Ol

Wf,g*jfogﬂ ﬂaf*ig
. Qfo . . .

Pfog © Jfog —= o Lfog PYOlfOily.

The uniqueness of; , implies that the daturyy, wy, | f € Ob(), g € Morph(.¥)) defines
a pseudo-natural transformation : G~ = F,. Moreover, ift : ¢ = ¢’ is any natural
transformation of cartesian functorg’ — <7, there exists, for every € Ob(.¥), a unique
natural transformation; : ¢y = ¢, fitting into the commutative diagram :

. TEXjf .

| b

T*]f

wolf:(plo’lf_

In other words, the rule — ¢, defines a functot as sought.

Notice next that, iff : Y — X lies inOb(.”), then.”’ x x f = A/Y; it follows that the
restriction to.”” of the functorG , agrees with the functar o/, and this restriction operation
induces a functor

p: 2-1yim Carty(Gy, o) — 2-};;11 Carty (G, o).

Summing up, we arrive at the essentially commutative diagra

Cartgg (1,47)

Carty (S, o) Carty (', o)

|

2-l;m Carty(Gy, o) 4 2-lyi}n Carty(G.gr, )

in which. : ./ — ¢ is the inclusion functor, and wheteandw’ are equivalences deduced
from lemmd_1.5.111. A little diagram chase shows at 4 (¢, <7) must then also be an equiv-
alence, whence the contention. O

2.1.14. Suppose now th#t has smalHom-sets. Then, in view of the discussionin (1]5.3), a
topology can also be defined by assigning, to any objeof ¢, a family J'(X') of subobjects
of hx, such that :

(a) ForeveryX € Ob(%), everyR € J'(X), and every morphisi” — X in &, the fibre
productR xx Y liesinJ'(Y).
(b) Say thatX € Ob(%), and letR, R’ be two subobjects dfx, such thatk € J'(X).
Suppose that, for every € Ob(%), and every morphisnf : hy — R, we have
R xxY € J(Y). ThenR € J(X).
(€) hx € J'(X) for every X € Ob(%).
In this case, the elements &f(.X') are naturally called theubobjects covering’. This view-
point is adopted in the following :

Definition 2.1.15. Let V be a universe( := (¢, J) be a site, and suppose that the categfry
hasV-smallHom-sets. Let alsd”’ € Ob(%.)).
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(i) We say thatl" is a separatedv-presheaf(resp. aV-sheaf on C, if for every X €
Ob(%) and every subobjed? coveringX, the induced morphism :

F(X) = Homgp (hx, F') — Homgn (R, F)

Is injective (resp. is bijective). For = U, we shall just say separated presheaf instead
of separated)-presheaf, and likewise for sheaves.

(i) The full subcategory o) consisting of alV-sheaves (resp. all separated presheaves)
on C'is denoted”y (resp. Cy"). ForV = U, this category will be usually denoted
simply C~ (resp.CsP).

2.1.16. Inthe situation of definition 2.1]15(i), say tiiat h - for some sieve” coveringX,
and let(S; — X |i € I) be a generating family fos”. Combining lemm&1.517 and examples
[M1.4.10(iv) [1.5.B(ii), we get a natural isomorphism :

Homyn (R, F) = Equal (H Carty (6)S;, o) —= [ ] Cartg(%/S”,szfp))

iel (4,5)eIxI

which — again by example 1.4]10(iv,v,vi) — we may rewrite exsimply as :

Homen (R, F) = Equal (H F(S;,) —= H Homgn (hs, Xpy hSJ,F)) .

el (4,5)eIxI
The above equalizer can be described explicitly as folldtixnsists of all the systems
(a; |1 €1) with a; € F(S;) foreveryi € I

such that, for every, j € I, every object’” — X of ¢/X, and every pai(g; : Y — S;,g; :
Y — S;) of morphisms ir6/X, we have :

(2.1.17) F(gi)(a:) = F(g;)(ay).

If the fibred productS;; := S; x x S; is representable i#’, the latter expression takes the more
familiar form :

Homgn (R, F) =5 Equal (H F(S)—=[] F(sij)) .

iel (3,5)eIxI

Remark 2.1.18.Let ¢ be a category with smalHom-sets.

(i) The arguments in((2.1.16) yield also the following. A gheafF' on ¥ is separated
(resp. is a sheaf) oft, if and only if every covering sieve @ is a sieve ofi-descent (resp. of
2-descent) for the fibratiop : @ — ¢ of examplé_1.4.0(iii).

(i) Let F be a presheaf o#. We deduce from (i) and examgle 2.1.12 that the topology
JF .= J,, isthe finest or¥’ for which F' is a sheaf. A subobjedt C hx (for any X € Ob(%))
lies in J¥(X) if and only if the natural mag'(X’) — Homgn (R xx X', F) is bijective for
every morphismX’ — X in €.

(iii) More generally, if(F; | i € I) is any family of presheaves ¢fi, we see that there exists
a finest topology for which each, is a sheaf : namely, the intersection of the topologi€sas
in (ii).

(iv) As animportant special case, we deduce the existenadinést topology/ on % such
that all representable presheaves are sheav€® o). This topology is called theanonical
topologyon @. The foregoing shows that a sieve éfX is universal strict epimorphic (see
examplé 1.5.73) if and only if it coverX¥ in the canonical topology of .
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2.1.19. Suppose furthermore, tidtis small; then, directly from definition 2.1.15 (and from
(1.1.29)), we see that the categ@ry is complete, and the fully faithful inclusiof™~ — €”
commutes with all limits; moreover, given a preshéabn ¢, it is possible to construct a
solution set foi” relative to this functor, and therefore one may apply thexiitel, 32 to produce
a left adjoint. However, a more direct and explicit condtiut of the left adjoint can be given;
the latter also provides some additional information whichard to extract from the former
method. Namely, we have :

Theorem 2.1.20.In the situation of(2.1.19) the following holds :
(i) The inclusion functof : C~ — ¢ admits a left adjoint

(2.1.21) € —~C~  Fw F°

For every presheaf’, we call F* the sheaf associated 0.
(i) Morever,(2.1.21)is an exact functor.

Proof. We begin with the following :

Claim 2.1.22 Let F' be a separated presheaf o) and.; C .% two sieves covering some
X € Ob(%). Then the natural maomqgnx (hy,, F') — Homgn (hy,, F') is injective.

Proof of the claim.We may find a generating familyf; : S; — X | i € I) for .5, and a
subset/; C I, such tha(f; | i € I;) generates”;. Lets,s' : hy, — F, whose images agree
in Homyn (hy,, F). By (2.1.16),s ands’ correspond to families; | i € 1), (s; | i € I) with
si, si € F(S;) for everyi € I, fulfilling the system of identitied (2.1.17), and the fooawy
condition means that, = s for everyi € ;. We need to show that = s for everyi € I,.
Hence, let € I, be any element; by assumption, the natural map

F(SZ) — Homgg/\(hyl X x SZ-, F)
is injective. However, the objects of} x x f; are all the morphismg; : Y — S; in ¥ such that
fiogi = fjog; forsomej € I, and somey; : Y — S; in €. If we apply the identities (2.1.17)
to these mapsg;, ¢g;, we deduce that :
F(g:)(si) = F(g;)(s;) = F(9;)(s}) = F(g:)(s})-
In other wordss; ands, have the same image lomgn (hy, X x S;, F'), hence they agree, as
claimed. O

Next, for everyX € Ob(%), denote byl (X) the full subcategory o€at/(%/X) such that
Ob(J(X)) = J(X). Notice thatJ(X) is small and cofiltered, for every sucti. Define a
functorh : J(X) — ¢ by the rule ../ — h for every. € J(X); to an inclusion of sieves
" C ¥ there corresponds the natural monomorphism — h o~ of subobjects oh .

For a given preshedf on %, set

F*(X) := colim Homgn (h°, F).
(X) colim omgn (h, F)

Foramorphisny : Y — X in ¢ and asieve” € J(X), the natural projectiohy, xxY — hy
inducesamap :

Homch(hy, F) — Homgn (hyf Xx Y, F)
whence a mag™* (X) — F*(Y), after taking colimits. In other words, we have a functor :
(2.1.23) ¢ — €" F s FT,
with a natural transformatiof’(X) — F*(X), since¢/X € J(X) for everyX € Ob(%¥).

Claim2.1.24 (i) The functor [2Z.1.28) is left exact.

(i) For everyF' € Ob(%"), the presheaf'" is separated.
(iii) If Fis a separated presheaf @t thenF'* is a sheaf orC"™.
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Proof of the claim(j) is clear, sinceJ (X))’ is filtered for everyX € Ob(%).

(i): Let s, € F(X), and suppose that the imagessands’ agree inHomgn (h.y, F),
for some.” € J(X). We may find a sieveZ € J(X) such thats ands’ come from elements
5,5 € Homgn(ho, F). Let(g; - S; — X | ¢ € I) be a family of generators fo#; in view
of (2.1.16), the images of ands’ agree inF'*(.S;) for everyi € I. The latter means that, for
everyi € I, there exists”; € J(5;), refining7 x x g;, such that the images sfands’ agree in
Homgn (hy,, ). Foreveryi € I, let(gi\: T — S; | A € A;) be a family of generators fo#;,
and consider the siev&”’ of /X generated byg; o g;» : Tin — X |i € I, A € A;). ThenT’
coversX (remarK2.1.111(iii)) and refineg’, and the images Gfands’ agree itHomqn (h o, F')
(as one sees easily, again by virtue[of (2.11.16)). This shbats = s’, whence the contention.

(iii): In view of (ii), it suffices to show that the natural map*(X) — Homgn (hy, F7) is
surjective for every? € J(X). Hence, say that € Homgx (he, F7), and let(S; | i € I) be
a generating family for”. By (2.1.16),s corresponds to a systefs, € F(S;) | i € I) such
that the following holds. For every; € I, and every pair of morphisms, : Y — S; and
u; 1Y — S;in ¢/X, we have

(2.1.25) Fr(u)(si) = F(uy)(s5)-

For everyi € I, let.; € J(S;) such thats; is the image of somg;, € Homynx (hy,, ). For
everyu,, u; as above, se¥;; := (.7 xg, u;) N (7 xg, u;); sinceF is separated[ (Z.1.25) and
claim[2.1.22 imply that the images ®fands; agree inHomg~ (hs,,, F'), for everyi, j € I.

However, for everyi € I, let(g;» : T;» — S; | A € A;) be a generating family for7;;
thens; corresponds to a compatible system of sectigns F'(7;,), and.”;; is the sieve of all
morphismsf : Z — Y such that

uiof=gnof and  ujof=gj.of;
for some\ € A, p € Aj and somef; : Z — Tiy, f - Z — T}, so by construction we have
(2.1.26) F(f))Gin) = F(f;)Gju) foreveryi,j € Tand\ € A;, p € A,,.

Finally, let.7 be the sieve o%/X generated byg; o g;» : Tix — X |i € I, X € A;); thenT
coversX (remarkKZ2.1.IM1(iii)), and(2.1.26) shows that the systétty;,)(5:) |i € I, € A;)
defines an element &fomq~ (h, F'), whose image irf"* (X)) agrees witts. O
From claim(2.1.24 we see that the rulg”: — F* := (F")" defines a left exact functor
¢" — C~, with natural transformationgr : F' = i(F'*) for every F' € Ob(%") andeg :
(iG)* = G for everyG € Ob(C"™) fulfilling the triangular identities of (1.118). The theomne
follows. O

Remark 2.1.27.LetC' := (¢, J) be a small site.

() It has already been remarked th@t is complete, and from theorem 2.1.20 we also
deduce that~ is cocomplete, and the functdr (2.1.21) (resp. the inchusimctori : C~ —
¢") commutes with all colimits (resp. with all limits); moregmisely, if ¥ : I — C™~ is any
functor from a small categor¥, we have a natural isomorphismdr~ (resp. in") :

Collim F> (Collimz' o F)° (resp. i(li}n F) > li}ni oF).

Especially, limits inC™~ are computed argumentwise (see_(1.11.31)). Moreover,ldvisl that
all colimits and all epimorphisms are universalify (see example_1.1.24(v,vii)), and filtered
colimits in C~ commute with finite limits, since the same hold.

(il) Furthermore(™ is well-powered and co-well-powered, since the same holdgf. Es-
pecially, every morphisnf : ' — G in C~ admits a well defined image (example 1.1.24(viii)).
Such an image can be constructed explicitly as the subobjeci(f))* (details left to the
reader).
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(i) By composing with the Yoneda embedding, we obtain acton
h*: € —-C~ : X (hx)® for every X € Ob(%)
and lemma2.1]1 yields a natural isomorphism :

colimh% = F  for every sheaf’ onC.
hE/F

(iv) From the proof of clainl 2.1.24 it is clear that the functo
€N — O F s PP .= Im(F — F7)
is left adjoint to the inclusiol@*®® — €. Moreover, we have a natural identification :

~

F* 5 (F%P)t  foreveryF € Ob(¢").

(v) LetV be a universe such thetc V; from the definitions, it is clear that the fully faithful
inclusioné} C ¢\ restricts to a fully faithful inclusion

Cy c Cy.
Moreover, by inspecting the proof of theorém 2.1.20, we dedan essentially commutative

diagram of categories :
%lj\ —Cy

L

6 — Cy

whose vertical arows are the inclusion functors, and whaszdntal arrows are the functors
F— F*,

In practice, one often encounters sites that are not smaliybich share many of the prop-
erties of small sites. These more general situations a@ngpassed by the following :

Definition 2.1.28. Let C' := (¥, J) be a site.

(i) A topologically generating familjor C' is a subseG C Ob(%), such that, for every
X € Ob(%), the family

G/X = | J Home (Y, X) C Ob(%/X)
YeG
generates a sieve covering
(i) We say thatC' is aU-site if ¥ has smalHom-sets, and’’ admits a small topologically
generating family. In this case, we also say thas aU-topologyon %'.

2.1.29. LetC =: (¥, J) be aU-site, andG a small topologically generating family far.
For everyX € Ob(%), denote byJ;(X) C J(X) the set of all sieves coveriny which are
generated by a subsetGfX (notation of definitio 2.1.28(i)).

Lemma 2.1.30.With the notation 0f2.1.29) for everyX € Ob(%) the following holds :
(i) Jo(X)is asmall set.
(i) Jo(X) is a cofinal subset of the st X) (where the latter is partially ordered by
inclusion of sieves).

Proof. (i) is left to the reader.

(i): Let . be any sieve covering’, and say that” is generated by a familyf; : S; —
X | i € I) of objects of6/X (indexed by some not necessarily smallBetLet.#”’ be the sieve
generated by

U{fi oglgeG/Si}.

iel
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It is easily seen tha¥”’ C .¥ and.¥” € Js(X). O

Remark 2.1.31.(i) In the situation of[(2.1.29), l&f be a universe with) C V, and such that’
is aV-small site. For everyX' € Ob(%’), denote byJ(X) the full subcategory o¥ (X) such
thatOb(J¢ (X)) = Jo(X), and lethg : Jo(X) — %" be the restriction ok (notation of the
proof of theorenh 2.1.20). Lemnia 2.1130 implies that the raimap :
: o +
gg%ggloHomw(hG, F)— F7(X)

is bijective. Therefore, ifi" is aU-presheaf " (X) is essentiallyJ-small, and then the same
holds for F*(X). In other words, the restriction tg;} of the functors} — Cy : F' — F°,
factors throughC™.

(i) We deduce that theorem 2.1120 holds, more generallgnh is an arbitraryU-site.
Likewise, a simple inspection shows that remark 2J1.2/¢),iholds whenC' is only assumed
to be aU-site.

Proposition 2.1.32.LetC' := (¥, J) be aU-site. The following holds :

(i) A morphism inC™ is an isomorphism if and only if it is both a monomorphism and a
epimorphism.
(ii) All epimorphisms irC™ are universal effective.

Proof. (i): Let ¢ : F — G be a monomorphism id@™~; then the morphism of presheaves
i(p) : iF — iG is also a monomorphism, and it is easily seen that the catanteiagram

i i
2 i(w)l la

is also cartesian, hence the same holds for the inducedadiagf sheave®. If moreover,p
is an epimorphism, them® is an isomorphism, hence the same holdsgfes (i(y))”.
(i): Let f : F — G be an epimorphism i@~; in view of remark$ 2.1.27(i) anld 2.1]31(ii),

it suffices to show thaf is effective. However, set’ := Im(i(f)), and letp; : F xg FF — F
(for i = 1,2) be the two projections. Supposge: F' — X is a morphism inC'"™~ such that
popy = @opy; SiNCei(F xg F) =iF X;qiF = iF X iF, the morphismi(y) factors through
a (unigue) morphisny : G’ — X. On the other hand, it is easily seen th@t)* = G, hencep
factors through the morphisgt : G — X. 0J

Remark 2.1.33. Propositior 2.1.32(i) implies that every morphism X — Y in C~ factors
uniquely (up to unique isomorphism) as the composition oepimorphism followed by a
monomorphism. Indeed; such a factorization is providedbyiatural morphism& — Im(y)

andIm(yp) — Y (see example_L.I.R4(viii)). K #. 7 _ Y is another such factorization,
then by definitiony’ factors through a unique monomorphigsm Im(y) — Z. However is
an epimorphism, since the same holdsgarHencey is an isomorphism.

Proposition 2.1.34.Let (¢, J) be aU-site, X € Ob(%’), and R any subobject of.x. The
following conditions are equivalent :
(a) The inclusion map : R — hy induces an isomorphism on associated sheaves

~

i R* 5 he..

(b) R coversX.
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Proof. (b)=-(a) : By definition, the natural ma*(X) — Homen (R, R) is bijective, hence
there exists a morphisth: hx — R®in € whose composition withis the unit of adjunction
R — R®. Therefore,f* : h% — R“is a left inverse fori*. On the other hand, we have a
commutative diagram :

Homegn (h%, h%) — Homegn (R*, h%)

| |

h%(X) Homyn (R, h%)

whose bottom and vertical arrows are bijective, so that #mesholds also for the top arrow.
Setg := i o f, and notice thay o i = i, thereforeg must be the identity ok%, whence the
contention.

(@)=(b): Letnx : hx — h% be the unit of adjunction, and sgt= (i)' o nx : hx — R“
By remarkd 2.1.27(iv) and 2.1.131(ii), we may find a coverinabject;; : R, — hyx, and a
morphismyj; : Ry — R*P whose image iflomgn (R;, R*) equalsjoi;. Denote by : hx —
R the unit of adjunction; by construction, the two morphisms

.se . 12 . . sep
[ pojl,T}XOh : R1 — h’X

have the same image Homq~ (R1, h% ). This means that there exists a subobjectR, — R,
coveringX, such that*® o j; o iy = 1y 04y 0 .

Next, letY, := (Y, — X | A € A) be a generating family for the sieve®f/ X corresponding
to R,. There follows, for ever\ € A, a commutative diagram :

hy/\ I > sep
(2.1.35) i l L

hy —s RSP
Then, for every\ € A there exists a covering subobjagt: 2, — hy, such tha, lifts to some
tx : Ry — R, and we pick a generating familyZ,, — Y, | © € A,) for the sieve of6’/Y),
corresponding tar,; after replacingy, by the resulting family(Z,, — X | A € A, p € A))
(which still coversX, by virtue of remark 2.1.11(iii)), we may assume that (2]} [#ts to a
commutative diagram

hYA LR

S

sep
hy —> ISP

for every\ € A. Then there exists a covering subobjegct R, — hy, suchthat oty o s\ =
iy o sy in Homgn (R, hx). Finally, set

R = U Im(iy o s\ : R\ — hx)
AEA

(notice that?’ € Ob(%}) evenin casd is not a small set). Itis easily seen tli#tis a covering
subobject ofX, and the inclusion mag’ — hy factors throughk, soR coversX as well. [J

Definition 2.1.36. Let (¢, J) be a site, such th&t has smalHom-sets, and lep : I — G be
a morphism irg”.
(i) We say thatp is acovering morphisnif, for every X € Ob(%’) and every morphism
hx — G in €", the image of the induced morphistfhx hx — hx is a covering
subobject ofX .
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(i) We say thatp abicovering morphisnf both ¢ and the morphisrd — G x G induced
by ¢, are covering morphisms.

Example 2.1.37.In the situation of definition 2.1.86, lef := {X, | i« € I} be a family of
morphisms ing’, and pick a univers® containingU, such that/ is V-small. Using example
[1.5.4, itis easily seen thatcoversX if and only if the induced morphism &,

Hhxi — hX

i€l
is a covering morphism.

Corollary 2.1.38. LetC := (¥, J) be aU-site, andy : ' — G a morphism in¢”. Theny is
a covering (resp. bicovering) morphism if and onlyff: F* — G is an epimorphism (resp.
is an isomorphism) i~

Proof. Let V be a universe with) C V, and such tha¥” is V-small. Clearlyy is a covering
(resp. bicovering) morphism i#) if and only if the same holds for the image pfunder the
fully faithful inclusion 6} C %.)'. Hence, we may replad¢by V, and assume that is a small
site.

Now, suppose that” is an epimorphism; leX” be any object o%’, andhy — G a morphism.
Since the epimorphisms 61~ are universal (remafk 2.127(i)), the induced morphism

((p Xa X)a : (F Xa hx)a — hg(

is an epimorphism. LeR C hx be theimage ap x;hx; then the induced morphisi¥* — h%
is both a monomorphism and an epimorphism, so it is an isohismrp by proposition 2.1.32(i).
HenceR is a covering subobject, according to proposifion 211.34.

Conversely, suppose thatis a covering morphism. By remalk 2.1127(ii(}, is the colimit
of a family (h%;, | ¢ € I) for certainX; € Ob(%’). By definition, the image®; of the induced
morphismy xg X; : F' Xg hx, — hx, coversX,, for everyi € I. Now, the induced mor-
phismF' xq hy, — R; is an epimorphism, and the morphisij — h%, is an isomorphism
(propositior . 2.1.34), hende xq X;)® is an epimorphism, and then the same holds for

cglgn (p xg X;)": cglgn F* Xga h%, — C(;lei}n h%, = G*
which is isomorphic ta?, since the colimits o~ are universal (remaik 2.1.27(i)); 6 is an
epimorphism.

Next, if p is a bicovering morphism, the foregoing shows thais an epimorphism, and the
induced morphisniz* — G x p« G* is both an epimorphism and a monomorphism, hence it is
an isomorphism (propositidn 2.1132(i)), therefare is monomorphism (remark_1.1138(iii)).
So finally, ¢* is an isomorphism, again by propositibn 2.1.32(i). Corsfgrsif ¢* is an
isomorphism, the reader may show in the same way, that pahd the induced morphism
G — G xp G are covering morphisms. O

Definition 2.1.39.Let C = (¥, J) andC’ = (¢”, J') be two sites, ang : ¥ — %" a functor
on the underlying categories.

(i) We say thatg is continuousfor the topologies/ and.J’, if the following holds. For
every univers&/ such thats” and%” haveV-small Hom-sets, and every-sheafF' on
(', theV-presheafy, F' is aV-sheaf onC' (notation of (1.1.3b)). In this case clearly
induces a functor

gV* : CY\//N — 0\7
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such that the diagram of functors :

I~ gV ~
CYV C{V

G
commutes (where the vertical arrows are the natural fulthfial embeddings).
(i) We say thaty is cocontinuoudor the topologies/ and.J’ if the following holds. For
everyX € Ob(%), and every covering siev&”’ € J'(¢X), the sieveng{V’ coversX

(notation of definition 1.5]1(jii) and(1.1.115)).
Lemma 2.1.40.In the situation of definitio2.1.39 the following conditions are equivalent :
(@) g is a continuous functor.

(b) There exists a universg such thatg’ is V-small,%” is aV-site, and for every/-sheaf
F onC’, theV-preshealy F' is aV-sheaf.

Proof. Obviously, (a}=-(b). For the converse, we notice :

Claim2.1.41 LetV be a universe such tha and%” areV-small. The following conditions
are equivalent :
(c) For everyv-sheafF onC’, theV-presheafy, F' is aV-sheaf.
(d) For everyX € Ob(%), and every covering subobjeBt C hx, the induced morphism
g R — hyx) is a bicovering morphism i (notation of (1.1.35)).
Proof of the claim(c)=-(d): By assumption, for every sheafon C’, the natural map
guF(X) — Homgn (R, gy F)
is bijective. By adjunction, it follows that the natural magg(X)) — Homgn (gvi R, F') is also
bijective, therefore the morphisfv,?)* — hy , is an isomorphism, whence (d), in light of
corollary[2.1.38. The proof that (¢)(c) is analogous, and shall be left as an exercise for the
reader. O
Hence, suppose that (b) holds, and\létbe another universe such thatc V’; it follows
easily from clail 2.1.41 and remdrk 2.1.27(v) that condifio) holds also fol’ instead ofV.
Let V' be any universe such th@ and%” haveV’-small Hom-sets, and pick any universe

V" such thaty U V' C V”. By the foregoing, for every”-sheafF’, theV”-presheaty, F' is a
V”-sheafs; if F' is aV-sheaf, then obviously we conclude tlggtF is aV-sheaf. O

Lemma 2.1.42.In the situation of definitioR.1.39 consider the following conditions :
(@) g is continuous.
(b) For every covering familyX; — X | i € I)in C, the family(¢X; — ¢X |i € I)
coversgX in C’.
(c) For every small covering familyX; — X |i € I)in C, the family(¢X; — gX |i € I)
coversgX in C’.
(d) For every univers& such thats” and¢” haveV-small setsg induces a functor

sep . ,v/sep sep
9v. 1 Oy — Cy

such that the diagram of functors :

1sep 9V sep
CV CV

v
IN\ A\
) ——=
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commutes (where the vertical arrows are the natural fullyhfal embeddings).

Then(a)=(b)<(d)=-(c). Moreover, if all fibre products are representabledi andg commutes
with fibre products, thefb)=-(a). Furthermore, ifC is a U-site, then(c)=-(b).

Proof. Obviously (b}=(c).

(a)=(b): After replacingu by a larger universe, we may assume thesta small set and both
¢ and%’ are small. LetF' be any sheaf o4”; by assumptiong*F' is a sheaf or”, hence the
natural map :

F(gX) =g F(X) = [[oF&X) =[] FlsX)
el i€l
is injective (by [2.1.16)). This means that the induced rhm
(2.1.43) [T rex, — nix

i€l

is an epimorphism i€~. Then the assertion follows from corollary 2.1.38 and exiai2pl.37.

(d)=(b) is similar : we may assume that%¢ and%” are small. Iff" is any separated presheaf
on C’, then by assumption* F' is separated o6, and arguing as in the foregoing, we deduce
that the induced morphisii;c /4%, — k5 is an epimorphism i*®, and then[(2.1.43) is an
epimorphism inC™~, so we conclude, again by corolldry 2.1.38 and example 2.1.3

(b)=(d): let F" be a separated-presheaf o/, and(X; — X | i € I) any covering family
in C; in view of (Z.1.16), it suffices to show that the induced map

F(gX) = guF(X) = [ [ F(X:) = [ Fgx3)
el 1€l

is injective. But this is clear, sindg X; — ¢X | i € I) is a covering family inC".
Next, suppose that (b) holds, the fibre product®’iare representable, agccommutes with
all fibre products. For every j € I, setX;; := X; xx X;. To show that (a) holds, it suffices —

in view of (2.1.16) — to prove :
Claim2.1.44 The natural map

g F(X) — Homgn <Coequal <H hx, —= Hhxi> 79*F>

i,jel iel
is bijective.

Proof of the claim.Sinceg, is right exact, and due td (1.1]36), this is the same as thealat

map
F(gX) — Homgn (Coequal <H hyx,; :;thXZ) ,F) :
i,5€l 1€l
However, by assumptionX;; = ¢X; x,x ¢X;, and then the claim follows by applying (2.1116)
to the covering family(gX; — ¢gX |i € I). O

Lastly, suppose that' is aU-site; in order to show that (e}(b), we remark more precisely :

Claim2.1.45 Let C be aU-site,.# := (¢; : X; — X | i € I) any covering family. Then there
exists a small sef C I such that the subfamily; | i € J) coversX.

Proof of the claimLet.” C %/X be the sieve generated by. By lemmd2.1.30, we may find
a small covering familyZ’ := (¢, : X! — X |7 € I) (i.e. such that’ is small), that generates
a sieve”’ C .. Then, for everyi € I’ we may findvy(:i) € I such thaty; factors through
©4(i)- The subsell := I’ will do. O
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Let.Z# andJ be as in claini 2.1.45; then the sieye” generated byg(y;) | 7 € I) contains
the sievey.””’ generated byg(y;) | ¢ € J). Especially, ifg.#" is a covering sieve, the same
holds forg.#, whence the contention. O

2.1.46. In the situation of definitidn 2.1139, Mtbe a universe witly C V, such that' is a
V-site, ands” hasV-smallHom-sets. Then we may define a functor

g;k/ : C\//N — 0\7 F— (g>k o iC/F)a
(whereic : C — % is the forgetful functor). As usual, wheh = U we often omit the
subscriptU. With this notation, we have :
Lemma 2.1.47.1n the situation of definitio2.1.39 letV be a universe witl) C V, such that
¢ isV-small, andé”’ hasV-smallHom-sets. Then the following conditions are equivalent :

(a) g is a cocontinuous functor.
(b) For everyV-sheafF onC, theV-preshealy, F’ is aV-sheaf onC".

(Notation of (1.1.3%)) When these conditions hold, the restrictionygf is a functor
Gy : CF — O
which is right adjoint togy,.
Proof. After replacingV by U, we may assume th&t is small, and¢”’ has smalHom-sets. To
begin with, we remark :
Claim2.1.48 Let X be any object o6, and.7’ C ¥”/gX a covering sieve; to ease notation,
set.7 = nglﬂ’. Then :
hay =g"hg Xgehgx Px-

Proof of the claimLeft to the reader. O

(b)=-(a): The assumption implies that, for every sheanC, everyX € Ob(%’), and every
covering sieve?”’ C ¢'/g X, the natural map

9+ F(gX) — Homgmn (hyr, g F)
is bijective. By adjunction, the same then holds for the redtonap
Homgn (g*hgx, F) — Homgn (g*hyw, F)

so the induced morphisgih.» — g*h,x is bicovering (proposition 2.1.84). Also, this mor-
phism is a monomorphism (singé commutes with all limits); therefore, after base change
along the unit of adjunctiohx — g*h,x, we deduce a covering monomorphism

g*hy/ Xg*th hX — hx.

Then the contention follows from claim 2.1148.
(a)=(b): Let F' be any sheaf ot’; we have to show that the natural map

. F(Y) — Homgn (h.y, g. F)

is bijective, for everyY € Ob(%”), and every sieve”’ coveringY. By adjunction (and by
corollary(2.1.3B), this is the same as saying that the momphigmg*/ .+ — g*hy is a covering
morphism. Hence, it suffices to show that, for every morphismhy — ¢*hy in ¢”, the
induced subobjec*h s x4, hx coversX. However, by adjunctionp corresponds to a
morphismh,x — hy, from which we obtain the subobjekt,, x,, h,x coveringgX. Then
the assertion follows from claiin 2.1148, appliedd® := hy X, hyx.

Finally, the assertion concerning the left adjajfjtis immediate from the definitions. [

Lemma 2.1.49.LetC" := (%", J’) be aU-site,C := (¥, J) a small site, andy : 4 — ¢’ a
continuous functor. Then the following holds :
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(i) The composition
g :Cy =0 + Fre(goick)

provides a left adjoint t@y.. (Hereic : Cy — %} is the forgetful functor.)
(i) The natural diagram of functors :

¢ —L s

3

~ I
CYU C(U

is essentially commutative. (Notation @&.1.19))
(i) Suppose moreover that all the finite limits# are representable, and thatis left
exact. Theryy, is exact.

Proof. The first assertion is straightforward, and (ii) is reduagthe corresponding assertion
for (1.1.36), which has already been remarked. Next, simedéunctor’ — F“ is left exact on
C'", assertion (iii) follows from propositidn 2.1.3(iii). O

2.1.50. Let(%¢,J) be a small site(¢”, J') aU-site,u,v : € — ¢’ two functors, such that

is continuous and is cocontinuous. Let alsd be a universe such thbtc V. Then it follows
easily from [2Z.1.6), lemmafaZ.1]47 dnd 2.1.49(i), and r&Bal. 27 (v) that we have essentially
commutative diagrams of categories :

CN alj C/N CN 66 C/N
u U u U

CL w Cl,w CL W Cl,w
\% \% \% \%

whose vertical arrows are the inclusion functors. More gahg the diagram for; is well
defined and essentially commuative, wheneves aU-site, ands”’ has smalHom-sets.

Lemma2.1.51.LetC := (¢, J)andC’ := (¢’, J') be two sites,and : ¢ — ¢",u: €' — €
two functors, such thatis left adjoint tou. The following conditions are equivalent :

(a) u is continuous.

(b) v is cocontinuous.
Moreover, when these conditions hold, then for every usa®rsuch thats” and ¢” are V-
small, we have natural isomorphisms of functors :

Uve S dve W S
Proof. In view of lemma2.1.40, we may replateby a larger universe, after which we may
assume thaf’ andC” are small sites. In this case, the lemma follows from lerhid82. [

Lemma 2.1.52.Let (¥, J) be a small site(¢”, J') a U-site,u : € — %"’ a continuous and
cocontinuous functor. Then we have :
() u. = u* and this functor admits the left adjoiat and the right adjoint,.
(ii) w* is fully faithful if and only if the same holds far,.
(i) If w is fully faithful, then the same holds far. The converse holds, provided the
topologies/ and.J’ are coarser than the canonical topologies.

Proof. (i) is clear by inspecting the definitions. Assertion (ii)léovs from (i) and proposition
[M.I.11(iii). Next, suppose thatis fully faithful; then the same holds far, (lemma2.1.5(i)),
so the claim follows from (ii). Finally, suppose that is fully faithful, and bothJ andJ’ are
coarser than the canonical topologies®rand%”. In such case, the Yoneda imbedding for
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€ (resp. ©”) realizes® (resp. ') as a full subcategory af"™~ (resp. ofC’~). Then, from
(1.1.36) and the explicit expression of provided by lemma 2.1.49(i), we deduce thats
fully faithful. O

Definition 2.1.53.Let C' := (¥, J) be a site,Z any category, and : 4 — % a functor. Pick
a universeV such that# is V-small andC' is aV-site. According to remark 2.1.118(iii), there is
a finest topology/, on % such that, for every-sheafF' onC, theV-presheaf;*F' is aV-sheaf
on (4, J,). By lemmé&2.1.40, the topology, is independent of the chosen unive¥saNe call
J, thetopology induced by on 4. Clearlyg is continuous for the siteg#, J,) andC'.

We have the following characterization of the induced topyl!

Lemma 2.1.54.1n the situation of definitioR.1.53 let X be any object of4, andR C hx any
subobject in”. The following conditions are equivalent :
(i) R e Jy(X).
(i) For every morphismy” — X in %, the induced morphism (R xx Y) — hyy) isa
bicovering morphism i) (for the topology/ on %).

Proof. (i)=(ii) by virtue of claim[Z.1.24. The converse follows easitprh remark2.1.78(ii)
and corollary 2.1.38. (Details left to the reader.) O

Example 2.1.55.()) Resume the situation of example 2]1.7, andfletY” — X be any object

of €/X; itis easily seen that the rulg’ — (LX)‘}HS/ establishes a bijection between the sieves
of (¢/X)/f and the sieves o&/Y (notation of definitioi_1.5]1(iii) and_(1.1.15)). Also, for
every subobjec? C hy of the presheaf; on ¢/X, the presheafy R is a subobject ohy .
More precisely, for a sieve” of (¢/X)/f and a sieve7 of ¢/Y, we have the equivalence :

(2.1.56) hy =wxhy & S=(x);T

(i) Suppose now thaf is a topology ori¢’, and setC' := (¥, J). Let us endows/X with
the topology./x induced by x, and let us pick a univeraésuch thats” is V-small; since(tx v
commutes with fibre products, the criterion of lenima 2.11 &/<hat a subobjedt of an object
f Y — X of /X is a covering subobject, if and only if the induced morphism)\iR — hy
coversY'. In view of (2.1.56), it follows easily thaty is both continuous and cocontinuous.

(iii) Moreover, if J is aU-topology,Jx is aU-topology as well : indeed, i C Ob(%) is
a small topologically generating family far, thenG/X C Ob(%/X) is a small topologically
generating family fok¢/X, Jx).

(iv) Next, suppose that’ is a U-site; then by example 2.1.7(ii) and remark 2.1.31(ii), it
follows that we may define a functor

i (E)X, Jx)y — CF
by the same rule as in lemrha 2.1.49(i). Moreover, say ‘hista universe with) ¢ V, and
such that#” is V-small; then, remark 2. 1.27(v) (and again remark Z2]1.Blitnplies that this
functor is (isomorphic to) the restriction ¢fy )y, and since the inclusion functéty — Cy is

fully faithful, we deduce that it is also a left adjointg..
(v) Furthermore, recalling exampgle 2.11.7(iii), we see fafactors through a functor

5)( : ((g/X, Jx)N — Cw/hg(
and the functors : C~/hS — C~ from (L.1.13). Indeed, a direct inspection shows that we
have a natural isomorphism :
ex(F) = (ex oiF)*
with ex as in example 2.1l 7(iii), and whete (¢/X, Jx)~ — (¢/X)" is the forgetful functor.
(vi) Letg: Y — Z be any morphism if¢’; then we have the sitd%’/ Y, Jy ) and(6/Z, Jz)
as in (ii), as well as the functay, : /Y — %/Z of (1.1.14). Sincez o g. = ty, wWe
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deduce easily from (ii) thaj, is continuous for the topologies- and.J,, and more precisely,
Jy is the topology induced by. on /Y. Notice also the natural isomorphism of categories
€Y = (€/7)/g, in terms of which, the functag, can be viewed as a functox of the type
occuring in example 2.1.7(i) (where we take:= g, regarded now as an objectéfZ). Hence,

all of the foregoing applies tg, as well; especiallyy. is cocontinuous, and i’ is a U-site,
then(g.). : (¢/Z,Jz)~ — (¢/Y, Jy)~ admits a left adjointg.)*.

Proposition 2.1.57.With the notation of examp21.5%(v) the functorey is an equivalence.
Proof. To begin with, let us remark the following :

Claim2.1.58 Let F' be a presheaf o#/X, and setG := .x, F. We have :
() If Fis a sheaf for the topologyy, then the natural map

(2.1.59) hx Xpser G = hy x4 G

is an isomorphism.
(i) F'is a sheaf for the topologyy, if and only if the diagram

Gi)Ga

9 eX(F)\L leX(F)a
hy — h%
is cartesian ir”. (Heresg ande x are the units of adjunction.)

Proof of the claim.(i): The map is clearly a monomorphism, hence it suffices tmsthat it
is an epimorphism. Thus, 1&f be any object of6’, and consider any paitp, o) consisting of
elementsp € hx(Y) ando € G*(Y) whose image® andz in 2" (Y") coincide. Therefore
¢ Y — X isamorphismirg’, and there exists a covering subobj&ct h, for the topology
J, such that is the image of an element; € Homyn (R, G). Let(y; 1 Y; = Y | i € 1)
be a family of morphisms ir¢’ that generates; thenoy is given by a compatible system
(0: |1 € I), whereo; € G(Y;) for everyi € I. According to example 2.1.7(iy; is the same as
a pair(a;, v;), wherey; : Y; — X is an object of6/X, anda; € F(yp;), for everyi € I. The
identitya =  means that, after replacing by a smaller covering subobject, we have

Yo Y; = @ for everyi € I.
It follows that R = ¢x, R’ for a covering subobjeck’ C h, in the topology./x (example
2.1.55(ii)), and the compatible systefm; | : € I) defines an element dlomx )~ (R', F).

Since F' is a sheaf, the latter is the image of a (unique¥ F(yp). The pair(a, ) yields
a sections € G(Y), and(p,0) gives an element ofix x> G*P(Y) whose image under

(2.1.59) is the originalyp, o).
(i): In view of lemmalZ.1.1, the diagrar®@ is cartesian if and only if, for every object
v :Y — X of €/X, the morphisnz induces a bijection :

(2160) HOch,oﬁ/\/hX (h<p, €X(F)) :> HOchg/\/haX (EX O h<p, eX(F)“)

and notice that, by example 2.1..7(iii), the sourcelof (Z1i6 justF'(x). Now, suppose first
that 7 is cartesian, and lek C h, be a covering subobject for the topolody. We have
natural isomorphisms :

Hom(c,gﬂ/X)A (R, F) :> Homcg/\/hx (ex(R), €X(F)) :> Homch/hg( (8X O €Ex (R), GX(F)Q).

However, a morphismy o ex(R) — ex(F)* is just ah%-morphismuyx; R — G%; sincecx R
coversY for the topology.J (exampld 2.1.55(ii)), any such morphism extends uniquels t
h%-morphismh, — G*, and in view of the bijectior (2.1.60), the latter comes framanique
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element ofF'(¢). This shows that the natural médg{y) — Homx)r (R, F) is bijective,i.e.
Fis a sheaf, as claimed.
Conversely, suppose thatis a sheaf; we decomposeinto two subdiagrams :

G G+ G*
eX(F)l ex(F)Jrl leX(F)“

hx — hi —= h%

and it suffices to show that both of these subdiagrams arestamt However, denote ¥ the
left subdiagram of7, and notice that the right subdiagram is none else4haty claimZ2.1.24,
we know that, if£ is cartesian, the same holds #6t. Thus, we are reduced to showing that
is cartesian, and in view of (i), this is the same as checkiagjthe same holds for the similar
diagram

5/
G —G> Gsep

eX(F)l leX(F)sep

hy —— hP.
Now, lety : Y — X be any object of6/X, and : hy — G*P a givenhy’-morphism.
Sinceel, is an epimorphismj lifts to an 2"-morphismg’ : hy — G; then we may find a
covering subobject : R — hy, such that the restrictioff o j : ' — G is anhx-morphism.
By exampld 2.1.55(i,ii) R’ = xR for some subobjeck C h, coveringy. We have natural
isomorphisms :

(2161) Homw/hx (R/, G) :> Hom(c,qn/X)A (R, F) :> F(QO)

so thatg’ o j extends to & x-morphismy : hy — G. By constructiong;oyoj = ¢, 0/ 07,
whences,, o v = ¢, 0 ' = 3, sinceG*? is separated, anglis a covering morphism. This
shows that the natural map

F(p) — Homen ¢ (g'¢ o hy,ex(F)T)

is surjective. Lastly, suppose thgt o 5, = ¢}, o 5, for two givenhx-morphismshy — G;
then we may find a covering subobjegt R C hy such that3, and 3, restrict to the same
hx-morphism.x, R — G. Then again[(2.1.61) says that= f,, as required. O

Now, let I — h% be any object o'~ /h%, and setl’ := H xs_hx; by examplé 2. 117(iii),
we may find an objecE’ of (¢/X)" such thakex(F) = (H' — hx). Since clearlyH'* = H,
claim[2.1.58 shows that is a sheaf for the topologyy, and clearlyex (F') ~ H. Lastly, say
that H; and H, are twoh$ -object of C™~, defineH;, H) as in the foregoing, and pick sheaves
Fy, F>in (6/X, Jx)~ with ex (F;) ~ H] (for i = 1, 2); then we have natural bijections :

Homw/hg( (Hl, Hg) :> HOch,GﬂA/hX (H{, Hé) :> Hom(c,qn/X)A (Fl, Fg)
Soey is also fully faithful. O
The functor, given explicitly in examplé 2.1.55(iv) is a special case obastruction which

generalizes lemmia 2.1J49 to any continuous functor betweern-sites. To explain this, we
notice the following :

Proposition 2.1.62.LetC := (¥, J) be aU-site,G a small topologically generating family for
C'. Denote by¥ the full subcategory o with Ob(¥¢) = G, and endow¥ with the topology/’
induced by the inclusion functar: 4 — . Then :

() wis cocontinuous.

(i) Theinduced functox, : C~ — (¢, J')™~ is an equivalence.
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Proof. For every presheaf’ on %, denote by : wyu*F — F' the counit of adjunction.

Claim2.1.63 (i) e is a bicovering morphism, for evey € Ob(¢™").
(i) The functoru, is fully faithful.

Proof of the claim.(i): First we show that» is a covering morphism. To this aim, recall that
both«* andu, commute with all colimits, hence the same holds for the doohadjunction.

In view of lemma2.1]1 and corollafy 2.1]38, we may then asstimat" = hyx for some
X € Ob(%). In this case, by assumption there exists a farfiily| i € I) of objects of¢, and

a covering morphisnf : []._; huy, = hx in €". By adjunction (and by (1.1.86)); factors
(uniquely) throughe -, so the latter must be a covering morphism as well, again bylleoy
2.1.38.

The claim amounts now to the following. Lét € Ob(%"), X € Ob(%), andp,q : hx —
wu* F two morphisms such tha-op = ¢ o g; thenEqual(p, ¢) is a covering subobject afy .
However, pick again a covering morphisfras in the foregoing; for everiy< I, the restriction
f; 1 Y; — X of f satisfies the identity opo f; = eroqo f;. Again by adjunction and(1.1.B6),
it follows thatp o f; = g o f;, i.e. f factors throughqual(p, ¢), whence the contention, in view
of corollary(2.1.38.

(i): In view of lemma2.1.40(i), it is easily seen that, faregy sheaft’ on C, the morphism
(eier)™ is the counit of adjunction* o u,F* — F. By (i) and corollary 2.1.38, the latter is an
isomorphism, sa, is fully faithful (propositiol T T1(ii)). O

(i): Let Y be an object o and.#” a sieve coveringY’; we need to show thag}ly’ covers
Y in the induced topology o¥. Sinceu is fully faithful, the counit of adjunctiom*h.,,y — hy
is an isomorphism, hence the latter amounts to showingutitat is a covering subobject &,
for the induced topology (clailm 2.1.48). This in turns metnad, for every morphisnX’ — Y
in ¢, the induced morphism (u*h.y X, hx) — h,x is a bicovering morphism i#”" (lemma

[2.1.54). However :

u!(u*hyu X hy hx) = u!u*(hyu X huy th)

hence claini 2.1.63(i) reduces to showing that the naturapmemh. o x, .. h,x — hy,x IS
bicovering, which is clear.

From (i) and lemma_2.1.52(ii) we deduce thétis fully faithful. Combining with claim
[2.1.63(ii) and proposition 1.1.111(i), we deduce thats an equivalence, as stated. O

Corollary 2.1.64. LetC := (¢, J) andC’ := (¥¢”, J’) be twoU-sites,g : ¥ — %" a functor.
We have :

(i) If g is continuous, the following holds :
(a) For every univers& such thatU C V, the functorgy. : C;" — Cy admits a left
adjointgy, : Oy — C\).
(b) For every pair of universe¥ C V' containingU, we have an essentially commu-
tative diagram of categories :

o~ N e
v — — Ly

-y

9
\V % C\//,\/J
whose vertical arrows are the inclusion functors.
(c) Suppose moreover that all the finite limitsdnhare representable, and thatis left
exact. Thery; is exact.
(ii) If g is cocontinuous, the following holds :
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(a) For every universé/ such thatU C V, the functorgy, : C\;" — Cy admits a right
adjoint gy, : Cy — C{".

(b) For every pair of universe¥ C V' containingU, we have an essentially commu-
tative diagram of categories :

~  Ovs I~
\Y C(V

|

~ v ~
V/ ﬁ* C\l//

whose vertical arrows are the inclusion functors.
(i) If g is both continuous and cocontinuous, we have a natural isphism :

:qvV* :> gt/
for every univers& withU C V.

Proof. (i.a): We choose a small topologically generating fantiyfor C, and define the site
(¢,J") and the continuous functar : (¢,J') — C as in proposition 2.1.62. By applying
lemma Z.1.29(i) to the continuous functot= ¢ o u, we deduce thafky. = tiy. o jv. admits a
left adjoint. Then the assertion follows from propositiaf.B2(ii).

(i.b): More preciselyg;, = I, o tiy.. Thus, the assertion follows from (2.1150).

(i.c): In view of (i.b), the assertion can be checked aftdarging the universé#, so that we
may assume tha&f is small, in which case we conclude by lemima 2.11.49(iii).

(i,a): Letw andh be as in the foregoing; from proposition 2.1.62(i) we dedtna / is
cocontinuous, hende, = i}, o §;, admits a right adjoint; howeveit, = @y, (lemmaZ.1.52(i)),
and the latter is an equivalence (proposifion ZJ1.62iJjence the contention.

(ii.b): More preciselyjjy, = hy. o ii%;, hence the assertion follows from (2.1.50).

(iii): In view of (i.b) and (ii.b), in order to prove the assi®n, we may assume that ands”
areV-small, and this case is already covered by lerhma 2.1.52(i). O

torix, = iy : C~ — (¥/X, Jx)~ admits also a right adjointy.. We introduce a special
notation and terminology for these functors :
e The functorrx, shall be also denotet,,, and called the functor a€striction to X .
e The functoriy. shall be denotedgl., and called thelirect imagefunctor.
¢ The functor’; shall be denotegly,, and called the functor axtension by empty
Thus,j¥ is right adjoint tojx:, and left adjoint tgj ..
(i) Likewise, letg : Y — Z be any morphism ir¥’; by examplé 2.1.85(vi) and corollary

let :
Jg = (Ge)s e = (G)e  Jg = (G:)"

Clearlyj;oj7 = jy-, and we have isomorphisms of functors:; o jg. = jy«andjzojg = jyr.

(i) Moreover, under the equivalenég; of propositio 2.1.57, the functgt; is identified
to the functor :

C~ — C~/hs U— X xU

andjx, is identified to the functo€~ /h% — C~ of (1.1.13). Likewisey* is identified to the
functorC™~/hy — C~/hy given by the rule (U — h%) — (U Xy h ), andg, is identified to
the functor(hg). : C~/hy, — C~/hg.
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2.2. Topoi. A U-toposT' is a category with smatfom-sets which is equivalent to the category
of sheaves on a small site. We shall usually write “topostead of ‘U-topos”, unless this may
give rise to ambiguities. Denote ldy; the canonical topology o, and say thai” = C™, for

a small siteC' := (¢, J); then the se{h% | X € Ob(%)} is a small topological generating
family for the site(7', Cr), especially, the latter is @-site. Moreover, the Yoneda embedding
induces an equivalence

(2.2.1) T — (T,Cr)~

betweenT and the category of sheaves on the $ifeC;). The Hom-sets in the category
(T, C7)~ are not small in general; however, they are essentially Istharefore(7, Cr)™~ is
isomorphic to aJ-topos. In view of this, the objects @ may be thought of as sheaves on
(T, Cr), and one uses often the suggestive notation :

X (S) := Homr(S, X) for any two objectsX, S of 7.

The elements ok (.5) are also called thg-section®f X. The final object of” shall be denoted
17, andX (17) is also called the set @flobal section®f X .

Remark 2.2.2. (i) By propositior 2.1.62(ii), ifC' is aU-site, thenC™ is aU-topos.

(i) Remark2.1.2]7(i,ii) can be summarized by saying thatrgW-toposT is a complete and
cocomplete, well-powered and co-well-powered categomyreMer, every epimorphism ifi is
universal effective, every colimit is universal, and alidiled colimits inI” commute with finite
limits.

Definition 2.2.3. (i) Let C = (¥¢,J) andC’ = (¢, J’) be two sites. Amorphism of sites
C’" — C'is the datum of a continuous functgr. € — %", such that the left adjoinj;, of the
induced functog, is exact (notation of definition 2.1.89(i)).

(i) A morphism of topoj : T'— S'is a datum(f*, f.,n), where

foT =S ST

are two functors such thgt is left exact and left adjoint td,, andr : 15 = f.f* is a unit of
the adjunction (these are sometimes catjedmetric morphismssee [12, Def.2.12.1]).

(i) Let f:= (f* fo,ny) : T" — T andg = (g%, 9«,7n,) : T" — T be two morphisms of
topoi. The compositiog o f is the morphism

(f*og",gc0 fi,(gxnp*g)ony) T =T

(see remark 1.1.10(i)). The reader may verify that this cositpn law is associative.

(iv) Let f,g : T — S be two morphisms of topoi. Aatural transformation : f = g is
just a natural transformation of functors: f, = g.. Notice that, in view of remark 1.1.1L0(ii),
the datum ofr, is the same as the datum of a natural transformatiory* = f*.

Remark 2.2.4. (i) By corollary[2.1.64(i.c), ifC andC” areU-sites, and all finite limits o¥” are
representable, every left exact continuous funeétors ¢” defines a morphism of sités — C.
(i) More generally, letZ be the category whose objects are all morphistms— ¢Y in
%', whereX (resp.Y) ranges over the objects @f' (resp. of¢’). The morphismgg : X —
gY) — (B : X' = gY')in £ are the pairgyp, v) wherep : X — X' (resp.v : Y — Y')is
a morphism irg” (resp. in€) and’ o ¢ = ¢’ o 5. There is an obvious fibration: . — %",
such thatp(X — ¢Y) := X for every object( X — ¢Y) in .#, and one can prove that a
continuous functoy : ¥ — ¥’ defines a morphism of sites, if and only if the fibratipims
locally cofiltered (se€ [4, Exp.V, Déf.8.1.1]; the necgsis a special case df[4, Exp.V, lemme
8.1.11]). This shows that the definition of morphism of sdepends only og, and not on the
universeu.
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(iif) Every morphism ofU-sitesg : ¢ — C induces a morphism of topgi~ : C"~ — C~,
and conversely, a morphisfn: 7' — S of topoi determines a morphism of sit€s : (7', Cr) —
(S, Cs) for the corresponding canonical topologies.

(iv) The topoi form a&-category, denoted

Topos

whose objects are all the topoi, whadseells are the morphisms of topoi, and wh@sezlls are
the natural transformations between such morphisms, asfimtibn[2.2.3(ii,iv).

Proposition 2.2.5.LetT', T’ be two topoi,f : T'— T" be a functor.

(i) If f commutes with all colimits, and all fibre productsiithe following holds :
(a) f is continuous for the canonical topologies @rand7”.
(b) There exists a morphism of toppi: 7/ — T, unique up to unique isomorphism,
such thatp* = f.
(i) If fis exact, the following holds :
(a) f is conservative if and only if it reflects epimorphisms.
(b) For every morphismp in 7', the natural morphisny(Im ¢) — Im(fy) is an
isomorphism.

Proof. (i.a): LetS := {¢; : X; — X | i € I} be a small covering family of morphisms in
(T, Cr); by lemmd2.1.42, it suffices to show tha$ := {f(g;) | i € I} is a covering family
in (77, Cr/). However, our assumption implies that the induced morpHEmX; — X is
an epimorphism, hence the same holds for the induced monghjs; f X; — fX in T (by
examplé1.1.24(iii)). But all epimorphisms are universtetive inT’ (remarkKZ.2.2(ii)), hence
(f(g:) | i € I)is a universal effective family, as required.

(i.b): By corollary(Z.1.64(i.a,i.c), for every univerSesuch that) c V, the functorf gives
rise to a morphism of topoi

(fo Fussmv) (T, Cr)y — (T, Cr)y

(wheren is any choice of unit of adjunction), and it remains only techthatf[j is isomorphic

to f, under the natural identificatiortsy : T = (T, C7)y, kY : T" = (T, Cr)y. In view of
corollary[2.1.64(i.b), it suffices to show that there exataiverse/ such that the diagram
T/

| |
i

(T> C1T)\N/ - (T/7 CT’)\7

f

is essentially commutative (whehg andhy, are the Yoneda embeddings). By lemimaZ.11.49(i)
and [1.1.3b6), the latter holds wheneters V-small.

(ii.b) follows easily from remark 2.1.33.

(ii.a): The condition is necessary, due to exaniple 1]1ii4(Conversely, assume thgt
reflects epimorphisms, and suppose thata morphism irff” such thatf (¢) is an isomorphism.
It follows already thaty is an epimorphism, hence it suffices to show th&gd a monomorphism
(propositiori 2.1.32(i)). This is the same as showing tharitural map,, : Y — Equal(y, ¢)
is an isomorphism (again by example 1.1.24(iii)); howewgrs always a monomorphism, and
sincef is left exact,f(.,) is the natural morphisniy” — Equal(f¢y, f¢), which we know to
be an isomorphism, sg is an epimorphism, under our assumption. O

Example 2.2.6.Let T be a topos.
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(i) Say thatl’ = (¢, J)~ for some small sit¢%’, J). Then the categor¢™ is also a topos
(I3, Exp.lV, §2.6]), and since the functaf’ — F* of (2.1.19) is left exact, it determines a
morphism of topoil” — %¢”. (On the other hand, the categdfy is too large to be &-topos.)

@iy If f:=(f* fi,n) : T — Sis any morphism of topoi, we have an essentially commuta-
tive diagram of categories :

T—T"

P

S — SN
whose horizontal arrows are the Yoneda embeddings, anceyher Fun(f*°, Set).

(iii) Let U be any object of/". By applying the discussion of example 2.1.65 to thsite
(T, C7), we deduce that the categdfyU (notation of [1.1.R)) is a topos, and the natural functor

g T —=T/U X=Xy =XxU=U)

induces a morphisms di-sites(7', Cr) — (T/U, Cryy), whence a morphism of topgi, :
T/U — T, unigue up to unique isomorphism. Moreover, we also obtdeftaadjoint j;, :
T/U — T for jf;, given explicitly by the rule :(X — U) — X for any U-object X of T.
In caseU is a subobject of the final object, the morphigmis called anopen subtoposf 7.
Likewise, any morphisng : Y — Z in T determines, up to unigque isomorphism, a morphism
of topoij, : T/Y — T/Z, with an isomorphismz o j, — jy of morphisms of topoi.

(iv) Let U be a subobject of. We denote byCU the full subcategory of” such that

OB(CU) = {X € OB(T) | ji:X = Ly},

ThenCU is a topos, called theomplement of/ in T', and the inclusion functat, : CU — T
admits a left adjoint* : T — CU, namely, the functor which assigns to eveéfyc Ob(T") the
push-outX,c; in the cocartesian diagram :

XXULX

O

U Xicu

wherepx andp, are the natural projections. Moreoverjs an exact functor, hence the adjoint
pair (i*,i,) defines a morphism of top@U — 7', unique up to unique isomorphism. (See [3,
Exp.lV, Prop.9.3.4].)

(v) Another basic example is tlggobal sections functor : 7' — Set, defined as :

U T(T,U) == U(ly).

[ admits a left adjoint :
Set — T S|—>STZI;S><1T

(the coproduct of copies ofl ) and for every sef, one callsS; theconstant sheaf with value
S. This pair of adjoint functors defines a morphism of topai 7" — Set ([3, Exp.lV, §4.3]).
One can chek that there exists a unique such morphism of, top®d unique isomorphism.

Example 2.2.7.Let T be a topos.

(i) We say thatl’ is connectedresp.disconnectefdif the same holds for the final objett
of T (see example_1.1.26(iii)). Notice that,lif is any object ofl", thenU is connected if and
only if the same holds for the topd3U.

(i) T is connected if and only if the natural map

(2.2.8) 7.)27. — (T, 7./ 27
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is surjective (notation of example 2.2.6(v)). IndeBd2Z is the coproduct 11 11, and any

decompositiony : 1 = X, II X, determines a section af II 1, namely the composition
o’ of o with the coproduct of the unique morphismg — 1 and X; — 14. Conversely,

let 5/ : 1 — 7Z/2Z7 be a global section, and denote fyyj; : 17 — 17 II 17 the natural

morphisms (sd jo, j1 } is the image of the map (2.2.8)). We defilgfor : = 0, 1, as the fibre

products in the cartesian diagrams :

X, ——1p

Ll

1T I Z/QZT

Since all colimits ifil” are universal (rematk 2.2.2(ii)), the induced morphismX,11.X; — 17
is an isomorphism, and it is easily seen that the rules o’ andj3’ — [ establish mutually
inverse bijections (details left to the reader).

Remark 2.2.9. (i) Let f : T — T be a morphism of topoi,/ an object ofl", and suppose
thats : 7" — T/U is a morphism of topoi with an isomorphisjn o s = f. Hence, we have a
functorial isomorphism*(j;; X ) = f*X foreveryX € Ob(T'), and especially*1y = 17/ let
Ay 1y — jijo = ji;(U) be the unit of adjunctioni.g. the diagonal morphism it/ U); then
o:=s"(Ay): 1y — f*Uisanelementof (17, f*U). Moreover, for every object : X — U
in 7/U, we have a cartesian diagramipU :

X xU

\/
/\

UxU

wherel, is the graph ofp, ands*Z is |somorph|c to the cartesian diagram {i:

s'p — f*X

SR

1T’ —J> f*U

This shows that* — and therefore also— is determined, up to unique isomorphism,dy

(i) Conversely, ife € T'(T", f*U) is any global section, then we may define a functor
s* : T/U — T’ by means of the cartesian diagrafn and clearlys* o j;;, = f*. Let us also
define a functot, : 77" — 7"/ f*U, by the rule :

t(Y)=ocouy for everyY € Ob(T")
whereuy : Y — 14 is the unique morphism ifi”. By inspecting the diagrard, we deduce
natural bijections :
Homy (Y, s*¢) = Hompy p-r (1Y, f*p) for everyY € Ob(T") andy € Ob(T/U).

Since f* is exact, it follows easily that* is left exact (indeeds* commutes with all the limits
with which f* commutes). Moreover, since all colimits are universdl'ifsee [2.1.27)(i)), it
is easily seen that* commutes with all colimits. Then, by propositibn 2]2.5)j.the functor

s* determines a morphism of topei: 7" — T/U, unique up to unique isomorphism, and an
isomorphismj;y o s = f.
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(i) Summing up, the constructions of (i) and (ii) estahlia natural bijection between
[(T", f*U) and the set of isomorphism classes of morphisms of tepoil” — T/U such
that j; o s is isomorphic tof.

Definition 2.2.10. Let T" be a topos.
(i) A pointof T (or aT-point) is a morphism of topdset — T'. If £ = (¢*,&,) is a point,

andF is any object off’, the set* F' is usually denoted by.

(i) If ¢isapointofT, andf : T — S is any morphism of topoi, we denote y¢) the
S-point f o £.

(iii) A neighborhoodf ¢ is a pair(U, a), whereU € Ob(T'), anda € Ue. A morphism of
neighborhoods$U, a) — (U’, ') is a morphismyf : U — U’ in T such thatfs(a) = o'
The category of all neighborhoods &hall be denotetNbd(¢).

(iv) We say that a se® of T-points isconservativeif the functor

T—U-Set Fe]]Fe
£eQ

is conservative (definition_1.1.4(ii)). (Hedd is a universe such that ¢ U’ and
2 € U'.) We say thaf" has enough pointsf 7" admits a conservative set of points.

2.2.11. It follows from remark 2.2.9(iii), that a neighbodd (U, a) of ¢ is the same as the
datum of an isomorphism class of a pogat of the topos7/U which lifts £, i.e. such that

~ jy o &y. Moreover, say thaf; is another lifting of¢, corresponding to a neighborhood
(U',a’) of &; then, by inspecting the constructions of remark 2.2ip(e see that, under this
identification, a morphismiU, ) — (U’, «’) of neighborhoods of corresponds to the datum of
a morphismp : U — U’ in T and an isomorphism daf-points :

jgo © gU :> gU’
wherej, is the morphism of topal/U — T/U’ induced byy. Thus, letLift({) denote the
category whose objects are the triplé5&y, wy ), whereU € Ob(T), &y is aT/U-point lifting
¢, andwy : jroéy — & is anisomorphism df-points (here we fix, for every objettand every
morphismy of T', a choice of the morphisnyg andj,, : recall that the latter are determined by

U and respectively, up to unique isomorphism). The morphisfis &, wy) — (V. &y, wy)
are the pairgy, w,,), wherep : U — V' is a morphismirf’, and

We jcp © gU :> 5\/
is an isomorphism of /V'-points, such that :
Wys © (Jvs * Wes) = Wy

The composition of such a morphism with another ¢new,) : (V, &, wy) = (W, &w, ww)
is the pair(zy) o , wy.,) determined by the commutative diagramiZgil -points :

. . Jap ¥ .
Jp 0 jp o0&y ————=jyoly

(2.2.12) cw,w*g,,l l%

. Wapo
Juop © EU L.

wherecy ,, : jy © j, — Jyop IS the unique isomorphism. As an exercise, the reader mafy ver
the associativity of this composition law. The foregoingwb that we have an equivalence of
categories :

(2.2.13) Ne : Lift(€) 5 Nbd(¢) (U, &y, wu) — (U, ap)
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whereay; € Ug is the uniqgue morphism which fits in the commutative diagram :
'l - & (U)
wi}(lT)J/
* ~ 3k g* (AU) * -k
& odi(1r) — & o g (U)

(notation of remark2.219(i)). To check the functorialify@.2.13), let(¢, w,) be as in[(2.2.11),
and setly := j, o y; we can write :

Oy (Av) = &0 jg(Av) = &5(ly) = &5 (o) 0 & (Av) = dy(¢) 0 &5 (Av)
from which it follows easily that, = ¢¢(ar), as required.

Remark 2.2.14.(i) Let T be a topos with enough points, ahdany object of7"; as a con-
sequence of the discussion [n_(2.2.11), we deduce thatZlEohas enough points. More
precisely, say that is a conservative set @f-points, and denote by, ') the set of allT/U-
points¢ such thatjy o ¢ € ; we claim thatj;;'Q is a conservative set of points. Indeed, let
¢ : X — Y be a morphism iff/U such thaty, is an epimorphism for every € j;'(; by
propositior 2.2.5(ii.a), it suffices to show thats an epimorphism, and the latter will follow, if
we show that the same holds ffr .

Thus, suppose by way of contradiction, thaty is not an epimorphism; then there exists
a point{ € €, andy € (jinY)e, such thaty does not lie in the image dfj;ip)e. Leta :=
(jormx)e(y) € Ue, wherenry : X — 1y is the unique morphism ifi/U. By (2.2.13), we may
find a lifting (U, &y, wy) of € such that

(2.2.15) Ne(U, &u,wr) = (U, a).

After replacingé by ji o &, we may assume thai; is the identity of¢, in which case[{2.2.15)
means that = {;; Ay, whereAy : 1y — jijuilye is the unit of adjunctioni(e the diagonal
U — U x U). We have a commutative diagram of sets :

13904

X &Y
51’§Axl lﬁ?}AY
. (Jure) .
(JunX)e e (JunY )e

whereAyx : X — jjjinX is the unit of adjunction, and likewise fak,. More plainly,
Ay 1 Y X 1y — Y x (5 julgu) is the productly x Ay, and under this identification,
{GAy is the mapping;Y — &Y x (§*julrw) given by the rule iz — (z,a) for every
z € &Y. Especially, we see thatlies in the image of;; Ay. But by assumption, the mgp ¢
is surjective, hencg lies in the image ofji1¢)¢, a contradiction.

(i) The localization morphismg;; of examplé 2.2]6(iii), and the notion of point of a topos,
form the basis for a technique to study the local propertiedects in a topos. Indeed, suppose
thatP (7', F, p) is a property of sequencds := (Fi,..., F,) of objects in a topog’, and of
morphismsp := (¢4, ..., ) In T; we say thatP can be checked on stalki§ the following
two conditions hold for every topd, everyF' € Ob(7')", and everyp € Morph(7')™.

(@) P(T, F, ) implies P(Set, F¢, p¢) for everyT-pointé. (HereFy = (Fig, ..., Fye),
and likewise forp;.)

(b) If Q is a conservative set @f-points such thaP (Set, F¢, ¢¢) holds for every € €,
thenP (T, F, ¢) holds.

Then we have the following :
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Lemma 2.2.16.LetT be a topos with enough poin{g/, — 17 | A € A) afamily of morphisms
in T' covering the final object (in the canonical topolo@y), and P a property that can be
checked on stalks. Then, for ahyc Ob(7T")" andy € Morph(7)™, we haveP (T, F, ) if and
only if P(T/U,, Flu,, ¢ju,) holds for every € A.

Proof. Suppose first thd® (7', F, ¢) holds. Ifn is anyT/U,-point, ther¢ := j;, onis aT-point,
and(jy;, '), = Fg, (and likewise forp, with obvious notation) hend@(Set, (j;;, F'),, (jir, ©)n)
holds. SincéP can be checked on stalks, remlark 2.2.14(i) then impliesRk&L U, Fiv, , o0, )
holds.

Conversely, suppose thR(T/U,, Fu,, ¢u,) holds for everyl € A, and let{ be anyT-
point. By claim[2.1.45 we may assume thiats a small set; then for eveffj-point &, the set
(LLxeaUy)e = Myen&* U, covers the final object diet, i.e. is not empty. Pick\ € A such that
&*Uy # &; by the discussion of (2.2.111) we see thalfts to a 7/U,-point . SinceP can be
checked on stalk® (Set, (Fiv, )y, (¢u,),) holds, and this means thBR{Set, F, ) holds, so
P(T, F, ¢) holds. O

2.2.17. LetX be any (small) set; we consider the functor

FX : Llft(g)o — Set (U, §U,wU) — &k]fU*X
For a given morphisniy, w,) : (U, &y, wy) = (V,&v,wy) in Lift(€), setdy = j, o &y; by
definition2.2.3(iv) w,, is a natural isomorphism of functats.. : Jy.. — &y, which determines

(and is determined by) a natural isomorphism of functogs: &, = 9%. The morphism
Fx(¢,w,) is then defined by the commutative diagram :

. w;*ﬁv*(X) .
E v (X) Iy v (X)
E\*/*"Jcp*(X)l \Lff]*&p*fU*(X)
% F (‘vaw) %
E-€va(X) = &€ (X)

wheree,, : JpJos = Lset is the counit of adjunction. With the notation 6f (2.2.11,verify

that Fx is a well defined functor, amounts to checking that(y o ¢, wy.,) = Fx(p,w,) o

Fx (v, wy). To this aim, we may assume that either is the identity ofj, o & (which then

coincides withty), or else that is the identity (in which cas& coincides withl/, andj, is the

identity of 7/U), and likewise foru,, andy. We have then four cases to consider separately; we

will proceed somewhat briskly, since these verificatiorswarenlightening and rather tedious.
First, suppose that both, andw,, are identities. In this case, we have :

Fx(p,wy) =& * e, % EpaX Fx (¥, wy) = & x ey * v X = & * g+ €y * Jpu x Eua X

and we remark as well that,., = (cy, * &)~'. Then the sought identity translates the
commutativity of the diagrang}; « Z = £y., whereZ is the diagram :

*—1_ -
Cop,p *pox

]; o ];Z o jwoso* j:z;o(p o jwocp*

lewow
. . . . Jp*Ep*jy . . €

* * P ® * P

5 © Jiy © Jupw © Jou ———— % 0 Jiou 1.

Sk gk -1
Jw*Jw*cw,wl

Now, notice that the bottom row is the counit of adjunctiofid by the morphismjy, o j,;
then the commutativity o/ is just a special case of remark 1.1.10(iii).

Next, suppose that is the identity of = V', andw,; is the identity ofj,, o & = &w. Inthis
Casewyo, = Jy * Wy, aNdFx (1, wy) is the same as in the previous case, whereas :

Fx(p,wp) = (W, * Eus) o (& * W)
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Then the sought identity translates the commutativity efdtfagram :

g* *jw**ww* . W;*J‘;*jw**ﬁu* . 3
&y © Ews = &y © Jyw © v & 0 55, 0 Js 0 Eu
& ey *EV & l/ lg;*aw*gm lg;}*%}*gU*
E * W Wi k€U«
& o &y & o &u . &G © Euse

which is an immediate consequence of the naturality gfandw.

The case wherey,; is the identity oféy, and is the identity of’ = W, is similar to the
previous one. The remaining case where hotnd are identities is easy, and shall be left to
the reader.

Remark 2.2.18.(i) Let ¢ be a point of the topo§’; we remark that the categofybd(¢)
is cofiltered; indeed, ifU;,a;) and (Us, as) are two neighborhoods, the natural projections
Uy == Uy x Uy — U; (for ¢ = 1,2) give morphisms of neighborhood#/;,, (a1,as)) —
(Ui, a;). (Notice that(U; x Us)e = Uy ¢ x Usg.) Likewise, sinc&* commutes with equalizers,
for any two morphismsp, ¢’ : (Uy,a1) — (Us,as), we have a morphism of neighborhoods
Y (Equal(p, ¢'),a1) = (U, aq), such thatp o) = ¢’ 0 9.

(i) Denote by: : Nbd(¢) — T the functor given by the rule(U, a) — U. Then there is a
natural transformation of functors :

7¢ : Homp (%, F) = cp, @ Nbd(£)? — Set

wherecr, denotes the constant functor with valtie Indeed, if(U, a) is any neighborhood of
¢, we definer¢ (U, a) : Homy (U, F') — F¢ by the rule :s — s¢(a) for everys : U — F. Then
we claim thatr, induces a natural bijection :

(2.2.19) l\cl(gg(IgOHomT(a JF) = Fe.

Indeed, every element of the above colimit is represented tople (U, a, 5), where(U, a)
is a neighborhood of, andg € Homy (U, F'); two such triplesU;, ay, 51) and(Us, as, B2) are
identified if and only if there exist morphisms : (V,b) — (U;, a;) in Nbd(¢) (for i = 1, 2),
such thatp; o 81 = ¢, 0 5. Itis then easily seen that every such triple is equivaleatanique
triple of the form(F’, a, 1), which gets mapped tounderr (£, a), whence the assertion.

(iii) For every object(U, £, wy) of Lift(¢), letey : £/,¢u.X — X be the counit of adjunc-
tion coming from the morphism of topgi;; we claim that the ruléU, {;, wy) — ey defines a
natural transformation

(2220) Fx = cx

wherecy denotes the constant functor with valie Indeed, let(y,w,) : (U, &y, wy) —
(V.&v,wy) be a morphism irLift(£); we need to show that; o Fx(¢,w,) = ey. This
amounts to checking the identity :
ev o (§ * €4 * §u) © (UJ; * Vys) = ey o (§7 * Wex)

wheredy := j, o &y. Now, notice thaty, := ey o (§f; x £, * &py) = U3 Yv,. — 1is the counit of
adjunction given by the morphism of top@i-. On the other hand, remdrk 1.71.10(ii) says that :

wy, = (ev * ) 0 (& * Wy x U7) 0 (&7 * )
wheren;, : 1 — Yy..00;, is the unit of adjunction given by, . The naturality ok, implies the
identity :

ey o (& * Eyu xeyy) = ey 0 (ey * 07 * Dyy).
Hence we come down to showing that

(6 % Eva €}) 0 () % w5 0 % 00) 0 (€ 51y 5 D) = €7 % i
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The latter in turn will follow, once we know that

(2.2.21) (Evi x€Y) 0 (Wew * Ty % D) © (M % D) = W
However, the naturality ab,.. says that
(2.2.22) (W * 03 % Dva) © (0 * Vvi) = (§va % 7y) © Wi

Then [2.2.21) follows easily fromh (2.2.22) and the triarsgutientities of[(1.1]8).
Lemma 2.2.23.The natural transformatio@.2.20)induces a natural isomorphism :
colimFyxy & X for every (small) sek .

Lift(¢)e
Proof. Set% := Morph(Lift(£)°). We define yet another functor
G: ¥ — Set
by the rule :
/ (%w )
((U 7§U’7 wU’) —’/)> (Ua §U7 WU)) — G(’QZ), ww) = P(wa gU*X)

(here we regard : U’ — U as an object of /U). Recall that a morphisr(3, wz) — (¢, wy)
in ¢ is a commutative diagram of morphismsliift ()

/

(50 ’wgp/)

(UljfU/,wU’) (V/7§V’7WV/)

7 (Www)l l(ﬁ,wa)
(p,we)

(U, &, wur) s (V) &v,wy).

To such a morphism, we assign the nt&v) : G(5, wg) — G(¢, w,,) defined as follows. First,
we may regargy’ as a morphismi, () — 3 in T/V. Denote by

Aw : 1/1 — ];]go'(w)
the unit of adjunction. Then, for every: 3 — &, X, the sectiorG(2)(s) : ¢ — {u. X is the
composition :

-1
ep*€u«X

Ja(sog Johy JwptX
- JobviX = i jpulu X ——— & X,

(3

With some patience, the reader may check thas really a well defined functor. Next, we
define a natural transformation :

(2.2.24) G=Fyos

wheres : € — Lift(£)° is the source functor of (1.1.117). Indeed, notice that, f@rg lifting
(U, &y, wy) of £, we have an isomorphism of categories :

Lift(£)/(U, &, wy) = Lift(&y) (¥, wy) = (¥, Eur, wy)

(where(vy,wy) is as in the foregoing). On the other hand, by composing tikvalgnceN,,
of (Z.Z.13), and the natural transformatigp of remark’Z.2.18(ii) (forF" := £, X), we obtain
a natural transformation :

Tey * NﬁU(w7€U/7w¢) : F(dja gU*X) — gl*ng*X
which yields [2.2.24). By inspecting the construction, andiew of (2.2.19), we get a natural
isomorphism :

colim G = colim F.
¢ Lift(¢)°

Now, notice that the functor
(2225) Llft(g)o — € (U, fU, wU) — 1(U,£U7WU)
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is cofinal. A simple inspection reveals that the compositdt with (2.2.25) is the constant
functor with valueX', whence the contention. O

2.2.26. Suppose now th@t = C~ for some small sit€” := (¥, J). For a point¢ of T', we
may define another categoNbd (¢, C'), whose objects are the paiiS, a) whereU € Ob(%)

anda € (h{,)¢; the morphismsU, a) — (U’, a') are the morphismg : U — U’ in ¢ such that
(h$)e(a) = a'. (Notation of remark 2.1.27(iii).) The rulé/, a) — (A, a) defines a functor

(2.2.27) Nbd (¢, C) — Nbd(¢).

Proposition 2.2.28.In the situation of(2.2.26) we have :

(i) The categoryNbd(¢, C) is cofiltered.
(i) The functor2.2.2T)is cofinal.

Proof. To begin with, sinc&* commutes with all colimits, remalk 2.1]27(iii) implies dashat,
for every objectU, a) of Nbd(¢) there exists an object/, b) of Nbd (¢, C') and a morphism
(h{,,b) = (U,a) in Nbd(¢). Hence, it suffices to show (i).

Thus, let(Uy, a,) and(Us, az) be two objects olNbd (¢, C); sinceNbd(¢) is cofiltered, we
may find an objectr’, b) of Nbd(¢) and morphisms; : (F,b) — (h{;,,a;) (fori = 1,2). By
the foregoing, we may also assume th&tb) = (h{, b) for some objectV, b) of Nbd(¢, C),
in which casep; € hg; (V) fori = 1,2. By remark2.1.27(iv), we may find a siew€ covering
V such thatp; € Homgn (hs, hy;”) for bothi = 1, 2.

On the other hand[(2.1.2) and proposifion 2.11.34 yield arahisomorphism :

colimh®os = h{.
k7

Therefore, sinc&* commutes with all colimits, we may fingf : S — V) € Ob(¥) and
c € (h%)e such that$ : (hg,c) — (hi,,b) is @ morphism of neighborhoods &f

Fori = 1,2, denote byp,; € hy;”(S) the image ofp; (under the map induced by the natural
morphismhs — h. coming from [Z.1R)). Pick anys; € Hom«(S,V) in the preimage of
s, thenpg; defines a morphisrS, ¢) — (Us, a;) in Nbd (&, C).

Next, suppose thap,, s : (U,a) — (U’,d’) are two morphisms ilNbd(¢, C); argu-
ing as in the foregoing, we may find an objééf b) of Nbd(¢,C), andy € hjP(V) =
Homen (R, b)) whose image img, (V) yields a morphismp® : (h%,b) — (h{,a) in
Nbd(¢), and such thap(™ o ¢ = ¢5* o ¢ in k57 (V). We may then find a covering sub-
objecti : R — hy, such thatp; o (¢p0i) = py0 (¢ oi) in Homgn (R, hy;). Again, by combining
(2.1.2) and proposition 2.1.B4, we deduce that there existsrphism3 : (V',b') — (V,b) in
Nbd(¢, C), such thatp; o (1) o ) = s 0 (¢ o 3). This completes the proof of (i). O

As a corollary of proposition 2.2.28 and of remdrk (2.2.1ig)ve deduce, for every sheaf
onC, a natural isomorphism :

colim F o2, = F;
Nbd(£,0)

where.- : Nbd (¢, C') — € is the functor given by the rulg/, a) — U on every objectU, a).

2.3. Algebra on atopos. LetT be any topos, and enddiwith the structure of tensor category
as explained in example_1.2]10 (so, the tensor functor isngiy fixed choices of products for
every pairs of objects df’, and any final object, can be taken for unit object ¢, ®)). We
notice that( 7, ®) admits an internallom functor (see remark 1.2.112(ii)). Indeed, létand X’
be any two objects df'. It is easily seen that the presheaf’bn

Uw— HOIHT/U(X(U, X|U) = HOIHT(X/ X U, X)
is actually a sheaf ofi’, Cr) (notation of example 2.2.6(iii)), so it is an objectBf denoted :
Homp (X', X).
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The functor :
T—T : X Homp(X' X)

is right adjoint to the functof” — 7': Y — Y x X', soitis an internaHom functor for X".
If f:T — S is amorphism of topoi, antl € Ob(S), we have a natural isomorphism.$h:

(2.3.1) Homg (Y, f.X) = foomp(f*Y, X)
which, on everyU € Ob(SS), induces the natural bijection :
Homg(Y x U, f.X) = Homs(f*Y x f*U, X)
given by the adjunctionif*, f.). By general nonsense, from (2.3.1) we derive a natural mor-
phisminsS :
fedtomy (X', X) — Homs(f. X', f.X)
and inT :
F Homs(Y',Y) Ly AHomp(fY', fY)  foranyY,Y’ € Ob(S).
Moreover, ifg : U — T is another morphism of topoi, the diagram :

g 9y

g f*Homg(Y'Y) g Homp(f*Y', f*Y)

(2.3.2) x /

HHomy (g* Y, g* f*Y)

commutes, up to a natural isomorphism.

2.3.3. LetA be any object of’, and( X, ux) a left A-module for the tensor category structure
onT as in [2.8); for every objedt of 7" we obtain a leftd;,-module (on the topo% /U : see
examplé2.2]6(iii)), by the rule :

(X, px) v = (Xjp, px X 1y).
If (X', ux+) is another leftA-module, it is easily seen that the presheaffon

U HomA\U‘MOdl<(X7 1x)|Us (X', px)|v)
is actually a sheaf for the canonical topology, so it is arecbpfT’, denoted :

AHoma, (X, px), (X', uxr))

(or just.#Zom 4, (X, X’), if the notation is not ambiguous). The same consideratiamsbe
repeated for the sets of morphisms of rigkimodules, and of A, B)-bimodules, so one gets
objectsZomp, (X, X') and #om 4 5)(X, X'). By a simple inspection, we see that these
objects are naturally isomorphic to the objects denotechinstame way in(1.2.14), so the
notation is not in conflict witHoc.cit; it also follows that7Zomy, (X, X') is the equalizer of
two morphisms irfl" :

Homp(X, X') —= Homr(A x X, X').

In the same vein, letl, B,C' € Ob(T') be any three objectsy an (A, B)-bimodule, S" a
(C, B)-bimodule, and” a(C, A)-bimodule. Then théC', B)-bimoduleZomp, (S, S") and the
(C, B)-bimoduleS” @4 S (seel(1.2.17)) are the sheaves(@hC7r) associated to the presheaf
given by the rules U — Homgp, (S, S|;), and respectively U — S"(U) @) S(U) for
every objectU of T'. Furthermore, the general theory of monoids, their modaheistheir tensor
products, developed in sectionll.2 is available in the prtesuation, so we have a well defined
notion of 7-monoid (see example 1.2121(ii) and remark 1.2.24). Vieetgvalencel(2.211), a
T-monoid M is also the same as a sheaf of monaldson the site(7, Cr), and a left (resp.
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right, resp. bi-)M -module is the same as the datum of a stteaf (7', Cr), such thatS(U) is
a left (resp. right, resp. bi}/(U)-module, for every objedV of T'.

2.3.4. Letf : Ty — T, be a morphism of topoid; an object ofl7, and (X, ux) a left A;-
module. Since/, is left exact, we have a natural isomorphisnifA; x X) = f.A; x f.X,
so we obtain a leff, A;-module :

f*<X7 MX) = (f*X7 f*ﬂX)

which we denote jusf, X, unless the notation is ambiguous. Likewise, sifités left exact,
from any objectA, of T», and any leftA,-module(Y, uy ), we obtain a leftf* A,-module :

[ (Yopy) = (Y, fuy).

The same considerations apply of course, also to right nescarid to bimodules. Furthermore,
let A;, B;, C; be three objects of; (for i = 1,2); since f. is left exact, for any(A;, B;)-
bimodule X and any(Cy, A;)-bimodule X’ we have a natural morphism ¢f.C}, f.B)-
bimodules :

f*X, O f. Ay [iX — f*(X, ®A, X)
and sincef* is exact, for any( A, Bs)-bimoduleY and any(C5, A;)-bimoduleY”’ we have a
natural isomorphism :

FY @pea, fY 5 f1(Y @4, Y)
of (f*Cs, f*Bs)-bimodules.

2.3.5. The constructions of the previous paragraphs algly &p presheaves df : this can
be seene.g.as follows. Pick a universé such that’ is V-small; thenl}} is aV-topos. Hence,
if A is anyV-presheaf orf’, and X, X’ € Ob(Ty}) two left A-modules, we may construct
Stomy, (X, X') as an object i}. Now, if A, X, X’ lie in the full subcategory} of 71}, it is
easily seen that alsé¢om 4, (X, X') lies inT}}. Likewise, if A, B, C are twoU-presheaves on
T, we may defineX’ ®4 X in 1)}, for any (A, B)-bimoduleX and(C, A)-bimoduleX’, and
this tensor product will still be left adjoint to the#om-functor for presheaves dh.

Moreover, we have a natural morphism of toppi. (7', Cr)y — 13, given by the forgetful
functor (and its left adjoinf’ — F*) (see example_2.2.6(i)). The restrictionf to the full
subcategory ) factors through the inclusich — (T, Cr)y, therefore, the discussion 6f (2.8.4)
specializes to show that, for evetrpresheafd on T', and everyA-module X € Ob(T}}),
the objectX* € Ob(T) is naturally anA“-module. Also, for any(A, B)-bimodule X and
(C, A)-bimoduleX”, such that4, B, C, X, X’ areU-small, we have a natural isomorphism of
(C*, B*)-bimodules :

X" Q40 X5 (X' @4 X)“
The following definition gathers some further notions — $ji@to monoids over a topos — which
shall be used in this work.

Definition 2.3.6. Let T" be a topos) a’T-monoid,S a left (resp. right, resp. bid)/-module.

(i) S is said to beof finite type if there exists a covering family/, — 11 | A € A) of the
final object of T, and for everyA € A an integem, € N and an epimorphism of left
(resp. right, resp. bi-} ;; -modules :M%T — Sy, -

(i) S is finitely presentedif there exists a covering family/, — 17 | A € A) of the
final object of 7', and for everyA € A integersm,,n, € N and morphismgy, g, :
Mj™ — M whose coequalizer — in the category of left (resp. rightpresi-)
ka-modules —is isomorphic t§y, .

(i) S Is said to becoherent if it is of finite type, and for every objedV in T', every
submodule of finite type of);; is finitely presented.
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(iv) S is said to benvertible if there exists a covering familfU, — 17 | A € A), and
for every A € A, an isomorphism\/,;;, = Sju, of left (resp. right, resp. bi-M, ;-
modules. (Thus, every invertible module is finitely presenk

(v) AnidealI C M is said to banvertible (resp.of finite type resp.finitely presented
resp.coherentif it is such, when regarded as aii-bimodule.

Example 2.3.7.(i) Take againl’ = Set. Then anM-modules is of finite type if and only if
there exists a finite subset C S, such thatS = M - 3, with obvious notation. In this case,
we say thats is afinite system of generatoo$ S (and we also say thdt is finitely generatep
likewise, an ideal of finite type is also called finitely gesmiad). We say tha$' is cyclic, if

S =M - sforsomes € S.

(iiy If S andS’ are twoM-modules, the coprodud & S’ is the disjoint union ofS and
S’, with scalar multiplication given by the disjoint union dfet lawsys andus.. The product
S x S’ is the cartesian product of the underlying sets, with saalaltiplication given by the
rule:z-(s,s') :=(x-s,z-5)foreveryr € M,s,€S5,s € 5.

For future use, let us also make the :

Definition 2.3.8. Let T’ be any toposP aT-monoid, and N, +, 0) any monoid.

(i) We say thatP is N-graded if it admits a morphism of monoids : P — Np, where
Nr is the constant sheaf of monoids arising fraym(the coproduct of copies of the
final object1y indexed byN). For everyn € N we letP, := 7~ !(nr), the preimage
of the global section correspondingrto Then

p=1]kE,

neN
the coproduct of the object8,,, and the multiplication law ofP restricts to a map
P, xP, — P, ., foreveryn,m ¢ N. Especially, eacl?, is a P,-module, andP
is also the direct sum of th,,, in the category of?,-modules. The morphism is
called thegradingof P.

(i) In the situation of (i), letS be a left (resp. right, resp. bif}-module. We say that is
N-graded if it admits a morphism ofP-modulesrs : S — Nr, whereNr is regarded
as aP-bimodule via the grading of P. ThenS'is the coproduct = [], . S», Where
S, = mg'(nr), and the scalar multiplication ¢f restricts to morphism®,, x S,, —
Snim, for everyn, m € N. The morphisntg is called thegradingof S.

(iif) A morphism P — @ of N-graded/’-monoids is a morphism of monoids that respects
the gradings, with obvious meaning. Likewise one definespitiems of N-graded
P-modules.

Example 2.3.9.TakeT = Set, and let)M be any commutative monoid. Then we claim that
the only invertible object in the tensor categavf-Mod, is M; i.e. if S andS’ are any two
(M, M)-bimodules, therb ®,, S’ ~ M if and only if S and.S” are both isomorphic td/.

Indeed, lety : S ®,, S’ = M be an isomorphism, and choosge S, s, € S’ such that
©(so ® s;) = 1. Consider the morphisms of left’-modules :

M-5s Py w2l e B
such that :
a(m)=m-sy [(s)=@(s®@s,) a'(m)=m-s, ['(s)=p(so®5)

for everym € M, s € S, s € S'; we notice that3 o a = 1, = 3 o /. There follows natural
morphisms :

S M@y 8 22 @ 8 P My 8 T
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whose composition is the identifys,. However, it is easily seen thato (o ®y ") oy = /'
andylo (B®y S')op ! =, thusa’ o 8/ = 1, hence both' and 3" are isomorphisms,
and the same holds ferands.

Example 2.3.10.Let M be aT-monoid, andZ a M-bimodule. For every. € N, let £%" .=
Z Q- Qu Z, then-fold tensor power ofZ. TheN-graded)M -bimodule

Tens},.Z = H e
neN
is naturally aN-graded7-monoid, with composition law induced by the natural mogpoins
L @y L S Lot for everyn, m € N. (Here we setZ®° := M.) If & is invertible,
Tens$},.Z is a commutativéN-graded/’-monoid, which we also denofm},.Z .

Remark 2.3.11.(i) Let f : T'— S be a morphism of topoil/ := (M, uys) aT-semigroup,
andN := (N, uy) aS-semigroup. Then clearly. M := (f.M, f.un) is aS-semigroup, and
f*N = (f*N, f*uy) is aT-semigroup.

(i) Furthermore, ifly; : 17 — M (resp.1y : 1 — N)is a unit forM (resp. forN), then
notice thatf, 1 = 15 (resp. f*1s = 1), since the final object is the empty product; it follows
that f, 15, (resp.f*1g) is a unit for f, M (resp. forf*N).

(i) Obviously, if M (resp.lV) is commutative, the same holds fArM (resp.f*N).

(iv) If X is aleft M-module, thenf, X is a left f,AM-module, and ifY” is a left N-module,
then f*Y is a left f* N-module. The same holds for right modules and bimodules.

(v) Moreover, letey, : f*f.M — M (resp.ny : N — f.f*N) be the counit (resp. unit) of
adjunction. Then the counit (resp. unit) :

ex SN 2 Xy (respay Y = o Vig)

is a morphism off* f, M -modules (resp. oN-modules) (notation of (1.2.26)). (Details left to
the reader.)
(vi) Lety : f*N — M be a morphism of’-monoids. Then the functor

N-Mod; =+ M-Mod;, : Y = M@y fY
is left adjoint to the functor :
M'MOdl — M'MOdl : X = f*X(nN)'

(And likewise for right modules and bimodules : details tefthe reader.)

(vii) The considerations of (2.3.5) also apply to monoidse get that, for any presheaf of
monoidsM := (M, un, 1a) onT, the datumM @ := (M?, u$,, 1%,) is aT-monoid, and we
have a well defined functor :

M-Mod; — M“-Mod,; X — X
(And as usual, the same applies to right modules and bimsdule

2.3.12. LetT be a topos[/ any object ofl’, and M a T-monoid. As a special case of re-
mark[2.3.111(i), we have th&/U-monoid j;;M = My, and if we takep := 1;. , in remark
[2.3.11(vi), we deduce that the functor

ji s M-Mod;, — My-Mod, Y + Y|y

admits the right adjoinfy.. Now, suppose thak' — U is any left M,;-module. The scalar
multiplication of X is aU-morphismuyx : M x X — X andjyux is the same morphism,
seen as a morphism ifi (notation of example 2.2.6(iii)). In other wordg;, induces a faithful

functor on left modules, also denoted :

.jU! : M|U'M0dl — M-Modl.
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It is easily seen that this functor is left adjoint to the fgoéng functorj;;,. Especially, this
functor is right exact; it is not generally left exact, sinteloes not preserve the final object
(unlessU = 17). However, it does commute with fibre products, and theeetoainsforms
monomorphisms into monomorphisms. All this holds also fgihtrmodules and bimodules.

2.3.13. LetT be any category as in example 1.2.21(i), denoté pw final object of7’, and
by M anyT-monoid. Apointed leftA/-moduleis a datum

(5705)

consisting of a left\M/-module S and a morphism of\/-modulesOs : 1 — S, where0 is
the final object ofA/-Mod,. Often we shall writeS instead of(S, 0s), unless this may give
rise to ambiguities. As usual, a morphism: S — T of pointed modules is a morphism of
M-modules, such thdty = ¢ o 0g. In other words, the resulting category is jogi\/-Mod,,
and shall be denotetl/-Mod,,.

Likewise one may define the categaty-Mod,., of right M-modules, andM, N)-Mod,
of pointed bimodules, for givei-monoids)M and V.

Remark 2.3.14.Let T be a category as in remdrk 1.2.24.

(i) Forreasons that will become readily apparent, for mamppses the categories of pointed
modules are more useful than the non-pointed variant 0fZ2)21n any case, we have a faithful
functor :

(2315) M'MOdl — M'l\/IOdlO S— S, = (S D 0, 05)

wherelg : 0 — S @ 0 is the obvious inclusion map. Thus, we may — and often wilthait
further comment — regard any -module as a pointed module, in a natural way. (The same can
of course be repeated for right modules and bimodules.)

(i) Inturn, when dealing with pointed/-modules, things often work out nicer iff itself
is apointed7-monoid The latter is the daturq}M, 0,,) of a7-monoid M and a morphism of
M-modules0,; : 0 — M. A morphism of pointed’-monoids is of course just a morphism
f: M — M' of T-monoids, such thaf o 0,; = 0. As customary, we shall often just write
M instead of( M, 0,,), unless we wish to stress thit is pointed.

(iii) Let (M,0,,) be a pointed’’-monoid; apointed left(1/, 0,,)-moduleis a pointed left
M-module S, such that) - s = 0 for everys € S. A morphism of pointed lef{M, 0,,)-
modules is just a morphism of pointed Idft-modules. As usual, these gadgets form a category
(M, 05)-Mod,,. Similarly we have the right and bi-module variant of thisialiéion.

(iv) The forgetful functor from the category of pointddtmonoids to the category af-
monoids, admits a left adjoint :

M = (Mm OJ\Jo)'

Namely, M, is the M-moduleM & 0, the zero map,,, : 0 — M @ 0 is the obvious inclusion,
and the scalar multiplicatioh x M, — M, is extended to a multiplication law: M, x M, —
M, in the unique way for whichM,, 11, 0,,) is a pointed monoid. The unit of adjunction
M — M, is the obvious inclusion map.

(v) If M is a (non-pointed) monoid, the restriction of scalars

(Mo, OMO)'MOdZO — M-Modlo

is an isomorphism of categories. Namely, any pointedAéftmoduleS is naturally a pointed
left M ,-module : the given scalar multiplicationl x S — S extends to a scalar multiplication
M, x S — S whose restrictio) x S — S factors through the zero sectiog (and likewise
for right modules and bimodules).

(vi) LetT be atopos. The notions introduced thus far for non-poifitedonoids, also admit
pointed variants. Thus, a pointed modufe 0s) is said to beof finite typef the same holds for
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S, andS is finitely presentedf, locally on 7', it is the coequalizer of two morphisms between
free M-modules of finite type.

Example 2.3.16.TakeT := Set, and letM be any monoid; then a pointed leff-module is
just a leftAM/-moduleS endowed with a distinguisheziro element € S, such thatn - 0 = 0
for everym € M. A morphismy : S — S’ of pointed leftA/-modules is just a morphism of
left AM/-modules such thagt(0) = 0 (and similarly for right modules and bimodules.)

Likewise, a pointed monoid is endowed with a distinguishexd elementenoted) as usual,
such that) - =z = 0 for everyx € M.

Remark 2.3.17.Let T be a category as in remdrk 1.2.24, adda 7-monoid.

() Regardless of whethel/ is pointed or not, the category/-Mod,, is also complete
and cocomplete; for instance, (if, 05) and (S’, 0s/) are two pointed modules, the coproduct
(S",051) := (S5,05) @ (5,04) is defined by the push-out (in the categdryrMod,) of the
cocartesian diagram :

05@04s
000 —25 L g9
(l/] Ogn Sl;/

Likewise, if ¢’ : 8" — S andy” : S” — S are two morphisms id/-Mod,., the fibre product
S’ x5 S" in the category//-Mod; is naturally pointed, and represents the fibre product in the
category of pointed modules. All this holds also for rightdates and bimodules.

(i) The forgetful functorA/-Mod,, — T, := 17/T to the category of pointed objects of
T, commutes with all limits, since it is a right adjoint; it alsommutes with all colimits. This
forgetful functor admits a left adjoint, that assigns to &hg Ob(T") thefree pointedY/-module
M- If M is pointed, the latter is defined as the push-out in the cesian diagram

Il x XY — M x X

o

1T _ M(Z)O

and if M is not pointed, one defines it via the equivalence of rerhaKlZ(v) : by a simple
inspection we find that in this casel™° = (M®)),, where M®) is the free (unpointed)
M-module, as in remaik_L.2.P4(iii).

Notice as well that the forgetful functor$ — 7"andM-Mod,;, — M-Mod, both commute
with all connected colimits, hence the same also holds ffdtgetful functordA/-Mod;, — T.
(See definition 1.1.37(vii).) The same can be repeateddbt modules and bimodules.

(ii) Moreover, if p : S — S’ is any morphism inM/-Mod,;,, we may defind{er ¢ and
Coker ¢ (in the categon)/-Mod,.); namely, the kernel is the limit of the diagratn® S’ < 0
and the cokernel is the colimit of the diagrém— S = S’. Especially, ifS is a submodule of
S’, we have a well defined quotiefit/S of pointed leftA/-modules. Furthermore, we say that
a sequence of morphisms of pointed l&ftmodules :

0595555 50
is right exact if v induces an isomorphisiioker ¢ — S”; we say that it ideft exact if ¢

induces an isomorphisii’ = Ker, and it isshort exactif it is both left and right exact.
(Again, all this can be repeated also for right modules antbllules.)

Example 2.3.18.TakeT = Set, and letM be a pointed or not-pointed monoid. Then the
argument from example 1.2]27 can be repeated for the freggubi/-modules : if¥ is any set,
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we have
M®e @)y {1} 5 {1} =%,
wherey., is the disjoint union o¥ and the final object dbet (a set with one element). Hence,

the cardinality ofS is an invariant, called theank of the free pointed//-module/*), and
denotedk$, M ™)

2.3.19. LetT be atopos(M,0y,), (IN,05) and(P,0p) three pointed’’-monoids,S, (resp.
S’") a pointed(M, N)-bimodule (resp(P, IV)-bimodule); we denote

Homy o), (S, S)
the set of all morphisms of pointed right-modulesS — S’. As usual, the presheaf
%Om(ﬂ’ON)T(S’ S,) U Hom(ﬂﬁw)r\u (S|U> SIIU)

(with obvious notation) is a sheaf @dft’, C+), hence it is represented by an objecffofindeed,
this object is also the fibre product in the cartesian diagram

Fomn on), (S, S") —= Homny, (S, ")

0gr,

Homy;, (0,0) Homy, (0,5).

Especially om0, (S5, S") is naturally & P, M )-bimodule, and moreover, it is pointed : i
zero section represents the unique morphism S’ which factors through.

Notice also that, for every pointed®, M )-bimodule S”, the tensor product” ®,,; S is
naturally pointed, and as in the non-pointed case, the dunct

(2.3.20) (P,M)-Mod, — (P,N)-Mod, : S"— S5"®@yS
is left adjoint to the functor
(P,N)-Mod, — (P,M)-Mod, : S~ Som,y,(S,95).

By general nonsense, the functior (2.3.20) is right exape@ally, for any right exact sequence
T"— T — T" — 0 of pointed(P, M )-bimodules, the induced sequence

T/®MS—>T®MS—>TH®]W‘S—>O
is again right exact.

Remark 2.3.21. Supposel, N and P are non-pointed’-monoids,S is a (M, N)-bimodule
andS” a(P, M)-bimodule.

() If S andS” are pointed, one may define a tensor prodtitt,, S in the category
(P, N)-Mod,, if one regardsS as a pointed M, N,)-bimodule, andS” as a(P,, M,)-
bimodule as in remark 2.3.114(v); then one sets sinifily,, S := S” @, S, which is then
viewed as a pointe@P, N)-bimodule. In this way one obtains a left adjoint to the cep@nding
internal Hom-functor s#omy from pointed(P, IV)-bimodules to pointedP, M )-bimodules
(details left to the reader).

(i) Finally, if neither.S nor S” is pointed, notice the natural isomorphism :

(8" @ S)o = S @1, So in the category P, N)-Mod.,.

Definition 2.3.22. In the situation of[(2.3.19), le€? = N := (17)., and notice that — with these
choices ofP and N — a pointed P, M )-bimodule (resp. a pointed//, V)-bimodule) is just a
right pointed) -module (resp. a left pointetl/-module), and a pointed®, N )-module is just
a pointed object of .
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(i) We say thatS is aflat pointed leftA/-module (or briefly, that is M -flat), if the functor
(2.3.20) transforms short exact sequences of right poihfedodules, into short exact
sequences of pointéb-objects. Likewise, we define flat pointed right-modules.

(i) Let ¢ : M — M’ be a morphism of pointed@-monoids. We say that is flat, if M is
a flat left A/-module, for the module structure induceddy

Remark 2.3.23. (i) In the situation of remark 2.3.11(i), suppose thdt := (M,0,) is a
pointed7-monoid andV := (N, 0y) a pointedS-monoid. By arguing as in remark 2.3111(ii),
we see thaf*N := (f*N, f*0y) is a pointed/’-monoid, andf.M := (f.M, f.0,,) is a pointed
S-monoid.

(i) Likewise, if (X,0x) is a pointed leftd/-module, andY, 0y) a pointed left\V-module,
the f.(X,0x) := (f.X, f.0x) is a pointedf.M-module, andf*(Y,0y) := (f*Y, f*0y) is a
pointedf* N-module (and likewise for right modules and bimodules).

(iii) Also, just as in remark 2.3.11(vii), the associatecahfunctor? — F*° transforms
a presheafl/ of pointed monoids off’, into a pointed/’-monoid M“, and sends pointed left
(resp. right, resp. bi-}/-modules to pointed left (resp. right, resp. hi4f*'-modules.

(iv) Moreover, ifp : f*N — M is a morphism of pointed-monoids, then — in view of the
discussion of[(2.3.19) — the adjunction of remark 2.3.)1¢xtends to pointed modules : we
leave the details to the reader.

(v) Furthermore, in the situation af (2.3]12), we may alsfirdea functor

Jur + Mjy-Mod,ec — M-Mod,,

which will be a left adjoint tgj;. Indeed, le{ X, 0x) be aleft pointed// ;,-module; the functor
from (2.3.12) yields a morphisna; 0y of (non-pointed)\/-modules, and we defing, (X, 0x)

Jui0x

to be the push-out (in the categaty-Mod,) of the diagranD < j;0x —— j;X. The
latter is endowed with a natural morphish- j,(X, 0x), so we have a well defined pointed
left M-module. We leave to the reader the verification that thdtiagdunctor, calledextension
by zerq is indeed left adjoint to the restriction functor.

(vi) It is convenient to extend definition 2.3]122 to non-geth modules and monoids :
namely, if S is a non-pointed leffl/-module, we shall say thét is flat, if the same holds for
the pointed leftM ,-modulesS,. Likewise, we say that a morphism: M — N of non-pointed
T-monoids idlat, if the same holds fop.,.

Lemma 2.3.24.LetT be a topos{/ any object off’, and denote by, : CU — T the inclusion
functor of the complement 6fin 7' (see examplg.2.6(iv)). Let alsoM, N, P be three pointed
T-monoids. Then the following holds :

(i) The functorj;;, of extension by zero is faithful, and transforms exact secge® of
pointed left)/ ;,-modules, into exact sequences of pointedAéfmodules (and like-
wise for right modules and bimodules).

(i) Forevery pointedM, N)-bimoduleS and every pointedP,;, M ;;)-bimoduleS’, the
natural morphism of pointe@P, N)-modules

Jui(S" ®ury Sw) — S @ur S

is an isomorphism.

(i) If S is flat pointed leftM ;;-module, thenj;»S is a flat pointed left\ -module (and
likewise for right modules).

(iv) For every pointed M, N)-bimoduleS, and every pointedi* P, i* M )-bimoduleS’, the
natural morphism of pointed?, V)-bimodules

1S @ S = 14 (S ®epr 1°9)

is an isomorphism.
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(v) If S'is a flat pointed lefi*A/-module, then,.S is a flat left pointed}/-module (and
likewise for right modules).
(vi) If S'is a flat pointed left\/-module, therb);; is a flat left pointed\/,,,-module.

Proof. (i): Let us show first thaj, is faithful. Indeed, suppose thatv : S — S’ are two
morphisms of left pointed/ ;;-modules, such thatp = ji1). We need to show that = ).
Letp : 8" — S” be the coequalizer af and; thenjp is the coequalizer ofyp and jiy
(sincejy is right exact); hence we are reduced to showing that a memphi: S’ — S” is an
isomorphism if and only if the same holds fgrp. This follows from remark1.2.24(ii) and the
following more general :

Claim?2.325 Lety : X — X', A — X, A — B be three morphisms ifi’. Theny is a
monomorphism (resp. an epimorphism) if and only if the saoiddifor the induced morphism
ey B: X1IyB— X'114B.

Proof of the claim.We may assume that = C~ for some small site”’ := (¢, J). Then

e lla B = (ip ;4 iB)*, wherei : C~ — %" is the forgetful functor. Since the functor
I F%is exact, we are reduced to the case wheére €, and in this case the assertion can
be checked argumentwideg. we may assume thdt = Set, where the claim is obvious. ¢

Next, we already know thagt, transforms right exact sequences into right exact seqsence
To conclude, it suffices then to check that transforms monomorphisms into monomor-
phisms.To this aim, we apply again remark 1.2.24(ii) anthtBA3.25.

(i) is proved by general nonsense, and (iii) is an immediatesequence of (i) and (i) : we
leave the details to the reader.

(iv): By 2.3.4), we havej;;(i.S" @ S) =~ 0 ®j:a jiS =~ lryu, hencei,S" @y S €
Ob(CU). Notice now that, for every object of CU, the counit of adjunctioi*i, X — X isan
isomorphism (proposition 1.1.111(ii)); by the trianguldentities of [(1.1.8), it follows that the
same holds for the unit of adjunctienX — i.i*i, X . Especially, the natural morphism :

1.8 @ S — 1,7 (1.8" @pr S) = 14 (1%1,S" Rppr 1°9) = 14 (S Riepg 1°5).

is an isomorphism. The latter is the morphism of assertin (i

(v) follows easily from (iv) and its proof.

(vi): In view of (i), it suffices to show that the functdt’ — ji(S" @, Siy) transforms
exact sequences into exact sequences. The latter follsig ram (ii). O

Proposition 2.3.26.Let P(7, M, S) be the property : 'S is a flat pointed left\/-module” (for
a monoid) on a toposl’). ThenP can be checked on stalks. (See renfagk14(ii).)

Proof. Suppose first thafi, is a flat left)/ .-module for every in a conservative set @f-points;
let o : X — X’ be a monomorphism of pointed righf-modules; by[(2.314) we have a natural
isomorphism
(¢ @ur S)e = ¢ R, S¢

in the category of pointed sets, and our assumption impgiesthese morphisms are monomor-
phisms. Since an arbitrary product of monomorphisms is aamamphism, remark 1.1.88(iii)
shows thaty ®,, S is also a monomorphism, whence the contention.

Next, suppose thd is a flat pointed left\/-module. We have to show that the functor

(2.3.27) S S ®ME Sg

from pointed rightM .-modules to pointed sets, preserves monomorphisms.
However, let(U, &, wy) be any lifting of¢ (seel(2.2.11)); in view of(2.3.4), we have

Py(S') = (f(*JfU*S/) ® A, Sg (&*JSU*S,) Qer Ay S(*JS\U =~ f(*J(fU*S, QA S\U)
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and then lemma_2.3.24(vi) implies that the functér— Py (S’) preserves monomorphisms.
By lemmdZ.2.23, remafk 2.2118(i) and (2.2.13), the fun@®B.27) is a filtered colimit of such
functors P, hence it preserves monomorphisms as well. O

2.3.28. We wish now to introduce a few notions that pertathéspecial class of commutative
T-monoids. Wherl" = Set, these notions are well known, and we wish to explain quidhat
they generalize without problems, to arbitrary topoi.

To begin with, for every category as in examplé 1.2.21(i), we denote B¥ndr (resp.
Mnd7,) the category of commutative unitary non-pointed (respnigeal) 7-monoids; in case
T = Set, we shall usually drop the subcript, and write jMind (resp.Mnd,). Notice that, if
M is any (pointed or not pointed) commutati¥emonoid, every left or righfi/-module is a/-
bimodule in a natural way, hence we shall denote indifféydmnt A/-Mod (resp. M-Mod,)
the category of non-pointed (resp. pointed) left or rigdtmodules.

The following lemma is a special case of a result that holdeergenerally, for every "alge-
braic theory” in the sense df [11, Def.3.3.1] (seel[11, F3aepl, Prop.3.4.2)]).

Lemma 2.3.29.LetT be a topos. We have :

() The categoryMnd; admits arbitrary limits and colimits.
(i) In the categoryMnd-, filtered colimits commute with all finite limits.
(i) The forgetful functor : Mind; — T that assigns to a monoid its underlying object of
T, commutes with all limits, and with all filtered colimits.

Proof. (iii): Commutation with limits holds becaus@dmits a left adjoint : namely, to an object
Y of T one assigns thizee monoidN(TE) generated by, defined as the sheaf associated to the
presheaf of monoids

U~ NEU)  foreveryU e Ob(T)

whereN is the additive monoid of natural numbers (see rerhark Z@iiJJL One verifies easily
that thisT-monoid represents the functor

M — HOH]T(E,M) Mnd; — Set.

Moreover, if I is any small category, anfl : I — Mnd, any functor, one checks easily
that the limit of. o F' can be endowed with a unique composition law (indeed, thi¢ dfrthe
composition laws of the monoids), such that the resulting monoid represents the limit of

A similar argument also shows thisind admits arbitrary filtered colimits, and thatom-
mutes with filtered colimits. It is likewise easy to show tha product of twdl-monoidsM
and N is also the coproduct @i/ and N. To complete the proof of (i), it suffices therefore
to show that any two maps, ¢ : M — N admit a coequalizer; the latter is obtained as the
coequalizertV’ (in the category") of the two morphisms :

pno(fX1n)

M x N N.

uNo(gX1N)

We leave to the reader the verification that the compositiandf N descends to a (necessarily
unique) composition law ofV’.
(ii) follows from (iii) and the fact that the same assertiaids in7' (remarkK2.2.R(iii)). O

Example 2.3.30.(i) For instance, ifl' = Set, the product\/; x M, of any two commutative
monoids is representable Mnd; its underlying set is the cartesian product\éf and M5, and
the composition law is the obvious one.

(i) As usual, the kerneKer ¢ (resp. cokerneCoker ) of a map of/’-monoidsp : M — N
is defined as the fibre product (resp. push-out) of the diagfdfimonoids

M 5 N+« 1p  (resp.ly «+ M %5 N).
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Especially, ifM C N, one defines in this way the quotienit/ /.

(ii) Also, if T'= Set, andyp; : M — M, vs : M — M, are two maps ifMInd, the
push-out)M; 11, M, can be described as follows. As a set, it is the quoti@ft x Ms)/~,
where~ denotes the minimal equivalence relation such that

(mqy,mg - pa(m)) ~ (mq - 1(m), ms) for everym € M, my; € My, my € M,

and the composition law is the unique one such that the grofed/; x My — M, 11, M, is
a map of monoids. We deduce the following :

Lemma 2.3.31.Let G be an abelian group. The following holds :

() fo: M — Nandy : M — G are two morphisms of monoids (in the togos- Set),
G 11, N is the quotientG x N)/~, where~ is the equivalence relation such that :

(gv TL) ~ (glv TL,) A (w(a’) 9, (p(b) ’ TL) - (¢(b) : gla QD((I) ’ TL,) for someu, be M.

(i) fo: G — Mandy : G — N are two morphisms of monoids, the set underlying
MTIg N is the set-theoretic quotiefd/ x N)/G for theG-action defined vidp, v 1).

(iii) Especially, ifM is a monoid and~ is a submonoid o/, then the set underlying/ /G
Is the set-theoretic quotient af by the translation action o€:.

Proof. (i): One checks easily that the relatienthus defined is transitive. Let be the equiv-
lence relation defined as in example 2.3.30(iii). Clearly :

(g,n-v(m)) = (g-p(m),n) foreveryg € G,n € N andm € M

hence(g,n) ~ (¢',n’) implies(g,n) =~ (¢, n’). Conversely, suppose that(a) - g, ¢(b) - n) =
((b) - ¢',p(a) -n') for someg € G,n € N anda,b € M. Then:

(9.n) = (g.9(a) - ¢(a)™ - n) ~ (Y(a) - g, p(a) ™" -n) = ((Ob) - ¢, p(a)"" - n)

as well as (¢, n') = (¢, ¢(b) - p(a) "' - n) ~ (¥(b) - ¢', p(a) " - ). Hence(g, n) ~ (¢, 1)
and the claim follows.
(i) follows directly from examplé 2.3.30(iii), and (iiisia special case of (ii). O

2.3.32. LetT be atopos. For any-ring R, we let R-Mod be the category of2-modules
(defined in the usual way); especially, we may considefitheng Z (the constant sheaf with
valueZ : see examplé 2.2.6(v)). Theéfi--Mod is the category of abeliai’-groups. The
forgetful functorZ,-Mod — Mnd; admits a right adjoint :

Mnd; — Zp-Mod @ M +— M*.
The latter can be defined as the fibre product in the carteshgnaoh :
M* —— M x M

l 1 iuM

M
Ly

Fori =1,2,letp;, : M x M — M be the projections, ang : M~ — M the restriction of;;
for everyU € Ob(T), the image o (U) : M*(U) — M(U) consists of all sections which
areinvertible i.e. for which there existy € M (U) such thatu,,(z,y) = 1. Itis easily seen
that such inverse is unique, henges a monomorphisiy; andp/, define the same subobject
of M, and this subobjed/* is the largest abeliali-group contained id/. We say thaf\/ is
sharp if M* = 1r. The inclusion functor, from the full subcategory of shdrmonoids, to
Mndr, admits a left adjoint

M~ M= M/M*".
We call M/* thesharpeningof M.
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2.3.33. LetS be a submonoid of a commutati¥émonoid M, andFs : Mnd — Set the
functor that assigns to any commutatiVemonoid N the set of all morphismg : M — N
such thatf(S) ¢ N*. We claim thatFs is representable by A-monoidS M.

In caseT = Set, one may realize&s~' M as the quotientS x M)/~ for the equivalence
relation such thats,, x1) ~ (sq, z5) if and only if there exists € S such thats,zos = tsyz;.
The composition law o' M is the obvious one; then the class of a pairr) is denoted
naturally bys—!z. This construction can be repeated on a general toposndetti:= S x M,
the foregoing equivalence relation can be encoded as ttaizgu of two mapsX x X xS —
M, and the quotient under this equivalence relation shalepeasented by the coequalizer of
two other mapsk — X ; the reader may spell out the details, if he wishes. EquinbleS—' M
can be realized as the sheaf(@n Cr) associated to the presheaf :

T—Mnd : U~ SU) M)

(see remark 2.3.11(vii)). The natural morphigth — S~'M is called thelocalization map
ForT = Set, andf € M any element, we shall also use the standard notation :

My :=S;'M  whereSy := {f" |n € N}.

Lemma 2.3.34.Letf; : M — Ny andf, : M — N, be morphisms of'-monoids,S C M,
S; € N; (i = 1,2) three submonoids, such thg{S) c S, for i = 1,2. Then the natural
morphism :

(S1-82) " (N Iy No) — ST, g1,y S;'N,

is an isomorphism.

Proof. One checks easily that both théBemonoids represent the functdnd; — Set that
assigns to any’-monoid P the pairs of morphismség,, go) whereg; : N; — P satisfies
g:(S;) € P*,fori=1,2,andg; o f1 = g2 o f». The details are left to the reader. O

2.3.35. The forgetful functoZ-Mod; — Mnd; from abelianT-groups to commutative
T-monoids, admits a left adjoint

M M® = M~'M.

A commutativeT-monoid M is said to bentegral if the unit of adjunctionM — M?®P is a
monomorphism. The functa¥/ — M?®” commutes with all colimits, since all left adjoints do;
it does not commute with arbitrary limits (see exaniple B8/3.

We denote byint.Mnd the full subcategory oMnd; consisting of all integral monoids;
whenT = Set, we omit the subscript, and write jubht.Mnd. The natural inclusion :
Int.Mnd; — Mnd; admits a left adjoint :

Mnd; — Int.Mnd; : M — MM,

Namely, ™ is the image (in the categof) of the unit of adjunctiom/ — M?®P. It follows
easily that the categodnt.Mnd; is cocomplete, since the colimit of a famil$/, | A € A)
of integral monoids is represented by

: int
(e A
Likewise,Int.Mndr is complete, and limits commute with the forgetful functoft, to check
this, it suffices to show that

L= }\15\1 L(M,)

is integral. However, by lemma2.3129(iii) we halleC [[,_, M, C [],c, M5, whence the
claim.
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Example 2.3.36.(i) TakeT = Set; if M is any monoid, and € M is any element, we say
thata is regular, if the mapM — M given by the rule = — a - z is injective. It is easily seen
that M is integral if and only if every element @f/ is regular.

(i) For an arbitrary topog’, notice that th&’-monoidG* associated to a presheaf of groups
G onT,is aT-group : indeed, the conditiof* = G implies (G*)* = G*, since the functor
F — F°is exact. More precisely, for every preshédfof monoids onZ’, we have a natural
isomorphism :

(M#)* = (M*)#*  for everyT-monoid M
since both functors are left adjoint to the forgetful funchamm 7'-groups to presheaves of
monoids orl".

(iii) It follows from (ii) that a 7-monoid M is integral if and only ifA(U) is an integral
monoid, for everyU € Ob(T). Indeed, ifM is integral, thenM (U) Cc M®P(U) for every
suchU, so M(U) is integral. Conversely, by definition/®? is the sheaf associated to the
presheat/ — M (U)#P; now, if M (U) is integral, we havé/(U) C M (U)sP, and consequently
M C M?®P, since the functof’ — F'® is exact.

(iv) We also deduce from (ii) that the functd — M* sends presheaves of integral
monoids, to integral’-monoids. Therefore we have a natural isomorphism :

(2337) (Mint)a :) (Ma)int

as both functors are left adjoint to the forgetful functamfrintegrall’-monoids, to presheaves
of monoids orl". In the same vein, it is easily seen that the forgetful funfig¢. Mndr — T
commutes with filtered colimits : indeed, (2.3.37) and lenf@29(iii) reduce the assertion
to showing that the colimit of a filtered system of presheaxMestegral monoids is integral,
which can be verified directly.

(v) TakeT = Set, and lety : M — N be an injective map of monoids; ¥ (hencelM) is
integral, one sees easily that the induced m&p: M5 — N*P is also injective. This may falil,
whenN is not integral : for instance, i#/ is any integral monoid, any := M, is the pointed
monoid associated td/ as in remark 2.3.14(iv), then for the natural inclusianV/ — M, we
haveis? = 0, since(M, ) = {1}.

Lemma 2.3.38.Let T be a toposM be an integrall’-monoid, andV C M a T-submonoid.
ThenM /N is an integrall-monoid.

Proof. In light of exampld_2.3.36(iv), we are reduced to the caserafie= Set. Moreover,
since the natural morphisid /N — N ' M/N®" is an isomorphism, we may assume thaits
an abelian group. Now, notice th@t/ /N )e? = M®P /N since the functoP — P& commutes
with colimits. On the other handy/ /N is the set-theoretic quotient @ff by the translation
action of N (lemma2.3.3/1(iii)). This shows that the unit of adjunctitby N — (M /N)#P is
injective, as required. O

2.3.39. LetM be an integral monoid. Classically, one says thais saturated if we have :
M = {a € M® | a" € M for some integer. > 0}.
In order to globalize the class of saturated monoid to ahjttopoi, we make the following :
Definition 2.3.40. Let T be a toposy : M — N a morphism of integradl’-monoids.
(i) We say thatp is exactif the diagram of commutativé-monoids

M—Y N

s |

gp gp
MFEP —— N
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is cartesian (where the vertical arrows are the natural hisngs).

(ii) For any integet: > 0, thek-Frobenius mamf M is the endomorphisrk,, of M given
by the rule :x ~ z* for everyU € Ob(T) and everyr € M(U). We say thatV/ is
k-saturatedif k,, is an exact morphism.

(i) We say that)M is saturatedif M is integral and:-saturated for every integér> 0.

We denote bysat.Mnd the full subcategory dint. Mnd whose objects are the saturated
T-monoids. As usual, whefi = Set, we shall drop the subscript, and just wigat.Mnd for
this category. The above definition (and several of theedlatsults in sectidn 3.2) is borrowed
from [74].

Remark 2.3.41.(i) Clearly, whenT = Set, definition[2.3.40(iii) recovers the classical no-
tion of saturated monoid. Again, for usual monoids, it isilgaseen that the forgetful functor
Sat.Mnd — Int.Mnd admits a left adjoint, that assigns to any integral monuidts satu-
ration M***, The latter is the monoid consisting of all elements A/# such that:* € M for
some integek > 0; especially, the torsion subgroup dfe? is always contained in/***. The
easy verification is left to the reader. Clearly, is saturated if and only it/ = M, More
generally, the unit of adjunctioh/ — M is just the inclusion map.

(i) For a general topo%', and a morphisnp as in definitio 2.3.40(i), notice thatis exact if
and only if the induced map of monoigsl) : M(U) — N(U) is exact for every/ € Ob(T).
Indeed, ifZ, is cartesian, then the same holds for the induced diagragd/) of monoids;
since the natural map/(U)e*> — MEP(U) is injective (and likewise fofV), it follows easily
that the diagram of monoidg,, ) is cartesiani.e. o(U) is exact. For the converse, notice that
9, is of the form(hZ,,)*, whereh : T'— T" is the Yoneda embedding, aftd— F* denotes
the associated sheaf functbf — (7', Cr)~ = T'; the assumption means tha¥ is a cartesian
diagram inT", henceZ is exact inT’, since the associated sheaf functor is exact.

(iii) Example[2.3.36(iii) and (ii) imply that &-monoid M is saturated, if and only it/ (U)
is a saturated monoid, for evetty € Ob(T'). We also remark that, in view of example 2.3.36(ii),
the functorF’ — F* takes presheaves éfsaturated (resp. saturated) monoidsi{eaturated
(resp. saturated)-monoids : indeed, if) : M — M?®" is the unit of adjunction for a presheaf
of monoidsM, thenn® : M* — (M®)* = (M*)&P is the unit of adjunction for the associated
T-monoid, hence itis clear the functér— F* preserves exact morphisms.

(iv) It follows easily that the inclusion functd8at.Mnd; — Int.Mnd; admits a left
adjoint, namely the functor

Int. Mnd; — Sat.Mnd; : M — M

that assigns td/ the sheaf associated to the preshiéaf> M'(U) := M (U)*** onT (notice
that the functord — M’ from presheaves of integral monoids, to presheaves ofatatlr
monoids, is left adjoint to the inclusion functor). Just askamplé 2.3.36(iv), we deduce a
natural isomorphism

(2.3.42) (M) = (M*)*™  for everyT-monoid M

since both functors are left adjoint to the forgetful funrdim@m Sat.Mnd, to presheaves of
integral monoids ofd".

(v) By the usual general nonsense, the saturation functanuates with all colimits. More-
over, the considerations df (2.3135) can be repeated faratat monoids : first, the category
Sat.Mndr is cocomplete, and arguing as in exarriple 2.13.36(iv), onekshthat filtered col-
imits commute with the forgetful funct@at.Mnd — T’; next, if ' : A — Sat.Mndr is a
functor from a small categorn, then for each integer > 0, the induced diagram of integral
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monoids

lim F limp kp
A

h/I\n -@kz P . l l

. limg K22 1.
hl{n Fep _ TARR 11[{11 Fsp

lim F
A

is cartesian; since the natural morphism

(lim F')®" — lim F®P
A A

is @ monomorphism, it follows easily that the limit éf is saturated, henc8at.Mnd is
complete, and furthermore all limits commute with the fafglefunctor to 7.

2.3.43. Inview of remark 2.3.11(,ii,iii), a morphism ofgtoi / : T"— S induces functors :
(2.3.44) f.:Mndr — Mnds  f*: Mndg — Mndr
and one verifies easily that (2.3144) is an adjoint pair otfars.

Lemma 2.3.45.Let f : T — S be a morphism of topoi\/ an .S-monoid. We have :

(i) If M isintegral (resp. saturated);* M is an integral (resp. saturated)-monoid.
(i) More precisely, there is a natural isomorphism :

FAM™) S ()™ (resp. ff(M™) S (FM)™, if M is integral)
(i) If ¢ is an exact morphism of integr&l-monoids, therf*y is an exact morphism of
integral 7-monoids.

Proof. To begin with, notice that the adjoint paif*, f.) of (2.3.44) restricts to a corresponding
adjoint pair of functors between the categories of abéliagroups and abeliafi-groups (since
the conditionG = G* for monoids, is preserved by any left exact functor).

There follows a natural isomorphism :

(f*M)®> = f*(M*=)  for everyS-monoid M

since both functors are left adjoint to the funcfoifrom abelian’’-groups taS-monoids. Now,
if M is an integralS-module, and; : M — M?®® is the unit of adjunction, it is easily seen that
f*n: f*M — (f*M)e? is also the unit of adjunction. From this and proposifion2(i2b), we
deduce the assertion concernifig M™).

By the same token, we get assertion (iii) of the lemma. Egllgcif M is saturated, then the
same holds fo* M. The assertion concerninfg (1/%*") follows by the usual argument. [

Lemma 2.3.46.(i) The functorf* of (2.3.44)commutes with all finite limits and all colimits.

(i) LetP(T, M) be the property M is an integral (resp. saturated)-monoid” (for a
toposT’). ThenP can be checked on stalks. (See renfAgkT4(ii).)

Proof. (i): Concerning finite limits, in light of lemmia2.3.29(iWye are reduced to the assertion
that f* : S — T is left exact, which holds by definition. Next* commutes with colimits,
because it is a left adjoint.

(ii): A T-monoidM is integral if and only if the unit of adjunction: M — M™ is an iso-
morphism. However M ™) = (M,)™, in view of lemmd2.3.45(ii), ang, : M, — (M,)™
is the unit of adjunction. The assertion is an immediate eqnence. The same argument
applies as well to saturatddmonoids. O
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Example 2.3.47.(i) For instance, the unique morphism of togdt 7" — Set (see example
[2.2.6(iii)) induces a pair of adjoint functors :

(2.3.48) Mndy - Mnd : M — I'(T, M) and Mnd — Mndy : P~ Pr

wherePr is the constant sheaf of monoids @i, Cr) with value P.
(il) Specializing lemm&2.3.45(ii) to this adjoint pair, wbtain natural isomorphisms :
(2349) (MT)int :> (Mint)T (MT)sat :> (Msat)T

of functorsMnd — Int.Mnd; andInt.Mnd — Sat.Mndr. Especially, ifM is an integral
(resp. saturated) monoid, then the consfambonoid M is integral (resp. saturated).

(iii) If & isanyT'-point, notice also that the stall; ¢ is isomorphic taV/, sinces is a section
of ' : T"— Set.

2.3.50. LetT be a topos,R aT-ring. We have a forgetful functoR-Alg — Mnd; that
assigns to a (unitary, commutativB}algebra(A, +, -, 14) its multiplicative7-monoid (A4, -).
If T = Set, this functor admits a left adjoifVind — R-Alg : M — R[M]. Explicitly,
R[M] = @,.,, xR, and the multiplication law is uniquely determined by theeru

za-yb:= (x-y)ab for everyz,y € M anda,b € R.
For a general topds, the above construction globalizes to give a left adjoint
(2.3.51) Mnd; — R-Alg  : M — R[M].

The latter is the sheaf o', C'r) associated to the preshddf — R(U)[M(U)], for every
U € Ob(T). The functor([(2.3.51) commutes with arbitrary colimitsx it is a left adjoint);
especially, iftM — M, andM — M, are two morphisms of monoids, we have a natural

identification :
(2.3.52) R[M 11y Ms) = R[M ] ®piu R[M,).

By inspecting the universal properties, we also get a naegoeorphism :
(2.3.53) ST'R[M] = R[S™'M]

for every monoidM and every submonoif ¢ M.

2.3.54. Likewise, ifM is anyT-monoid, letR[M]-Mod denote as usual the category of
modules over th&-ring R[M]; we have a forgetful functoR[M]-Mod — M-Mod. When

T = Set, this functor admits a left adjoin/-Mod — R[M]-Mod : S — R[S]. Explicitly,

R][S] is the freeR-module with basis given by, and theR[)M]-module structure o[S] is
determined by the rule:

za - sb:= pg(x,s)ab for everyz € M, s € S anda,b € R.
For a general topds, this construction globalizes to give a left adjoint
M-Mod — R[M]-Mod : (S, s) ~ RIS]
which is defined as the sheaf associated to the presheafR(U)[S(U)] in T".

2.4. Cohomology on a topos.In this section we introduce the cohomology with values in a
sheaf of (not necessarily abelian) groups over a topos. Weeexplain some basic notions
concerning the points of the étale and Zariski topoi of aesuh, and we conclude with the
proof of Hilbert’s theorem 90 (lemnia 2.4126(iv)).

Definition 2.4.1. Let T be a topos, an@ aT-group.
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(i) A left G-torsoris a leftG-module( X, x ), inducing an isomorphism
(ux,px) Gx X = X x X

(Wherepy : G x X — X is the natural projection) and such that there exists a aoyer
morphismU — 17 in T for which X (U) # @. This is the same as saying that the
unigue morphismY — 17 is an epimorphism.

(i) A morphism of leftz-torsorsis just a morphism of the underlying-modules. Like-
wise, we define righ€--torsors,G-bitorsors, and morphisms between them. We let:

HYT,Q)

be the set of isomorphism classes of rightorsors.
(iii) A (left or right or bi-) G-torsor (X, uux) is said to bdrivial, if I'(7, X) # @.

Remark 2.4.2. (i) In the situation of definitiof 2.411, notice that' (7, G) always contains a
distinguished element, namely the class of the tri@@gbrsor (G, ).

(i) Conversely, suppose thak, ux) is a trivial left G-torsor, and say that € I'(T, X);
then we have a cartesian diagram :

Ho

G X

l llxXO’
Gx X P vox

which shows that XX, 1.x) is isomorphic ta G, 1) (and likewise for rightG-torsors).

(iii) Notice that every morphisnf : (X, ux) — (X', ux/) of G-torsors is an isomorphism.
Indeed, the assertion can be checked locally'qne., after pull-back by a covering morphism
U — 17). Then we may assume that admits a global section € I'(T, X), in which case
o' =00 f eI (T,X"). Then, arguing as in (ii), we get a commutative diagram :

G
X d X'
where bothu, andyu, are isomorphisms, and then the same holdg for

(iv) The tensor product of &-bitorsor and a leftz-bitorsor is a leftG-torsor. Indeed the
assertion can be checked locally’Bnso we are reduced to checking that the tensor product of
a trivial G-bitorsors and a trivial left;-torsor is the trivial leftz-torsor, which is obvious.

(v) Likewise, if G; — G4 is any morphism of’-groups, andX is a leftG;-torsor, it is easily
seen that the base change®, X yields a leftGG,-torsor (and the same holds for right torsors
and bitorsors). Hence the rule — H'(T,G) is a functor from the category @f-groups, to
the category of pointed sets. One can check HAgtl’, ) is an essentially small set (sée 38,
Chap.lll,§3.6.6.1)).

(vi) Let f: T — S be a morphism of topoi; iX is a leftG-torsor, thef,G-modulef, X is
not necessarily &,G-torsor, since we may not be able to find a covering morpHism> 14
such thatf, X (U) # @. On the other hand, iff a S-group andY” a left H-torsor, then it is
easily seen that*Y is a left f* H-torsor.

2.4.3. Letf :T' — T be a morphism of topoi, an@ a 7’-monoid; we define &-presheaf
R'f G onT, by the rule :

U HY(T/fU, Gpv).
(More precisely, since this set is only essentially smad, r@place it by an isomorphic small
set). Ifp : U — V is any morphism ifl’, and X is any G|y -torsor, thenX x;., f*U is
a G| -y-torsor, whose isomorphism class depends only on the igumsm class ofX; this
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defines the ma@! f2G(y), and itis clear thaR! f/'G(p o ) = R f/\G(¢)) o R f1 G (), for
any other morphismp : W — U in T'. Finally, we denote by :
R'f.G
the sheaf o7, Cr) associated to the preshd@ff/ G. Notice that the objedk! f.G is pointed
i.e. it is endowed with a natural global section :
TfG - 1r — le*G

namely, the morphism associated to the morphism of presséav— R! f/G which, for every
U € Ob(T), singles out the isomorphism class:(U) € R* f/G(U) of the trivial G| ;- /-torsor.

2.4.4. Letg: T" — T’ be another morphism of topoi, aid¢tla 7”-group. Notice that :
fLR'GLG = RY(f 0 g)lG

hence the natural morphism (") R' /G — R!f.G induces a morphisn®!(f o )’ G —
fARYq,.G in T, which yields, after taking associated sheaves, a morpinigi

(2.4.5) RY(fo0¢).G — f.R'g.G.

One sees easily that this isn@orphism of pointed objectsf 7, i.e. the image of the global
sectionry.,  under this map, is the global sectigr, .

Next, suppose thal € Ob(T") and X is any g.G|s-y-torsor (on7”/f*U); we may form
the g*9.G\,- p--torsorg® X, and then base change along the natural morpbisnGG — G, to
obtain theG ;- y+p-torsorG ®gy-4. g*X. This rule yields a mag' f/(¢.G) — R*(f o 9).G,
and after taking associated sheaves, a natural morphisoirdep objects :

(2.4.6) R'f.(9.G) = R'(f 0 9).G.

Remark 2.4.7. As a special case, lét: S’ — S be a morphism of topoil/ a .S’-group. If we
takeT” .= 5", T :=S,g:= handf : S — Set the (essentially) unique morphism of topoi,
(2.4.6) and[(2.4]5) boil down to maps of pointed sets :

(2.4.8) HY(S,hH) — H'(S',H) = T'(S,R'h, H).
These considerations are summarized in the following :

Theorem 2.4.9.In the situation of(2.4.4) there exists a naturatxact sequence of pointed
objectsof T':

Iy = R'f.(9.G) = R'(f 0 9).G — f.R'¢.G.
Proof. The assertion means thaf (214.6) identifid. (¢.G) with the subobject :

RY(fog).G X f.R1g.G [+Tg,G
(briefly : the preimage of the trivial global section). We regith the following :

Claim 2.4.10 In the situation of remark 2.4.7, the sequence of maps (Ridedhtifies the
pointed set! (S, h. H) with the preimage of the trivial global section of R'h,.H.

Proof of the claim.Notice first that a global sectiori of R'2.H maps to the trivial section
.5 Of R'h, H if and only if there exists a covering morphidih— 15 in (S, Cs), such that
Y (h*U) # @. Thus, letX be a righth, H-torsor; the image ifi7'(S’, H) of its isomorphism
class is the class of thH-torsorY := h*X ®,+,, g H. The latter defines a global section of
R'h,H. However, by definition there exists a covering morphism- 1 such thatX (U) #

@, hence alsdv* X (h*U) # @, and therefor&”(h*U) # @. This shows that the image of
H'(S, h.H) lies in the preimage of;, ;.
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Moreover, notice that.Y (U) # @, henceh,Y is ah, H-torsor. Now, lety : h*h.H — H
(resp. np.u : he H — h,h*h,H) be the counit (resp. unit of adjunction); we have a natural
morphisma : h*X — Y.,y of h*h,H-modules, whence a morphism :

hoo: h*h*X — h*Yv(h*eH)

of h,h*h,H-modules. On the other hand, the unit of adjunctign: X — h,h*X,, ,is a
morphism ofh, H-modules (remark 2.3.11(v)). Sinégey o .y = 14,1 (See[(1.118)), the
compositionh,.« o nx is a morphism of, H-modules, hence it is an isomorphism, by remark
[2.4.2(iii). This implies that the first map df (2.4.8) is inj&ve.

Conversely, suppose that the class df @orsor X’ gets mapped te;, ; we need to show
that the class ok’ lies in the image of{'(S, h, H). However, the assumption means that there
exists a covering morphisiti — 15 such thatX’(h*U) # @; by adjunction we deduce that
h.X'(U) # @, henceh, X' is ah,H-torsor. In order to conclude, it suffices to show that the
image inH' (S, H) of the class of., X' is the class ofX.

Now, the counit of adjunctioh*h, X’ — X’ is a morphism ofh*h, H-modules (remark
[2.311(v)); by adjunction it induces a maph, X’ ®,-,.y H — H of H-torsors, which must
be an isomorphism, according to remark 2.4.2(iii). O

If we apply claim2.4.10 wittt := 7"/ f*U, S’ :==T"/(¢*f*U) andh := g/(g* f*U), for U
ranging over the objects df, we deduce an exact sequence of presheaves of pointed sets :

lp — R f(g.H) = R'(f 0 9)lG — flR'q.G
from which the theorem follows, after taking associatechshs. OJ

2.4.11. Letf:T" — T be a morphism of topoi/ an object ofl’, G aT’-group,p : X — U
arightG y-torsor. Then, for every objeét of 7' we have an induced sequence of maps of sets

X(f'V) 5 U(f'V) S R LGV
wherep, is deduced fronp, and for everyr € U(f*V), we letd(o) be the isomorphism class of
the rightG) -y -torsor(X x ¢ f*V — f*V). Clearly the image of. is precisely the preimage of
(the isomorphism class of) the trivial-y -torsor. After taking associated sheaves, we deduce
a natural sequence of morphisms/in
(2.4.12) X5 U3 RYG
such that the preimage of the global sectigg is precisely the image ihi(7”, U) of the set of
global sections ofX .

2.4.13. Aringed toposs a pair(7’, 0r) consisting of a topo%’ and a (unitary, associative)
T-ring Or, called thestructure ringof 7'. A morphismf : (T, 0r) — (S, Os) of ringed topoi
is the datum of a morphism of topgi: 7' — S and a morphism of -rings :

fﬂ : f*ﬁs — ﬁT.

We denote, as usual, #§;: C & the subobject representing the invertible sectiongaf For
every objectU of T', and every € 07 (U), let D(s) C U be the subobject such that :

Homy(V, D(s)) :=={o € U(V) | ¢*s € O7(V)}.
We say thatT’, 0r) is locally ringed if D(0) = @ (the initial object ofI"), and moreover
D(s)uUD(1—s)=U for everyU € Ob(T), and everys € 07 (f).

A morphism of locally ringed topof : (T, Or) — (S, Os) is a morphism of ringed topoi such
that
f*D(s) = D(f*(U)(f*s))  foreveryU € Ob(S) and everys € 0s(U).
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If 7" has enough points, the(T’, ) is locally ringed if and only if the stalkg, of the
structure ring at all the point§ of 7" are local rings. Likewise, a morphisih: (T, Or) —
(S, Os) of ringed topoi is locally ringed if and only if, for every/-point ¢, the induced map
Os,5e) — Or¢ is alocal ring homomorphism.

2.4.14. In the rest of this section we present a few resulte@ming the special case of
topologies on a scheme. Hence, for any schém&e shall denote by (resp. byXy..) the
small étale (resp. the small Zariski) site &n It is clear thatX,, is a small site, and it is not
hard to show thak; is aU-site ([4, Exp.VII,§1.7]). The inclusion of underlying categories :

ux : Xzar — Xet

is a continuous functor (see definitibn 2.1.39(i)) commgitivith finite limits, whence a mor-
phism of topoi :

~

Uy = (W, xs) : X5 — X5

such that the diagram of functors :

ux
XZar ét

—

X —>Xé;

Zar

commutes, where the vertical arrows are the Yoneda embgsiemma 2.1.49).
The topoiX7,, and.X are locally ringed in a natural way, and by faithfully flat dest, we

Zar

see easily thai x. Oy, = Oy, .. By inspectionyuy is a morphism of locally ringed topoi.

2.4.15. Forany ring? (of our fixed universé&)), denote bySch/ R the category of2-schemes,
and bySch/Ry.. (resp.Sch/Ry) the big Zariski (resp. étale) site &th/R. ForR = Z, we
shall usually just writéSchy,, and Schy; for these sites. The morphisms of (2.4.13) are
actually restrictions of a single morphism of sites :

u : Schy,, — Schy
which, for every univers¥ such thatl € V, induces a morphism d&f-topoi :
ﬂv : (Schét)g — (Schzar)\'\/.

2.4.16. LetX be scheme; geometric poinbf X is a morphism of schemé&s: Speck —

X, wherek is an arbitrary separably closed field. Notice that both tlaeiski and étale
topoi of Spec x are equivalent to the categoBet, so¢ induces a topos-theoretic poig :
(Spec k), — Xg of X (and likewise forX7, ). A basic feature of both the Zariski and étale

Zar
topologies, is that every point of;,  and X7 arise in this way.

More precisely, we say that two geometric poigtand ¢’ of X are equivalent if there
exists a third such poirgt” which factors through both and¢’. It is easily seen that this is an
equivalence relation on the set of geometric pointXoand two topos-theoretic poingg and

. are isomorphic if and only if the same holds for the poifjts and¢); , if and only if € is

Zar?
equivalent taf’.

Definition 2.4.17. Let X be a scheme; a point of X', andz : Spec kK — X a geometric point.
(i) We letx(x) be the residue field of the local ringy .., and set

|z| := Spec k(x) K(T) =k |Z| := Spec k()

If {x} C X is the image ofr, we say thaf is localized atz, and thatr is thesupportof z.
(i) Thelocalization of X at z is the local scheme

X(z) := Spec Ox ;.
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Thestrict henselization ok at 7 is the strictly local scheme
X(T) := Spec Ox z

wheredy ; denotes the strict henselization@f , relative to the geometric poimt([33, Ch.IV,
Déf.18.8.7]) (recall that a local ring is calledrictly local, if it is henselian with separably
closed residue field; a scheme is calédctly local, if it is the spectrum of a strictly local ring:
see [33, Ch.IVv, Dé&f.18.8.2]). By definition, the geomepmint 7 lifts to a unique geometric
point of X (Z), which shall be denoted again by

(i) Moreover, we shall denote by

iy X(x) > X iz : X(T) = X(x)
the natural morphisms of schemes, angifis any sheaf oXy,,, (resp.Xg), we let
F(x) =0..F F(T) .= itF ()
and.% () is a sheaf orX (7)., (resp. onX (T)g).
(iv) If f:Y — X is any morphism of schemes, we let

f ) =Y xx || f1@) =Y xx|7| Y(z) =Y xx X(x) Y(T):=Y xx X(T).
Also, if £ is any geometric point of’, we definef (£) as the geometric pointo £ of X.

2.4.18. Many discussions concerning the Zariski or étisddec a scheme, only make appeal
to general properties of these two topologies, and thezefpply indifferently to either of them,
with only minor verbal changes. For this reason, to avoiestime repetitions, the following
notational device is often useful. Namely, instead of mafgreach time taX;,., and X in
the course of an argument, we shall write ji&t, with the convention that € {Zar, ét} has
been chosen arbitrarily at the beginning of the discusslarthe same manner, &point of
X will mean a point of the topoX™, and ar-open subset ok will be any object of the site
X,. With this convention, &ar-point is a usual point ofX, whereas art-point shall be a
geometric point. Likewise, if is a givenr-point of X, the localizationX () makes sense
for both topologies : ifr = ét, thenX (&) is the strict henselization as in definitibn 2.4.17(ii);
if 7 = Zar, thenX () is the usual localization ok at the (Zariski) poing. If 7 = ét, the
support of¢ is given by definitiom 2.4.17(i); if = Zar, then the support af is just¢ itself (and
correspondingly, in this casgis localized at)). Furthermoregy . is a local ring ifT = Zar,
and it is a strictly local ring, in case= ét.

2.4.19. Letf : X — Y be a morphism of schemes,a geometric point ofX, and set
y := f(T). The natural morphisnf, : X(z) — Y (y) induces a unique local morphism of
strictly local schemes

fz: X(@) = Y ()
([33, Ch.1V, Prop.18.8.8(ii)]) that fits in a commutativeadram :

iz

7| —= X(T) — X(2) == X
R
7 ——=Y (@) —=Y(y) —=Y.
Let now.# be any sheaf oy ; there follows a natural isomorphism :

~

L7 @) = ([ F)(T).

Notice also the natural bijections :
Ty =LY (@), 7([H) = (7,
[Tz = T(X (@), 7 (@) = I

(2.4.20)
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which induce a natural identification :
(2.4.21) Ty = [ Fz 1 o [2(0).

2.4.22. LetX be a schemes, 2’ € X any two points, such that is a specialization of’.
Choose a geometric poimtlocalized atc. The localization magy , — Ox .- induces a natural
specialization morphisrof X-schemes :

X(2') — X(x).

SetWW := X(7) X x(z) X (2'). The natural mag : W — X (2') is faithfully flat, and is the limit

of a cofiltered system of étale morphisms; hence we may:find W lying over the closed
point of X (z’), and the induced magp(z’) — x(w) is algebraic and separable. Choose also a
geometric pointw of W localized atw, and sett’ := g(w). Theng induces an isomorphism
gw : W(w) = X (7'), whence a unique morphism

(2.4.23) X(@) — X(7)
which makes commute the diagram :

Jw Tt

W(w) — X(7') — X ()

4

W(w) — X (T) — X (2)

where the left bottom arrow is the natural projection, ana right-most vertical arrow is the
specialization map. In this situation, we say thais a specializationof 7’ (and thatz’ is
a generizationof 7), and we call[(2.4.23) atrict specialization morphismCombining with
(2.4.20), we obtain thstrict specialization map induced (§.4.23)

(2.4.24) G — G
for every shea/ on Xg;.

Remark 2.4.25.(i) In the situation of[(2.4.19), suppose tiat= f*.# for a sheaf# onYy;.
Then [2.4.24) is a mayF ;) — Frm). By inspecting the definition, it is easily seen that the
latter agrees with the strict specialization map.#rinduced by a unique strict specialization
morphismY (f(Z')) — Y (f(T)).

(i) Notice that [2.4.2B) and_(2.4.24) depend not only ondheice ofw (which may not be
unique, whenX (x) is not unibranch) but also on the geometric paint Indeed, the group
of automorphisms of theX (z')-schemeX (z’) is naturally isomorphic to the Galois group
Gal(k(2')®/k(2")) ([33, Ch.lV, (18.8.8.1)]).

Lemma 2.4.26.Let X be a schemeZ# a sheaf onXy;,. We have :

(i) The counit of the adjunctions : u} o ux..# — % is a monomorphism.
(i) Suppose there exists a sheééfon X, and an epimorphisnf : ©v*¢ — % (resp. a
monomorphisnf : % — u*¥). Thene z is an isomorphism.
(iii) The functoruy is fully faithful.
(iv) (Hilbert 90) Rlﬂx*ﬁ)?ét =1x,,.-

Proof. (i): The assertion can be checked on the stalks. Hencg,Hetany geometric point of
X; we have to show that the natural mgpy..# ) — % is injective. To this aim, say that
s, s € (ux«# )¢, and suppose that the imagesoih .%, agrees with the image af; we may
find an open neighborhodd of ¢ in X7,,, such that ands’ lie in the image of# (U), and by
assumption, there exists an étale morphfsmi” — U such that the images efands’ coincide

in % (V). However,f (V) C U is an open subset ([31, Ch.1V, Th.2.4.6]), and the induced ma



120 OFER GABBER AND LORENZO RAMERO

V — f(V) is a covering morphism iX; it follows that the images of ands’ agree already
in Z(f(V)), therefore also itf x..7 )¢.
(iii)' According to propositio 1.1.11(ii), it suffices tdew that the unit of the adjunction
: 9 — ux. o uyx¥ is an isomorphism, for every € Ob(X;,,). However, we have
morphlsms

Ty X0, G o X .
whose composition is the identity 0k % (see [(1.1.8)); also, (i) says that. » is a monomor-
phism, and then it follows formally that it is actually animsorphism €.g.from the dual of[[10,
Prop.1.9.3]). Hence the same holds #r(n«), and by considering the stalks of the latter, we
conclude that alsgy is an isomorphism, as required.

(ii): Suppose first thaf : ©v*9 — % is an epimorphism. We have just seen thatis an
isomorphism, therefore we have a morphighv ., [ : ©*¢ — u* o u,.# whose composition
with ¢ # is f; especiallyg # is an epimorphism, so the assertion follows from (i).

In the case of a monomorphisfin: % — uw*¥Y, sets? := u*9 1l u*9; we may represent
f as the equalizer of the two natural mapsj, : ©*¢ — . However, the natural morphism
u(Y 1Y) — s isan epimorphism hence the counjt is an isomorphism, by the previous
case. Then (iii) implies that, = w*j. for morphisms;; : ¢4 — w7 (i = 1,2). Let.#’ be
the equalizer ofj; andj}; thenu*.#’ ~ %, and since we have already seen that the unit of
adjunction is an isomorphism, the assertion follows fromttiangular identitities of (1.11.8).

(iv): The assertion can be checked on the stalks. To eas@amtaet.# = Rlﬂx*ﬁ)?ét.
Let £ be any geometric point ok, and say that € .7%;; pick a (Zariski) open neighborhood
U C X of ¢ such thats lies in the image of7 (U). We may then find a Zariski open covering
(Ux — U | A€ A)of U, such that the image afin .7 (U;) is represented by &;; ,-torsor on
U, for everyl € A. After replacingl by anyU), containing the support @f, we may assume
thats is the i image of the isomorphism class of sofg -torsor X, on Uy By faithfully flat

descent, there emsts@, -torsorX onUy,,, and an isomorphism oz’?’X -torsors :
Xet % ﬁ ®17* ﬁX U/?}X

However, after replacingy by a smaller open neighborhoodqfwe may suppose that (U) #
o, thereforeX (U) # @ as well,i.e. s is the image of the trivial section oF (U). O

3. MONOIDS AND POLYHEDRA

Unless explicitly stated otherwiseyery monoid encountered in this chapter shall be com-
mutative For this reason, we shall usually economize adjectivesyaite just “monoid” when
referring to commutative monoids.

3.1. Monoids. If M is any monoid, we shall usually denote the composition lawfoby
multiplicative notation:(z,y) — « -y (so1 is the neutral element). However, sometimes it
is convenient to be able to switch to an additive notatioralkow for that, we shall denote by
(log M, +) the monoid with additive composition law, whose underlysgg is the same as for
the given monoid ), -), and such that the identity map is an isomorphism of mondfed=n(

the neutral element dbg M is denoted by). For emphasis, we may sometimes denote by
log : M = log M the identity map, so that one has the tautological idestitie

log1 =0 and log(x - y) =logz + logy foreveryz,y € M.

Conversely, if(M,+) is a given monoid with additive composition law, we may sWwito a
multiplicative notation by writingexp M, -), in the same way.
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3.1.1. For any monoid/, and any two subsets S’ C M, we let :
S-S8:={s-§|seS s e}
andS“ is defined recursively for every € N, by the rule :
S%.={1} and S*:=S5-5"! ifa>0.

Notice that the paifZ?(M),-) consisting of the set of all subsets of, together with the
composition law just defined, is itself a monoid : the neuttement is the subsét }. In the
same vein, the exponential notation for subsetd/obecomes a multiplicative notation in the
monoid (log (M), +) = (Z(log M), +), i.e. we have the tautological identitylog S* =
a-log S, foreveryS € Z(M) and every, € N.

Furthermore, for any two monoidd and N, the setHomn,q (M, N) is naturally a monoid.
The composition law assigns to any two morphisms : M — N their producty - ¢, given
by the rule :p - )(m) := p(m) - (m) for everym € M.

Basic examples of monoids are the 88t +) of natural numbers, and the non-negative real
(resp. rational) numberR ,, +) (resp.(Q, +)), with their standard addition laws.

3.1.2. Given a surjectiolX — Y of monoids, it may not be possible to expréssas a
guotient of X — a problem relevant to the constructionprésentationgor given monoids, in
terms of free monoids. For instance, consider the mofidich) consisting of the sef with
the composition laws such that :

Sy — T+y if eitherz,y > 0orz,y <0
TRy = max(z,y) otherwise

for everyx,y € Z. Define a surjective map : N®? — (Z, ®) by the rule(n, m) — n ® —m,
for everyn € N. Then one verifies easily th&fer o = {0}, and neverthelesg is not an
isomorphism. The right way to proceed is indicated by thifaihg :

Lemma 3.1.3. Every surjective map of monoids is an effective epimorpliisrthe category
Mnd).

Proof. (See example_1.5.116 for the notion of effective epimorphishet« : M — N be a
surjection of monoids. For every monald, we have a natural diagram of sets :

Homptma (N, X) — Hompgna (M, X) ——= Hompga(M xx M, X)
2

wherep,,ps : M xy M — M are the two natural projections, and we have to show that the
map; identifiesHomp,a (N, X)) with the equalizer opt andp}. First of all, the surjectivity of
m easily implies thaj is injective. Hence, lep : M — X be any map such thato p; = pops;
we have to show thap factors throughr. To this aim, it suffices to show that the map of sets
underlyingy factors as a compositiof o 7, for some map of sets’ : N — X, sincey’ will
then be necessarily a morphism of monoids. However, theethuigfunctor /' : Mind — Set
commutes with fibre products (lemiha 2.3.29(iii)), afgr) is an effective epimorphism, since
in the categonBet all surjections are effective epimorphisms. The assefotbows. O

3.1.4. Lemma_3.1l3 allows to construct presentations farhitrary monoid\/, as follows.
First, we choose a surjective map of monoifds.= N¥) — )/, for some setS. Then we
choose another sét and a surjection of monoid§™) — F x,, F. Composing with the
natural projectiong,, p, : F' x,; F — F, we obtain a diagram :

(3.1.5) N == N6 —= M

q2

which, in view of lemma_3.1]3, identifie® to the coequalizer af; andgs.
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Definition 3.1.6. Let M be a monoidYX C M a subset.

(i) Let (e, | o € X) be the natural basis of the free mondit?). We say thak is asystem
of generatordor M, if the map of monoidN®™) — M such that, — o for every
o € 3, is a surjection.

(i) M is said to bdinitely generatedif it admits a finite system of generators.

(i) M is said to bdineif it is integral and finitely generated.

(iv) A finite presentatiorfor M is a diagram such ag (3.1.5) that identifigsto the co-
equalizer ofy; andgs, and such that, moreovet,and? are finite sets.

(v) We say that a morphism of monoigs: M — N is finite, if N is a finitely generated
M-module, for thel/-module structure induced hy.

Lemma 3.1.7.(i) Every finitely generated monoid admits a finite presentation

(il) Let M be a finitely generated monoid, and; | : € I) a filtered family of monoids.
Then the natural map :
C(glei}n Hompna (M, N;) — Hompgna (M, C(zlei}n N;)
is a bijection.
Proof. (i): Let M be a finitely generated monoid, and choose a surjeatioN®) — A with S
afinite set. We have seen thitis the coequalizer of the two projectiops p, : P := N x,
N®) — N®). For every finitely generated submondidC P, letp; n, pan : N — N be the
restrictions ofp; andp,, and denote by'y the coequalizer of, y andp, n. By the universal
property ofCy, the mapr factors through a map of monoids, : Cy — M, and sincer
is surjective, the same holds far,. It remains to show that, is an isomorphism, forV
large enough. We apply the functdf — Z[M] of (2.3.50), and we derive th&[M] is the
coequalizer of the two map8(p:|,Z[ps] : Z[P] — Z[S], i.e. Z[M] ~ Z[S]/I, wherel is
the ideal generated bl (Z[p;] — Z[ps]). Clearly I is the colimit of the filtered system of
analogous idealsy generated bym(Z[p, | — Z[p2.n]), for N ranging over the filtered family
Z of finitely generated submonoids &f. By noetherianity, there exist§ € .%# such that
I = Iy, thereforeZ[M] is the coequalizer dL[p, x| andZ[p, x|. But the latter coequalizer is
also the same d5[C'y |, whence the contention.
(i): This is a standard consequence of (i). Indeed, say fthat, : M — N, are two
morphisms whose compositions with the natural Map— N = CQlei}n N; agree, and pick a

finite set of generators, . . ., x, for M. For any morphisny : i — j in the filtered category,
denote by, : N; — N, the corresponding morphism; then we may find such a morphisso
thatg, o f1(zx) = g,0 fa(xy) for everyk < n, whence the injectivity of the map in (ii). Next, let

f : M — N be a given morphism, and pick a finite presentation (8.1.6)d@educe a morphism

g : N — N, and sinces is finite, it is clear thay factors through a morphisg : N — N;

for somei € 1. Setg, := g; o q; andg := g; o go; by assumption, after composiggand of

g/ with the natural mapV; — N, we obtain the same map, so by the foregoing there exists a
morphismy : ¢ — j in I such thay,, o g, = g, o g'. It follows thatg,, o g, factors through\/,
whence the surjectivity of the map in (ii). O

Definition 3.1.8. Let M be a monoid/ C M an ideal.

(i) We say thatl is principal, if it is cyclic, when regarded as an-module.
(il) Theradical of I is the idealrad(I) consisting of allz: € M such that:" € [ for every
sufficiently largen € N. If I = rad(I), we also say that is aradical ideal
(i) A faceof M is a submonoid” C M with the following property. lix,y € M are any
two elements, andy € F, thenz,y € F.
(iv) Notice that the complement of a face is always an idea.Sa that’ is aprime ideal
of M, if M\ is aface of}M.
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Proposition 3.1.9.Let M be a finitely generated monoid, asd finitely generated/-module.
Then we have :

(i) Every submodule df is finitely generated.
(i) Especially, every ideal ot/ is finitely generated.

Proof. Of course, (ii) is a special case of (i). To show (i), #tc S be an)M-submodule}Y C
S’ any system of generators. L&t’(X) be the set of all finite subsets Bf and for everyA €
Z'(¥), denote bys’, C S’ the submodule generated Hy clearly.S’ is the filtered union of the
family (5, | A € &'(¥)), henceZ[S'] is the filtered union of the family oZ|[A/]-submodules
(Z[S"] | S € 2'(X)). SinceZ[M] is noetherian and[S] is a finitely generate@[)M]-module,
it follows thatZ[S",] = Z[S’] for some finite subset C X, whence the contention. O

Corollary 3.1.10. Let M be any fine and sharp monoid. The sgf, \ m?, is finite, and is the
unique minimal system of generatorsiat

Proof. It is easily seen that any system of generatorg/ofmust contair® := m,;\m3,, hence
the latter must be a finite set. On the other hand, supposérat exists an elemeng € M
which is not contained in the submonald’ generated by.. Then we may writery = zy;
for somezy, yo € my,, with x; ¢ M’, soz; admits a similar decomposition. Proceeding in this
way, we obtain a sequence of elemefnts | n € N) with the property that/z,, C Mz, for
everyn € N. We claim thatV z,, # Mz, for everyn € N. Indeed, if the inequality fails for
somen € N, we may writex,,.; = ax, for somea € N, and on the other hand, we have by
constructionr,, = yx, 1 for somey € m,;; summing up, we get,, = yax,, whenceya = 1,
sinceM is integral, thereforg € M*, a contradiction.

Thus, from the given;,, we have produced an infinite strictly ascending chain odlslef
M, which is ruled out by virtue of propositidn 3.1.9(ii). Thiseans that:, cannot exist, and
the corollary follows. O

3.1.11. LetM be amonoid(/, | A € A) any collection of ideals of/; then it is easily seen
that bothl J,_, I, and(,., 1, are ideals of\/. Thespectrunof M is the set :

Spec M

consisting of all prime ideals a¥/. It has a natural partial ordering, given by inclusion ohpei
ideals; the minimal element 8pec M is the empty ideapy C M, and the maximal element is:

mys = ]\4\]\4><

If (px | A € A) is any family of prime ideals o/, thenl J,, p» is a prime ideal of\/.
Any morphismy : M — N of monoids induces a natural map of partially ordered sets :

©* : Spec N — Spec M p— @ .
We say thatp is local, if o(my;) C my.

Lemma 3.1.12.Let f; : M — Ny and f, : M — N, be two local morphisms of monoids. If
N; and N, are sharp, thenV; 11, N, is sharp.

Proof. Let (a,b) € N; x N, and suppose there existss M, o’ € Ny, ' € N, such that
(a,b) = (d' fi(c),b') and(1,1) = (d', fo(c)b); sinceNs is sharp, we deduck(c) = b =1, so

b = 1. Then, sincef; is local, we get: € M*, hencef;(c) = 1 anda = '’ = 1. One argues
symmetrically in cas¢l, 1) = (a'fi(c),b’) and(a,b) = (o, f2(c)t’). We conclude thata, b)
represents the unit class vy 11, N, if and only ifa = b = 1. Now, suppose that the class of
(a,b) is invertible in Ny 11, No; it follows that there existéc, d) such thatc = 1 andbd = 1,
which implies that: = 1 andb = 1, whence the contention. O
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Lemma 3.1.13.Let S ¢ M be any submonoid. The localizatign: M — S~'M induces
an injective mag* : Spec S~'M — Spec M which identifiesSpec S—*M with the subset of
Spec M consisting of all prime ideals such thatp N S = &.

Proof. For everyp € Spec M, denote byS—!p the ideal ofS—!M generated by the image of
p. We claim thatp = j*(S'p) for everyp € Spec M such thap NS = @. Indeed, clearly
p C j*(S7p); next, if f € j*(S'p), there exists € S andg € p such thats"'g = f
in S~1M; therefore there exists € S such thattg = tsf in M, especiallytsf € p, hence
f € p, sincet, s ¢ p. Likewise, one checks easily thét'p is a prime ideal ifp N S = &, and

q = S~!(j*q) for everyq € Spec S~' M, whence the contention. OJ

Remark 3.1.14.(i) If we take S, := M\ p, the complement of a prime ideabf M/, we obtain
the monoid

M, = S;lM
andSpec M, C Spec M is the subset consisting of all prime ideglsontained irp.

(il) Likewise, if p C M is any prime ideal, the spectruspec(M \ p) is naturally identified
with the subset afpec M consisting of all prime idealscontainingp (details left to the reader).
(i) Let S € M be any submonoid. Then there exists a smallest faoé M containingS
(namely, the intersection of all the faces that contg)inlt is easily seen thak' is the subset of
all z € M suchthatrM N S # @. From this characterization, it is clear th&t' M = F~1 M.

In other words, every localization @f is of the type)/, for somep € Spec M.

Lemma 3.1.15.Let M be a monoid, and C M any ideal. Themad(I) is the intersection of
all the prime ideals of\/ containing!/.

Proof. It is easily seen that a prime ideal containih@lso containgad(/). Conversely, say
that f € M \ rad([); lety : M — M; be the localization map. Denote hy the maximal
ideal of M;. We claim that/ C »'m, Indeed, otherwise there exigte I, » € M andn € N
such thaty~' = f~"h in M;; this means that there exist € N such that/™" = f™gh in
M, hencef™*" ¢ I, which contradicts the assumption ¢gn On the other hand, obviously

fé e m O

Lemma 3.1.16.(i) Let M be a monoid, and’ C M* a subgroup.
(a) The map given by the rulel: — I /G establishes a natural bijection from the set
of ideals of)M onto the set of ideals af//G.
(b) Especially, the natural projection : M — M /G induces a bijection :
™ : Spec M /G — Spec M

(i) Let (M; | © € I) be any finite family of monoids, and for eaghe I, denote by
7; : [ Lie; Ms — M; the natural projection. The induced map

HSpecMi%SpeCHMi : (Pz|i€I)'—>U7T:Pi
1€l i€l i€l
is a bijection.

(iii) Let(M; |i € I) be any filtered system of monoids. The natural map
Spec colim M; — lim Spec M;
1€l iel
is a bijection.

Proof. (i): By lemmal2.3.3M(iii),M/G is the set-theoretic quotient @ff by the translation
action of G. By definition, any ideal of M is stable under thé-action, hence the quotient
I/G is well defined, and one checks easily that it is an idealgfz. Moreover, ifp C M
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is a prime ideal, it is easily seen thatG is a prime ideal of\//G. Assertions (a) and (b) are
straightforward consequences.

(ii): The assertion can be rephrased by saying that evegy/aof [ [,_, M; is a product of
facesF; C M,. However, ifm := (m; | i € I) € F, then, for each € I we can write
m = m(i) - n(i), where, for eachy € I, thej-th-component ofn(i) (resp. ofn(i)) equalsl
(resp.m;), unlessj = i, in which case it equals; (resp.1). Thus,m(i) € F for everyi € I,
and the contention follows easily.

(iii): Denote by M the colimit of the systeniM; | i € I), andy; : M; — M the natural
morphisms of monoids, as well a5 : M; — M, the transition maps, for every morphism
f:1— jinI. Recall that the set underlyiny is the colimit of the system of setd/; | i € I)
(lemmal2.3.29(iii)). Let nowp, := (p; | € I) be a compatible system of prime idedle.
such thatp, € Spec M, for everyi € I, and<p;1pj = p; foreveryf : i — j. We let
B(pe) := U,er wi(pi). We claim thap3(p,) is a prime ideal of\/. Indeed, suppose thaty € M
andxy € [(p.); sincel is filtered, we may find € I, x;,y; € M;, andz; € p;, such that
r = pi(zy), y = @i(y;), andzy = p;(z). Especially,p;(z;) = vi(z;y;), SO there exists a
morphismf : i — j such thatps(z;) = ¢r(x;y:). Butys(z;) € p;, so eitherps(z;) € p; or
©¢(y;) € p;, and finally either: € p ory € p, as required.

Letp C M be any prime ideal; it is easily seen th#tp; 'p | i € I) = p. To conclude, it
suffices to show that; = ¢; ' 3(p.), for every compatible system as above, and eveiye 1.
Hence, fix; € I and pickz; € M; such thatp;(z;) € 5(p.); then there existg € I andx; € p;
such thatp;(z;) = ¢;(z;). Sincel is filtered, we may find € I and morphismg : i — k and
g :j — ksuchthatps(z;) = ¢,(x;), sops(z;) € pi, and finallyz; € p;, as sought. O

Remark 3.1.17.In case()M; | i € I) is an infinite family of monoids, the natural map of lemma
[B.1.16(ii) is still injective, but it is not necessarily gegtive. For instance, let be any infinite
set, and letZ C (1) be a non-principal ultrafilter; denote B the quotient ofN’ under
the equivalence relatior, such that(a; | ¢ € I) ~4 (b; | i € I) if and only if there exists

U € % such thai; = b, for everyi € U. Itis clear that the composition law d¥ descends

to *N; the resulting structuréN, +) is called the monoid of hypernatural numbers. Denote by
7 : N/ — *N the projection, and It € N’ be the unit; then it is easily seen that(0)} is a
face of*N, but7—!(7(0)) is not a product of faces; C N.

Definition 3.1.18. Let M be a monoid.

(i) Thedimensiorof M, denotedlim M € NU {400}, is defined as the supremum of all
r € N such that there exists a chain of strict inclusions of prideals of)M :

PoCp1 C - Cp,.
(if) The heightof a prime ideap € Spec M is defined asit p := dim M.
(i) A facetof M is the complement of a prime ideal &f of height one.

Remark 3.1.19.(i) Notice that not all epimorphisms IM[nd are surjections on the underlying
sets; for instance, every localization m&p— S~ M is an epimorphism.

(i) If ¢ : N — M is a map of fine monoids (see definition 311.6(vi)), then it fallow
from corollary(3.4.2 thatV x,; N is also finitely generated. [/ is not integral, then this fails
in general : a counter-example is provided by the morphistonstructed in((3.112).

(iii) Let X be any set; it is easily seen that a free montlic N®*) admits a unique minimal
system of generators, in natural bijection withEspecially, the cardinality of is determined
by the isomorphism class @f/; this invariant is called theank of the free monoidV/. This is
the same as the rank 8f as anN-module (see example 1.2]27).

(iv) A submonoid of a finitely generated monoid is not necabsénitely generated. For
instance, consider the submondifi C N®2, with M := {(0,0)} U {(a,b) | a > 0}. However,
the following result shows that a face of a finitely generatemhoid is again finitely generated.
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Lemma 3.1.20.Let f : M — N be a map of monoidgy’ C N a face of N, and>X C N a
system of generators f@v. Then :

(i) N*is aface ofN, andf~'F is a face of}M.

(i) XN Fis a system of generators for.
(i) If IV is finitely generatedspec N is a finite set, andlim N is finite.
(iv) If N is finitely generated (resp. fine) then the same holdgforV.

Proof. (i) and (ii) are left to the reader, and (iii) is an immediatasequence of (ii). To show
(iv), notice that — in view of (i) —the se€ U {f~! | f € F N X} is a system of generators of
F~IN. 0]

Definition 3.1.21. (i) If M is a (pointed or not pointed) monoid, aAds a pointed\/-module,
we say thatS is integral, if for everyz,y € M and everys € S such thatrs = ys # 0, we
havex = y. Theannihilator idealof S is the ideal

Anny(S) :={m € M | ms = 0 for everys € S}.
If s € Sisany element, we also writkss,, (s) := Assy/(Ms). Thesupportof S is the subset :
Supp S := {p € Spec M | S, # 0}.

(i) A pointed monoid(M, 0,,) is calledintegral, if it is integral when regarded as a pointed
M-module; it is calledine if it is finitely generated and integral in the above sense.

(iii) The forgetful functorMnd, — Set (notation of [2.3.28)) admits a left adjoint, which
assigns to any sét thefree pointed monoidit™ := (N®),.

(iv) A morphismy : M — N of pointed monoids i$ocal, if both M, N # 0, andyp is local
when regarded as a morphism of non-pointed monoids.

Remark 3.1.22. (i) Quite generally, a (non-pointed) monoid is finitely generated (resp.
free, resp. integral, resp. fine) if and onlyAf, has the corresponding property for pointed
monoids. However, there exist integral pointed monoidsctvlaire not of the fornmd/, for any
non-pointed monoid/.

(i) Let (M,0,,) be a pointed monoid. Aideal of (M, 0,,) is a pointed submoduleC M.
Just as for non-pointed monoids, we say thas a prime ideal if M\ I is a (non-pointed)
submonoid ofM/, and a non-pointed submonoid which is the complement ofragrdeal, is
called afaceof M. Hence the smallest ideal{§}. Notice though, thaf0} is not necessarily a
prime ideal, hence the spectritipec (M, 0,,) does not always admit a least element. However,
if M = N, for some non-pointed monoid/, the natural morphism of monoids — N,
induces a bijection :

Spec (N, 0n,) — Spec N.

(i) Let I ¢ M be any ideal; the inclusion map— M can be regarded as a morphism of
pointedA/-modules (if M is not pointed, this is achieved via the faithful imbeddi@g3(15)),
whence a pointed/-module)M /I, with a natural morphismM/ — A /1. The latter map is also
a morphism of monoids, for the obvious monoid structure\of/. One checks easily that, if
M is integral,M/1 is an integral pointed monoid.

(iv) Let M be a (pointed or not pointed) monoig,C M a prime ideal. Then the natural
morphism of monoid$/ — M /p induces a bijection :

Spec M/p = {q € Spec M | p C q} = Spec M\ p.

(v) Let M be a (pointed or not pointed) monoid, afd=# 0 a pointed)M-module. Then
the support of5' contains at least the maximal ideal &ff. This trivial observation shows that a
pointed M -module is0 if and only if its support is empty.
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(vi) Let M be a pointed monoid, and C M anon-pointedsubmonoid. The localization
Y~ M (defined in the category of monoids, as[in (2.8.33)) is abtumpointed monoid : its
zero elementy.-1,, is the image of),,.

(vii) If M is a (pointed or not pointed) monoild, C M anynon-pointedsubmonoid, and
a pointed)M/-module, we let as usudl—1S := 7'M ®,, S (see remark 2.3.21(i), i#/ is not
pointed). The resulting functa¥/-Mod, — X~'M-Mod, is exact. Indeed, it is right exact,
since it is left adjoint to the restriction of scalars argsfrom the localization map/ — X1\
(seel(1.2.26)), and one verifies directly that it commuteh ¥inite limits. Also, it is clear that

Supp X7'S = Supp S N Spec M.

(viii) Let M be a pointed monoid, ani C M a pointed submonoid. Since the final object
1 of the category of pointed monoids is not isomorphic to theaihobject1,, the push-out of
the diagraml «+— N — M is not an interesting object (it is always isomorphicljo Even if
we form the quotiend/ /N in the category of non-pointed monoids, we still get alwaysince
0)s € N, and therefore in the quotiedf /N the images 06,, and of the unit ofd/ coincide.

The only case that may give rise to a non-trivial quotientylen N is non-pointeclin this
situation we may form\//N in the category of non-pointed monojdsd then remark that the
image of0,, yields a zero elemen,;, for M /N, so the latter is a pointed monoid.

Example 3.1.23.(i) Let M be a (pointed or not pointed) monoi@, C M* a subgroup, and
S a pointedA/-module. ThenV//G ®,; S = S/G is the set of orbits of under the induced
G-action.

(ii) In the situation of (i), notice that the functor

M-Mod — M/G-Mod : S+~ S/G

is exact, hencd//G is a flat)M/-module. (See definitidn 2.3.22(i).)

(iii) Likewise, if ¥ ¢ M is a non-pointed submonoid, then the localizafiont M is a flat
M-module, due to rematk3.1122(vii).

(iv) Suppose tha$' is an integral pointed/-module (withM either pointed or not pointed),
and letY c M be a non-pointed submonoid. Th&n!S is also an integral pointed—! M-
module. Indeed, suppose that the identity

(3.1.24) (s7'a) - (7)) = (s7ta) - (" 1e) £ 0

holds for somer, b,c € S ands, s', s” € ¥; we need to check that~'b = 5"~ !¢, or equiva-
lently, thats”b = s'c in ¥~1S. However, [(3.1.24) is equivalent t§ab = s'ac in ¥15, and
the latter holds if and only if there exists= 3 such thats”ab = ts'ac in S. The two sides in
the latter identity are# 0, as the same holds for the two sides of the identity (311 ié)efore
s"b = s'c holds already irt, and the contention follows.

(v) Likewise, in the situation of (iv)S/% := S®j, M /X is an integral pointed//>-module.
Indeed, notice the natural identificatiéifiy = X715 ®@y-1,, (X1 M)/ which — in view of
(iv) — reduces the proof to the case wherés a subgroup ofi/ *. Then the assertion is easily
verified, taking into account (i).

Especially, if M is an integral pointed monoid, and C M is any non-pointed submonoid,
then both>~! M/ and /¥ are integral pointed monoids (this generalizes lerhmad)3.3

(vi) Let G be any abelian group; : M — G a morphism of non-pointed monoids. Then
G, is a flat M,-module. For the proof, we may — in light of (iii) — repladé by M#P, thereby
reducing to the case wherd is a group. Next, by (ii), we may assume thais injective, in
which cas&~ is a freeM-module with basigr /M.

Remark 3.1.25.(i) Let M — N andM — N’ be morphisms of pointed monoida; and
N’ can be regarded as pointéd-modules in an obvious way, hence we may form the tensor
productN” := N ®,; N’; the latter is endowed with a unique monoid structure suahttre
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mapse : N — N” ande¢’ : N’ — N” given by the rulen — n ® 1 for all n € N (resp.
n' — 1®n'/foralln’ € N’) are morphisms of monoids. Just as for usual ring homomsnus;
the monoidN” is a coproduct ofN and N’ over M, i.e. there is a unique isomorphism of
pointed monoids:

(3.1.26) N @y N 5 NI, N

that identifies: ande’ to the natural morphism& — N 11,; N andN’ — N 11, N'. As usual
all this extends to non-pointed monoids. (Details left te tbader.)

(i) Especially, if we takeM = {1}, the initial object inMnd,, we obtain an explicit
description of the pointed monoid & N’ : it is the quotienf{ N x N')/~, where~ denotes
the minimal equivalence relation such that0) ~ (0,2’) for everyx € N, 2’ € N'. From
this, a direct calculation shows that a direct sum of poiméegral monoids is again a pointed
integral monoid.

Remark 3.1.27.(i) Clearly every pointed\/-module S is the colimit of the filtered family
of its finitely generated submodules. Moreowgris the colimit of a filtered family of finitely
presented pointedl/-modules. Recall the standard argument : pick a countable aed let#
be the (small) full subcategory of the categd*Mod, whose objects are the coequalizers of
every pair of maps of pointetl/-modulesp, ¢ : M) — MU2) for every finite setd;, I, C I
(this means that, for every such paily we pick one representative for this coequalizer). Then
there is a natural isomorphism of pointéftmodules :
colim tg = S
i%/S

wherei : € — M-Mod, is the inclusion functor, ang; is the functor as il (1.1.16).

(i) If S is finitely generated, we may find a finite filtration 8fby submodule® = S, C
Sy C -+ C S, = SsuchthatS;,,/S; is a cyclicM-module, forevery = 1,...,n.

(iii) Notice that, if S is integral andS’ C S is any submodule, thefi/S’ is again integral.
Moreover, if S is integral and cyclic, we have a natural isomorphismGimodules :

S = M/Anny(S).

(Details left to the reader.)
(iv) Suppose furthermore, that’* is finitely generated, and is any pointed)/-module.
Lemma3.1.16(i.a) and propositibn 311.9(ii) easily imgigtevery ascending chain

]0C11C]2C"'

of ideals of M is stationary; especially, the séfAnn,(s) | s € S\ {0}} admits maximal
elements. Let/ be a maximal element in this set; a standard argument as imaodemive
algebra shows that is a prime ideal : indeed, say thay € I = Anny(s) andz ¢ I; then
xs # 0, hencey € Anny,(zs) = I, by the maximality off. Now, if S is also finitely generated,
it follows that we may find a finite filtration of as in (ii) such that, additionally, each quotient
Si+1/S; is of the formM /p, for some prime idegl C M.

These properties make the class of integral pointed mochgescially well behaved : es-
sentially, the full subcategory/-Int.Mod, of M-Mod, consisting of these modules mimics
closely a category ofi-modules for a ring4, familiar from standard linear algebra. This shall
be amply demonstrated henceforth. For instance, we pointheufollowing combinatorial
version of Nakayama’s lemma :

Proposition 3.1.28.Let M be a (pointed or not pointed) monoifl a finitely generated integral
pointedM-module, ands” C S a pointed submodule, such that

S = S/ Umyys - S.
ThenS = 9.
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Proof. After replacingsS by S/S’, we may assume that,;S = S, in which case we have
to check thatS = 0. Suppose then, that # 0; from remark 3.1.27(ii,iii) it follows thatS
admits a (pointed) submodulé C S such thatS/T ~ M /m,,. Especiallym,, - (S/T) = 0,
i.e. myS C T, and thereforeS = T, which contradicts the choice @f. The contention
follows. O

Remark 3.1.29.(i) The integrality assumption cannot be omitted in proposi3.1.28. Indeed,
take M := N andS := 0,, where0 denotes the final-module. ThenS # 0, butm,;S = S.

(i) Letus say that an element of tlié-moduleS is primitive, if it does not lie inm,,;S. We
deduce from propositidn 3.1.28, the following :

Corollary 3.1.30. Let M be a sharp (pointed or not pointed) monoigla finitely generated
integral pointed monoid. Then the sgt\ m,,S of primitive elements of is finite, and is the
unique minimal system of generatorsf

Proof. Indeed, itis easily seen that every system of generatgfsmist contain all the primitive
elements, s&'\ m,;,S must be finite. On the other hand, tC S be the submodule generated
by the primitive elements; clearl§’ Um,;S = S, henceS’ = S, by proposition 3.1.28. [

3.1.31. LetR be any ring,M a non-pointed monoid. Notice that tidé-module underlying
any R[M]-module is naturally pointed, whence a forgetful funcitin/]-Mod — M-Mod..
The latter admits a left adjoint

M-Mod, — R[M]-Mod : (S,0s)+— R(S) := Coker R[0g].

Likewise, the monoid A4, -) underlying any (commutative unitaryj-algebraA is naturally
pointed, whence a forgetful functéit-Alg — Mnd,, which again admits a left adjoint

Mnd, — R-Alg : (M,0y) — R{M) := R[M]/(0x)

where(0,,) C R[M] denotes the ideal generated by the image,pf
If (M,0,) is a pointed monoid, andl is a pointed M, 0,,)-module, then notice that(S)
is actually aR(M)-module, so we have as well a natural functor

(M, 03)-Mod, — R(M)-Mod S R(S)

which is again left adjoint to the forgetful functor.
For instance, lef C M be an ideal; from the foregoing, it follows th&()//I) is naturally
an R[M]-algebra, and we have a natural isomorphism :

R(M/I) 5 RIM]/IR[M].

Explicitly, foranyz € F' := M\ I, letz € R(M/I) be the image of; thenR(M/I) is a free
R-module, with basi$z | = € F'). The multiplication law ofR()//I) is determined as follows.
Givenz,y € F, thenz -y = Ty if xy € F, and otherwise it equals zero.

Notice that, if/; and/, are two ideals of\/, we have a natural identification :

R<M/(Il N ]2)> 5 R(M/h) X R(M/(I,UI)) R(M/]Q)

These algebras will play an important role in section 6.5aApecial case, suppose that M
is a prime ideal; then the inclusiovf \p C M induces an isomorphism @t-algebras :

R[M\p] = R(M/p).
Furthermore, general nonsense yields a natural isomanpbfigz-modules :

(3.1.32) R(S®umS') = R(S)@run R(S")  forall pointed/-modulesS ands’.
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3.1.33. LetA be a commutative ring with unit, anfl: M — (A, -) a morphism of pointed
monoids. Thery induces (forgetful) functors :

A-Mod — M-Mod, A-Alg — M/Mnd,
(notation of (1.1.12)) which admit left adjoints :

M'MOdO — A-Mod S— S Qn A= Z(S) ®Z<M> A
M/Mnd, — A-Alg N s N @y A = Z(N) @zn A,

Sometimes we may also use the notation :

L L
S Qu N = Z<S> ®Z<M> N and S R Ko = Z<S> ®Z(M} K,

for any pointedV/-modulesS, any A-module N and any objeck, of D~(A-Mod). The latter
derived tensor product is obtained by tensoring with aZlglt/)-flat resolution ofZ(S). (Such
resolutions can be constructed combinatorially, starfiom a simplicial resolution of.) All
the verifications are standard, and shall be left to the reade

Definition 3.1.34.Let M be a pointed monoidd a commutative ring with unity : M — (A, -)
a morphism of pointed monoid8] an A-module. We say thaV is y-flat (or just M -flat, if no
ambiguity is likely to arise), if the functor

M-Int.Mod, -+ A-Mod : S—=S®uN

is exact in the sense that it sends exact sequences of pointedahteégmodules, to exact
sequences afi-modules. We say thaY is faithfully p-flat if this functor is exact in the above
sense, and we have®,; N = 0ifand only if S = 0.

Remark 3.1.35.(i) Notice that the functof — S ®,, N of definition[3.1.34 is right exact in
the categorical sensed. it commutes with finite colimits), since it is a right adjaittowever,
even when\ is faithfully flat, this functor is not always left exact indltategorical sense : it
does not commute with finite products, nor with equalizergieneral.

(i) Let M andS be as in definition 3.1.34, and |& be any non-zero commutative unitary
ring. Denote byy : M — (R(M),-) the natural morphism of pointed monoids. In light of
(3.1.32), itis clear that iR(S) is a flat R(M)-module, thers is a flat pointed\/-module, and
the latter condition implies thak(sS) is p-flat.

Lemma 3.1.36.Let M be a monoidA aring, ¢ : M — (A,-) a morphism of monoids, and
assume thap is local andA is p-flat. ThenA is faithfully o-flat.

Proof. Let S be an integral pointed/-module, and suppose thétx,, A = {0}; we have to
show thatS = {0}. Say thats € S, and letMs C S be theM-submodule generated by
Since A is ¢-flat, it follows easily thatV s ®,, A = {0}, hence we are reduced to the case
whereS is cyclic. By remarK3.1.27(iii), we may then assume tRat /I for some ideal

I C M. ltfollows thatS @, A = A/p(I)A, so thatp(I) generatesi. Sincey is local, this
implies thatl = M, whence the contention. O

Lemma 3.1.37.Let M be an integral pointed monoid,, J € M two ideals,A a ring, « :
M — (A, -) a morphism of monoidsy ana-flat A-module, andS a flat A/-module. Then :

ISNnJS=({InJ)S
a(l)NNa(J)N =a(INJ)N.
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Proof. We consider the commutative ladder of poinfeddmodules, with exact rows and injec-
tive vertical arrows :

(3.1.38) L L l
0 J M M/(ITUJ)—=0

By assumption, the ladder @f-modules[(3.1.38),, N has still exact rows and injective vertical
arrows. Then, the snake lemma gives the following shorttesequence involving the cokernels
of the vertical arrows :

0— JN/(INJ)N — N/IN % N/(IN +JN) =0

(where we have writtet N instead ofa(J) N, and likewise for the other terms). However
Kerp = JN/(IN N JN), whence the second stated identity. The first stated igecdit be
deduced from the second, by virtue of remark 3.11.35(ii). O

Remark 3.1.39.By inspection of the proof, we see that the first identity ofitea3.1.37 holds,
more generally, whenevé(S) is ¢-flat, wherep : M — Z(M) is the natural morphism of
pointed monoids.

Proposition 3.1.40.Let M be a pointed integral monoidi aring, ¢ : M — (A, -) a morphism
of monoids/NV an A-module. Then we have :

() The following conditions are equivalent :
(@) N is p-flat.
(b) TorZ.Z<M> (Z({T), N) = 0 for everyi > 0 and every pointed integral/-moduleT".
(©) Tor?™ (z(M/I), N) = 0 for every ideall C M.
(d) The natural mapg ®,, N — N is injective for every ideal C M.
(i) If moreover,M? is finitely generated, then the conditiofa-(d) of (i) are equivalent to
either of the following two conditions :
(e) Tor”™ (Z(M/p), N) = 0 for every prime ideap C M.
() The natural map ®,, N — N is injective for every prime idegl C M.

Proof. Clearly (a}=>(b)=(c)=-(e). Next, by considering the short exact sequence of piinte
integral M-modules) — I — M — M /I — 0 we easily see that (€}(d) and (e¥=(f).

(c=@): Letx .= (0 - 8 - S - S” — 0) be a short exact sequence of pointed
integral M -modules; we need to show that the induced riap,; N — S ®,,; N is injective.
Since the sequencg(X) is still exact, the londlor-exact sequence reduces to showing that

Tor?™M)(Z(T), N) = 0 for every pointed integral/-moduleT. In view of remark 3.L.27(i),
the long exacflor-sequence, and an easy induction on the number of genecdditbrsve may
assume thal’ = M/I, whence the contention.

Lastly, if M* is finitely generated, then remdrk 3.1.27(iv) shows thathanforegoing argu-
ment, we may further reduce to the case wheére A /p for a prime ideab C M; this shows
that (e}=(a). O
Lemma 3.1.41.Let M be a pointed monoid$ a pointed M -module, and suppose that the
following conditions hold fofS :

(F1) If s € Sanda € Anny,(s), then there exisi € Ann,,(a) such thats € bS.
(F2) If ay,a0, € M and sy, s, € S satisfy the identityi;s; = aqs, # 0, then there exist
bi,by € M andt € S such thats; = b;¢t fori = 1,2 and a,b; = asbs.

Then the natural map @,, S — S is injective for every ideal C M.
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Proof. Let I be an ideal, and suppose that two elementss; anda,; ® s, of I ®,,.S are mapped
to the same element &f. If a;s; = 0 for 7 = 1, 2, then (F1) says that there exist b, € M and
ti,t9 € S such thatlzbl =0 andSZ‘ = bit; fori = 1,2; thUSai ® s =a; @bty = a;b; ® s;, =0
in I ®,; S. In casea;s; # 0, pick b;,bp € M andt € S as in (F2); we conclude that
a1 RS =0, Qbit =a1b; @t = aby @t = ay ® s9IN I ®,7 .S, whence the contention. [0

Theorem 3.1.42.Let M be an integral pointed monoid, a pointed)/-module. The following
conditions are equivalent :
(@) S'is M-flat.
(b) For every morphismd/ — P of pointed monoids?’ ®,, S is P-flat.
(c) For every short exact sequenteof integral pointedV/-modules, the sequente,, S
is again short exact.
(d) Conditions(F1) and(F2) of lemma3.1.41hold for S.

Proof. Clearly (b)=(a)=(c).

(c)=(d): To show (F1), sef := Ma, and denote by : I — M the inclusion; (c) implies that
the induced map®,; S : I ®); S — S is injective. However, we have a natural isomorphism
I = M/Anny(a) of M-modules (remark-3.1.27(jii)), whence an isomorphising,, S —
S/Anny(a)S, and under this identification,,, S is induced by the map — S : s — as.
Thus, multiplication bye maps the subsef \ Ann,(a)S injectively into itself, which is the
claim.

For (F2), notice thafZ(S) is -flat under condition (c), forp : M — Z(M) the natural
morphism. Now, say that;s; = assy # 01in S; setl := Ma,, J := Mas; the assumption
means that;s; € IS N JS, in which case remark 3.1.89 shows that there exist S and
bi,by € M such thatu;b; = asby, anda,s; = a1b1t, henceasss = asbyot. Since we have seen
that multiplication bya; mapsS \ Anny,(a1)S injectively into itself, we deduce that = b;t,
and likewise we get, = byt.

To prove that (d3-(b), we observe :

Claim 3.1.43 Let P be a pointed monoid\ a small locally directed category (see definition
1.1.37(iv)), andS, : A — P-Mod, a functor, such that), fulfills conditions (F1) and (F2), for
every\ € Ob(A). Then the colimit ofS, also fulfills conditions (F1) and (F2).

Proof of the claim.In light of remark1.1.38(ii), we may assume thais either discrete or
path-connected. Suppose first thais path-connected; then remark 2.3.17(ii) allows to check
directly that conditions (F1) and (F2) hold for the colimft.,, since they hold for every,.

If A is discrete, the assertion is that conditions (F1) and (F2peeserved by arbitrary (small)
direct sums, which we leave as an exercise for the reader. O

To a given pointed//-modulesS, we attach the small catego#y, such that :
Ob(S*) = S\{0} and  Homg-(s',s) ={a € M | as = s'}.

The composition of morphisms is induced by the compositean of A/, in the obvious way.
Notice thatS* is locally directed if and only ifS satisfies condition (F2).

We define a functof’ : S* — M-Mod, as follows. For everg € Ob(S*) we letF(s) :=
M, and for every morphism : s — swe letF'(a) := a-1,,. We have a natural transformation
T : F = cg, Wwherecs : S* — M-Mod, is the constant functor associatedstpnamely, for
everys € Ob(S*), we letr, : M — S be the map given by the rute — as for all a € M.
There follows a morphism of pointedd -modules :

(3.1.44) coqui*m F—S

Claim3.1.45 If S fulfills conditions (F1), the map (3.1.44) is an isomorphism
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Proof of the claim.Indeed, we have a natural decompositionséfas coproduct of a family
(Sf | i € I) of path-connected subcategories (for some small sesee remark_1.1.38(ii));
especially we havéloms- (s, s’) = g if s € Ob(S5;) ands’ € Ob(S}) for somei # jin I.

For eachi € I, let F; : S; — M-Mod, be the restriction of’. There follows a natural
isomorphism :

@B colim F; = colim F.
i€l 5 5

Since the colimit ofF; commutes with the forgetful functor to sets, an inspectibthe defi-
nitions yields the following explicit description of thelauit 7; of F;. Every element of; is
represented by some pdir, «) wheres € Ob(S;) C S\{0} anda € M; such pair is mapped
to as by (3.1.44), and two such paifs, a), (s',a’) are identified inT; if there existsh € M
such thabs = s’ andba’ = a.

Hence, denote by, the image undef(3.1.44) @f; we deduce first, that; N .S; = {0} if
i # j. Indeed, say that € S; N Sj; by the foregoing, there exist € Ob(S;), s; € Ob(S}),
anda;,a; € M, such thata;s; = t = a;s;. If t # 0, we get morphismg, : ¢t — s; and
aj : t — s;in S*; say thatt € S for somek € [; it then follows thatS; = S; = 57, a
contradiction. Next, it is clear thdt (3.1]44) is surjeetiyt remains therefore only to show that
eachT; maps injectively ont®;. Hence, say thdts;, a;) and(s,, as) represent two elements of
T; with t := ays1 = ags,. If t # 0, we get, as before, morphisms: ¢t — s; andas : t — s in
S, and the two pairs are identified T to the pair(¢, 1). Lastly, if ¢ = 0, condition (F1) yields
b e M ands’ € S such thau,b = 0 ands; = bs’, whence a morphis: s; — s" in S}, and
F;(b)(ay,s1) = (0, ") which represents the zero element/of The same argument applies as
well to (as, s2), and the claim follows. O

Claim3.1.46 Let M — P be any morphism of pointed monoids, afich pointed}/-module
fulfilling conditions (F1) and (F2). Then the natural ma®,; S — P ®,; S is injective, for
every ideall C P.

Proof of the claimFrom clain(3.1.45 we deduce th&tx,, S is the locally directed colimit of
the functorP ®,, F', and notice that the pointed-moduleP fulfills conditions (F1) and (F2);
by claim[3.1.4B8 we deduce th& ®,, S also fulfills the same conditions, so the claim follows
from lemmd3.1.41. O

After these preliminaries, suppose that conditions (FO) @#2) hold for.S, and let> :=
(0T —T —T" — 0) be a short exact sequence of poinfégdmodules. We wish to show
thaty ®,, S is still short exact. However, i/ c T" is any M-submodule, let/ C T be the
preimage ofU”, and notice that the induced sequefice> 77" — U — U"” — 0 is still short
exact. Since a filtered colimit of short exact sequencesdg sixact, remark 3.1.27(i) allows to
reduce to the case wher¥ is finitely generated.

We shall argue by induction on the numbeof generators of . Hence, suppose first that
T" is cyclic, and let € T be any element whose imageiiti is a generator. Sét .= Mt C T,
and letC” C T’ be the preimage of’. We obtain a cocartesian (and cartesian) diagram of
pointed/-modules :

¢'—C

]

T —=T.
The induced diagrany ®,, S is still cocartesian, hence the same holds for the diagrasetsf
underlying? ®,, S (remark2.3.117(ii)). Especially, if the induced map®,; S — C @)1 S
is injective, the same will hold for the may ®,, S — T ®,, S. We may thus replacé’ and
T by respectively}C” andC', which allows to assume that al§ois cyclic. In this case, pick a
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generatorn: € T'; we claim that there exists a unique multiplication lawon 7', such that the
surjectionp : M — T : a — au is @ morphism of pointed monoids. Indeed, for every € T,
write t = au for somea € M, and setur(t,t') := at’. Using the linearity ofp we easily
check thatur(¢,t') does not depend on the choiceagfand the resulting composition lawy-

is commutative and associative. THEhis an ideal ofl", so clain3.1.46 tells us that the map
T @u S — T @) S is injective, as required.

Lastly, suppose that > 1, and the assertion is already known whenéVérs generated by
at mostn — 1 elements. Let/” C T” be a pointed\/-submodule, such that” is generated by
at mostn — 1 elements, and” /U" is cyclic. Denote by/ C T the preimage of/”; we deduce
shortexact sequenc&:= (0 - 7" - U - U" = 0)and¥X" .= (0—>U - T - T"/U" —
0), and by inductive assumption, boi ®,, S and¥” ®,, S are short exact. Therefore the
natural magl” ®,; S — T ®,, S is the composition of two injective maps, hence it is injeeti
as stated. OJ

Remark 3.1.47.1n the situation of remark 3.1.85(ii), suppose thatis pointed integral. Then
theoreni 3.1.42 implies thatis a flat pointed\/-module if and only ifR(S) is ¢-flat.

Corollary 3.1.48. Let M be an integral pointed monoid, a pointedM -module. Then

(i) The following conditions are equivalent :
(@) Sis M-flat.
(b) For everyideall C M, the induced map ®,, S — S is injective.

(i) If moreoverM* is finitely generated, then these conditions are equivatent
(c) For every prime ideap C M, the induced map ®,, S — S is injective.

Proof. (i): Indeed, by remark 3.1.47 and proposition 3.1.40(iyéiher with [3.1.32)), both (a)
and (b) hold if and only iZ(S) is ¢-flat, for o : M — Z(M) the natural morphism.
(ii): This follows likewise from proposition 3.1.20(ii). O

Corollary 3.1.49. Letp : M — N be a morphism of pointed monoids,c M*, H C N*
two subgroups such that(G) C H, and denote by : M /G — N/H the induced morphism.
Let alsoS be anyN-module. We have :
(i) If S is a flatM-module, thert/ H g is a flat M /G-module (notation o{1.2.26).
(i) If moreover,M is a pointed integral monoid and is a pointed integralH-module,
then also the converse @j holds.

Proof. (i): We have a natural isomorphism
(S/H) @) = N/H @nypc S(p)/ G-

However, by example 3.1.P3(ii)V/H is a flat N/oG-module, andS ) /¢G is a flat M /G-
module, whence the contention.

(ii): By theorem[3.1.4R, it suffices to check that conditigR4) and (F2) of lemm&a 3.1.41
hold in S, and notice that, by the same token, both conditions holdHer\//G-module
S/Hg = S()/G, sinceM/G is pointed integral (example_3.1123(v)).

Hence, say thap(a)s = 0 for somea € M ands € S; we may then find € M, ¢ € S and
g € G such thatp(gb)t = s andab = 0. Settingt := ¢(g)t’, we deduce that (F1) holds.

Next, say thatp(a;)s; = p(as)sy # 0 for someay, ay € M andsy, s, € S; then we may find
g€ G, hi,hy € H b,by € M andt’ € S such thatya,b; = asb, and

(3.1.50) o(b)ht =s;  fori=1,2.

After replacingb, by gb; andh, by hio(g™!), we reduce to the case whergh; = asb,. From
(3.1.50) we deduce that

gp(albl)hlt/ = go(al)sl = ()O(CLQ)SQ = ()O(CLQbQ)th/ = @(albl)hgt'
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whenceh; = hs, sincesS is a pointed integral/-module. Setting := h,t’, we see that (F2)
holds. O

Corollary 3.1.51. Lety : M — N be a flat morphism of pointed monoids, with pointed
integral, and letp C N be any prime ideal. Then the morphigify o~'p — N/p induced byp
is also flat.

Proof. Let F' := N\ p; by theoreni3.1.42, it suffices to check that conditions @i (F2)
of lemmal3.1.41 hold for the~! F-module F. However, sinceé) ¢ F, condition (F1) holds
trivially. Moreover, by assumption these two conditionschior the A/-moduleN; hence, say
thatp(a;) - s1 = p(ay) - so in F, for somea,, a; € p~'F andsy, s, € F. It follows that there
existby, b, € M andt € N such thati by = asby in M, andyp(b;) -t = s; fori = 1,2. SinceF
is a face, this implies that(b, ), p(b2),t € F, so (F2) holds fo#", as stated. O

Another corollary is the following analogue of a well knownterion due to Lazard.

Proposition 3.1.52.Let M be an integral pointed monoid;, an integral pointed/-module,R
a non-zero commutative ring with unit. The following coiugtis are equivalent :
(@) S'is M-flat.
(b) S is the colimit of a filtered system of free point&tmodules (see remak3.17(ii).
(c) R(S)is aflat R(M)-module.

Proof. Obviously (b}=-(a) and (b¥x-(c).

(c)=(a) has already been observed in renhark 311.35(ii).

(a)=(b): It suffices to prove that it is flat, the category™ attached toS as in the proof
of theoreni 3.1.42, is pseudo-filtered. However, a simplpangon of the construction shows
thatS* is pseudo-filtered if and only i’ satisfies both condition (F2) of lemrmha3.1.41, and the
following further condition. For every,b € M ands € S such thatus = bs # 0, there exists
t € Sandc € M such thatuc = bc andct = s. This condition is satisfied by every integral
pointedM-module, whence the contention. O

3.1.53. Consider now, a cartesian diagram of integral pdintonoids :
Py—Ph
‘@(P07 Ia Pl) : l l
P2 I P3
where P, (resp. P;) is a quotient, /I (resp. P, /1 P;) for some ideal C F,, and the vertical
arrows of (R, I, P,) are the natural surjections. In this situation, it is easi#en that the
induced mapl — [P, is bijective; especially/ is both aFP,-module and aP;-module. Let
v; : P, — Z(P;) be the units of adjunction, far= 0, 1, 2. Let alsoM be anyZ(F,)-module.
Lemma 3.1.54.In the situation of(3.1.53) we have :
(i) LetJ C P, be any ideal. The® := F,/J admits a three-step filtration
0 C FilyS Cc Fil1S Cc Filb,S = S

such thatt'ilyS andgr, S are P,-modules, andr, .S is a P;-module.
(i) The following conditions are equivalent :

() M is p-flat.

(b) M ®p, P; is p;-flat andTor? ™ (M, Z(P,)) = 0, fori = 1, 2.
(i) The following conditions are equivalent :

(@) Tor ™ (M, Z(P,)) = 0 fori = 1,2, 3.

(b) Tor™ (M @p, P, Z(P3)) = 0 fori =1,2.
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(iv) Suppose moreover, thag # 0 is a free pointed?,-module. Then th&(F,)-module
M is go-flat if and only if theZ(P,)-moduleM ®p, P; is ¢;-flat.

Proof. (i): DefineFil; S := Ker(S — R/({ U J)) = (I U J)/J. Thenitis already clear that
S/Fil; S is a P,-module. Next, letilyS := Ker(Fil,S — (I U JP)/JP) = JP,/J. Since
IP, = I, we see thaFilyS is a P,-module, and/ U JP;)/JP; is a P,-module.

(ii): Clearly (a)=(b), hence suppose that (b) holds, and let us prove (a). Byogition
B.1.40(i), it suffices to show thator, "™ (M, Z(P, /1)) = 0 for every ideal/ C P,. In view of
(i), we are then reduced to showing that”" (A, Z(S)) = 0, whenevers is a P-module,
fori = 1,2. However, for suchP,-moduleS, we have a base change spectral sequence

B2, s TorZP) (Tor 20 (M, Z(Py)), Z(S)) = Torsi™ (M, Z(S)).
Under assumption (b), we deduc@ar’™’ (M, Z(S)) = Tor™ " (M @p, P,, Z(S)) = 0.

(iii): Notice that the induced diagram of ring& (P, I, P,)) is still cartesian. Then, this is
a special case of [36, Lemma 3.4.15].

(iv): Suppose thad! ®@p, P, is ¢;-flat, andPs is a free pointed-module, say’; ~ PQ(A)",
for some sef\ # @; then theZ(P,)-moduleZ(P;) is isomorphic toZ({P,)"), especially it is
faithfully flat, and we deduce thator’\™ (M, Z(P,)) = 0 for i = 1,2, by (iii). On the other
hand,M ®p, Ps is ps-flat, so it also follows thal\/ ®p, P> is ¢»-flat, by proposition 3.1.52.
Summing up, this shows thaf fulfills condition (ii.b), hence also (ii.a), as sought. O

3.1.55. LetnowP — () be an injective morphism of integral pointed monoids, angpsse
that P* andQ* are finitely generated monoids, a@ds a finitely generated-module. Denote
wp: P — Z(P) andyg : @ — Z((Q)) the usual units of adjunction.

Theorem 3.1.56.In the situation of(3.1.55) let M/ be aZ{P)-module, and suppose that the
Z{Q))-moduleM ®p Q is po-flat. ThenM is ¢ p-flat.

Proof. Using lemmd_3.1.54(iv), and an easy induction, it sufficeshtow that there exists a
finite chain

(3.1.57) P=QCQC--CQn=0Q

of inclusions of integral pointed monoids, and for evgry 0,...,n — 1 anideall; C );, and

a cartesian diagram of integral pointed monaid&?;, I, Q1) as in [3.1.5B), and such that
Qj+1/1; # 0is afree pointed);/I;,-module. (Notice that eao@f is a quotient of)),; /P>, and
the latter is a submodule ¢f/ P*, hence@? is still a finitely generated monoid, by proposition
3.1.9(%).) If P = Q, there is nothing to prove; so we may assume fha strictly contained in
@, and — invoking again propositién 3.11.9(i) — we further reelto showing that there exists a
monoid@; C @ strictly containingP, and an ideal C P, such that the diagraw (P, I, );)
fulfills the above conditions.

Suppose first that the support 6f/ P contains only the maximal ideahp, of P, and let
x1,...,x, be afinite system of generators fap (propositiori 3.1.9(ii)). Foreach=1,...,r,
the localization(Q)/P),, is a P,,-module with empty support, hen¢€)/P)., = 0 (remark
[3.1.22(v)). It follows that every element &f/ P is annihilated by some power af, and since
Q/ P is finitely generated, we may find/ € N large enough, such that'Q/P = 0 for
i =1,...,r. After replacingN by some possibly larger integer, we ge} - Q/P = 0, and
we may assume thaY is the least integer with this property. N = 0, there is nothing to
prove; hence suppose that > 0, and set); := P UmY'Q. Notice thatQ, is a monoid,
and@,/P # 0 is annihilated bymp. Especiallymp@; = mp. Moreover, the induced map
P/mp — Q1 /mp isinjective and?); is an integral pointed module, therefore the grétipacts
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freely onQ;\mp, i.e. Q;/mp is a free pointed®/mp-module. It follows easily that, if we take
I := mp, we do obtain a diagrar (P, mp, ();) with the sought properties, in this case.

For the general case, IptC P be a minimal element ddupp @/ P (for the ordering given
by inclusion). Then the induced morphisiy — @, still satisfies the conditions of (3.1]55)
(lemma3:1.20(iv)). Moreove&upp Q,/F, = {pP,} by remark:3.1.22(vii). By the previous
case, we deduce that there exists a chain of inclusionsegriat pointed monoids, C @} C
()y, such that the resulting diagrai(P,, pF,, ()}) is cartesian, and);/pP, # 0 is a free
pointed P, /p P,-module. Lete, ..., ¢, be a basis of the lattef, /p ,-module, withe; = 1.
Hencee;, € Q, \ pb, for everyi = 1,...,d, and after multiplyingg,, . . ., €; by a suitable
element of P \ p, we may assume that eaghis the image inQ, of an elemene; € Q.
Moreover, for everyi, j < d, eithere;e; = 0, or else there exists;; € B, andk(i,j) < d
such that;e; = a;;€x( ). Furthermore, fix a system of generatefs. . ., x, for p; then, for
every: < r and everyj < d we haver;e; € pF,. Again, after multiplyinge,, . .., e; by some
c € P\p, we may assume that;, € P for everyi,j < d, and moreover that;e; lies in the
image ofp for every: < r andj < d.

And if we multiply yet agaires, . . ., e4 by a suitable element @?\ p, we may finally reach a
system of elements, ..., e, € Q such that; =1 and:

e Foreveryi, j < d, we have eithee;e; = 0 or elsee;e; = a;jex
e z;e; € pforevery: <randj <d.
Clearly these elements sparPamodule@; which is a monoid containing’ and contained in
(); moreover, by construction we hay€); = p, hence the resulting diagram(P, p, Q1) is
cartesian. Notice also thaf), /p), ~ Q) /pP,, and thatP/p = P/, whereP’ := P\p is an
integral (non-pointed) monoid. To conclude it suffices novapply the following

i)

Claim 3.1.58 Let P’ be an integral non-pointed monoid, a pointed’-module, anc: :=
(e1,...,eq) @ system of generators féf. Suppose thab @p P/#? is a free pointedr)/sP-
module, and the image efis a basis for this module. Théehis a free pointed?’-module, with
basise.

Proof of the claim. If e is not a basis, we have a relation $hof the typea,;e; = ase,, for
someay, a; € P’. This relation must persist if ®p £®P, and implies that; = a; = 0 in
P’s?. However, under the stated assumptions the localizatiomn Rla— FE'¢P is injective, a
contradiction. O

3.2. Integral monoids. We begin presently the study of a special class of monoidsntiegral
non-pointed monoids, and the subclass of saturated mo(sgdsdefinition 2.3.40(iii)). Later,
we shall complement this section with further results on firmmoids (see sectiohs B.4 and 6.5).
Throughout this section, all the monoids under considerasihall be non-pointed.

Definition 3.2.1. Let p : M — N be a morphism of monoids.

() o is said to bantegralif, for any integral monoidV/’, and any morphismd/ — M’,
the push-outV ®,, M’ is integral.

(i) ¢ is said to bestrongly flat(resp. strongly faithfully flaj if the induced morphism
Z[p] : Z|M] — Z[N] is flat (resp. faithfully flat).

Lemma 3.2.2.Letf : M — N andg : N — P be two morphisms of monoids.

() If fandg are integral (resp. strongly flat), the same holds §ar f.
(i) If f is integral (resp. strongly flat), and/ — M’ is any other morphism, then the
morphisml ,;: @y, f: M' — M’ ®),, N is integral (resp. strongly flat).
(iii) If fisintegral, andS C M andT C N are any two submonoids such th&ts) c T,
then the induced morphisfT M — T-!N is integral.
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(iv) If S ¢ M is any submonoid, the natural mag — S~ M is strongly flat.

(v) If f is integral, then the same holds f¢i*, and the natural map/™ ®,; N — N™
is an isomorphism.

(vi) The unit of adjunctiol/ — M™ is an integral morphism.

Proof. (i) is obvious. Assertion (ii) for integral maps is likewiskear, and (ii) for strongly flat
morphisms follows from[(2.3.52). Assertion (iv) follows mediately from[(2.3.53).

(ii): Let S™'M — M’ be any map of integral monoids; in view of lemma 2.8.34, weehav
P:=M ®g-1)y T"'N ~ T-1(M' @) N), henceP is integral, which is the claim.

(v): The second assertion follows easily by comparing thearsal properties (details left to
the reader); using this and and (ii), we deduce f#itis integral.

(vi) is left to the reader. O

Theorem 3.2.3.Lety : M — N be a morphism of integral monoids. Consider the following
conditions :

(@) pisintegral.

(b) ¢ is flat (see remarR.3.23(vi).

(c) pis flat and injective.

(d) ¢ is strongly flat.

(e) For every fieldk, the induced map|y] : k[M] — k[N] is flat.

Then :(e) < (d) < (¢) = (b) < (a).

Proof. This result appears in [52, Prop.4.1(1)], with a differerdqd.
(8)=(b): Let! C M be any ideal; we consider thg-module :

R(M,I) =PI
neN
where " denotes, for each € N, then-th power ofI in the monoid(Z?(M), -) of (3.1.1).
Then there exists an obvious multiplication law R/, I), such that the latter is BH-graded
integral monoid, and the inclusiall — R(M, I) in degree zero is a morphism of monoids.
We callR(M, I) theRees monoidssociated td/ and/.

Denote also by : R(M, I) — M x N the natural inclusion map. By assumption, the monoid
R(M,I) ®) N is integral. However, the natural m&M, 1) @y N — (R(M, 1) @ N)&P
factors through @, N. The latter means that, for evetyc N, the induced map"®,, N — N
is injective. Then the assertion follows from proposifioh.30 and remark 2.3.21(ii).

(b)=(a): LetM — M’ be any morphism of integral monoids; we need to show that the
natural mapV/’ @, N — M8 @20 NP is injective (see remaik 3.1.25(i)). The latter factors
through the morphisnd/’ @,y N — M ®,, N, which is injective by theorerm 3.1.42 and
remark2.3.21(ii). We are thus reduced to proving the injégtof the natural map :

M/gp ®]\/jgp (Mgp ®M N) — M/gp ®]\/jgp ng.

By comparing the respective universal properties, it islgagen that\/#? @,,; N is the lo-
calizationp(M)~* N, which of course injects intd/eP. Then the contention follows from the
following general :

Claim3.2.4 LetG be agroup]” — 1" an injective morphism of monoidé&; — P a morphism
of monoids. Then the natural mapes 7" — P ®¢ 1" is injective.

Proof of the claimThis follows easily from remark 3.1.25(i) and lemma Z.3i31( O
(d)=-(e) and (c}>(b) are trivial.
(e)=(c): The flatness of has already been noticed in remark 3.1.35(ii). To show ¢hiat
injective, leta;,a; € M and letk be any field. Under assumption (e), the imagéiv] of
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the annihilatorAnny (a1 — a2) generates the idedinnn(p(a1) — ¢(az)). Setb := aja;’;
it follows that Annypzee1(1 — b) generates\nn,yer (1 — ¢(b)). However, one checks easily
that the annihilator of — b in k[M®P] is either0 if b is not a torsion element a¥/&P, or else
is generated (as an ideal) bby+ b + - - - + "1, wheren is the order of in the group)/P.
Now, if ¢(a1) = ¢p(as), we havep(b) = 1, hence the annihilator df — b cannot be), and in
fact K[N&] = Annyyer)(1 — (b)) = nk[N®P]. Sincek is arbitrary, it follows that, = 1, i.e.
ap = Qas.

(c)=(d): sincey is injective, N, is an integral pointed//,-module, so the assertion is a
special case of proposition 3.1152. O

Remark 3.2.5. (i) Let G be a group; then every morphism of monoids — G is integral.
Indeed, lemmBa_3.2.2(i,vi) reduces the assertion to thewheee M is integral, in which case it
is an immediate consequence of theofem 3.2.3 and exampZ3@:.

(i) Let M be an integral monoid, anfla flat pointed\/,-module. From theoremn 3.1.42 we
see thafl’ := S\ {0} is anM-submodule of5, henceS = T..

(ii) Let ¢ : M — N be a morphism of integral monoids, and $et= Coker ¢5P; then
the natural mapr : N — I' defines a grading oV (see definition_2.318(i)), which we call the
¢-grading As usual, we shall writéV,, instead ofr—!(v), for everyy € I'. We shall use the
additive notation for the composition law bf especially, the neutral element shall be denoted
by 0. Clearly factors through a morphism of monoid$é — N,, and each graded summand
N, is naturally aM/-module.

(iv) With the notation of (iii), we claim that the induced npbvism® : (M) — N is flat
(hence strongly flat, by theordm 3.2.3), if and onlyif is a filtered union of cycliéd//-modules,
for everyy € I'. Indeed, notice that a cyclit/-submodule ofV, is a freep (M )-module of
rank one (sinceV is integral), hence the condition implies that, is a flat o()/)-module,
henceyp flat. Conversely, suppose thatis flat, and letr,,n, € N, (for somey € I'); this
means that there exist, a; € M such thatp(a;)n; = ¢(az)ns in N. Then, condition (F2) of
theoreni 3.1.42 says that there exise N andby, b, € M such thaty, = o(b;)n’ fori =1,2;
especiallyn’ € N, which shows thatV, is a filtered union of cyclicl/-modules.

(v) With the notation of (iii), notice as well, that a morphig : M — N ofintegral monoids
is exact (see definition_2.340(i)) if and onlylifer 08 C M andy induces an isomorphism
M /Ker 8 = Nj,. (Details left to the reader.)

Theorem 3.2.6.Let M — N be a finite, injective morphism of integral monoids, ahd
pointedM,-module. Therd' is M,-flat if and only if N, ®,,, S is N,-flat.

Proof. In light of theoren 3.1.42, we may assume thatw,, S is N, -flat, and we shall show
that S is M,-flat. To this aim, letl denote the trivial monoid (the initial and final object in
the category of monoids); any pointéd,-module X is a pointedl,-module by restriction of
scalars, and i andY are any two pointed/,-modules, we define &/,-module structure on
X ®1, Y by the rule

a-(z®y) =ar®ay foreverya € M.,z € X andy € Y.
With this notation, we remark :

Claim 3.2.7. Let ¢ : M — G be a morphism of monoids, wheré is a group andV/ is
integral. Then a pointed/,-module S is M,-flat if and only if the same holds for th&/,-
moduleS ®;, G..

Proof of the claim.Suppose that' is M,-flat; thenS = T, for someM-moduleT (remark
[3.2.5(ii)), and it is easily seen théitz,, G, = (T x G),. By theoreni:3.1.42, it suffices to check
that conditions (F1) and (F2) of lemrha 3.1.41 hold f&rx G),.
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Hence, suppose thate M, andh € (T x G), satisfy the identityzh = 0; in this case, a
simple inspection shows that either= 0 or h = 0; condition (F1) follows straightforwardly.
To check (F2), say that; - (s1,9) = as - (s2,92) # 0, for somea;, € M, s; € S, g; € G
(: = 1, 2); since (F2) holds fo5, we may findb,, b, € M andt € S such that;b; = a»b, and
bit = s; (1 = 1,2). Notice thaty := ¢(b;) g1 = p(by)1go in G, thereforeb; - (¢, 9) = (si, ;)
for i = 1, 2, whence the contention.

Conversely, suppose thétx, G, is M,-flat; we wish to show that (F1) and (F2) hold f§r
However, suppose that = 0 for somea € M, ands € S with s # 0; thena - (s®e) =0
(wheree € G is the neutral element); since (F1) holds fo®,, G., we deduce that there exist
be M,andt®g € S®;, G, suchthaba =0ands®e =b-(t®g) = bt ® p(b)g; this implies
thatbt = s, so (F1) holds foiS, as sought.

Lastly, suppose that; s, = ass, # 0 for somea; € M ands; € S (i = 1, 2). It follows that
aj - (s1® p(az)) = as - (s2 ® p(ay)). By applying condition (F2) to this identity if @, G.,
we deduce that the same condition holds alsdsfor O

Next, we observe that there is a natural isomorphisivgfnodules :

(328) NO ®Mo (S ®1o Nng) :> (NO ®Mo S) ®1o N(;gp n ® (S ® g) = (n ® S) ® (p(n)g

whose inverse is given by the rulén ® s) ® g — n ® (s @ p(n)'g) foreveryn € N, s € S,
g € NP, We leave to the reader the verification that these maps drel@fmed, and they are
inverse to each other. In view ¢f(3.2.8) and claim 3.2.7, ves then replacé by S ®,, N&P,
which allows to assume that is an integral pointed/,-module andV, ®,,. S is an integral
pointedN,-module. In this case, in view of propositiobn 3.1.52 we knbatZ (N, ®,,, S) is a
flat Z(N,)-module, and it suffices to show tha{sS) is a flatZ( )/, )-module.

However, under our assumptions, the ring homomorphisiy,) — Z(IV,) is finite and
injective, so the assertion follows from [45, Part II, TR.#] and [3.1.32). O

Lemma 3.2.9.Let M be an integral monoid, and C M a submonoid. We have :
(i) The natural mags—1 A7 — (S—1M)%* is an isomorphism.
(i) If M is saturated, therd//S is saturated, and if is a group, also the converse holds.
(iii) The inclusion map/ — M is a local morphism.
(iv) The inclusionV/ ¢ M** induces a natural bijection :

Spec M = Spec M.

Proof. (i) and (iii) are left to the reader. For (ii), the naturalisorphismS—17/S% = M/S,
together with (i), reduces to the case whgrs a group, in which case it suffices to remark that
(M/S)= = M= /S. Lastly, to show (iv) it suffices to prove that, for any fatec M, the
submonoidr®** c M** is a face, and™* N M = F, and that every face af/**' is of this
form. These assertions are easy exercises, which we leavellas the reader. 0J

Lemma 3.2.10.Let M be a saturated monoid such thaf* is fine. Then there exists an iso-
morphism of monoids :
M = M* x M>
and if M is fine, M * is a finitely generated abelian group. Moreover, the prdamety/ — M*
induces a bijection :
Spec M* 5 Spec M : psp x M*.

Proof. Under the stated assumptiorts,:= M#P/M* is a free abelian group of finite rank,
hence the projection/e? — G admits a splittingr : G — M#P. SetM, := M No(G); itis
easily seen that/ = M, x M*, whenceM, ~ M?*. If M is fine, M¢P is a finitely generated
abelian group, hence the same holds for its direct fakfor The last assertion can be proven
directly, or can be regarded as a special case of lemma 8.b)16 O
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Definition 3.2.11.Letp : M — N be a morphism of integral monoids.

() We say thaty is k-saturated(for some integek > 0), if the push-outP ®,, N is
integral andk-saturated, for every morphisid — P with P integral andk-saturated.

(i) We say thatyp is saturated if the following holds. For every morphism of monoids
M — P such thatP is integral and saturated, the mondtdr,, NV is also integral and
saturated.

Clearly, if ¢ is k-saturated for every integér> 0, theny is saturated.

Lemma 3.2.12.Letp : M — N be a morphism of integral monoids, asdC M, T C N two
submonoids such that(.S) C 7T'. The following holds :

(i) The localization mapg/ — S—!M is saturated.
(ii) If ¢ is saturated, the same holds for the morphismsM — T-'N andM/S — N/T
induced byp.
(i) If S andT are two groups, ther is saturated if and only if the same holds for the
induced morphism//S — N/T.
(iv) If ¢ is saturated, then the natural map ®,, M*** — N**' is an isomorphism.

Proof. (i) follows from the standard isomorphismS: M @, N = ¢(S)~N, together with
lemma3.2.0(i). Next, led//S — P andS—'M — @ be morphisms of monoids. Then

P@uys N/T ~(Poy N)/T  and Q®s1y T 'N=T'(Q®y N)

(lemmd 2.3.34) so assertions (ii) and (iii) follow from lerai®.2.9(,ii).
(iv) follows by comparing the universal properties. O

Example 3.2.13.(i) Let M be anintegral monoid, C M an ideal, and consider again the Rees
monoidR (M, I') of the proof of theorerin 3.2.3. CleaR( 1/, I) is an integral monoid. However,
easy examples show that, even whidnis saturatedR (A, I) is not generally saturated. More
precisely, the following holds. For every idealc M, set

J? .= {a € M® | ™ € J" for some integen > 0}

whereJ" denotes thex-th power of.J in the monoid(#Z, -) of (3.1.1). Then/*** is an ideal of
M=t With this notation, we have the identity :

R(M, I)*™ = I

neN

(Verification left to the reader.)

(i) Forinstance, také// := Q%?, and let/ C M be the ideal consisting of all pai(s;, y)
such thatr +y > 1. ThenI" = {(z,y) € Q¥* | z + y > n}, and it is easily seen that
I" = (I")** for everyn € N, hence in this casR(/, I) is saturated, in view of (ii). It is easily
seen thaR(M, I) does not fulfill condition (F2) of lemma3.141, hence theunatinclusion
map: : M — R(M,I) is not flat (theorenl3.1.42), hence it is not an integral mismh
according to theorefn 3.2.3. On the other hand, we have :

Lemma 3.2.14.With the notation of examp@2.13(ii) the morphismi is saturated.

Proof. We prefer to work with the multiplicative notation, so we Blzaigue with the monoid
(expQF?,-) (seel(31L)). Indeed, let: M — P be any morphism of monoids, with saturated.
ClearlyR(M, I) is the direct sum of thé>-modulesP ®,, I", for alln € N.

Claim3.2.15 The natural ma@ ®,,; I — I™P is an isomorphism, for eveny € N
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Proof of the claim.Indeed, the map is obviously surjective. Hence, suppogeitha = asz-
for somea,, a; € 1", x1, 25 € P suchthatt; ® a; = zo ® ay. Foreveryd € Qwith0 <o <1,
setay := a? - a}~? and notice that

Ty = alaglxl = agaglxg c PP

and if N € Nis large enough, so thafv € N, thenz} = 20?20 € P, hencery € P.
Next, for any(a, b), (a’, V') € Q¥?, set(a,b) V (a’, ') := (min(a, a’), min(b,v')). Choose an
increasing sequence:= 9, < J; < --- < 9, := 1 of rational numbers, such that

b == ay, Vag, , € 1" foreveryi =0,...,n— 1.

Then there exist;, d; € Q% such thatuy, = b;c; anday,,, = b;d; fori =0,...,n — 1. We
may then compute ii"” ®,; P :

ay, ® Ty, = bic; ® Ty, = b; @ c;zy, and likewise ay,,, @ xy,,, =b; @ d;zy,,,.

By construction, we havezry, = d;zy, , fori =0,...,n — 1, whence the contention. O

In view of claim[3.2.15, we are reduced to showing R@®, / P) is saturated, and by example
[3.2.13, this comes down to proving thdt' P)*** = [P for everyn € N. However, say that
r € P, andz” = ayz;---a,x, for somea; € I andz; € P; seta = (a;---a,)"",
and notice thatt € I. Thenz" = a" - z; - - -z, SO thatra=! € P, and finallyz € IP, as
required. OJ

Lemmd 3.2.14 shows that a saturated morphism is not nedgsstagral. Notwithstanding,
we shall see later that integrality holds for an importaasslof saturated morphisms (corollary
[3.4.4). Now we wish to globalize the class of saturated misrph, to an arbitrary topos. Of
course, we could define the notion of saturated morphisfwionoids, just by repeating word
by word definition 3.2.71(ii). However, it is not clear thaetresulting condition would be of
a type which can be checked on stalks, in the sense of rdm2u¥d#i). For this reason, we
prefer to proceed as in Tsuji’'s work [[74].

Lemma 3.2.16.LetT be atoposy : M — N andv : N — P two morphisms of integral
T-monoids. We have:

() If ¢ andey are exact, the same holds foro ¢.
(ii) If v o ¢ is exact, the same holds for
(iif) Consider a commutative diagram of integfiddlmonoids :

M—+N
(3.2.17) % ld,/

M~ N
Then the following holds :
(@) If (3.2.10)is a cartesian diagram ang’ is exact, thenp is exact.
(b) If (B.2.17)is cocartesian (in the categodnt.Mnd) and ¢ is exact, theny' is
exact.

Proof. For all these assertions, remark 2.3.41(ii) easily redtcdbe case wherg' = Set,
which therefore we assume from start. Now, (i) and (ii) afettethe reader.

(iii.a): Let x € MeP such thatpeP(z) € N; hence(¢' o )8 (x) = ' (¢#P(z)) € N’, and
thereforey#?(z) € M’, sincey’ is exact. It follows that: € M, soy is exact.

(iii.b): Let z € (M')®P such thaty’)sP(x) € N'; then we may writg¢y' )& (z) = ¢'(y) -¢'(2)
for somey € M’ andz € N. Therefore,(¢')®(zy~') = ¢'(z); since the functo — PsP
commutes with colimits, it follows that we may find € M# such that)®?(w) = zy~' and



FOUNDATIONS OFp-ADIC HODGE THEORY 143

P (w) = 2. Sincey is exact, we deduce that € M, thereforery=! € M’, and finally
x € M', whence the contention. O

3.2.18. Letl be atopos; for two morphismB <~ M — N of integral7-monoids, we set

int

Ny P =Ny B)int
which is the push-out of these morphisms, in the categatyMnd;. Notice that, for every
morphismf : 7" — T of topoi, the natural morphism @f'-monoids
(3.2.19) FAN By P) = f*N &y [P

is an isomorphism (by lemmadta 2.3/ 45(i) and 2.8.46(i)).

Let nowy : M — N be a morphism of integral-monoids. For any integet > 0, let
k) and ky be thek-Frobenius maps o and N (definition[2.3.40D(ii)), and consider the
cocartesian diagram :

kn

M M
(3.2.20) wl l“"/
N k!Mié]@tMlN P.

The endomorphisnky factors througtk,, <§>M 1, and a unique morphisiti : P — NN such
thats o ¢’ = ¢. A simple inspection shows th&t = (ky; ®a 1x) o 5. Now, if kj, is exact,

then the same holds fdf, ., 1, in view of lemmd 3.2.716(iii.b). Hence, P is k-saturated,
theng is exact (lemm&a_3.2.16(ii)), and if/ is k-saturated, also the converse holds. Likewise,
if M is k-saturated and is exact, thenV is k-quasi-saturated.

These considerations motivate the following :
Definition 3.2.21. Let T be atoposy : M — N a morphism of integral’-monoids.

() A commutative diagram of integrdl-monoids :

M—">N

L

M/L)N/

is called arexact squargif the induced morphism/’ %M N — N'is exact.
(i) ¢ is said to bek-quasi-saturatedf the commutative diagram :
M-—>N
(3222) le lkN
M—-N

is an exact square (the vertical arrows areftgobenius maps).
(i) ¢ is said to bequasi-saturatedf it is k-quasi-saturated for every integer> 0.
Proposition 3.2.23.LetT" be a topos.
(i) If 32.17)is an exact square, and/ — P is any morphism of integral-monoids,
the squareP? ®,, (3.2.17)is exact.
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(i) Consider a commutative diagram of integfiddlmonoids :
M- 2N Z.p

(3.2.24) wl | l | lw'

M, ®1 N, P2 P,
and suppose that the left and right square subdiagram@&.24)are exact. Then the
same holds for the square diagram :

201
M—

!

M/

P50

P
|
P

Proof. (i): We have a commutative diagram :

o int

(P &y M) &y N P&y (M &y N)

wl llpigi)tMa
B

(P &y M) ®p (P &y N) P&y N'

wherew, o are the natural isomorphisms, afdnda : M’ %M N — N’ are the natural maps.
By assumptiong is exact, hence the same holds Iqui@%M a, by lemmd_3.2.76(iii.b). S@ is
exact, which is the claim.

(i): Let o : M’ Sy N — N’ andg : N’ &y P — P’ be the natural maps; by assumptions,
these are exact morphisms. However, we have a natural caativeudiagram :

(M' &y N) &y P——> M &y P

aicn)@tzvlpl lv
B

N' &y P r

wherew is the natural isomorphism, andis the map deduced fromY andy), o . Then the
assertion follows from lemnfa 3.2]16(i,iii.b). O

Corollary 3.2.25. Let T be a toposy : M — N, ¢ : N — P two morphisms of integral
T-monoids, andi, k£ > 0 any two integers. The following holds :

(i) If ¢ is bothh-quasi-saturated ané-quasi-saturated, thep is hk-quasi-saturated.
(i) If o andy are k-quasi-saturated, the same holds fop .
(i) If M — P is any map of integral’-monoids, and is k-quasi-saturated (resp. quasi-
saturated), then the same holds t@iﬁéM 1p: P> N E%gM P.
(iv) Let S C ¢ 1(IN*) be aT-submonoid. Ther is k-quasi-saturated (resp. quasi-
saturated) if and only if the same holds for the induced map S™'M — N.
(v) LetG C Ker ¢ be a subgroup. Then is k-quasi-saturated (resp. quasi-saturated) if
and only if the same holds for the induced ngapM /G — N.
(vi) ¢ is quasi-saturated if and only if it is-quasi-saturated for every prime number
(vii) M is k-saturated (resp. saturated) if and only if the unique masphof7-monoids
{1} — M is k-quasi-saturated (resp. quasi-saturated).
(viii) If o is k-quasi-saturated (resp. quasi-saturated), ahdis k-saturated (resp. satu-
rated), then\V is k-saturated (resp. saturated).
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(ix) If M isintegral, andN is aT-group, is quasi-saturated.

Proof. (i) and (ii) are straightforward consequences of proposif.2.23(ii).
To show (iii), setP’ .= N S P and let us remark that we have a commutative diagram

P—sP ——P

int int
p@®mlp eOumlp

P —Py—PF

such that :

e the composition of the top (resp. bottom) arrows iskkHerobenius map

o the left square subdiagram 5 (3.2.22), P
¢ the right square subdiagram is cocartesian (hence exact).

then the assertion follows from proposition 3.2.23.

(iv): Suppose thaty is k-quasi-saturated. Then the same holds oty : S~'M —
S~tMm Sus N, according to (iii). However, we have a natural isomorphi$mi/ S N =
©(S)"'N = N, sopg is k-quasi-saturated.

Conversely, suppose that; is k-quasi-saturated. By (ii), in order to prove that the same
holds for, it suffices to show that the localisation m&p — S—' M is k-quasi-saturated. But
this is clear, sincd (3.2.22) becomes cocartesian if weftake the localisation map.

(v): To begin with,M /G is an integral monoid, by lemnia2.3138. Suppose ¢hiatk-quasi-

saturated. Arguing as in the proof of (iv) we see that thenahtoapN — (M /G) &y Nisan
isomorphism, henceg is k-quasi-saturated, by (iii).

Conversely, suppose thatis k-quasi-saturated. By (ii), in order to prove thais saturated,
it suffices to show that the same holds for the projecfion— M /G. By (iii), we are further
reduced to showing that the unique n@p— {1} is k-quasi-saturated, which is trivial.

(vi) is a straightforward consequence of (i). Assertion)(ean be verified easily on the
definitions. Next, suppose thatis quasi-saturated antl/ is saturated. By (ii) and (vii) it
follows that the unique morphisfil} — N is quasi-saturated, hence (vii) implies thétis
saturated, so (viii) holds.

(ix): In view of (iv), we are reduced to the case whéteis also a group, in which case the
assertion is obvious. O

Proposition 3.2.26.Lety : M — N be an integral morphism of integral monoids,> 0 an
integer. The following conditions are equivalent :

(@) p is k-quasi-saturated.
(b) ¢ is k-saturated.
(c) The push-ouf’ of the cocartesian diagraf8.2.20) is k-saturated.

Proof. (a)=(b) by virtue of corollary3.2.25(iii,viii), and triviall{b)=-(c). Lastly, the implica-
tion (c)=(a) was already remarked in(3.2.18). O

Corollary 3.2.27. Letp : M — N be an integral morphism of integral monoids. Theris
guasi-saturated if and only if it is saturated. O

Propositior 3.2.26 motivates the following :

Definition 3.2.28. Let T' be a toposy : M — N a morphism of integral-monoids,k > 0
an integer. We say that is k-saturated(resp.saturated if ¢ is integral andc-quasi-saturated
(resp. and quasi-saturated).
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In casel” = Set, we see that an integral morphism of integral monoids isratgd in the
sense of definition 3.2.28, if and only if it is saturated ie Bense of the previous definition
[3.2.11. We may now state :

Corollary 3.2.29. LetP(T), ) be the property { is an integral (resp. exact, resp-saturated,
resp. saturated) morphism of integr&tmonoids” (for a toposl’). ThenP can be checked on
stalks. (See remal&2.14(ii))

Proof. The fact that integrality of &-monoid can be checked on stalks, has already been es-
tablished in lemm&a 2.3.46(ii). For the property IS an integral morphism” (between integral
T-monoids), it suffices to apply theorém 312.3 and propasiZid.26.

For the property & is exact” one applies lemnia 2.3146(iii). From this, and fi@@2.19) one
deduces that also the propertiescedaturation and saturation can be checked on stalks[]

Lemma 3.2.30.Let f : M — N be a morphism of integral monoids. We have :

(i) If fis exact, thery is local.
(i) Conversely, iff is an integral and local morphism, thehis exact.

Proof. (i) is left to the reader as an exercise.

(i): Supposer € M®P is an element such that= fs(z) € N. Writez = 2~y for certain
y,z € M; thereforeb - f(z) = f(y) holds inN, and theoremss_3.2.8,3.1142 imply that there
existc € N anday,a; € M, such thatl = c¢- f(a1), b = c- f(az) andya; = zay. Sincef is
local, we deduce that, € M*, hencer = al_lag liesin M. O

Proposition 3.2.31.Let f : M — N be an integral map of integral monoids,> 0 an integer,
andN = . NV, the f-grading of N (see remarlB.2.5(iii)). Then the following conditions
are equivalent :

(@) fis k-quasi-saturated.
(b) Ny = Nf for everyy € I'. (Here thek-th power of subsets a¥ is taken in the
monoid#(N), as in(3.1.1))

Proof. (a)=(b): Letw : Ns* — I" be the projection, suppose that= N, for somey € T,
and pickz € N¢P such thatr(x) = ~. This means thay = z* - f&P(z) for somez € M?®P.
By (a), it follows that we may find a paifa,b) € M x N and an elemeniy € M#P, such
that (aw™",bw) = (z,x) in M& x NeP. Especiallyh,b - f(a) € N., and consequently =
v*=1.(b- f(a)) € Ny, as stated.

(b)=(a): LetS := f~1(N*); by lemmatd-3.2.30(ii) and_3.2.2(iii), the induced map:
S—'M — N is exact and integral. Moreover, by corollary 3.2.25(if)s k-quasi-saturated if
and only if the same holds fofs, and clearly thef-grading of V agrees with thefs-grading.
Hence we may replac¢ by fs and assume from start thdtis exact. In this casel; =
Ker ¢ C M, and corollany 3.2.25(v) says thgtis k-quasi-saturated if and only if the same
holds for the induced map: M /G — N; moreoverf is still integral, since it is deduced from
f by push-out along the mald — M/G. Hence we may replacgby f, thereby reducing to
the case wher¢ is injective. Also,f is flat, by theorerh 3.2/ 3. The assertion boils down to the
following. Suppose thatr, y) € M# x NP is a pair such that := f#°(z) - y* € N; we have
to show that there exists a p&in,n) € M x N whose class in the push-oftof the diagram

N pp By

agrees with the image ¢f, y) in PP. However, sety := 7 (y), and notice that € N, hence
we may writea = ny - - - ny, for certainny, ..., ny € N,. Then, according to remafk3.2.5(iv),
we may findn € N, andzy,...,z; € M such thaty, = n - f(z;) foreveryi = 1,... k. It
follows thaty - n=! € feP(M®P), sayy = n - f(z) for somez € M®P. Setm := x; - - - 1; then
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(z,y) = (z,n- f(2)) represents the same clasqasz* n)in PeP. Especially,f(x - z*) - nk =

a = f(m)-nk, hencem = x - n¥, sincef is injective. The claim follows. O

Corollary 3.2.32. Let f : M — N be an integral and local morphism of integral and sharp
monoids. Then :

(i) fis exact and injective.
(i) If furthermore,f is saturated, theoker f#P is a torsion-free abelian group.

Proof. (i): It follows from lemmal3.2.31 thaf is exact. Next, suppose th#ta;) = f(as)
for somea;,a, € M. By theoreni 3.2]3 and 3.1142, it follows that there ekjst, € M and

t € N such thatl = f(b))t = f(bs)t anda;by = asbe. SinceN is sharp, we deduce that
f(by) = f(b2) = 1, and sincef is local andM is sharp, we geb; = b, = 1, thusa; = as,
whencer = 1, which is the contention.

(i1): Let us endowN with its f-grading. Suppose now thate G is a torsion element, and
say thatg* = 1 in G for some integek > 0; by proposition$ 3.2.31 and 3.2126, we then have
Ny = N}. Especially, there existy, ..., a; € Ny, such thai, - --a, = 1. SinceN is sharp,
we must have,; = 1fori=1,... k, henceg = 1. O

Corollary 3.2.33. Letp : M — N be a morphism of integral monoids, C N any face, and
or : p 'F — F the restriction ofp.

(i) If ¢ is flat, then the same holds fer-, and the induced ma@oker o — Coker 2P
is injective.
(ii) If ¢ is saturated, the same holds foy..

Proof. (i): The fact thatyy is flat, is a special case of corolldry 3.1.51. The assertimut
cokernels boils down to showing that the induced diagranbefian groups :

gp

((p—lF)gp L Fep

| .

MNE&P —— N8P

is cartesian. However, say tha®(a,a; ') = f, f, ' for somea;,a, € M andf,, f, € F. This
means thap(a) fo = ¢(as) f1 In N; by condition (F2) of theorein 3.1.42, we deduce that there
existb;, by € M andt € N such thathha; = biaz and f; =t - o(b;) (i = 1,2). SinceF' is a
face, it follows that,, b, € ¢~ 'F, hencen,a; ' = bib, ' € (o' F)#°, as required.

(ii): By (i), the morphismyp is integral, hence it suffices to show that quasi-saturated
(propositior-3.2.26), and to this aim we shall apply theeciitn of proposition 3.2.31. Indeed,
let N = @, N, (resp. F = @, I,) be thep-grading (resp. the »-grading); according
to (i), the induced mag : I'> — I'is injective. This means thdt, = ' N N;(,, for every
~ € I'r. Hence, for every integeér > 0 we may compute

Fiy = FONji) = (F 0 Njey))* = B}

where the first identity follows by applying propositibn &2 (and proposition_3.2.26) to the
saturated map, and the second identity holds becauses a face of/V. O

3.3. Polyhedral cones.Fine monoids can be studied by means of certain combinaturia
jects, which we wish to describe. Part of the material thdofes is borrowed from[[35].
Again,all the monoids in this section are non-pointed.
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3.3.1. Quite generally, @onvex conés a pair(V, o), whereV is a finite dimensionaR-vector
space, and C V' is a hon-empty subset such that :

Ry -c=0=0+0

where the addition is formed in the mondi¢?(V), +) as in [3.1.11), and scalar multiplication
by the seR, is given by the rule :

Ry -S:={r-s|reR;,se S} for everyS € 2(V).
A subsetS C o is called aray of o, if itis of the formR . - {s}, for somes € o\ {0}.

We say tha{V, o) is aclosed convex conié o is closed as a subset df (of course,V is
here regarded as a topological space via any choice of iggnsonl” ~ R"). We denote by
(o) C V theR-vector space generated by To a convex conéV/, o) one assigns theual cone
(VY o), whereV" := Homg (V, R), the dual of’, and :

o’ :={ueV']|u(v) > 0foreveryv € o}.
Also, theopposite conef o is the cone
—o:={-veV|veo}
Notice thatr¥ and—o are always closed cones. Notice as well that the restriofitime addition
law of V' determines a monoid structufe, +) on the set. A map of cones
2 (VV, UW) — (V7 UV)

is anR-linear mapy : W — V such thatp(oy) C oy. Clearly, the restriction op yields a
map of monoidgow, +) — (ov,+). If S C V is any subset, we set :

St :={ueVY|u(s)=0foreverys € S} c V".

Lemma 3.3.2.Let (V, o) be a closed convex cone, Then, under the natural identific&ti —
(VY)Y, we havgo")" = o.

Proof. This follows from [19, Ch.11 85, n.3, Cor.5]. O

3.3.3.  Aconvex polyhedral conis a cong(V, o) such that is of the form :
o= {rw +-+ro, €V |r; > 0foreveryi < s}

for a given set of vectors, ..., v, € V, calledgeneratordor the cones. One also says that
{v1,...,vs} Is agenerating sefor o, and thatR, - vq,...,R, - v, aregenerating raygor o.
We say that is asimplicial congif it is generated by a system of linearly independent wecto

Lemma 3.3.4.Let(V, o) be a convex polyhedral coné,a finite generating set for. Then :

(i) For everyv € o there is a subset’ C S consisting of linearly independent vectors,
such that is contained in the convex polyhedral cone generated by
(i) (V,o)is aclosed convex cone.

Proof. (i): Let T C S be a subset such thatis contained in the cone generated’Byup to
replacing?” by a subset, we may assume tiias minimal,i.e. no proper subset df generates

a cone containing. We claim thatl’ consists of linearly independent vectors. Otherwise, we
may find a linear relation of the forfy,, ., a, - w = 0, for certaina,, € R, at least one of
which is non-zero; we may then assume that :

(3.3.5) Gy >0 for at least one vectar € T.

Say also that = ) b, - w with b,, € R ; by the minimality assumption oft, we must
actually haveb,, > 0 for everyw € T'. We deduce the identitys = (b, — ta,,) - w for
everyt € R; letty be the supremum of the set of positive real numbesrtsch thab,, — ta,, > 0
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for everyw € T In view of (3.3.5) we havé, € R, ; moreoven,, —tya,, > 0foreveryw € T,
andb,, — tga,, = 0 for at least one vectap, which contradicts the minimality of .

(ii): In view of (i), we are reduced to the case wherés generated by finitely many linearly
independent vectors, and for such cones the assertiorais(dietails left to the reader). [

3.3.6. Afaceof a convex cone is a subset of the formr N Ker u, for someu € ¢V. The
dimensior(resp.codimensiohof a facer of ¢ is the dimension of thR-vector spacér) (resp.

of theRR-vector spacéo)/(7)). A facetof o is a face of codimension one. Notice thavifs

a polyhedral cone, andis a face ofo, then(V, ) is also a convex polyhedral cone; indeed if
S C V is a generating set far, thenS N 7 is a generating set far.

Lemma 3.3.7.Let(V, o) be a convex polyhedral cone. Then the fac€d/0f) are the same as
the faces of the monoid, +).

Proof. Clearly we may assume that# {0}. Let F' be a face of the polyhedral core and
picku € ¢ such thatF” = o N Keru. Theno \ F' = {z € o | u(z) > 0}, and this is clearly an
ideal of the monoido, +); hencel is a face of(o, +).

Conversely, suppose thatis a face of(c, +). First, we wish to show thaf’ is a cone inV/.
Indeed, letf € F, andr > 0 any real number; we have to prove thhatf € F'. To this aim, it
suffices to show that-/NV) - f € F for some integeN > 0, so that, after replacingby /N
for N large enough, we may assume that » < 1. In this case(l — r) - f € o, and we have
f=r-f+({1—r)-f,sothat - f € F, sincelF is aface of(c, +).

Next, denote byl C V theR-vector space spanned by Suppose first that = W, and
consider anyn € o; thenm = f; — f, for somef;, fo € F, hencef; = f, + m. SinceF'is a
face of(o, +), this implies thain lies in F', soF' = ¢ in this case, especially is a face of the
convex polyhedral cone.

So finally, we may assume thidt is a proper subspace of. In this case, lelV := o+ (—F).
We notice thatV # V. Indeed, ifm € ¢ and—m € N, we may write—m = m’ — f for some
m' € o andf € F; hencef = m + m/, and thereforen € F’; in other words,N avoids the
whole of —(¢ \ F'), which is not empty for # {0}.

Thus,N is a proper convex cone &f. Now, letu,, ..., u;, € NV be a system of generators of
theR-subspace of ¥ spanned by", and set; := u; + - - - + ug. Suppose that € o N Ker u;
then—z € Keru,; forevery: = 1,..., k, and therefore-x € NVV = N (lemmd3.3.2). Hence,
we may write—z = m — f for somem € o andf € F, or equivalently,f = m + x, which
shows thatr € F. Summarizing, we have proved th&t= o N Keru, i.e. F'is a face of the
convex coner. U

Proposition 3.3.8.Let (V, o) be a convex polyhedral cone. The following holds :
(i) Any intersection of faces ofis still a face ofo.
(i) If 7is aface ofr, and~ is a face of(V, 1), then~ is a face ob.
(i) Every proper face of is the intersection of the facets that contain it.

Proof. (i): Say thatr; = o N Ker u;, whereu,, ..., u, € 6. Then(\_, , = o NKer> "  u,.
(il): Say thatr = 0 N Keru andy = 7 N Kerv, whereu € ¢¥ andv € 7. Then, for large
r € Ry, the linear formv’ := v + ru is non-negative on any given finite generating set of
henceitlies iny¥, andy = o N Ker v'.
(ii): To begin with, we prove the following :

Claim3.3.9 (i) Every proper face of is contained in a facet.
(i) Every face ofc of codimensior? is the intersection of exactly two facets.

Proof of the claimWe may assume thatr) = V. Let 7 be a face ot of codimension at least
two, and denote by be the image of in the quotient” := V/(r); clearly (V,7) is again a
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polyhedral cone. Moreover, choogec o such that- = o N Ker u; the linear formu descends
tow € 7", therefores N Kerw = {0} is a face of5.

(ii): If 7 has codimension twd; has dimension two. Suppose that the assertion is known for
(V,7); then we find exactly two facets,, 7, of @ whose intersection i§0}. Their preimages
in V intersectr in facetsy;, v, that satisfyy; Ny, = 7. Hence, we may assume from start that
7 = {0} andV has dimension two, in which case the verification is easysaadl be left to the
reader.

(): Arguing by induction on the codimension, it suffices two® thatr is contained in a
proper face spanning a larger subspace. To this aim, suppatte claim is known fof;
since{0} is a face ofg of codimension at least two, it is contained in a proper fac¢he
preimagey of the latter intersects in a proper face containing Thus again, we are reduced
to the case where = {0}. Pickuy € ¢" such thatr N Keruy, = {0}; choose also any other
u; € VY such thatr N Keru; # {0}. Sincedimg VY > 2, we may find a continuous map
f 00,1 = VY\{0} with f(0) = uo and f(1) = u;. LetP, (V) be the topological space
of rays of V' (i.e. the topological quotient’ \ {0}/ ~ by the equivalence relation such that
v ~ o' if and only if v andv’ generate the same ray), and define likewits¢VV); let also
Z Cc P :=P.(V)xP,(VV) be the incidence correspondence, the subset of all pairs
(v,w) such that(v) = 0, for any representative of the class: andv of the class. Finally,
letP, (o) C P.(V) be the image ob\ {0}. ThenZ (resp. P, (o)) is a closed subset aP
(resp. of P, (V)), henceY = Z N (P.(0) x P, (VY)) is a closed subset aP. Since the
projectionw : P — P, (V") is proper,r(Y) is closed inP, (V). Let f : [0,1] — P (V)
be the composition of and the natural projectiorV\ {0} — P, (VY); thenf~1(n(Y)) is a
closed subset df), 1], hence it admits a smallest element, agyotice thatz > 0). Moreover,
u, € o’; indeed, otherwise we may finde o\ {0} such that,(v) < 0, and since(v) > 0,
we would haveu,(v) = 0 for someb € (0,a). The latter means that(b) € =(Y"), which
contradicts the definition af. Since by construction; N Ker u, # {0}, the claim follows. ¢

Let T be any face ofr; to show that (iii) holds for-, we argue by induction on the codimension
of 7. The case of codimension 2 is covered by claim 3.3.9(ii): kfas codimension- 2, we
apply claim3.3.8(i) to find a proper facecontainingr; by induction,r is the intersection of
facets ofy, and each of these is the intersection of two facets {again by claini_3.319(ii)),
whence the contention. O

3.3.10. Supposespand/ (i.e. (o) = V) and letr be a facet of; by definition there exists an
elementu, € ¢" such thatr = o N Ker u., and one sees easily thatthe ray:= R, -u, C ¢
is well-defined, independently of the choicewgf Hence the half-space :

H.:={veV]u,(v) >0}

depends only om. Recall that thenterior (resp. theopological closurgof a subsety C V' is
the largest open subset (resp. the smallest closed sulb3égantained inE (resp. containing
E). Thetopological boundaryf F is the intersection of the topological closuresfotind of
its complement’\ E.

Proposition 3.3.11.Let (V, o) be a convex polyhedral cone, such thatpansy’. We have:

(i) The topological boundary ef is the union of its facets.
(ii) If o #V,theno = -, H,, wherer ranges over the facets of
(i) The raysR., wherer ranges over the facets of generate the cone”.

Proof. (i): Notice thato spansl” if and only if the interior ofo is not empty. A proper face
7 is the intersection of with a hyperplané&eru C V with v € oY\ {0}; therefore, every
neighborhood/ C V of any pointv € 7 intersectsV \ 0. This shows that lies in the
topological boundary of.
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Conversely, ifv is in the boundary ofr, choose a sequence; | : € N) of points of V'\ o,
converging to the point; by lemma3.3.2, for every € N there exista,; € ¢¥ such that
u;(v;) < 0. Up to multiplication by scalars, we may assume that theorset; lie on some
sphere inl”V (choose any norm ol"); hence we may find a convergent subsequence, and we
may then assume that the sequeficg i € N) converges to an elemente V. Necessarily
u € oV, thereforev lies on the facer N Ker u, and the assertion follows from proposition
[3.3.8(iii).

(i): Suppose, by way of contradiction, thaties in every half-spacé/,., butv ¢ o. Choose
any pointv’ in the interior ofo, and lett € [0, 1] be the largest value such that:= tv +
(1 —t)v'" € o. Clearlyw lies on the boundary of, hence on some facet by (i). Say that
7 = o N Keru; thenu(v') > 0 andu(w) = 0, sou(v) < 0, a contradiction.

(ii): When o = V/, there is nothing to prove, hence we may assumesthat/ . In this case,
suppose that. € ¢¥, andu is not in the cone&”' generated by the ray®B,. Applying lemma
[3.3.2 to the conéVV, '), we deduce that there exists a veator V with v € H, for all the
facetsr of o, andu(v) < 0, which contradicts (ii). O

Corollary 3.3.12. Let(V, o) and(V, ¢’) be two convex polyhedral cones. Then :

(i) (Farkas’ theorem)The dual(V'V,¢") is also a convex polyhedral cone.
(ii) If 7is aface ofo, thent* := oVN7tisaface ofc¥ suchthatw*) = (7)1. Especially:

(3.3.13) dimg(7) + dimg(7*) = dimg V.

The ruler — 7* is a bijection from the set of faces ofto those ofs". The smallest
face ofoiso N (—o).

(iii) (V,ono’)is aconvex polyhedral cone, and every facerof ¢’ is of the formr N 7/,
for some faces of ¢ andr’ of ¢'.

Proof. (i): SetW := (¢) C V, and pick a basis,, . . ., u;, of W+; by propositioi-3.311(iii),
the assertion holds for the dual’", o) of the congW, o). However, WV ~ V'V /W, hence
the dual con¢V'V, o) is generated by lifts of generators(@¥ ", o), together with the vectors
u; and—u;, fori =1,... k.

(ii): Notice first that the faces af" are exactly the cones’ N {u}*, foru € o = (¢¥)". For
a givenv € o, let 7 be the smallest face of such that € 7; this means that’ N {v}+ = 7+
(where(VV, 7V)isthe dual of V, 7)). HencesVN{v}+ = oVN(7VN{v}+) = 7%, so every face
of ¢V has the asserted form. The rule— 7* is clearly order-reversing, and from the obvious
inclusionr C (7%)* it follows that7* = ((7%)*)*, hence this map is a bijection. It follows from
this, that the smallest face ofis (¢)* = o N (¢¥)* = (¢¥)* = o N (—0). In particular,
we see thato N (—0))* = ¢Y, and furthermore[(3.3.13) holds fer:= o N (—o). Identity
(3.3.13) for a general face can be deduced by insertingin a maximal chain of faces af,
and comparing with the dual chain of facesoof (details left to the reader). Finally, it is clear
that(r) c (r*)+; since these spaces have the same dimension, we dedu¢e)that (1*).

(iii): Indeed, lemmd_3.3]2 implies that’ + ¢’V is the dual ofc N ¢/, hence (i) implies
thato N ¢’ is polyhedral. It also follows that every faceof o N ¢’ is the intersection of
o N o’ with the kernel of a linear form + «/, for someu € ¢¥ andu’ € ¢’V. Consequently,
7= (o NKeru) N (o NKeru). O

Corollary 3.3.14. For a convex polyhedral con&’, o), the following conditions are equivalent:

(@) cnN(—o) ={0}.

(b) o contains no non-zero linear subspaces.
(c) There exists € ¢V such thatr N Ker u = {0}.
(d) ov spansl/V.
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Proof. (a) < (b) sinces N (—o) is the largest subspace containedrinNext, (a)< (c) since
o N (—o) is the smallest face of. Finally, (a)< (d) sincedimg (o N (—0)) + dimg{(c¥) =n
(corollary[3.3.1R(ii)). O

3.3.15. A convex polyhedral cone fulfilling the equivalennditions of corollany 3.3.14 is
said to bestrongly convexSuppose thatV, o) is strongly convex; then proposition 3.3l 11(iii)
says that is generated by the ray3., wherer ranges over the facets of . The raysR,. are
uniquely determined by, and are called thextremal rayf o. Moreover, thesé?, form the
unigue minimal set of generating rafje ¢. Indeed, concerning the minimality : for each facet
T of 0¥, pickv, € o with R, - v, = R;; suppose that,, = > _.t, - v, for some subsef of
the set of facets of v, and appropriate, > 0, for everyr € S. It follows easily thatu(v,) = 0
for everyu € 7y, and everyr € S. But by definition ofR,, this implies thatS = {7}, which

is the claim. Concerning unigueness : suppose Yhat another system of generating rays;
especially, for any facet C ¢V, the rayR, is in the convex cone generated By it follows
easily that there exisis € X such thatu(p) = 0 for everyu € 7, in which case = R,. This
shows that: must contain all the extremal rays.

Example 3.3.16.(i) Suppose thatlimg V' = 2, and(V, o) is a strongly convex polyhedral
cone, and assume thatgenerated’. Then the only face of codimension two @fis {0}, so
it follows easily from claim_3.3J9(ii) that- admits exactly two facets, and these are also the
extremal rays of, especially is simplicial. Of course, these assertions are rather alsyio
dimension> 2, the general situation is much more complicated.

(i) Let (V,0) be a convex polyhedral cone, and suppose éhgppansl’. Let r be a face
of 0. Notice that(c,+)®* = (V,+), and (7, +) is a face of the monoido, +), by lemma
[3.3.7. Hence we may view the localizatien'c naturally as a submonoid d¢#, +), and it
is easily seen that~!c is a convex cone. By proposition 3.3111(iii), the polyhéd@ne o
is generated by its extremal rajg, ..., Rl,, and by propositiof_3.3.8(iii), we may assume
thatt = o NKer (I; + - - - + I;) for somek < n. Clearlyl;(v) > 0 for everyv € 7~'o and
every: < k. Conversely, ifl € (77'0)Y, we must haver C Ker/ andl € ¢"; if we write
[ =" al; for somea; > 0, it follows easily thata; = 0 for everyi > k. On the other
hand, suppose that e V' satisfies the inequalitidg(v) > 0 for: = 1,..., k; then, for every
i=k+1,...,nwemay findu; € 7 such that;(v + u;) > 0, hencev + uy 1 + -+ + u, € o,
and thereforer € 7~1o. This shows that ¢ is a closed convex cone, and its dyat'o) is
the convex cone generated hy. . ., [;; especially, it is a convex polyhedral cone, and then the
same holds for~'c, by virtue of lemma&3.3]2 and corolldry 3.3112(i).

(i) In the situation of (ii), letv € T be any element that lies in tmelative interiorof 7, i.e.
in the complement of the union of the facetsrofDenote bysS, C 7 the submonoid generated
by v. Then we claim that
o =S50
Indeed, lets € o andt € 7 be any two element; in view of propositibn 3.3.11(i), it isi#aseen
that there exists an integéf > 0 such thaty — N='t € 7, hencet’ := Nv — t € 7. Therefore
s—t=(s+t)— Nve S 'o, and the assertion follows.

Lemma 3.3.17.Let f : V — W be a linear map of finite dimension&vector spaceq,V, o)
a convex polyhedral cone. The following holds :
(i) (W, f(o)) is a convex polyhedral cone.
(i) Suppose moreover, thatn Ker f does not contain non-zero linear subspace$/of
Then, for every face of f(o) there exists a face’ of o such thatf(7') C 7, and f
restricts to an isomorphism({r’) = (7).

Proof. (i) is obvious. To show (ii) we argue by induction an= dimg Ker f. The assertion is
obvious whem = 0, hence suppose that> 0 and that the claim is already known whenever
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Ker f has dimension< n. Let T be a face off (¢); then f~!r is a face off~!f(c), hence
oN f~lrisaface ofr = o N f~!f (o). In view of proposition 3.318(ii), we may then replace
o by o N f~1r, and therefore assume from start that= f(o). We may as well assume that
V = (o) andW = (7). The assumption on implies especially that # V, henceo is the
intersection of the half-spacés, corresponding to its facets(propositio 3.3.11(ii)). For each
facety of o, letu., be a chosen generator of the rRy (notation of (3.3.10)). Since N Ker f
does not contain non-zero linear subspaces, we may find efaceh that’’ := Ker u., does
not containKer f. Then, the inductive assumption applies to the restricfipn: V' — W
and the convex polyhedral comen V’, and yields a face’ of the latter, such thaf induces
an isomorphismr’) = (f(o N V')). Finally, (f(c N V")) = W, sinceV’ does not contain
Ker f. O

Lemma 3.3.18.Let f : V — W be a linear map of finite dimension&lvector spacesf" :
WY — V'V the transpose of, and (¥, o) a convex polyhedral cone. Then :

(i) (V, f1o)is aconvex polyhedral cone afd—'o)" = fV(o").
(i) For every facel of f~'o, there exists a face of o such thaty = f~17. If furthermore,
(o)+ f(V) = W, we may find such aso that additionally,f induces an isomorphism:

V/(6) S W/ (r).

(iii) Conversely, for every faceof o, the conef~!7 is a face off ~!o, and(f~'7)* is the
smallest face of f ~1o)¥ containingfV(7*) (notation of corollary3.3.12(ii).

Proof. (i): By corollary[3.3.12(i),(W",¢") is a convex polyhedral cone, hence we may find
uy,...,us € oV such thatr = (;_, u; '(R,). Thereforef~to = (;_,(u; o f)"'(R,). Let

v C VY be the cone generated by the §eto f, ..., u o f}; thenf~lo = 4V, and the assertion
results from lemmBa_3.3.2 and a second application of (i).

(iii): For everyu € 0¥, we have :f~}(c NKeru) = (f~'o) NKeru o f. Since we already
know that(f~'o)V = f¥(c"), we see that the faces ¢f 'o are exactly the subsets of the form
f~'r, wherer ranges over the faces of Next, for any suchr, the setfV(7*) consists of all
u € V'V of the formu = w o f for somew € ¢ such thatw(7) = 0. From this description it
is clear thatf¥ (7*) C (f~'r)*. To show that f~17)* is the smallest face containing (7*), it
then suffices to prove that’(7*)* N f~'o C f~'r. However, letv € fV(7*)* N f~lo; then
wo f(v) = 0foreveryw € 7%, i.e. f(v) € (7%)* = 7, whence the contention.

(i): The first assertion has already been shown; hence,cagpihatic) + f(V) = W. We
deduce thatV NKer fV does not contain non-zero linear subspacd®of indeed, ifu € WV,
and bothu and—u lie in ¢V, thenu vanishes orjo), and ifu € Ker fV, thenu vanishes as well
on f(V), henceu = 0. We may then apply lemnia_3.3]17(ii) to find a fagef ¢" such that
fY(v) C 6* andfV restricts to an isomorphism(z) = (5*). Especiallys* is the smallest face
of (f~1o)Y containingf¥(v), henced* = (f~y*)* by (iii), i.e. § = f~!v*. We also deduce
that f induces an isomorphismi//(§*)t = W/{~)*. Since(§*)*+ = (5) and(y)* = (v*), the
second assertion holds with:= ~*. O

Lemma 3.3.19.Let(V, o) and (V’, ¢’) be two convex polyhedral cones. Then :
(i) (V@ V' o xo')is aconvex polyhedral cone.
(i) Every face ofr x ¢’ is of the formr x 7/, for some faces of o and7’ of o’'.

Proof. Indeed,oc x o/ = (p;'o) N (py'o’), wherep, andp, are the natural projections of
V & V' ontoV andV’. Hence, assertions (i) and (ii) follow from corolldry 3.4(ili) and
lemma3.3.118(i). O
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3.3.20. Let(L,+) be a free abelian group of finite rank, C Lg := L ®; R a convex

polyhedral cone. We say thatis L-rational (or briefly : rational, when there is no danger of
ambiguity) if it admits a generating set consisting of elatsef L. Then it is clear that every
face of a rational convex polyhedral cone is again ratiosed [(3.316)). On the other hand, let

(M, +) C (L, +)
be a submonoid of,; we shall denote byLg, Mg) the convex cone generated by (i.e. the

smallest convex cone ibg containing the image a¥/). If M is fine, My is a convex polyhedral
cone. Later we shall also find useful to consider the subset :

MQ = {m®q|m€ M,QEQ+} CLQ I:L®Z@
which is a submonoid ofg.

Proposition 3.3.21.Let (L, +) be a free abelian group of finite rank, with dual
LY := Homg(L,Z).
Let also(Lg, o) and(Lg, ') be twoL-rational convex polyhedral cones. We have :

(i) The dual(Ly,c") is anL"-rational convex polyhedral cone.

(i) (Lg,oNo’)is also anL-rational convex polyhedral cone.

(i) Letg : L' — L (resp. h : L — L') be a map of free abelian groups of finite rank,
and denote byg : L — Lg (resp.hg : Lg — Lf) the inducedR-linear map. Then,
(L, gz ‘o) and (Li, hg(o)) are L'-rational.

(iv) Let L' be another free abelian group of finite rank, afid,, ') an L’-rational convex
polyhedral cone. The(lLg & L, o x ¢') is L @ L'-rational.

Proof. (i) and (ii) follow easily, by inspecting the proof of coraty[3.3.12(i),(iii) : the details
shall be left to the reader.

(iii): The assertion concerningz (o) is obvious. To show the assertion fgg'o, one ar-
gues as in the proof of lemma_3.3.18(i) : by (i), we may find...,u, € LY such that
o = i u;r(Ry). Thereforegy'c = (;_;(u; o g)z'(R4). Lety C VY be the cone gen-
erated by the sef(u; o g)g, ..., (us o g)r}; thengy'c = ~Y, and the assertion results from
lemma3.3.2 and a second application of (i).

Lastly, arguing as in the proof of lemrha_3.3.19(i), one desigiii) from (ii) and (iii). O

Parts (i) and (iii) of the following proposition provide theidge connecting convex polyhe-
dral cones to fine monoids.

Proposition 3.3.22.Let (L, +) be a free abelian group of finite rankLg, c) an L-rational
convex polyhedral cone, and sgt := L No. Then:
(i) (Gordan’s lemma)o,, is a fine and saturated submonoidiafand L N (o) = o%".
(i) Foreveryv € Lg, the subsel N (¢ — v) is a finitely generated;-module.
(ii) For any submonoid/ C L, we have :Mg = Mg N Lg and M®** = Mg N L.

Proof. (Hereoc — v C Ly denotes the translate efby the vector—uv, i.e. the subset of all
w € Ly such thatv + v € ¢.) Choosevy, ..., v, € L that generate, and set

C. = {Ztivi | t; € [0,¢] fori=1,.. .,s} for everye > 0.
i=1
(): Clearly L N o is saturated. Sinc€', is compact and. is discrete(C; N L is a finite set.
We claim thatC'; N L generates the monoigd,. Indeed, ifv € o, writev = Zfﬂ r;v;, With
r; > 0foreveryi = 1,...,s; hencer; = m; +t; for somem; € N andt; € [0, 1[, and therefore
v =1 +3"7  mu,;, wherev vy, ..., v, € C; N L. Next, itis clear thats® C LN (o); for
the converse, say that € L N (o), and writew = w; — wy, for somew;,w, € o. Then
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wy = Y i, tv; for somet; > 0; we pickt; € N such that] > ¢, for every: < s, and we set
w) = Y7 th,. Itfollows thatw = w] — w), wherew), := wy + (w} — wy)), and notice that
wy € o1, andw) € o; then we must have’, € o;, as well, and therefore € o3".

(i) is similar : from the compactness @f, one sees that N (C; — v) is a finite set; on
the other hand, arguing as in the proof of (i), one checkdyethsit the latter set generates the
or-moduleL N (o — v).

(iii): Let x € Mg N Lg; then we may write

(3.3.23) T = Zm ®m;  wherem; € M, r; > 0foreveryi < n.
=1

Claim 3.3.24 In the situation of proposition 3.3.22(iii), let € Mg N Lg, and writez as in
(3.3.23). Then, for every > 0 there existy;,...,q, € Q4 with |r; — ¢;| < ¢ for every
i=1,...,n,andsuchthat =" ¢ ® m,.

Proof of the claim.Up to a reordering, we may assume that, ..., m; form a basis of the

Q-vector space generated by, . . ., m,,, thereforem;, .; = Zle gijm; for a matrix

A= (g;li=1,....n—k; j=1,...,k)
with entries inQ. Letr := (ry,...,r,) andr’ := (rg41,...,70); Sincex € Lg, we deduce that
b:=r+1r"-Ac Q%. Moreover, ifs := (s1,...,5:) € Q®F ands’ := (sp41,...,5,) € Q¥F

satisfy the identity = s + s’ - 4, then) " | s; ® m; = z. If we chooses’ very close ta”’, then
s shall be very close t@; especially, we can achieve that bagthnds’ are vectors with positive

coordinates. O
Claim[3.3.2% shows that € Mg, whence the first stated identity; for the second identity, w
are reduced to showing thaf*** = My N L, which is immediate. O

For various algebraic and geometric applications of therthef polyhedral cones, one is led
to study subdivisions of a given cone, in the sense of theviatlg definition3.3.25. Later we
shall see a more abstract notion of subdivision, in the ctortegeneral fans, which however
finds its roots and motivation in the intuitive manipulasoof polyhedra that we formalize
hereafter.

Definition 3.3.25. Let V' be a finite dimensionak-vector space.

(i) A fanin V is afinite setA consisting of convex polyhedral coneslof such that :
e for everyo € A, and every face of o, alsor € A;
e for everyo, T € A, the intersectiom N 7 is also an element ok, and is a face of
botho andr.
(i) We say thatA is asimplicial fanif all the elements of\ are simplicial cones.
(i) Suppose thaty = L ®z R for some free abelian group; then we say thai\ is
L-rational if the same holds for every € A.
(iv) A refinemenofthe fanAisafanA’in V with | J, ., ¢ = U,/ 7, @nd such that every
T € Ais the union of they € A’ contained inr.
(v) A subdivisiorof a convex polyhedral con@’, o) is a refinement of the faa,, consist-
ing of o and its faces.

Lemma 3.3.26.Let (V, o) be any convex polyhedral con&,a subdivision of V, o). We let
A ={reA|(r)= (o)}
Then, a7 = 0.

Proof. Let 7y € A be any element. Thes( := | J,,, 7 is a closed subset of. If (ry) # (o),
theno \ 7 is a dense open subset @fcontained ino’; it follows thato’ = o in this case.
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Especially,ry = UT;&TO (1 N19); since eachr N 7y is a face ofry, we see that there must exist
T # 19 such thatr is a face ofr. The lemma follows immediately. O

Example 3.3.27.(i) Certain useful subdivisions of a polyhedral canare produced by means
of auxiliary real-valued functions defined en Namely, let us say that a continuous function
f : 0 — Ris aroof, if the following holds. There exist finitely marig-linear formsi, ..., [,
onV, such thatf(v) = min(l;(v),...,l,(v)) for everyv € o. The concept of roof shall be
reintroduced in sectidn 3.6, in a more abstract and genaiséghowever, in order to grasp the
latter, it is useful to keep in mind its more concrete polylaethcarnation. We attach tp a

subdivision ofs, as follows. For every, j = 1,...,n definel;; :== I, — [;, and letr; C V'V be
the polyhedral cone"” + Rl;; + - - - + Ri;,,. From the identity,;, = I;; + [, we easily deduce
thatr,” N ;" is a face of both,” andr/, for everyi,j = 1,...,n. Denote byO the smallest

subdivision ofo containing all ther,”; it is easily seen that

n
_ \%
o=Us
=1

and the restriction of to eachr,” agrees with,.
(i) Conversely, letf : ¢ — R a continuous function; suppose there exists a subdiviSion

of o, and a systen, | 7 € ©) of R-linear forms onl” such that

e f(v) =1, (v)foreveryr € © and every € 7.

o f(u+v)> f(u)+ f(v) for everyu,v € o.
Then we claim thayf is a roof ono. Indeed, let©® C O be the subset of ait that span(o).
Notice fist that the systerfi, | 7 € ©°) already determineg uniquely, by virtue of lemma
[3.3.26. Next, let, 7/ € ©° be any two elements, and pick an elemenof the interior ofr. For
anyu € 7" and any= > 0 we have, by assumptionfi(v + cu) > f(v) + f(eu). If € is small
enough, we have as well+ cu € 7, in which case the foregoing inequality can be written as :

L(v)+e-l(u) =1L(v+eu) > (v)+e- Ll (u)
whencel,(u) > I/(u) = f(u) and the assertion follows.

Proposition 3.3.28.Let f : V — W be a linear map of finite dimension&l-vector spaces,
(V, o) a convex polyhedral cone, ad: o — f(o) the restriction off. Then :

() There exists a subdivisiah of (W, f(o)) such that :
h™'a+b)=h""(a) +h ' (b)  foreveryr € A andevery,bc 7.

(i) Suppose moreover thét = L Rz, R, W = L' ®z R and f = g ®z 1g for a map
g : L — L' of free abelian groups. I is L-rational, then we may find ah-rational
subdivisionA such that(i) holds.

Proof. Let V{, be the largest linear subspace contained in Ker f. Notice that, under the
assumptions of (ii), we have V;, = R ®z Kerg. One verifies easily that the proposition
holds for the given mag and the condV, o), if and only if it holds for the induced map
f:V/Vy — W/ f(V) and the conéV/V,, 5) (wherez is the image ofr in VV/1;). Hence, we
may replacef by f, and assume from start that Ker f contains no non-zero linear subspaces.
Moreover, we may assume thaspansl” and f (o) spandV'.

(i): Let S be the set of faces of & such thatf restricts to an isomorphisir) = W.

Claim3.3.29 Let A\ C f(o) be any ray. Then:

(i) N := h~'\is a strongly convex polyhedral cone. Especialyjs generated by its
extremal rays (se€(3.3]15)).
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(ii) For every extremal ray of X' with p ¢ Ker f, there exists- € S such thatp =
TN ).

Proof of the claim.\" is a convex polyhedral cone by lemma3.3.18(i) and corolBa8yI2(iii).
To see that\’ is strongly convex, notice that any subspdce- f~!()) lies already inKer f,
and if L C o, we must havd. = {0} by assumption. Let be an extremal ray of which is not
contained inKer f; notice that\” is the intersection of the polyhedral comgs:= A~'()\) and
o := f~1), hence we can find facésof \; (i = 1, 2) such thap = §,NJ, (corollary(3.3. 1P (iii)
and lemma&-3.3.18(i)). However, the only proper face\pfs Ker f (lemma3.3.18(ii)), hence
5y = X\o. Likewise, f~1()\) has no proper faces, henée= ~ N f~(\) for some facey of o
(again by corollary-3.3.12(iii)). Sinck, is a half-space irf ~'()\), we deduce easily that either
81 = pord, = (p). Especiallydimg (f~'()\))/(;) = dimg Ker f. We may then apply lemma
[3.3.18(ii) to the imbedding~!(\) C V, to find a facer of o such that :

O =6 (DN FYN =(p)  dimg V/{r) = dimg Ker f.
It follows that () N Ker f = {0}, and therefore € S, as required. O

We construct as follows a subdivision 0fV, f(c)). For everyr € S, let F(7) be the set
consisting of the facets of the polyhedral cofie); set alsol" := | J, .4 F'(7). Notice that, for
everyy € I, the subspacéy) is a hyperplane ofl; we let :

U= foN\ -

yeF

ThenU is an open subset ¢f(c), and the topological closur€ of every connected component
C of U is a convex polyhedral cone. Moreover(ifand D are any two such connected compo-
nents, the intersectioff N D is a face of bothC and D. We letA be the subdivision of (o)
consisting of the coneS — whereC ranges over all the connected components eftogether
with all their faces.

Claim3.3.3Q For everys € A and everyr € S, the intersection N f(7) is a face ob.

Proof of the claimDue to propositiof 3.318(iii), we may assume that the topological closure
of a connected componeat of U. We may also assume th@tr) # W, otherwise there is
nothing to prove; in that case, we hayer) = (1, .z, H,, where, for eachy € F(7), the
half-spacef{, is the unique one that contains botfr) and~ (propositior 3.3.711(ii)). It then
suffices to show thati N H, is a face ofy for each such/,. We may assume that¢ H.,.
SinceC' is connected and C W'\ (v), it follows thaté C —H.,, the topological closure of the
complement off,. Hence(—H,)" C §¥ (where(—H,)" is the dual of the polyhedral cone
(W,—H,)), and therefore " H, =0 N H, N (—H,) = d N (y) isindeed a face af. O

Next, for everyw € f(o),letl(w) :={r € S|w € f(7)}.
Claim3.3.31 Letd € A, andw,, wy € §. Thenl (w; + wy) C I(wy) N I(ws).

Proof of the claimSuppose first that, +w, is contained in a fac& of §; say that’ = dNKer u,
for someu € ¢Y. This means that(w; + ws) = 0, henceu(w;) = u(wy) = 0, i.e. wy, wy € §'.
Hence, we may replace by ¢’, and assume thatt is the smallest element @k containing
wy + wy. Thus, suppose thate I(w; +w-); thereforew; +w, € f(7)Nd. From clain{3.3.30
we deduce that C f(7), hencer € I(w;) N I(w,), as claimed. O

Finally, we are ready to prove assertion (i). Henceglétce f(o) be any two vectors that lie
in the same element df. Clearly :

h™'a)+h*(b) C h ' (a+b)
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hence it suffices to show the converse inclusion. Howeveecty from claim[3.3.209(ii) we
derive the identity :

W' Ry -w)=(cNKerf)+ > (rnf'(Ry-w))  foreveryw € f(o).
Tel(w)
Taking into account claimn3.3.B1, we are then reduced to sipthat :
TOf YR, - (a+b) C (TN f YRy -a)+ (7N fFHR, - b)) for everyr € I(a + ).

The latter assertion is obvious, sinfeestricts to an isomorphisir) = W,
(ii): By inspecting the construction, one verifies easilgttthe subdivisiom\ thus exhibited
shall beL-rational, wheneves is. O

3.3.32. Later we shall also be interested in rational vésia the identities of proposition
[3.3.28(i). Namely, consider the following situation. lget L — L’ be a map of free abelian
groups of finite rankgr : Lg — L the inducedR-linear map, andLg, o) an L-rational convex
polyhedral cone; set := gg(c), and denote byig : 0 — 7 (resp.hg : 0 N Lo — 7N Ly) the
restriction ofgz. We point out, for later reference, the following observati

Lemma 3.3.33.In the situation of(3.3.32) suppose that :
he' (1) + hg'(z2) = hg' (21 + 29) for everyx,, o € 7
(where the sum is taken in the mongié’ (o), +)). Then we have as well :
hg' (1) + hg' (x2) = hg' (21 + x2) for everyz, z, € 7N Ly,
Proof. Let 21,2, € 7N Ly be any two elements, and ¢ h@l(:cl + 23), SO we may write

v = v; + vy for somev; € hﬂgl(xi) (- = 1,2). Let alsouy,...,u; be a finite system of
generators for", and set

Ji i =1{j < k|uj(v;) =0} E;:=gg'(z;)N ﬂ Keru; (1=1,2).
JjeJi
Clearly Ly N E; is a dense subset &f; for i = 1, 2, hence, in any neighborhood 0f;, z2) in
Lg? we may find a solutioryy, y») € L3 for the system of equations

gr(yi) = x; u;(y;) =0 fori=1,2and everyj € J;.

Sinceu;(z;) > 0 for every; ¢ J;, we will also haveu;(y;) > 0 for everyj ¢ J;, providedy; is
sufficiently close tar;. The lemma follows. O

3.3.34. We conclude this section with some consideratibasghall be useful later, in our
discussion of normalized lengths for model algebras (s€e4®)). Keep the notation of propo-
sition[3.3.22, and for every subdétcC Lg, let

1oU) ={LN(oc—v)|veU} andset .7, :=.77,(Lg).
There is a natural-module structure orv7, ,; namely, notice that
(LN(c—v))+l=LN(c—(v—1)) foreveryv € Lg andl € L

hence the rule; : S — S+ defines a bijection o, , onto itself, for every € L, and clearly
701y = T4y fOr everyl, !’ € L. Also, for everyS € .7}, define

O(0,9) :={ve Lz | LN (0 —v) =S}

and denote by2(c, S) the topological closure d®(c, S) in Lg. For givenu € Ly andr € R,
setH,, :={v € Lg | u(v) > r}. We shall say that a subset bf is Q-linearly constructible
if it lies in the boolean subalgebra 6P (L) generated by the subsé g1, ., for v ranging
over all theQ-linear formsLy — Q, andr ranging over all rational numbers.
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Proposition 3.3.35.With the notation 0f3.3.34) the following holds :
(i) ZL,(U) is afinite set, for every bounded subset Lg.
(i) 71, is afinitely generated.-module.
(iii) For every non-empty € .7}, ,, the subsef)(o, S) is Q-linearly constructible.
(iv) Suppose moreover, thatspansLg. Then, for evens € .77, ,, the subsef)(o, S) is
contained in the topological closure of its interior (S§€23.10).
(v) ForeveryS € .7, ,, and every € (o, S), we haveS C LN (o — v).

Proof. (i): Define C. as in the proof of propositidn 3.3.22; sinteis bounded, it is contained
in the union of finitely many subsets af; of the formC' + [, for [ ranging over a finite subset
of L. On the other hand; induces a bijection

F1.0(C1) = L1 ,(Cy —1)  foreveryl € L.

Hence, it suffices to check the assertion tor= (. However, the proof of proposition
[3.3.22(ii) shows thal N (o — v) is generated by. N (C; — v); if v € (4, the latter subset
is contained irC” := C, U (—C), which is a compact subset 6. ThereforeL. N C" is a finite
set, and the claim follows.

(if): We have already observed that themodule.;, , is generated by, ,(C), and this is
a finite set, by (i).

(iii): Fix a minimal systemS;, ..., .S, of generators of thé-module.”; , (i.e. the S; are
chosen representatives for the orbits of thaction on.”;, ;). After replacings; by some
translatesS; + [ (for an appropriaté € L) we may also assume that eith&r= &, or else
0 € S;, and notice that this implies :

(3.3.36) SiC{o)NL=0c% foreveryi=1,...,n
(propositiori 3.3.22(i)). Set

Ajj={leL|S;CS;—a} foreveryi,j <n
and notice that};; is ac,-module, for every, j < n.
Claim3.3.37 If S;, S; # @, theo,-moduleA;; is finitely generated.

Proof of the claim.Fix [ € L such thato;, + [ C S;. Next, say thatr,...,z; is a finite
system of generators for the,-moduleS; (proposition 3.3.22(ii)); by virtue 0f(3.3.86), for
everys = 1,...,t, we may writer, = a, — b, for certaina,, b, € 0. Setl’ := b, +---+0b;, and
notice thatS; C o, —I'. Now, if S; C S; — a, we deduce that;, + 1 C o, — a — ', especially
leo,—a—1,ie.a€o,— (l+1). This shows that;; is isomorphic to an ideal of,, and
then the claim follows from propositidn 3.1.9(ii). O

Now, leti, j < n such thatS;, S; # @. Suppose first that # j, and letA;; C A;; be any
finite generating system for the,-module 4,;. From the construction, it is clear that every
element ofL.S; that containsS;, must containS; — [, for somel € A;;. To deal with the case
where: = j, we remark, more generally :

Claim3.3.38 Let P be any fine and saturated monaid, C P#° a non-empty finitely generated
P-submodule, and € P2 an element such that\/ c M. Thena € P.

Proof of the claim.Pick anym € M, and denote by\//’ C M the submodule generated by

(a*m | k € N). According to proposition 3.1.9(i), there exists> 0 such that\/’ is generated

by the finite systenta*m | k = 0, ..., N). Especiallya™+'m € M’, and therefore there exists

r € P andi < N such that™'m = a'ma in M; it follows thata¥ '~ € P, and finally

a € P, sinceP is saturated. O
From (3.3.36) we see that;; C o%, if S; # @; combining with clain{3.3.38, we deduce

that A;; = o,. Moreover, notice as well that i§; = S; — a for somea € 0%, then botha
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and—a € A, so thata € o). Thus, letA, be any set of representativesmaf \ m?, where
m, denotes the maximal ideal oﬁ If « € L, andS; — a contains strictlyS;, thena is a
non-invertible element of;, and taking into account corollary 3.1110, we see thais finite,
and there existse A/, such thatS; — [ C S; — a. Next, for everyi < n such thatS; # &, set

S=| S +11e ALy
j
wherej < n runs over the indices such théif # @. Summing up, we conclude that” is
a finite set for every < n with S; # @, and if an element of/;, , contains strictlyS;, then
it contains some element o, Lastly, in order to prove assertion (iii), we may assume tha
S = 5, for some; < n, and notice that :

(3.3.39) Vo, S)={velp|Sco-v}\ |J{vele|S Co—0v}
S'e s
Sinces is finitely generated (propositidn 3.3]122(ii)), we reduzshowing that, for every € L,
the subsef)(o,a) := {v € Lg | a € 0 — v} is Q-linearly constructible, which follows easily
from propositio 3.3.21(i) and lemrha 3.B.2.
(iv): We remark :

Claim3.3.4Q Let C. be as in the proof of proposition 3.3]122; For every Q)(o, S) there exists
e > 0 such that + C. C Q(c, 5).

Proof of the claim.Sinceo is closed inLg, for everya € Ly and every € Lg \ (o, a) there
existse > 0 such thatb + C.) N Q(0,a) = @. Taking into accoun{(3.3.89), the claim follows
easily. O

If o spanLg, the subseC. has non-empty interial/., for everye > 0, and the topological
closure ofU, equalsC.. The assertion is then an immediate consequence of claid(3.3

(v): The assertion follows easily from proposition 3.3i92(the details shall be left to the
reader. O

3.3.41. LetL be asin[(3.3.34), and for all integetsm > 0 set

1 1 1
—L = — = —L.
— {veLg|mvelL} mL[l/n] | n’“mL
k>0
For future reference, let us also point out :

Lemma 3.3.42.With the notation of3.3.41) let 2 C Ly be aQ-linearly constructible subset.
Then we have :

() The topological closure of) in Ly is againQ-linearly constructible.
(i) There exists an integen > 0 such that- L[1/n] N Q is dense irY, for everyn > 1.

Proof. (i): Q2 is a finite union of non-empty subsets of the fof N - - - N Hy, where eaclH;

is either of the formH 41, , for some non-zer®-linear formw of Ly and some: € Q (and
this is a closed subset dfg), or else is the complement ibz of a subset of this type (and
then its closure is a half-spa¢é_,31,.,). One verifies that the closure &f, N --- N Hy is the
intersection of the closures éf, . . ., H;,, whence the assertion.

(i): We may assume thdd = Q; N Q,, where(; is a finite intersection of rational hy-
plerplanes, andl, is a finite intersection of open half-spaceg.(of complements of closed
half-spaces). Suppose thaf.[1/n] N (), is dense ir2;; then clearly-L[1/n] N Q is dense in
Q. Hence, we may further assume tlats a non-empty intersection of rational hyperplanes.
In this casef? is of the formVi + vy, wherevy € Lg, andVg = V ®z R for some subgroup
V' C L. Notice thatL[1/n] N V& is dense inVi for every integem > 1. Then, any integer
m > 0 such that, € L L will do. O
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3.4. Fine and saturated monoids. This section presents the more refined theory of fine and
saturated monoids. Again, all the monoids in this sectieman-pointed. We begin with a few
corollaries of proposition 3.3.22(i,iii).

Corollary 3.4.1. Let M be an integral monoid, such that* is fine. We have :

(i) The inclusion map/ — M** is a finite morphism of monoids.
(i) Especially, ifM is fine, any monoidv with M ¢ N C M*®*, is fine.

Proof. (i): From lemmd_3.2]9(ii) we deduce thaf*** is a finitely generated/-module if and
only if (M*)** is a finitely generated/*-module. Hence, we may repladé by M*, and
assume thab/ is fine. Pick a surjective group homomorphigm Z%" — Me¢P; it is easily
seen that :

(p—l(Msat) — (QD_lM)Sat

and clearly it suffices to show that ' N is finitely generated, hence we may repladeby
o tM, and assume throughout th&fe? is a free abelian group of finite rank. In this case,
proposition3.3.22(i,iv) already implies thaf**" is finitely generated. Lei,...,a; € M
be a flnlte system of generators and pICk integers .., n; > 0 such thate;” € M for
P = k. Foreveryi = 1,... klety;, :== {a! | j = 0,...,n; — 1}; it is easily seen
Y- Ek C M*®* is a system of generators for thé- moduIeMSat (where the product of the
setsY; is formed in the monoid? (M) of (3.1.1)).

(ii) follows from (i), in view of propositior 3.1)9(i). O

Corollary 3.4.2. Let f : M; — M andg : My — M be two morphisms of monoids, such that
M, and M, are finitely generated, and/ is integral. Then the fibre produdt/; x,; M, is a
finitely generated monoid, andif; and M; are fine, the same holds far; x,; M.

Proof. If the monoidsM, M, and M, are integral, M, x,; M, injects in MY X o MEP
(lemmal2.3.29(iii)), hence it is integral. To show that tH&di product is finitely generated,
choose surjective morphism&® — M; andN®* — M,, for somea, b € N; by composition
we get maps of monoidg : N®¢ — M, + : N® — A, such that the induced morphism
P = N% x,, N®® — M, x,; M, is surjective. Hence it suffices to show thatis finitely
generated. To this aim, ldt := Ker (8P — o8P : Z®e+b — Nfep): for everyi = 1,...,a + b,
denote also byr; : Z®*** — Z the projection onto theé-th direct summand. The system
{m|i=1,...,a+b} generates a rational convex polyhedral cone L"®;R, and one verifies
easily that? = L N ¢V, so the assertion follows from propositidns 3.3.21(i) a2 (). O

Corollary 3.4.3. Let(I", 4+, 0) be an integral monoid)/ a finitely generated'-graded monoid.
Then, is a finitely generated monoid, and., is a finitely generated/,-module, for every
vyel.

Proof. We haveM, = M xr {0}, hencell, is finitely generated, by corollafy 3.4.2. The
given elementy € I' determines a unique morphism of monolNs— I' such thatl — .
Letp, : M' := M xr N — Nandp, : M' — M be the two natural projections; by lemma
[2.3.29(iii), we havell, = py(p;*(1)). In light of corollary[3.42.2,M" is still finitely generated,
hence we are reduced to the case whHere N andy = 1. In this case, pick a finite set of
generatorss for M. One checks easily thdt/; N S generates thé/,-module)M;. U

Corollary 3.4.4. Let M be an integral monoid, such that/* is fine, andy : M — N a
saturated morphism of monoids. Thers flat.

Proof. In view of corollary{3.4.1(i) and theorem 3.2.6, it sufficesshow that thé\/***-module
M= @,; N is flat. Hence we may replace by M/***, and assume thal/ is saturated. Let
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I C M be any ideal, and defing()M, I) as in the proof of theorem 3.2.3; by assumption,
R(M, I)** @, N is a saturated — especially, integral — monaiel,the natural map

R(M,I) Ry N — R(M, ])gp @ arep N&P

is injective. The latter factors through the morphigaw, N, wherej : R(M,I) — M xNisthe
obvious inclusion. In light of example3.2]13(i), we dedticat the induced map* @, N —
N is injective. Now, if is a prime ideal, thed®* = I, hence the contention follows from
corollary[3.1.48(ii). O

The following corollary generalizes lemma 3.2.10.

Corollary 3.4.5. Let f : M — N be alocal, flat and saturated morphism of fine monoids, with
M sharp. Then there exists an isomorphism of monoids

g: N5 N¥ x N*

that fits into a commutative diagram

f
M ! N#

o

N —2= Nt x N*

whose right vertical arrow is the natural inclusion map.

Proof. From lemma_3.2.30(ii), we know thdtis exact, and sinc#/ is sharp, we easily deduce
that f(M)e*> N N* = {1}. Hence, the induced group homomorphidff® & N* — N&P is
injective. On the other hand, sin¢es flat, local and saturated, the same holdsffor M — N*
(lemmal3.2.12(iii) and corollary 3.4.4); then corollar? 32(ii) says that the cokernel of the
induced group homomorphisie® — (N*#)e? = NeP /N> is a free abelian grou@ (of finite
rank). Summing up, we obtain an isomorphism of abelian gsoup

h: M N pG S N&P

extending the mageP. SetN, := N N h(M®e @ G); it follows easily that the natural map
Ny x N* — N is an isomorphism; especially, the projectivin— N* mapsN, isomorphically
onto N*, and the contention follows. OJ

3.4.6. Let(M,-) be a fine (non-pointed) monoid, so thefP is a finitely generated abelian
group. We sef\/t” := log M*®" ®, R, and we letMy be the convex polyhedral cone generated
by the image ofog M. Then(Mg, +) is a monoid, and we have a natural morphism of monoids

@ :log M — (Mg, +).

Proposition 3.4.7. With the notation 0f3.4.6) we have :
(i) Every face of the polyhedral cordy, is of the formFy, for a unique face of M.
(i) The induced map :
©* : Spec Mg — Spec M
is a bijection.
Proof. Clearly, we may assume that # {1}. Letp C M be a prime ideal; we denote by
pr the ideal of( Mg, +) generated by all elements of the form ¢(x), wherer is any strictly

positive real number, andis any element of. We also denote byM \p)r the convex cone of
MEP generated by the image 81\ p.

Claim3.4.8 Mg is the disjoint union of M\ p)r andpg.



FOUNDATIONS OFp-ADIC HODGE THEORY 163

Proof of the claim.To begin with, we show that/x = (M \p)r U pr. Indeed, letr € Mg; then
we may writex = Eff:l m; ® a; for certainay, ...,a, € Ry andmy,...,m;, € M. We may
assumethaty, ..., a; € pandag,1,...,a, € M\p. Now, if £ = 0 we haver € (M \p)g, and
otherwiser € pr, which shows the assertion.

It remains to show thatM \p)r N pr = @. To this aim, suppose by way of contradiction,
that this intersection contains an elementhis means that we have finite subs&fsc M\ p

andS; C M such thatS; Np # @, and an identity of the form :
(3.4.9) szo@aJ:ZUQ@ba

o€Sp oEST
wherea, > 0 for everyo € Sy, andb, > 0 for everyo € S;. For everyo € Sy, choose
a rational number;, > a,; after adding the summang, _, o ® (a;, — a,) to both sides
of (3.4.9), we may assume that € Q. for everyo € Sy. Let N C M be the submonoid
generated bys;; it follows thatz € Ng N Mg = Ng (propositior 3.3.22(iii)), hence we may
assume that all the coefficients andb, are rational and strictly positive (see remark 3.8.24).
We may further multiply both sides df (3.4.9) by a large irtego obtain that these coefficients
are actually integers. Then, up to further multiplicatigndome integer, the identity df (3.4.9)
lifts to an identity between elementslog A/, of the form Y o a, -0 =3 s b, - 0. The
latter is absurd, sincé, Np # @ andS, Np = . O

Claim[3.4.8 implies thay is a prime ideal of\/g, and clearlyp C ¢*(pr). Since we have
aswellM\p C ¢ 1(M\p)r, we deduce that = ©*(pg). Hence the rule — pg yields a
right inversep, : Spec M — Spec My for the natural mag*. To show thatp, is also a left
inverse, lety C My be a prime ideal; by lemnia 3.8.7 and proposifion 313.21# faceMx \ q
is of the formMg N Ker u, for someu € My N (log M8P)Y. Then it is easily seen thatlg \ q
is the convex cone generated pyM) N Ker u, in other words Mg \ q = ¢! (Ker u)g. Again
by claim[3.4.8, it follows thay = (M \ o~} (Keru))r = (©*q)r, as stated. The argument also
shows that every face dff is of the from(M \ p)r for a unique prime idegl, which settles
assertion (i). O

Corollary 3.4.10. Let M be a fine monoid. We have :
(i) dim M = rkz(M®&P/M*).
(i) dim(M\p)+ htp = dim M for everyp € Spec M.
(iii) If M £ {1} is sharp (sed2.3.32), there exists a local morphisi? — N.
(iv) If M is sharp and\/eP is a torsion-free abelian group of rank there exists an injective
morphism of monoidd/ — N®",

Proof. (i): By proposition(3.4.]7, the dimension dff can be computed as the length of the
longest chainfy, C F} C --- C Fy of strict inclusions of faces af/i. On the other hand, given
such a maximal chain, denote bythe dimension of th&-vector space spanned by, in view
propositior 3.3.8(ii),(iii), it is easily seen that,; — r; = 1 foreveryi = 0,...,d — 1. Since
Mg N (—Mp) is the minimal face of\/g, we deduce that

dim M = dlmR Mﬂ%p - dlmR MR N (—MR)

Clearlydimg Mg = rkz M#P; moreover, by propositidn 3.4.7, the fatg N (—Mg) is spanned
by the image of the fac&/* of M. whence the assertion.

(i) is similar : again propositiof 3.3.8(ii),(iii) impl®that, every facd" of M fits into a
maximal strictly ascending chain of faces/df;, and the length of any such maximal chain is
dim M, by (i).

(iii): Notice thatrkzM#P > 0, by (i). By propositiori 3.4]7(i) M is strongly convex, there-
fore, by proposition 3.3.21(i), we may find a non-zero line@py : M ®; Q — Q, such
that Mg N Ker ¢ ®g R = {0} andy(M) C Q.. A suitable positive integer af will do.
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(iv): Under the stated assumption, we may regafdas a submonoid af/k, and the latter
contains no non-zero linear subspaces. By corollary 3.8nt¥proposition 3.3.21(i), we may
then findr linearly independent forms,, ..., u, : M® ®; Q — Q which are positive on
M. It follows thatu; ®¢ R, ..., u, ®g R generate a polyhedral come¢ C My, so its dual
conec C MgP containsMyg. By constructiono admits precisely- extremal rays, say the
rays generated by the vectars . . ., v, which we can pick inMép, in which case they form
a basis of the latte@-vector space. Now, every € My can be written uniquely in the form
r = Y., au; for certainay,...,a, € Q; sinceM is finitely generated, we may find an
integerN > 0 independent of, such thatVa; € N for everyi = 1,...,r. In other words M
is contained in the monoid generated®y'v,, ..., N~!v,; the latter is isomorphic tB®". [

3.4.11. Forany monoid/, thedualof M isthe monoid\/" := Homp,q (M, N) (seel(3.1.11)).
As usual, there is a natural morphism

M— M"Y ' mw— (o~ o(m)) foreverym € M andyp € M".
We say thatV/ is reflexive if this morphism is an isomorphism.

Proposition 3.4.12.Let M be a monoid. We have :

(i) MY isintegral, saturated and sharp.
(i) If M is finitely generated)/" is fine, and we have a natural identification :

(MY)g = (Mg)".

Moreover, dim M = dim M".
(i) If M is finitely generated and sharp, we have a natural identifocat

(M\/)gp 5 (Mgp)\/_
(iv) If M is fine, sharp and saturated, thén is reflexive.

Proof. (i): It is easily seen that the natural group homomorphism
(3.4.13) (MY)#? — (M®)Y := Homg(M?®,7Z)

is injective. Now, say thap € (M")®* and Ny € M"Y for someN € N; we may viewy as
group homomorphismp : M#? — Z, and the assumption implies thatM/) C ZNQ, = N,
whence the contention.

(ii): Indeed, letzq, ..., z, be a system of generators df. Define a group homomorphism
[ (MeP)Y — Z%™ by the rule :p — (o(x1), ..., o(x,)) foreveryf : M8 — Z. ThenM" =
¢~ H(N®™), and sincg M/#P)" is fine, corollanf3.42 implies that/" is fine as well. Next, the
injectivity of (3.4.13) implies especially théd/")#? is torsion-free, hencé (3.4]13), R is still
injective; its restriction tq MV ) factors therefore through an injective md@p: (M")r —
(Mg)Y. The latter map is determined by the imageléf, and by inspecting the definitions,
we see thaf () := ¢8 ® 1 for everyp € M". To prove thatf is an isomorphism, it suffices
to show that it has dense image. However, say ¢hat(Mg)Y; theny : M — R is a group
homomorphism such that(A/) C R.,. SinceM is finitely generated, in any neighborhood of
¢ in Mg we may find somey’ : M& — Q., and thenNy¢' € MV for some integetV € N
large enough. It follows that’ is in the image off, whence the contention.

The stated equality follows from the chain of identities :

dim M = dim My = dim(Mg)" = dim(M")g = dim M"

where the first and the last follow from proposition 314)7@ind the second follows from corol-
lary[3.3.12(ii).

(iii): Let us show first that, under these assumptions, £3%x; R is an isomorphism. In-
deed, ifM is sharp,(Mg)" spans(ME")" (corollary[3.3.14 and proposition 3.4.7(i)); then the
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assertion follows from (ii). We deduce th@/")s? and(M&P)" are free abelian groups of the
same rank, hence we may find a bagis. .., ¢, of (MY)8" (resp. vy, ..., 9, of (MeP)Y),
and positive integerd/, ..., N, such that[(3.4.13) is given by the ruley; — N;v; for every

i =1,...,r. Butthen necessarily we have = 1 for every: < r, and (iii) follows.

(iv): Itis easily seen that/V = (Mg)" N (M*P)Y (notation of [3.4.6)). After dualizing again
we find : MYV = ((MY)g)Y N (MYeP)Y, From (ii) we deduce thaf MY)g)" = (Mg)"Y = Mg
(lemmal3.3.R), and from (iii) we get (MVeP)Y = (MeP)VV = M. HenceM"Y = Mg N
M#> = M (propositior-3.3.22(iii)). O

Remark 3.4.14.(i) Let M be a sharp and fine monoid. Proposifion 3.4.12(iii) implrext the
natural map
Hompna (M, Q1 )* — Homyma (M, Q)

is an isomorphism. Indeed, it is easily seen that this mapjesiive. For the surjectivity, one
uses the identificatioHomy,q (M, Q) — (M) @z Q, which follows fromloc.cit. (Details
left to the reader.)

(i) For:=1,2,let N; — N be two morphisms of monoids. By general nonsense, we have
a natural isomorphism :

(N1 RN Ng)v :) va X NV NQ\/

@) If f; - M; — M (i = 1,2) are morphisms of fine, saturated and sharp monoids, there

exists a natural surjection :

(3415) Mlv R v MQV — (Ml XM Mz)v
whose kernel is the subgroup of invertible elements. Indeetd := M’ ®,,v My'; in view of

(ii) and propositio 3.4.12(iv), we have a natural idengifion PVV = (M, x,; M,)Y, and the
sought map is its composition with the double duality nfap+ PVY. Moreover, clearlyP is
finitely generated, and it is also integral and saturateatessaturation commutes with colimits.
Hence — again by propositidn 3.4112(iv) — the double duatigp induces an isomorphism
P/P* 5 PV,

(iv) In the situation of (iii), if f; : M; — M (i = 1,2) are epimorphisms, then (3.4115) is an
isomorphism. Indeed, in this case the dual morphigfhs MV — M.’ are injective, so thaP
is sharp (lemma3.1.12), whence the claim.

Theorem 3.4.16.Let M be a saturated monoid, such that’ is fine. We have :

i) M= ﬂ M, (where the intersection runs over the prime idealdbbf height one).
ht p=1
(i) If moreoverdim M = 1, then there is an isomorphism of monoids :

M* xN S M.

(i) Suppose thad/®? is a torsion-free abelian group, and lét be any normal domain.
Then the group algebr&[M] is a normal domain as well.

Proof. (i): Pick a decompositiod/ = M* x M* as in lemm&3.2.10, and notice thdt is fine,
sharp and saturated. The prime idealdbfare of the formp = py x M, wherep, is a prime
ideal of M*. Then itis easily seen that, = M/, x M*. Therefore, the sought assertion holds
for M if and only if it holds for A/%, and therefore we may repladé by M*, which reduces
to the case wher@/ is sharp, hence the natural morphigm log M — My is injective. In
such situation, we hav&él = My N M®& andM, = M, r N M?*P for every prime ideap C M
(propositior 3.3.22(iii) and lemnma_3.2.9(i)). Thus, we erduced to showing that

My = ﬂ M, .

htp=1
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However, set- := (M \ p)g; by inspecting the definitions, one sees thity = Mg + (—7),
and proposition 3.417 shows thatis a facet ofM, hencel/,  is the half-space denotéd. in
(3.3.10). Then the assertion is a rephrasing of proposS&B1 (ii).

(i): Arguing as in the proof of (i), we may reduce again to ttese wherél/ is sharp, in
which caseM = Mg N MeP. The foregoing shows that, in cadean M = 1, the coneMy
is a half-space, whose boundary hyperplane is the only naattface o of M. However,o
is generated by the image of the unique non-trivial facé/ofi.e. by M* = {1} (proposition
[3.41(i)), hence = {0}, soMy is a half-line. Now, let. : Mg® — R be a non-zero linear form,
such that.(M) > 0, andzxy, ..., z, a system of non-zero generators far, say thatu(x;) is
the least of the values(z;), for: = 1,...,n. SinceM is saturated, it follows easily that every
valueu(x;) is an integer multiple ofi(x;) (propositior 3.3.22(iii)), and then, is a generator
for M, soM ~ N.

(iii): To begin with, R[M] C R[M®?], and sinceM/®® is torsion-free, it is clear thdt\/P]
is a domain, hence the same holds fV/]. Furthermore, from (i) we derive R[M] =
Mutp—1 R2[M,], hence it suffices to show th&{ 1/, ] is normal whenevey has height one. How-
ever, we haveiR[M,| ~ R[M,| ®r R[N] in light of (ii), and since) is torsion free, it is a
filtered colimit of a family of free abelian groups of finitenlq so everything is clear. OJ

Example 3.4.17.Let M be a fine, sharp and saturated monoid of dimengion

(i) By corollary[3.4.710(i) and example_3.3]16, we see thatadmits exactly two facets,
which are fine saturated monoids of dimension one; by thel (ii) each of these facets
is generated by an element, say(for i = 1,2). From propositio3.3.22(iii) it follows that
Qie1 @ Qiex = My. Especially, we may find an integéf > 0 large enough, such that :

Ne, @ Ne, ¢ M CN%@N%.

(i) Moreover, clearlye; ande, areunimodularelements of\/¢P (i.e. they generate direct
summands of the latter free abelian group of rahkWe may then find a basi§, f, of M*P
with e; = f1, andey, = af; + bfs, wherea,b € Z and(a,b) = 1. After replacingf, by some
element of the formef; + df; with ¢ € {1,—1} andd € Z, we may assume that> 0 and
0 < a < b. Clearly, such a normalized pdir, b) determines the isomorphism class\df since
My is the strictly convex cone ai/g” whose extremal rays are generatedebyande,, and
M = M®P N Mg.

(iif) More precisely, suppose thatl’ is another fine, sharp and saturated monoid of dimen-
sion2, andy : M — M’ an isomorphism. Pick a basf$, f; of AM’¢? and a normalized pair
(a’,b') asin (ii), such that| := f; ande,, := d’ f{ + ' f} generate the two facets 81’. Clearly,
© must send a facet df/ onto a facet of\/’; we distinguish two possibilities :

e eitherp(e;) = ¢} andyp(es) = €}, in which case we get(fo) = b= (a'—a) f{+b7 1V f4;
especially}’, a — o’ € bZ. By consideringyo—!, we get symmetrically that ¢ ¥'Z, so
b =V and thereforéa’,b) = 1 = (a,b) and0 < a,a’ < b, whencex = a’

e or elsep(e;) = ¢, andp(es) = €, in which case we gep(f;) = b=1(1 — ad’) f +
b=Waf,. It follows again that! € bZ, sob = I/, arguing as in the previous case.
Moreover,0 < o’ < b, and1 — aa’ € bZ. In other words, the class af in the group
(Z/bZ)* is the inverse of the class of

Conversely, it is easily seen that,if’ is as abovef;, f; is a basis of\/’eP, and the two facets
of M’ are generated by, andd’ f{ + V' f5, for a pair(a’, b’) normalized as in (ii), and such that
aa’ = 1 (mod b), then there exists an isomorphisth = A’ of monoids (details left to the
reader). Hence, sé€¥./bvZ)' := (Z/bZ)* /~, where~ denotes the smallest equivalence relation
such thafa| ~ [a]~! for every[a] € (Z/bZ)*. We conclude that there exists a natural bijection
between the set of isomorphism classes of fine, sharp anchsatumonoids of dimensian
and the set of pair§, [a]), whereb > 0 is an integer, an¢h] € (Z/VZ)T.
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3.4.18. LetP be an integral monoid. Aractional idealof P is a P-submodulel C P#P
such that/ # @ andz - I C P for somex € P. Clearly the union and the intersection of
finitely many fractional ideals, are again fractional ideaVe may also define the product of
two fractional ideald, I, C P#P : namely, the subset

Ly :={zy|xz€el,y€ L} C P

which is again a fractional ideal, by an easy inspection. iff a fractional ideal of?, we say
that I is finitely generatedif it is such, when regarded asfa&module. For any two fractional
ideals!;, I, we let

([11]2) Z:{$€ng|l"]2C]1}.
It is easily seen that/; : I,) is a fractional ideal of? (if + € I, andyl; C P, then clearly
zy(ly : Iy) C P). We set

I'V:'=(P:I) and I*:=(1')"' foreveryfractional ideal C P*".

ClearlyJ~! c I!, wheneverd C J, andl C I* for all fractional ideald, J. We say thaf is
reflexiveif 7 = I*. We remark thaf —! is reflexive, for every fractional idedl C P#P. Indeed,
we havel~! c (I71)*, and on the other hand—!)* = (I*)~! c I-'. It follows thatI* is
reflexive, for every fractional idedl. Moreover,/* C J*, whenever C J; especially/* is the
smallest reflexive fractional ideal containiig Notice furthermore, that/=' = (a='1)~! for
everya € P#?; thereforeal* = (al)*, for every fractional ideal anda € P#P.

Lemma 3.4.19.Let P be any integral monoid], J C P#P two fractional ideals. Then :
() (1) = (I"J*)".
(i) I*istheintersection of the invertible fractional idealsithat contain/ (see definition

2.3.6(iv).

Proof. (i): SincelJ C I*J*, we have(I.J)* C (I*J*)*. To show the converse inclusion,
it suffices to check that*.J* C (I/J)*, since(l.J)* is reflexive, and [*J*)* is the smallest
reflaxive fractional ideal containing*J*. Now, leta € I be eny element; we get/* =
(aJ)* C (IJ)*, solJ* C (I1J)* and therefordlJ*)* C (IJ)*. Lastly, letb € J* be any
element; we geli/* = (bI)* C (IJ*)*,sol*J* C (IJ*)*, whence the lemma.

(ii): It suffices to unwind the definitions. Indeedc P#P lies in I* if and only if a/~* C P,
if and only if ab € P, for everyb € P#P such thabl C P. In other wordsg € I* if and only if
a € b~1P for everyb € P such thatl c b—!P, which is the contention. O

3.4.20. LetP be any integral monoid. We denote byv(P) the set of all reflexive fractional
ideals of P. We define a composition law dpiv(P) by the rule :

IoJ:={J) for everyl, J € Div(P).
It follows easily from lemma&_ 3.4.19(i) that is an associative law; indeed we may compute :
o)oK =({UJ)'K)=IJK)=IJK)) =I0(JOK)
forevery!l, J, K € Div(P). Clearly/ © J =J o IandP ® I = I, for everyl, J € Div(P),
so (Div(P),®) is a commutative monoid. Notice as well that/ifc P, then also/* C P

(lemmd 3.4.19(ii)), so the subset of all reflexive fractiddaals contained irP is a submonoid
Div,(P) C Div(P).

Example 3.4.21.Let A be an integral domain, and the field of fractions ofd. Classically,
one defines the notions &factional idealand ofreflexive fractional ideabf A : seee.qg. [61,

p.80]. In our terminology, these are understood as folld®et.A’ := A N K*, and notice that
the monoid(A4, -) is naturally isomorphic to the integral pointed mongigl Then a fractional
ideal of A is an A’ -submodule ofK * = K of the formI,, wherel C K* is a fractional ideal
of A’. Likewise one may define the reflexive idealstfThe seDiv(A) of all reflexive ideals
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of A is then endowed with the unique monoid structure, such teattapDiv(A’) — Div(A)
given by the rule/ — I, is an isomorphism of monoids.

Lemma 3.4.22.Let P be an integral monoid, an@ C P* a subgroup. We have :

(i) Therulel — I/G induces a bijection from the set of fractional idealsfofo the set
of fractional ideals ofP/G.
(i) Afractionalideall of P is reflexive if and only if the same holds fbfG.
(iii) Therulel — I/G defines an isomorphism of monoids

Div(P) = Div(P/Q).
(iv) If P%isfine, every fractional ideal aP is finitely generated.

Proof. The first assertion is left to the reader. Next, we remark thafG = (I/G)~! and
(1J)/G = (I/G) - (J/G), for every fractional ideald, J of P, which imply immediately
assertions (ii) and (iii). Lastly, suppose thtis finitely generated, and Iétbe any fractional
ideal of P; pick x € I~} sinceP is integral,] is finitely generated if and only if the same holds
for 1. Hence, in order to show (iv), we may assume that P, in which case the assertion
follows from propositior 3.119(ii) and lemnla 3.1116(i.a). O

In order to characterize the monoiftssuch thaDiv(P) is a group, we make the following :

Definition 3.4.23. Let P be an integral monoid, ande P#P any element.

(a) We say that is power-boundedf there exist®$ € P such that"b € P for alln € N.
(b) We say that” is completely saturatedf all power-bounded elements é%° lie in P.

Example 3.4.24.Let (T, <) be an ordered abelian group, andisét.= {y € ' | v < 1}. Then
't is always a saturated monoid, but it is completely saturidtad only if the convex rank of
I'is < 1 (seel36, Def.6.1.20]). The proof shall be left as an exerfmsthe reader.

Proposition 3.4.25.Let P be an integral monoid. We have :

(i) (Div(P),®) is an abelian group if and only iP is completely saturated.
(ii) If Pisfine and saturated, theR is completely saturated.
(iii) Let A be a Krull domain, and set’ := A\{0}. Then(A4’,-) is a completely saturated
monoid.

Proof. (i): Suppose thaf € Div(/) admits an inverség in the monoid Div(P), ®), and notice
thatl © I-! C P; it follows easily that/ © (JUI~')* = P, hencel ! C J, by the uniqueness
of the inverse. On the other hand Jifstrictly contains/ —!, then!J strictly containsP, which
is absurd. Thus, we see tHaiv(P) is a group if and only if © 7! = P for everyl € Div(P).
Now, suppose first tha? is completely saturated. In view of lemma_3.4.19(ii), we @duced
to showing that” is contained in every invertible fractional ideal contaipi 1. Hence, say
that/='I C aP for somea € P¢P; equivalently, we hava='/-'1 c P,i.e. a1t C I},
and them=*1—! c I~! for every integek € N. Say that € I~! andc € I*; we conclude that
a~*bc € P for everyk € N, soa™! € P, by assumption, and finall{y’ C a P, as required.

Conversely, suppose thBiv(P) is a group, and lei € PP be any power-bounded element.
By definition, this means that thé-submoduld of PP generated bya* | k € N) is a fractional
ideal of P. Then/~! is a reflexive fractional ideal, and by assumptiort admits an inverse,
which must bel*, by the foregoing. On the other hand, by construction we hdve I, hence
al* = (al)* C I*. We deduce thatP = o(I* O [ Y) =al* 0" Cc "0 I = P,ie.
a € P, as stated.

(ii) is a special case of claim 3.3138.

(ii): See [61,512] for the basic generalities on Krull domains. One is imragsdy reduced
to the case wherél is a valuation ring whose valuation groliphas rank< 1. Taking into
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account (i) and lemmia_3.4.22, it then suffices to show thantbaoid A’/A* is completely
sataurated. However, the latter is isomorphic to the sulmmdr™ of elements< 1 in T, so the
assertion follows from example 3.4124. O

3.4.26. Letp : P — ) be a morphism of integral monoids, ahdany fractional ideal of;
notice that/() := ¢%°(1)Q C @*° is a fractional ideal of). Moreover, the identities

([1 U [Q)Q - [1@ U [QQ ([1]2)@ - ([1@) : ([QQ) for a” fractional idea|S[1, [2 C ng

are immediate from the definitions. Likewise Afan integral domain and : P — (A\{0},-)

a morphism of monoids, then th&submodule/ A := «#P(I)A of the field of fractions ofA

is a fractional ideal of the ringl (in the usual commutative algebraic meaning : see example
[3.4.21), and we have corresponding identities :

(HUL)A =LA+ LA (L1 1)A = (1 A) - (I,A) for all fractional idealsl,, I, C P®P.

Lemma 3.4.27.In the situation of (3.4.26) suppose thap is flat and A is «-flat, and let
I,J,J" C P#P be three fractional ideals, witlh finitely generated. Then we have :
() (J:DHQ=(JQ:1IQ)and(J: 1)A = (J:I)A.
(i) Especially, ifl is reflexive, the same holds f6€) and I A (see(5.8)).
(i) Suppose furthermore that is local, anda is a local morphism. Thed A = J' A if
and only ifJ = J'.
(iv) If Pisfine, the rulel — IQ) andl — I A define morphisms of monoids

Div(ep) : Div(P) — Div(Q) Div(a) : Div(P) — Div(A)

(whereDiv(A) is defined as in examp@4.2]), andDiv(«) is injective, ifa is local
and A is a local domain.

Proof. (i): Say that/ = a; PU - -- U a, P for elementsi,, ..., a, € P*. Then
(J:I)=a;'JN---Nna'J and (JQ:IQ)=a;'JQN---Na,'JQ
and likewise for(.J : ) A, hence the assertion follows from an easy induction, antbtieeving

Claim 3.4.28 For any two fractional ideald;, J, C P, we have(J; N J;)Q = J1Q N J>Q and
(Jl N JQ)A - JlA N JQA

Proof of the claimPick anyz € P such thatc.J;, zJ; C P; sinceP is an integral monoid, and
A is an integral domain, it suffices to show thét/; N J2)Q = zJ;Q N zJ>Q and likewise for
z(J1 N Jy)A, and notice that:(J; N Jy) = zJ; Nz Jy. We may thus assume thét and.J, are
ideals of P, in which case the assertion is lemma 3.1.37. O

(i): Suppose thaf is reflexive; from (i) we deduce th@t/A)~!)~! = I A. The assertion
is an immediate consequence, once one remarks that, foractjohal ideal/ C A, there is
a natural isomorphism afi-modules :J~! = JV := Hom(J, A). Indeed, the isomorphism
assigns to any € J!the mapy, : J — A: a — xa for everya € J (details left to the
reader).

(iii): We may assume thafA = J'A, and we prove thaf = J’, and by replacing/’ by
J U J’, we may assume that c J'. Then the contention follows easily from lemma3.1.36.

(iv): This is immediate from (i) and (iii). g

Remark 3.4.29.In the situation of lemmia 3.4.27(iv), obvioudbiv () restricts to a morphism
of submonoids :

Div(p) : Divy(P) — Div(Q).
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3.4.30. Next, suppose théat is fine and saturated, and I&tC P2 be any fractional ideal.
Then theorer 3.4.16(i) easily implies that :

= ﬂ ([p)il
htp=1
where the intersection — running over the prime ideal?adf height one — is taken within
Homp(I, P#P), which naturally contains all théZ,)~!. The structure of the fractional ideals
of B, whenhtp = 1 is very simple : quite generally, theorém 3.4.16(ii) easgityplies that if
dim P = 1, then all fractional ideals are cyclic, and then clearlyythee reflexive. On the other
hand,! is finitely generated, by lemna 3.4122(iv). We deduce fhatreflexive if and only if :

(3.4.31) I= () L.

Indeed, suppose that (3.4131) holds; then we Have M, (I,") ™" = Ny ,— Iy, Since we
have just seen thd} is a reflexive fractional ideal oF,, for every prime ideap of height one.

Proposition 3.4.32.Let P be a fine and saturated monoid, and denote/byC Spec P the
subset of all prime ideals of height one. Then the mapping :

(3.4.33) 7P = Div(P) Y mplpl > () mE

ht p=1 ht p=1

is an isomorphism of abelian groups.

Proof. Heremp, C P, is the maximal ideal, and far > 0, the notatiorm%p means the usual
n-th power operation in the monoid?( P#¢?), which we extend to all integers, by letting
mp :=mp" wheneven < 0.

In order to show tha{(3.4.83) is well defined, det= 1, ,_, m,”. Pick, for everyp such
thatn, < 0, an element, € p, and sety, := =, *; if n, > 0, sety, := 1. Then itis easy to
check (using theoreim 3.4]16(i)) thﬁkhtp:1 yy lies in I, hencel is a fractional ideal. Next,
for givenp, p’ € D, notice that F,),, = P*P; it follows that

(3.4.34) I, =my? for everyp € D

therefore! is reflexive. Furthermore, it is easily seen (from theofedIH(ii)), that every
reflexive ideal ofP, is of the formm’, for some integer, and moreovem} = mfp if and
only if n = m. Then [3.4.311) implies that the mapping (3.4.33) is suijecand the injectivity
follows from (3.4.34). It remains to check that (3.4.33) igraup homomorphism, and to this
aim we may assume —in view of lemina 3.4.27(iv) — that P = 1, in which case the assertion
is immediate. O

3.4.35. A morphismp : I — J of fractional ideals ofP is, by definition, a morphism of
P-modules. Letr,y € I be any two elements; we may fiagdb € P such thatux = by in I,
and thereforeup(z) = p(ax) = p(by) = bp(y); thus,p(y) = (b~'a) - p(z) = (27'y) - ().
This shows that, for every morphisg: I — J of fractional ideals, there existsc PP such
thaty(z) = cx for everyx € I. Especially,l ~ J if and only if there exista € PP such that
I = aJ. Likewise one may characterize the morphisms and isomemphof fractional ideals
of an integral domain. We denote

Div(P)
the set of isomorphism classes of reflexive fractional sle&dP. From the foregoing, it is clear
that, if I ~ I', we havel ® J ~ I' © J for everyJ € Div(P); therefore the composition
law of Div(P) descends to a composition law foiv(P), which makes it into a (commutative)
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monoid, and ifP is completely saturated, théhv(P) is an abelian group. We also deduce an
exact sequence of monoids

(3.4.36) 1 — P* — P 22 Diy(P) — Div(P) — 1

wherejp is given by the ruled: a — a P for everya € P; especially,jp restricts to a morphism
of monoids

jp : P — Div,(P).
Likewise, we defindiv(A), for any integral domaini : see example3.4.21. Moreover, in the

situation of [3.4.2), we see from lemma 3.4.27(iv) tha i§ local, P is fine, A is a-flat, and
¢ is flat, thenDiv(y) andDiv(«) descend to well defined morphisms of monoids

Div(y) : Div(P) — Div(Q)  Div(a) : Div(P) — Div(A).

Proposition 3.4.37.Let P be a fine and saturated monoifl,/ C P#P two fractional ideals A
a local integral domain, and: : P — (A4, -) a local morphism of monoids. We have :
(i) (I:1)=P.
(i) Suppose thatl is a-flat. Then/A ~ JA if and only if/ ~ J. Especially, in this case
Div(a) is an injective map.

Proof. (i): Clearly it suffices to show that/ : I) ¢ P. Hence, say that € (I : I), and
pick anya € I; it follows thatz"a € P for everyn > 0; in the additive grougog P& we
have therefore the identity - log(z) + log(a) € log P, solog(z) + n~'log(a) € (log P)g
for everyn > 0. Since(log P)g is a convex polyhedral cone iflog P#)g, we deduce that
z € (log P)r N (log P&?) = log P (propositior3.3.22(iii)), as claimed.

(ii): We may assume thatA is isomorphic toJ A, and we show that is isomorphic toJ.
Indeed, the assumption means thatA) = JA for somez € Frac(A); thereforea € (JA :
ITA)anda™ € (IA: JA), so

A=(TAJA)- (JA:TA)=(I:J)-(J:1))A
by virtue of lemmd_3.4.27(i). Sincd is local, it follows that there exisi € (/ : J) and

b € (J : I) such thatu(ab) € A, whenceab € P*, sincea is local. It follows easily that
I = aJ, as asserted. O

Example 3.4.38.(i) Let P be a fine and saturated monoid, abldc Spec P the subset of all
prime ideals of height one; for evepye D, denote

vy: P— P! 5N

the composition of the localization map, and the naturahisigphism resulting from theorem
[3.4.16(ii). A simple inspection shows that the isomorph{@#.33) identifies the map- of
(3.4.36) with the morphism of monoids

vp : P — 7P x> (vgP(z) | p € D).
With this notation, the isomorphism (3.4133) is the map gilsg the rule :
ke > vp' (ke + N®P)  for everyk, € Z°.

(i) Suppose now thaP is sharp andim P = 2, in which casé) = {p, p»} contains exactly
two elements. According to example 3.4.17(ii), we may findsi®f,, f> of PeP, such that the
two facetsP \ p; andP \ p, of P are generated respectively by:= f; andes := af; + bfs,
for someqa, b € N, with a < band(a,b) = 1. It follows easily thatP is a submonoid of the free
monoid

Q := Ne| @ Ne, wheree, := b 'e; ande), := b e,
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and@sr/PeP ~ 7, /bZ (details left to the reader). The induced m&ypec @ — Spec P is a
homeomorphism; especially admits two prime ideals,, q; of height one, so thaf; " P = p;
for i = 1,2, whence — by propositidn 3.4132 — a natural isomorphism
s* : Div(Q) = Div(P)

and notice thaj, : Q®* — Div(Q) is the isomorphism given by the rule). — q; fori = 1, 2.
Moreover, we have commutative diagrams of monoids :

P—Q

pl lq (i =1,2).
N>

Clearly, @ \ g; is the facet generated by, sowv,, is none else than the projection onto the
direct factorNe;,_,, for i = 1,2. In order to computey,, it then suffices to determing, or
equivalentlyt?’. However, set; := v8P o s#; clearly 71(f;) = 7i(eh, — ae}) = 1, sor is
surjective. Also(f1) = bandry(f2) = —a, SOT, is surjective as well; therefore both and
to are the identity endomorphism . Summing up, we find that
jp=5"0jgo s
and the morphismp is naturally identified withseP : PsP — 2P, Especially, we have obtained
a natural isomorphism
Div(P) & Z/bZ.
We may then rephrase in more intrinsic terms the classifioaif exampl&3.4.17(jii) : namely
the isomorphism class d? is completely determined by the datumloiv(7) and the equiva-
lence class of the height one prime idealgih the quotient sebiv(P)' defined as inoc.cit.
(i) In the situation of (ii), a simple inspection yieldsdliollowing explicit description of all
reflexive fractional ideals oP. Recall that such ideals are of the form
‘[k17k?2 = mlfl mmIQCQ = {l‘ S | UP1(x) > ki, Upz(x) > kQ}
wherem; is the maximal ideal oF,,, andk; € Z, fori = 1,2. Then
Ikl’]€2 = {1‘161 + x9€9 | x1,To € b_lZ, T > b_lkfg, Ty > b_lk’l} N PepP for all k’l, ky € 7.
With this notation, the cyclic reflexive ideals are then #ho$the form
(xlfl —+ l‘QfQ)P = lgobzib—z2a with X1, T2 € 7.
Especially, we see that the classegpf= I, ; andp, = I are both of ordeb in Div(P).

The following estimate, special to the two-dimensionakgasill be applied — in section 9.6
— to the proof of the almost purity theorem for towers of reglibg schemes.

Lemma 3.4.39.Let P’ be a fine and saturated monoid of dimensipand denote by the order
of the finite cyclic groupiv(P). We have :

mEﬂ’/Q] cIl-1! for everyl € Div(P)
(where[b/2] denotes the largest integer b/2).

Proof. Notice first that the assertion holds for a givere Div(P), if and only if it holds for
xl, for anyz € P#. If b = 1, thenP = N®2, in which caseDiv(P) = 0, so every reflexive
fractional ideal ofP is isomorphic toP, and the assertion is clear. Hence, assumetthatl;

let p;, po be the two prime ideals of height one Bf and defined), e;, e; andy, x, for every

mp \m?; = {61,62} Dy whereX C {:1:161 + Zoe9 | X1, € bilZ, 0< Ty, Lo < 1}
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It follows easily that, for every € N, every element ofn’, is of the formze; + xoey With
11,79 € b7'N andmax(xy, z5) > b~ 'i. Hence, letl € Div(P) andx := xie; + x9es € mﬁ‘;/z},
and say thabz, > [b/2]. According to example3.4.38(iii), we may assume that p} = I,
for somej € {0,...,b — 1}. Moreover, notice that the assertion holds faf and only if it
holds for~!, whose class iiv(P) agrees with the class pf 7. Clearly, eitherj < [b/2] or
b — j < [b/2]; hence, we may assume that {0, ..., [b/2]}. Thus,P C I"',andl C I -1,
and clearlyr € I, so we are done in this case. The case wihese> [b/2] is dealt with in
the same way, by writing = p’ for some non-negativg < [b/2] : the details are left to the
reader. O

If f: P — @ is a general morphism of integral monoids, and fractional ideal of), the
P-modulef&P~1(71) is not necessarily a fractional ideal Bf(for instance, consider the natural
map P — P¢£P). One may obtain some positive results, by restricting éodlass of morphisms
introduced by the following :

Definition 3.4.40.Let f : P — (Q be a morphism of monoids. We say thjats of Kummer
type if f is injective, and the induced map : Py — Qg is surjective (notation of (3.3.20)).

Lemma 3.4.41.Let f : P — () be a morphism of monoids of Kummer type, C @ a
submonoid, and setp := f~1S,. We have :
(i) The maBpec f : Spec @ — Spec P is bijective; especiallylim P = dim Q.
(i) If Q* is a torsion-free abelian group? is the trivial monoid (resp. is sharp) if and
only if the same holds fap.

(i) The induced morphisifi,' P — S,'Q is of Kummer type.

(iv) If Pis integral, the unit of adjunctio® — P is of Kummer type.

(v) Suppose thaP is integral and saturated. Theft : P¥ — Q* is of Kummer type.

(vi) If both P and(@ are integral, andP is saturated, therf is exact.

Proof. (ii) and (iv) are trivial, and (iii) is an exercise for the di.

(): Let F,F' C @ be two faces such that"'F = f~!'F’, and say thatr € F. Then
x" € f(P) for somen > 0, soxz™ € f(f~'F’), whencer € F’, which implies thaSpec f is
injective. Next, for a given facé’ of P, let I’ C @ be the subset of alt € ) such that there
existsn > 0 with 2™ € f(F). Itis easily seen that” is a face ofQ, and moreovef ' F' = F,
which shows tha$pec f is also surjective.

(v): Clearly the mag P*)g — (Q%)g is surjective. Now, let;,y € P such that the images
of f(z) and f(y) agree inQ*, i.e. there exists, € Q* with u - f(z) = f(y); we may find
n > 0 such thaw”,u™" € f(P). Say that” = f(v), u™" = f(w); sincef(vw) = 1, we have
vw = 1, and moreovelf (vz") = f(y"), Sova™ = y". Thereforex"y ",z "y™ € P, and since
P is saturated we deduce that~!, 2~y € P, so the images of andy agree inP*.

(vi): Notice first thatf&P is injective, since the same holds f¢r Supposer € PP and
f#°(z) € @Q; we may then find an integér> 0 andy € P such thatf(y) = f(x)". SinceP is
saturated, it follows that € P, sof is exact. O

3.4.42. Suppose that : P — @ is a morphism of integral monoids of Kummer type, with
P saturated, and let C Q#? be a fractional ideal. Thep*I := ¢#~1(I) is a fractional ideal
of P. Indeed, by assumption there exist& () such thatu/ C @Q; we may findk > 0 and

b € P suchthau”® = ¢(b), sop(bz) € p(P)® NQ = ¢(P) for everyz € ¢*I, sinceyp is exact
(lemmd3.4.41(v)); therefore- *(I) C P.

3.4.43. In the situation of (3.4.42), suppose that bBthAnd(Q are fine and saturated, and let
gr, Q8P be thep-grading ofQ, indexed by(T", +) := Q%P / P#P (see remark3.2.5(iii)); for every
x € %0, denoter € I' the image oft. Let alsol C QP be any fractional ideal, and denote by
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gr, I theI'-grading on/ deduced from the-grading of(Q#P; arguing as inl(3.4.42), it is easily
seen that, more generally; (x~'gr_I) is a fractional ideal of?, for everyz € Q (details left
to the reader). For every prime idepbf height one inQ), we have a commutative diagram of
monoids :

P—=Q
(3.4.44) vvlql lvq

N—"> N
wherev, andv,,-1, are defined as in example 3.4.38(i), apds the multiplication by a non-zero
(positive) integer, which we call thamification index ofy at g, and we denote alsg.

Lemma 3.4.45.1n the situation of(3.4.43) suppose that is a reflexive fractional ideal. Then
o*(a™t - gr.I) is a reflexive fractional ideal aP, for everya € Q#P.

Proof. Clearly, we may replacéby «~'1, and reduce to the case where- 1, in which case we
have to check thap*[ is a reflexive fractional ideal. However, according to extef$4.38(i),
we may write/ = vél(k:. + N®P) whereD C SpecQ is the subset of the height one prime
ideals, and, € Z*P. Set

K= (e k) | a € D)
(where, for a real number, we let[z] be the smallest integer ). SinceSpec ¢ is bijective
(lemmd3.4.411(i)), the commutative diagrams (3.4.44) intiphto* I = v, (kL +N®P), whence
the contention. O

Example 3.4.46.Let P be as in example_3.4.88(ii), s& := Div, (P), and takep := j} :
P — @ (notation of [3.4.35)). The discussion lafc.cit. shows thaty is a morphism of
Kummer type, and notice that thegrading ofQ is indexed byQ#® /P = Div(P). Now,
pick anyx € @, and letz € Div(P) be the equivalence class of by lemma 3.4.45, thé-
modulegr.() is isomorphic to a reflexive fractional ideal &% We claim that the isomorphism
class ofgr.(Q is preciselyz~! (where the inverse is formed in the commutative grdip(P)).
Indeed, leta € PeP be any element; by definition, we hawvec ¢*(z~'gr.Q) if and only if
0% (a) € xtgr-Q, ifand only ifax € Q, if and only ifa € =1, whence the claim. Thus, the
family

(ex,Div,.(P) | 4 € DIV(P))
is a complete system of representatives for the isomorpbliasses of the reflexive fractional
ideals of a fine, sharp and saturated mon®@idf dimensior.

Remark 3.4.47. Further results on reflexive fractional ideals for monoiasd their divisor
class groups can be found in [23].

3.5. Fans. According to Kato ([53,59]), a fan is to a monoid what a scheme is to a ring.
More prosaically, the theory of fans is a reformulation af dider theory of rational polyhedral
decompositions, developed [n [54].

Definition 3.5.1. (i) A monoidal spacés a datum(7’, &) consisting of a topological spa@e
and a sheaf of monoidg; onT'.
(i) A morphism of monoidal spacesa datum
(fv logf) : (Tv ﬁT) — (Sv ﬁS)

consisting of a continuous magp: 7" — S, and a morphisntog f : f*0s — Or of
sheaves of monoids thatliscal, i.e. whose stalklog f); : Og ¢+ — Or.is alocal
morphism, for every € T'. Thestrict locusof (f,log f) is the subset

Str(f,log f) C T
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consisting of alk € T such thatlog f), is an isomorphism.

(iii) We say that a monoidal spacé’, &) is sharp (resp.integral, resp.saturated if &
is a sheaf of sharp (resp. integral, resp. integral anda&i)y monoids.

(iv) For any monoidal space (resp. integral monoidal spéEeyr), thesharpeningresp.
the saturation) of (T, 0r) is the sharp monoidal spad&, 0;)! := (T, %) (resp.
(T, Or)* := (T, OF™)).

It is easily seen that the ruld’, 0r) — (T, Or)* extends to a functor from the category of
monoidal spaces to the full subcategory of sharp monoidaiesp This functor is right adjoint
to the corresponding fully faithful embedding of categsrie

Likewise, the functoT, &r) — (T, O7)*" is right adjoint to the fully faithful embedding
of the category of saturated monoidal spaces, into the oateg integral monoidal spaces.

3.5.2. LetP be any monoid; for every € P, let us set

D(f):={p € SpecP | f ¢ p}.
Notice thatD(f) N D(g) = D(fg) for every f,g € P. We endowSpec P with the topology
whose basis of open subsets consists of the subh¥gty for every f € P. Notice thatmp is
the only closed point dfpec P (especiallySpec P is trivially quasi-compact).

By lemm&3.1.18, the localization mgp: P — Py induces an identificatiof} : Spec Py =
D(f). Itis easily seen thatj;) "' D(fg) = D(j(g)) C Spec Py; in other words, the topology
of Spec P, agrees with the topology induced frd$pec P, via j*.

Next, for everyf € P we set :

ﬁSpecP(D(f)) = Pf
We claim thatdg,.. p(D( f)) depends only on the open subsKtf), up to natural isomorphism
(and not on the choice of). More precisely, say thab(f) C D(g) for two given elements
f,g € P; it follows that the image ofy in Py lies outside the maximal idealp,, henceg €
P/, and therefore the localization mgp : P — Py factors uniquely through a morphism of
monoids :

jfvg : Pg — Pf

Likewise, if D(g) C D(f) as well, the localizatiorj, : P — P, factors through a unique map
Jg.r + Py — P,, whence the identities :

Jta©Jg.s©Js = Jf Ja.f ©Jf.9°Jg = Jg
and sincej; andj, are epimorphisms, we see that, andj, ; are mutually inverse isomor-
phisms.

3.5.3. SaythaD(f) c D(g) c D(h) for somef,g,h € P; by direct inspection, it is clear
thatjs, o j,n = jfn, SO the ruleD(f) — Py yields a well defined presheaf of monoids on the
site@p of open subsets d¢fpec P of the formD(f) for somef € P. ThenOyg,.. p is trivially a
sheaf orig (notice that ifD( f) = |J,.; D(g:) is an open covering ab( f), thenD(g;) = D(f)

for somei € I). According to [26, Ch.0§3.2.2] it follows thatds,.. p extends uniquely to a
well defined sheaf of monoids dipec P, whence a monoidal spa¢€pec P, Uspecp). By
inspecting the construction, we find natural identificagion

(3.5.4) (Ospecp)p — Py for everyp € Spec P

and moreover :
P 5 T'(Spec P, Ospec p).
Itis also clear that the rule

(3.5.5) P — (Spec P, Ogspec p)
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defines a functor from the categadwind® to the category of monoidal spaces.
Proposition 3.5.6. The functor(3.5.5)is right adjoint to the functor :
(T, 0r) — I(T, Or)
from the category of monoidal spaces, to the cateddiyd®.
Proof. Let f : P — I'(T, Or) be a map of monoids. We define a morphism

or = (s loggy) : (T, Or) — (Spec P, Ospecp)
as follows. Givert € T, let f; : P — O, be the morphism deduced frojf) and denote
by m; C Or, the maximal ideal. We sep;(t) := f,'(m;). In order to show that; is
continuous, it suffices to prove thidf := @}1(D(s)) is open inM, for everys € P. However,
Us={t € T| fi(s) € Or,}, and it is easily seen that this condition defines an openesubs
(details left to the reader). Next, we defilg ¢ on the basic open subsdiXs). Indeed, let
Js : T(T, Or) — Or(Us) be the natural map; by constructigho f(s) is invertible in&r(Us),
hencej, o f extends to a uniqgue map of monoids :

Ps - ﬁSpecP(D(S)) — (Pf*ﬁT(D(S))

By [26, Ch.0,§3.2.5], the above rule extends to a unique morphégm. p — ¢ .0 of sheaves
of monoids, whence — by adjunction — a well defined morphisgy; : ¢} Ospecp — Or. In
order to show thaty, log ¢¢) is the sought morphism of monoidal spaces, it remains tokchec
that(log ), : P, — Or,isalocal morphism, for everye 7. However, let; : P — P,
be the localization map; by construction, we h@e ¢(), o i, = f;, and the contention is a
straightforward consequence.

Conversely, say thatp, log ) : (T, 0r) — (Spec P, Ogpec p) IS @ morphism of monoidal
spaces; theiog ¢ corresponds to a unique morphigm Os,e. p — . Or, and we set

f, =T(SpecP,¢) : P — I'(T, Or).

By inspecting the definitions, it is easily seen tiigt = f for every morphism of monoidg as

above. To conclude, it remains only to show that the (yldog ) — f,, is injective. However,
for a given morphism of monoidal spaces log ) as above, and every poiht 7', we have a
commutative diagram of monoids :

feo
P —— F(T, ﬁT) .
Jt

lo
Py) —> O,

Sincelog ¢ is local, it follows thatp(t) = (f, o j;) 'm,, especiallyf, determinesp : T —
Spec P. Finally, since the map’ — P, is an epimorphism, we see thag ¢, is determined
by f, as well, and the proposition follows. O

Definition 3.5.7. Let (T, &'r) be a sharp monoidal space.

(i) We say thal(T, 0’r) is anaffine fan if there exists a monoi@ and an isomorphism of

sharp monoidal spacéSpec P, Ospec p)* — (T, Or).

(i) In the situation of (i), if P can be chosen to be finitely generated (resp. fine), we say
that (7', 07) is afinite (resp.fine) affine fan

(iii) We say that(T', Or) is afan, if there exists an open coverifig= | J,., U;, such that the
induced sharp monoidal spadg;, ' y,) is an affine fan, for every € I. We denote
by Fan the full subcategory of the category of monoidal spaces selubjects are the
fans.
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(iv) In the situation of (iii), if the coveringU; | i € I) can be chosen, so thdt;, &y, ) is
a finite (resp. fine) affine fan for evetye I, we say thatT, &) is locally finite (resp.
locally fine).

(v) We say that the fa(il’, &) is finite (resp.fine) if it is locally finite (resp. locally fine)
and quasi-compact.

(vi) Let (T, Or) be a fan. Theimplicial locusTy,,, C T is the subset of all € T" such that
Or.is a free monoid of finite rank.

Remark 3.5.8. (i) For every monoidP, let Tp» denote the affine faSpec P)*. In light of
propositior. 3.5, it is easily seen that the fundtor+ T'» is an equivalence from the opposite
of the full subcategory of sharp monoids, to the categoryfof@afans.

(ii) Since the saturation functor commutes with localiaati (lemma_3.2]19(i)), it is easily
seen that the saturation of a fan is a fan, and more prectkelgaturation of an affine fdfi,
is naturally isomorphic t@ psa:.

(i) Let Q; and@, be two monoids; since the produétx () is also the coproduct a? and
Q) in the categoryMnd (see example 2.3.80(i)), we have a natural isomorphisneicétegory
of fans :

TPXQ 5 Tp X TQ.

More generally, suppose th&t — @, fori = 1,2, are two morphisms of monoids. Then we
have a natural isomorphism of fans :

TQ1®PQ2 — TQI XTp TQQ.

From this, a standard argument shows that fibre productsegresentable in the category of
fans.
(iv) Furthermore, lemmia_3.1.116(ii) implies that the natumap :

7 : Spec (P x Q) — Spec P X Spec @

is @ homeomorphism (where the productSpfec P and Spec @ is taken in the category of
topological spaces and continuous maps).
(v) Moreover, we have natural isomorphisms of monoids :

Orpom—1(st) — Orp,s X Ory g for everys € Spec P andt € Spec Q.
(vi) Forany fanT" := (T, Or), and any monoid/, we shall use the standard notation :
T(M) := Hompan((Spec M)*, T).

Especially, if T is an affine fan, saf’ = (Spec P)¢, thenT (M) = Hompmma(P, M*); for
instance, ifT" is affine,7(N) is a monoid, and’(Q, )? is aQ-vector space. Furthermore, by
standard general nonsense we have natural identificatfaet:

(Ty x7 To)(M) 5 Ty (M) < To(M)

for any pair of’-fans’T; andT5, and every monoid/. If T', T} and7; are affine, this identifi-
cation is also an isomorphism of monoids.

Example 3.5.9.()) The topological space underlying the affine f&pec N, 0. )* consists

of two points :SpecN = {&, m}, wherem := N\ {0} is the closed point. The structure sheaf
O = Ogpecn IS determined as follows. The two stalks afg = {1} (the trivial monoid) and
O = N; the global sections ai&(SpecN, &) = N.

(i) Let (T, 0r) be any fan,P any monoid, with maximal ideahp, andy : Tp =
(Spec P, Ospec p)* — (T, Or) a morphism of fans. Say that(mp) € U for some affine
open subseV C F; thenp(Spec P) C U, hencey factors through a morphism of fans
Tp — (U,Orp). In view of propositiorf 3.516, such a morphism corresporda unique
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morphism of monoids* : 0 (U) — P*, and thenp(mp) = "~ L(mp) € Spec Or(U) = U.
The map on stalks determined byis the local morphism
Or pimp) — Or(U) pmp)/ OT(U) %, — P*

p(mp)

obtained fromy*® after localization at the prime ideaf~!(mp).
(iii) For any two monoidsM and N, denote byloc.Hompp,q(M, N) the set of local mor-
phisms of monoidd/ — N. The discussion in (ii) leads to a natural identification :

T(P) > Hloc.HomMnd(ﬁT,t, Pﬁ)
teT
For any monoidP. Thesupportof a P-pointy € T'(P) is the unique point € 7" such thatp
corresponds to a local morphisfty; — P*.

Example 3.5.10.(i) Let P be any monoidk > 0 any integer, seTp := (Spec P)¢, and let
kp : P — P be thek-Frobenius map of (definition[2.3.40D(ii)). Then

kr, :=Speckp : Tp = Tp

is a well defined endomorphism inducing the identity on the@eulying topological space.
(i) More generally, letF” be any fan; for every integer > 0 we have the:-Frobenius
endomorphism
kF F— F
which induces the identity on the underlying topologicaham and whose restriction to any
affine open subfaty C F'is the endomorphisrk; defined as in (i).

3.5.11. LetP be a monoid) a P-module, and set’» := (Spec P)*. We define a presheaf
M~ on the site of basic affine open subsBtsf) C Spec P (for all f € P), by the rule :

Uw— MN(U) = M@P ﬁTp(U)

(and for an inclusio’ C U of basic open subsets, the corresponding morphisnil/) —
M~(U") is deduced from the restriction mapr,.(U) — Or.(U")). It is easily seen that
M~ is a sheaf, hence it extends to a well defined shea#’gf-modules oni’» ([26, Ch.0,
§3.2.5]). Clearlyl'(Tp, M~) = M, and the ruleM — M~ yields a well defined functor
P-Mod — 07,-Mod, which is left adjoint to the global section functor @ry,,-modules :
M — U(Tp, A ) (verification left to the reader).

Definition 3.5.12. Let (T, 0) be a fan,.# a Or-module. We say that/ is quasi-coherent
if there exists an open coverifg= | J,.,; U; of T' by affine open subsets, and for edch I a

Or(U;)-module)M; with an isomorphism o r;,-modules. 7|y, = M.

Remark 3.5.13.(i) Let (T, Or) be a fan,# a quasi-coherer?-module, and/ C T be any
open subset, such th@, &) is an affine fan (briefly : an affine open subfanigt Then,
sinceU admits a unique closed pointc U, it is easily seen tha¥Z;; is naturally isomorphic
to ./, as a0 y-module.

(i) In the same vein, it# is an invertibledr-module (see definition 2.3.6(iv)), then the
restriction.#|; of .# to any affine open subset, is isomorphiatg .

(i) For any fan(7, Or), the sheaf of abelian grougs;” is quasi-coherent (exercise for the
reader). Suppose thatis integral; then awr-submodule# C %" is called aractional ideal
(resp. areflexive fractional ideglof Oy if .# is quasi-coherent, and' (U) is a fractional ideal
(resp. a reflexive fractional ideal) &f(U), for every affine open subsetC 7.

(iv) Let P be any integral monoid, C P¢P a fractional ideal of?, and sefl’» := (Spec P)*.

It follows easily from lemma3.4.22(j) thdt* C 07 is a fractional ideal oz, andI™ is
reflexive if and only iff is a reflexive fractional ideal aP (lemma3.4.22(ii)).
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(v) Suppose thal is locally finite; in this case, it follows easily from proptien [3.1.9(ii)
that every quasi-coherent ideal 6% is coherent. Likewise, if" is also integral, andZ C &%°
Is a (quasi-coherent) fractional ideal 6fr, then.# is coherent, provided the stalkg are
finitely generated’r ,-modules, for every € T'. (Details left to the reader.)

Remark 3.5.14.(i) LetT be any integral fan. We define a shéafu; onT', by lettingZiv(U)
be the set of all reflexive fraction ideals &f;, for every open subsét C 7.

(i) Now, suppose thaf is locally fine; in this case, we can enddwivr with a natural
structure of7’-monoid, as follows. First, we define a presheaf of monoidshensites; of
affine open subsets @f by the rule :

U — Qivp(U) := (Div(0r(U)),®)
(notation of [(3.4.20)) and for an inclusidi¥ C U of affine open subset, the corresponding
morphism of monoid¥ivy (U) — Zivr(U’) is deduced from the flat ma@(U) — Or(U'),
by virtue of lemma_3.4.27(iv). Arguing as ih (3.5.3), we skattZivr is a sheaf o, and
then [26, Ch.0§3.2.2] implies thatZivy extends uniquely to a sheaf of monoidsBn It is
then clear that the sheaf of sets underlying #isionoid is (naturally isomorphic to) the sheaf
defined in (i).

(iii) In the situation of (i), we have likewise @-submonoidZiv} C Zivy (remark3.4.29),
and we may also definemonoid Ziv; (seel(3.4.35)). Moreover, we have the global version
of (38.4.36) : namely, the sequencelaimonoids

1 0% 22 Divy — Divy — 1
is exact (recall that’ = 17, the initial 7-monoid), andjr restricts to a map df-monoids
Or — Divt.
Indeed, the assertion can be checked on the stalks ovet eaZhwhere it reduces to the exact

sequencd (3.4.86) fa? := Or,. Lastly, we remark that, if" is locally fine and saturated, then
Zivy and Ziv are abeliari-groups (proposition 3.4.25(i,ii)).

3.5.15. Iff : T" — T is a morphism of fans, and” is any &--module, then we define as
usual thed’;-module :
f*«% = f_lq% ®f71[/>T ﬁT’

where f~L# denotes the usual sheaf-theoretic inverse imagezo{so f ' means here
what was denoted* ¢ in definition[3.5.1(ii)). The rule# — f*.# yields a left adjoint to the
functor

Or-Mod — Op-Mod N f*e/I/
(verification left to the reader). Notice that, .# is quasi-coherent, thefi*# is a quasi-
coherent,-module. Indeed, the assertion is local By hence we are reduced to the case
whereT” = (Spec P’) andT = (Spec P) for some monoid$®> and P'. In this case, the functor
M — f*(M~): P-Mod — Or.-Mod is left adjoint to the functor# — T'(T", .#) on O~
modules. The latter functor also admits the left adjoinegiby the rule M — (M ®p P')~,
whence a natural isomorphism 6f--modules :

[f(M~) = (M ®p P)™.
3.5.16. Letl':= (T, 0r) be afan{ € T any point. Theheightof ¢ is :
htr(t) == dim 07, € NU {400}

(see definition3.1.18) and tlitmensiorof T is dim 7" := sup(htr(¢) |t € T). (If T = @ is
the empty fan, we lelim 7" := —c.)
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Suppose that is locally finite; then it follows from[(3.5]4) and lemrha 2q(iii),(iv) that
the height of any point of" is an integer. Moreover, lét'(¢t) C T denote the subset of all
pointsz € T which specialize ta (i.e. such that the topological closure §f} in 7' contains
t); clearlyU (t) is the intersection of all the open neighborhoodsiof7’, and we have a natural
homeomorphism :

(3.5.17) Spec Or; — U(t).
Especially, if " is locally finite, U(t) is a finite set, and moreovér(t) is an open subset :
indeed, ifU C T is any finite affine open neighborhood ©fwe havel(t) C U, hencel(t)

can be realized as the intersection of the finitely many omeghtvorhoods of in U. In this
case,[(3.5.17) induces an isomorphism of fans :

(3.5.18) (Spec Ory)t = (U(t), Oru)-

Therefore, for every, € N, letT,, C T be the subset of all points @f of height< h; clearly
U(t) C T, whenevert € T;, hence the foregoing shows that Jifis locally finite -7}, is an
open subset df’ for everyh € N, andT = |, Th-

Notice also that the simplicial locus of a fdhis closed under generizations. Therefdig,
is an open subset @f, whenevefl is locally finite.

3.5.19. In the situation of remafk 3.5.8(v), suppose aoddily that P and @ are finitely
generated. The natural projectidhx Q — P induces a morphism : Tp — Tpy of affine
fans, and it is easily seen that) = 7! (¢, @) for everyt € Tp. It follows that the restriction of
j isahomeomorphisiii (t) = U(j(t)) for everyt € Tp, and moreoveig j 13 Orpyo = Oy
is an isomorphism. We conclude thas an open immersion.

3.5.20. LetP be afine, sharp and saturated monoid, and)set P (notation of [(3.4.111)).
By proposition 3.4.12(iv), we have a natural identification™~ @QV. By propositior 3.4.]7(ii)
and corollary 3.3.72(ii), the rule

(3.5.21) Fe F*=F:NP

establishes a natural bijection from the facegjofo those ofP. For every facel” of (), set
pr = P\ F*; there follows a natural bijectioh’ — pr between the set of all faces ¢f and
Spec P, such that

FCF &ppCpp.
Moreover, sefl» := (Spec P)*; we have natural identifications :

~

FY = Or,,,  foreveryfacel’ of Q
under which, the specialization mags.,, , — Or,,, correspond to the restriction maps
(F')Y = FY: o= gp.
Definition 3.5.22. LetT := (T, Or) be a fan.
(i) An integral(resp. aational) partial subdivisiorof 7" is a morphisny : (7", Or) — T
of fans such that, for evenye 7”, the group homomorphism
(log £)§* : OF 0y — OF, (resp. theQ-linear map (log f)$’ ®z 1g)

IS surjective.
(i) If f:T" — T is an integral (resp. rational) partial subdivision, ang ittduced map

T'(N) — T(N) (resp.7'(Qy) = T(Qy)) : o fop
is bijective, we say thaf is an integral (resp. a rationaybdivisionof 7.

(iii) A morphism of fansf : 7" — T is finite (resp. prope), if the fibre f~1(¢) is a finite
(resp. and non-empty) set, for every 7.
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(iv) A subdivisionT” — T of T is simplicial, if 7. = T".

s1um

Remark 3.5.23.(i) Let T be any integral fan. Then the counit of adjunction
T 5 T

is an integral subdivision. This morphism is also a homeguiism on the underlying topolog-
ical spaces, in light df 3.2.9(iv).

(i) Let f:T" — T be any integral subdivision. Thefrestricts to a bijectiod}, — T, on
the sets of points of height zero. Indeed, notice that, & 7" is a point of height zero, then
f(t") € T, since the maplog f) must be local; moreovéoc. Homyia (Or, N) consists of
precisely one element, namely the unique raapN — {1}, and ift|, ¢, € T have the same
image iny, the sections,, ando,, have the same image i(N), hence they must coincide,
so thatt| = ¢, as claimed.

(i) Let f:T" — T be an integral subdivision of locally fine and saturated famgeneral,
the image of a point’ € 7" of height one may have height strictly greater than one. @n th
other hand, for any € T of height one, and any € f~'(t), the mapZ = OF, — OF,
must be surjective (theorem 3.4.16(ii)), therefér¥ ,, is a cyclic group; howevef; , is also
sharp and saturated, so it must be either the trivial mofibjcbr N. The first case is excluded
by (ii), soht(¢') = 1, and moreove(log ). is an isomorphism (and there exists a unique such
isomorphism). Since the induced mafN) — T'(N) is bijective, it follows easily thay ~!(¢)
consists of exactly one point, and therefgreestricts to an isomorphisifr!(7y) = 1.

Proposition 3.5.24.Let f : T" — T be a morphism of fans, with’" locally finite, and consider
the following conditions :
(a) The induced maf’(N) — T'(N) is injective.
(b) For every integral saturated monoi#, the induced mafi”(P) — T'(P) is injective.
(c) fis a partial rational subdivision.

Then we have (a) < (b) = (c).

Proof. Obviously (b)=- (a). Conversely, assume that (a) holds,/febe a saturated monoid,
and suppose we have two sectiongT(P) whose images ifi'(P) agree. In light of example
[3.5.9(iii), this means that we may find two pointst, € T’, such thatf(¢;) = f(t,) = t,
and two local morphisms of monoids : 07y — P/P* whose compositions withog f;/
(i = 1,2) yield the same morphisw,, — P/P*, and we have to show that these maps
are equal. In view of lemm@a_3.2.9(ii), we may then repldtdy P/P*, and assume that
P is sharp. Since the stalks &f are finitely generated, the morphismsfactor through a
finitely generated submonoitd c P. We may then replac® by its submonoid\/***, which
allows to assume additionally thatis finitely generated (corollafy 3.4.1(ii)). In this casee w
may find an injective map : P — N%" (corollary[3.4.10(iv); notice that is trivially a local
morphism), hence we may replaegby j o o; (for i = 1,2), after which we may assume
that P = N®" for somer € N. Letd : P — N be the local morphism given by the rule :
(x1,...,2,) = x1+---+x, foreveryz,, ..., z, € N;the compositionsoo; (fori = 1,2) are
two elements of "(N) whose images agree i(N), hence they must coincide by assumption.
This implies already that; = t,. Next, letr, : P — N (for £ = 1,...,r) be the natural
projections, and fix < r; the morphisms, o o, for i = 1, 2 are not necessarily local, but they
determine elements df'(N) whose images agree againiiiN), hence they must coincide.
Sincek is arbitrary, we deduce that = o0,, as stated.

Next, we suppose that (b) holds, and we wish to show assddjpthe latter is local orF”,
hence we may assume that bdtrand F’ are affine, say’ = (Spec Q)* andF’ = (Spec Q')*,
with @’ finitely generated and sharp, and then we are reduced toicigetlat the ma)s® ®,
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Q — Q'** ®; Q induced byf is surjective, or equivalently, that the dual map :

Hompna(Q', Q) — Homyma (Q, Q)

is injective. To this aim, we may further assume tgats integral, in which case, by remark
B.4.14(i) we haveHomp,g(Q', Q) = Hompma(Q', Q. )%P; the contention is an easy conse-
quence. O]

3.5.25. In light of propositioh 3.5.24, we may ask whether shrjectivity of the map or-
points induced by a morphisrh of fans can be similarly characterized. This turns out to be
the case, but more assumptions must be made on the morghiand also some additional
restrictions must be imposed on the type of monBidNamely, we shall consider monoids of
the formI’,, where(T", <) is any totally ordered abelian group, aiid C T is the subgroup of

all elements< 1 (wherel € I" denotes the neutral element). With this notation, we hage th
following :

Proposition 3.5.26.Let f : 7" — T be a finite partial integral subdivision, with locally finite.
The following conditions are equivalent :
(a) The induced maf”(N) — T'(N) is surjective.
(b) For every totally ordered abelian groug’, >), the induced mafi’(I'y) — T'(I'y) is
surjective.

Proof. Obviously, we need only to show that (&) (b). Thus suppose, by way of contradic-
tion, that (a) holds, but nevertheless there exists a yotatlered abelian grou@’, <), and an
element of7'(I';) which is not in the image of’(I';). Such element corresponds to a local
morphism of monoidg : 1, — I}, for somet € T, and the assumption means thatloes
not factor through the monoidy ., for anys € f~*(¢). Set

P:=0%  Q,:=P% X ge oy, foreveryse f(t)
Notice that, since the map** — &7 is surjective, we have

Qu/ QX = OFF (671"
and there is a natural injective morphism of monajgds P — @, determined by the pair
(i, (log f)™), where: : P™ — PeP js the natural morphism; moreovers? = Q2 for every
s € f~1(t). Clearlyy factors through a morphisia : P — T';; since the unit of adjunction
Or, — P is surjective, it follows thaf is sharp and is local. Moreover, the group homomor-
phismp#P : PeP — T factors uniquely through eaehg?. Our assumption then states that we
may find, for eachs € f~1(¢), an element, € Q, whose image i’ lies in the complement of
I[',,i.e. the image ofz ! lies in the maximal ideah C T';. Let P’ C P®P be the submonoid
generated by? and by(x;! | s € f7(¢)). By constructionP’ is finitely generated, and the
morphismp extends uniquely to a morphis® — T',, which maps each! intom. It follows
that all ther, ! lie in the maximal ideal of”’. Let us now pick any local morphisgf : P’ — N
(corollary[3.4.10(iii)); by restrictiony’ induces a local morphism : P — N, which — accord-
ing to (a) — must factor through a local morphism: @, — N, for at least one € f~1(¢).
However, on the one hand we hayéP = 8P = 1¢; on the other hang’(z;') # 0, hence
bs(xs) = '8P (z4) ¢ N, a contradiction. O

Example 3.5.27.Let T be a locally fine fany : ' — T an integral subdivision, witl’ locally
fine and saturated, arkd> 0 an integer. Suppose we have a commutative diagram of fans :

F—2>T
(3.5.28) gl lm
P27
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wherek is thek-Frobenius endomorphism (example 3.5.10(ii)). Then wircthat necessar-
ily ¢ = kr. Indeed, suppose that this fails; then we may find a poin#’ such that the compo-
sition of g and the open immersiop : U(t) — F'is not equal tgj; o ky;). SetP := Oy, then
goJji # jro kuw in F(P). However, an easy computation shows thgfo j:) = ¢(j: o ku)),
which contradicts propositidn 3.5]24.

3.5.29. LetP := [],.y P. be aN-graded monoid (see definition 2.8.8); th&nis a sub-
monoid of P, every P, is a F,-module, andP, := [], ., P, is an ideal ofP. For everya € P,
the localizationP, is Z-graded in an obvious way, and we denotefhy C P, the submonoid
of elements of degre@ Notice that there is a natural identification/@f-monoids

(3.5.30) Pany = Py for every integen > 0.

Set as well :

D, (a) := (Spec P))*
and notice that the natural madp — P, induces a morphism of fans, : D, (a) — Tp :=
(Spec Py)%. If b € P is any other element, in order to determine the fibre producia) x
D, (b) we may assume — in light of (3.5130) — that) € P, for the same integet, in which
case we have natural isomorphisms

P(a) Xp, P(b) =5 P(ab) & P(a) [b’la]

(see remark 3.1.25(i)) onto the localization/®f,, obtained by inverting its element 'b; this
is of course the same d%;)[a'8]. In other wordsD. (a) xr, D.(b) is naturally isomorphic
to D, (ab), identified to an open subfan in both, (a) and D, (b). We may then glue the fans
D, (a) for a ranging over all the elements &f, to obtain a new fan, denoted :

Proj P
called theprojective fanassociated t@. By inspecting the construction, we see that the mor-
phismsm, assemble to a well defined morphism of fans : Proj P — Tp. Each element

a € P yields an open immersiof, : D, (a) — Proj P, and ifb € P is any other elemeny,,
factors through an open immersién (ab) — D, (a).

3.5.31. Letp: P — P’ be amorphism oN-graded monoids (spP, C P! for everyn € N).
Set:

U Dy (¢(a)) C Proj P

acP
Notice that, for every: € P, ¢ induces a morphism, : K, — F,,, whence a morphism of
affine fangProj ¢), : D (p(a)) = D4 (a) C Proj P. Moreover, ifb € P is any other element,
it is easily seen thatProj ), and (Proj ), agree onD, (¢(a)) N D, (p(b)). Therefore, the
morphismgProj ¢), glue to a well defined morphism :

Projy : G(¢) — Proj P.
Notice thatG(p) = Proj P’, wheneverp P generates the ideat, . Moreover, we have
(3.5.32) (Proj ) 'Dy(a) = D (p(a)) for everya € P.

Indeed, say thab_ (b) C G(y) for someb € P’, and(Proj¢)D.(b) C D (a). In order to
show thatD (b) C D(¢(a)), it suffices to check thab, (bp(c)) C Dy (p(a)) for everyc € P.
However, the assumption means that the natural map

Ploy = Pl = Plooten) = Plogpie/ Flop(e)

factors through the localizatiaRi.) — P,.). This is equivalent to saying tha{c'a) is invert-
ible in P, ), in which case the localizatiofi, ., — F,, . factors through the localization
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Py = Ploae)- The latter means that the open immersion(by(c)) C D, (¢(c)) factors

through the open immersian, (¢(ac)) C D (¢(c)), as claimed.

3.5.33. In the situation of (3.5.29), sEt:= Proj P to ease notation. Le¥/ be aZ-graded
P-module; for every, € P, let M,y C M, := M ®p P, be theP -submodule of degree zero
elements (for the natural grading dd,). We deduce a quasi-cohereﬁb+(a)-moduIeM(;)
(see definition 3.5.12). Moreoverife P is any other element, we have a natural identification

~

Wap * M(@)p.@nps®) — MDDy o)

This can be verified as follows. First, in view 6f (3.5.30), may assume that, b € P, for
somen € N, in which case we consider thélinear morphism :
M(a) — M(b) ®p(b) P(b) [a_lb] : aim — bim ® a—m for everyx € M,,,.
It is easily seen that this map is actualty,-linear, hence it extends to@, (D (a) N D, (b))-
linear morphism :
Wa,b - M(a) ®P(a) P(a) [bila] = M(b) ®P(b) P(b) [ailb]-

Moreover, w,;, © wy, IS the identity map, hence,;, induces the sought isomorphisin ;.
Furthermore, for any;, b,c¢ € P, setD, (a,b,c) := D, (a) N Dy(b) N D,(c); we have the
identity :

C'T)a,c\DJF(a,b,c) = C"\Jb,c|D+(a,b,c) o C'A&a,b|D+(a,b,c)
which shows that the locally defined sheaﬂég) glue to a well define@y--module, which we

shall denotel/™~. Especially, for every, € Z, let P(n) be theZ-gradedP-module such that
P(n)y := P, for everyk € Z (with the convention thaP, := @ if n < 0); we set :

Oy(n) :=P(n)~.
Every element. € P, induces a natural isomorphism :
Oy(M)p,@ — Op, : x— fFz foreverylocal sectiom.

Hence on the open subset :
Un(P) = | Di(a)
a€Py,

the shea’y (n) restricts to an invertibl&;, p)-module (see definition 2.3.6(iv)). Especially,
if P, generates’,, the &y-modulessy (n) are invertible, for every, € Z.

3.5.34. Inthe situation of (3.5.B1), I1&f be aZ-gradedP-module. Then\/’ := M ®p P’ is
aZ-gradedP’-module, with the grading defined by the rule :
(3.5.35) My, = | Im(M; ®@p, P — M').

jt+k=n
There follows aF,-linear morphism :
T . r®1
a7 pla)F

and since both localization and tensor product commute avliiirary colimits, it is easily seen
that (3.5.3B) extends an injectivg , -linear map

(3.5.36) My = M0 for everya € P

/ !
May ®py Ploay) = Mig(ay)
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whence a map oUp, (y(a))-modules(Proj )" My, ) — <M/)|ND+<¢<Q>>’ and the system
of such maps, for ranging over the elements &f, is compatible with all open immersions
D, (p(ab)) C D, (a), whence a well defined monomorphisma;,.,-modules

(3.5.37) (Proj ) M~ — (M,)\NG(@-

Moreover, ifa € P, then for everyn € M; andx € P, we may write

m@x m T

o @ ° play

so the above map is an isomorphismBn(a). Thus, [3.5.37) restricts to an isomorphism on
the open subset

Gi(p) = |J Dilp(a)).

ac Py

Especially[(3.5.37) is an isomorphism wheneleigenerates’, . Notice as well tha&;(¢) C
Ui(P") N G(p), and actuallyG (¢) = Ui (') if p(P) generates”, .

3.5.38. LetP be as in[(3.5.29), and : B, — @ a given morphism of monoids. Then
P’ := P ®p, Q is naturallyN-graded, so that the natural m@p : P — P’ is a morphism of
graded monoids. Every elementBfis of the forma ® b = (a® 1) - (1®b), wherea € P and

b € Q. Then lemma2.3.34 yields a natural isomorphisnyahonoids :

Play @p, Qb1 = Plaay
whence an isomorphism of affine fans :
Bagp : Di(a®b) = D (a) Xz, D(b)

such that(r, X7, ji) © Bags = Tagp, Wherej; : D(b) — Tg := (Spec Q)* is the natural open
immersion. Especially, it is easily seen that the isoma@pisis,; assemble to a well defined
isomorphism of fans :

(Proj fp,mp) : Proj P = Proj P X1, T

such that(mp X1, 1TQ) o (Proj fp,mp/) = wp:. Lastly, if g : Q@ — R is another morphism of
monoids, T := (Spec R)*, andP” := P’ ®¢ R, then we have the identity :

(3539) ((PI'O_] fp, 7TP/) XTQ 1TR) 9] (Proj gp/, 7TP//> = (Proj (g 9] f)p, 7TP//>.

Moreover, for everyZ-graded moduleV/, the map(Proj fp)*M~ — (M ®p, Q)5 Of
(3.5.37) is an isomorphism, regardless of whether or/ogenerates?, (verification left to
the reader). Especially, we get a natural identification :

(Proj fp)*Oy(n) = Oy.(n)  foreveryn € Z
whereY := Proj P andY” := Proj P’.

3.5.40. Inthe situation of (3.5.88), let: R — P be a morphism olN-graded monoids. There
follow morphisms of fans :

Projy : G(¢) — Proj R Proj(fpoy): G(fpo ) — ProjR
and in view of [3.5.3R), it is easily seen that :

(3.5.41) G(fp o) = (Proj fp) " (G(p)).
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3.5.42. Let nowT, Or) be any fan. AN-graded&'r-monoidis a N-graded7-monoid &2,

with a morphismor — & of T-monoids. We say that suché--monoid isquasi-coherent
if it is such, when regarded as/a-module. To a quasi-cohereNtgraded/-monoid &, we
attach a morphism of fans :

T Proj# — T
constructed as follows. First, for every affine open sulifacc 7', the monoid#(U) is N-
graded, so we have the projective fRmj #2(U), and the morphism of monoidg;(U) —
Z(U) induces a morphism of fari&roj &(U) — U. Next, say that/;, U, C T are two affine

open subsets; for any affine open subiset U; N U, we have restriction mags,; : Z(U;) —
(V') inducing isomorphisms of graded,(V')-monoids :

’@(Ul) Qor ;) ﬁT(‘/) = ‘@(V)
whence isomorphisms f-fans :

Projpv,i

PI‘Oj QZ(V) :> PI‘Oj ,@(UZ) ®@7T(Ui) ﬁT(V) e PI‘Oj QZ(UZ) Xy, \%
which in turn yield natural identifications :
Jy : Proj 2(Uy) xpy, V= Proj 2(Us) xy, V.

If W C V is a smaller affine open subsét, (3.5.39) implies thak - 1y, = vy, and therefore
the isomorphismg, glue to a single isomorphism éf; N U,-fans :

PI‘Oj @(Ul) X, (U1 N UQ) :> PI‘Oj e@(Uz) XUy (U1 N Uz)

which is furthermore compatible with base change to anjetiigersectiort/; "U;NU; of affine
open subsets (details left to the reader). In such situatvermay glue the fanBroj 22(U) —
with U C T ranging over all the open affine subsets — along the aboveoigmnsms, to obtain
the sought farProj &2; the construction also comes with a well defined morphisri’t@s
required. Then, for every such open affiriethe induced morphisfroj & (U) — Proj & is
an open immersion; finally a direct inspection shows thatef@ry smaller affine open subset
V c U we have :

Un(2(U)) N Proj 2(V) = U, (2(V)) for everyn € N

(where the intersection is takeniroj #). Hence the union of all the open subsEts 7 (U))
is an open subsét,(#?) C ProjZ, intersecting eacRroj Z(U) in its subsel,,(Z(U)).

3.5.43. To ease notation, skt := Proj &, and letr : Y — T be the projection. Let
A be aZ-graded#?-module, quasi-coherent aség-module; for every affine open subset
U c T, the graded?(U)-module.Z (U) yields a quasi-coherer,-1;,-module.#;;, and
every inclusion of affine open subdét C U induces a natural isomorphi oo = M of
O.-1;p-modules. Therefore the moduleg;; glue to a well definedy -module.Z".

For everyn € Z, denote by# (n) the Z-graded%?-module such thaiZZ (n), := 4, for
everyk € 7Z (especially, with the convention tha?, := 0 wheneverk < 0, we obtain in this
way theZ-moduleZ?(n)). We set :

Oy(n) = P(n)~ and A~ (n):=H" Q¢, Oy(n).

Clearly the restriction 0¥y (n) to U, (22) is invertible, for everyh € Z.
Moreover, for everyn € Z, the scalar multiplication”? (n) ®g,. .# — .# (n) determines a
well defined morphism of’y-modules :

M~ (n) — M (n)~
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and arguing as ir_(3.5.B4) we see that the restriction ofrtfap is an isomorphism ali, (2?).
Especially, we have natural morphisms@f-modules :
Oy(n) ®g, Oy(m) — Oy(n+m) for everyn,m € Z
whose restrictions t0/; (£?) are isomorphisms.
Example 3.5.44.Let T be a fan,.Z an invertibledr-module, and set”(.¢) := Symy, &
(see example 2.3.1L0). Then the morphism
Ty P(ZL) :=Proj 2(L) =T

is an isomorphism. Indeed, the assertion can be checkellylocaevery affine open subset
U C T, hence say thatl = (Spec P)* for some monoid®, and.# ~ Ory, in which case the
P-monoid Z(.Z)(U) is isomorphic toP x N (with its natural morphisnP — P x N: z —
(z,0) for everyz € P), and the sought isomorphism corresponds to the natunafifbation :

(3.5.45) P = (P xN)uy

where(1,1) € P x {1} = (P x N);. Likewise, Op ¢)(n) is the Op 4 -module associated to
the graded P x N)-moduleP x N(n) = Z*"(U) ®p (P x N), so [3.5.4b) induces a natural
isomorphism

T L = Opzy(n)  foreveryn € N.
3.5.46. In the situation of (3.5.42), let : &2 — 22’ be a morphism of quasi-cohereit
graded&-monoids (defined in the obvious way). By the foregoing, feerg affine open
subset/ C T', we have an induced morphisitroj p(U) : G(¢(U)) — Proj2?(U) of U-fans,
whereG(p(U)) C Proj £(U) is an open subset dfroj &#'. LetV C U be a smaller affine
open subset; in light of (3.5.41), we have

G(p(V)) = G(p(U)) N Proj 2(V).
It follows that the union of all the open subsétép(U)) is an open subsét(y) such that
G(p) NProj Z(U) = G(p(U)) for every affine open subsétC T
and the morphismBroj o(U) assemble to a well defined morphism
Projy : G(¢) — Proj &.

Moreover, if # is aZ-graded quasi-coheres?-module, the morphism§ (3.5137) assemble to
a well defined morphism of/;(,)-modules :
(3.5.47) (Proj ) ™ = (M)t

where the grading of#7’ .= . # ®5 2’ is defined as in(3.5.35). Likewise, the union of all
open subseté&; (p(U)) is an open subse&t, () C Ui (Z?) N G(y), such that the restriction
of (35.47) toG () is an isomorphism. Especially, SEt:= Proj & andY”’ := Proj £'; we
have a natural morphism :

(Proj)* Oy (n) = Oyi(n)ic(p)

which is an isomorphism, i?, generates”, :=[],., ¢, locally onT.

3.5.48. On the other hand, I¢t: 7" — T be a morphism of fans. The discussion[in (3.5.38)
implies thatf induces a natural isomorphismBf-fans :

(3.5.49) Proj f*% = Proj & x+ T'.

Moreover, set” := Proj &2, Y’ := Proj f*&2, and letry : Y/ — Y be the projection deduced
from (3.5.49); then there follows a natural identification :

Oy:(n) = 75Oy (n) for everyn € Z.
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3.5.50. Keep the notation df (3.5]42), and to ease notasetY, := Proj &2. Let% be the
category whose objects are all the pdits: X — T,.%), wheret is a morphism of fans,
and.Z is an invertible0x-module; the morphismg) : X — 7.%2) — (¢ : X' - T,.Z")
are the pairgs, h), where : X — X' is a morphism of/-fans, andh : *.¢" = Zis
an isomorphism otx.-modules (with composition of morphisms defined in the obsiway).
Consider the functor

Fop: ¢° — Set
which assigns to any obje¢t), .#’) of ¥, the set consisting of all morphisms of gradeg-
monoids

g: Y P — Symy, L
which are epimorphisms on the underlyirg-modules (notation of example 2.3110). On a

morphism(5, h) as in the foregoing, and an elementc F4 (¢, "), the functor acts by the
rule :

Fy(B,h) := (Symg, h) o B¢
Lemma 3.5.51.1n the situation of(3.5.50) the following holds :

(i) The object{m s, (2 : Ui(Z?) = T, Oy(1)u,(»)) represents the functar.

(i) If &2 is an integrall’-monoid, thed-monoid4?5** admits a unique grading such that
the unit of adjunction?Z — 7% is a N-graded morphism, and there is a natural
isomorphism ofProj &-fans :

Proj (2°*') = (Proj 2)™".
Proof. (i): The proof ismutatis mutandisthe same as that of lemrha 6.4.26 (with some minor
simplifications). We leave it as an exercise for the reader.

(ii): The first assertion shall be left to the reader. The sdcassertion is local oRroj &,
hence we may assume tHAt= (Spec ), and &? = P~ for someN-graded integral;-
monoidP. Leta € P be any element; by definition we hawe ¢ P for somen > 0, and we
know that the open subselty, (a) et D, (a™) coincide inProj(27%*"); hence we come down to
showing that P, )** = (P*")(,) for everya € P, which can be left to reader. O

Definition 3.5.52. Let (T, 0r) be a fan (resp. an integral fany) C ¢ an ideal (resp. a
fractional ideal) of0’r.

(i) Let f : X — T be a morphism of fans (resp. of integral fans); thferh# is an ideal
(resp. a fractional ideal) of ' &7, and we let :

IOx =log f(f7F) - Ox

which is the smallest ideal (res. fractional ide@}) containing the image of ~'.7.

(ii) A blow upof the ideal.# is a morphism of fans (resp. of integral fans) 77" — T
which enjoys the following universal property. The ide@gp. fractional idealy &
is invertible, and every morphism of fans (resp. of intedaas) X — 7 such that
# O is invertible, factors uniquely through

3.5.53. Letl be afan (resp. an integral fany, C ¢ a quasi-coherent ideal (resp. fractional
ideal), and consider th§-graded&--monoid :

BJ)=]][r"

where.#™ C O is the ideal (resp. fractional ideal) associated to thehwal/ — 7 (U)"
for every open subséf C T (notation of [3.1.11), with the convention that’ := ;) and the
multiplication law of Z(.#) is defined in the obvious way.
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Proposition 3.5.54.The natural projection
Proj #(%) — T
is a blow up of the ideal?.

Proof. We shall consider the case whéras not necessarily integral, and C O7; the case
of a fractional ideal of an integral fan is proven in the sansywSetY := Proj #(.#); to
begin with, let us show tha¥?y is invertible. The assertion is local dh, hence we may
assume thal’ = (Spec P)*, and.# = [~ for some ideal C P, soY = Proj B(I), where
B(I) =11,enI™ Leta € B(I), = I be any element; then the restriction.6ty to D, (a) is
generated by = a/a € B(I)(,), SO clearly.?|p, ) ~ Oy, sincel;(B(I)) = Y (notation of
(3.5.33)), the contention follows.

Next, lety : X — T be a morphism of fans, such th&x is an invertible ideal. It follows
easily that# " Ox is invertible for everyn € N, so the natural map df-gradeddy-monoids

©*Symy, () 5 Symy, (SOx) — B(I0x)

is an isomorphism. On the other hand, the projecion) #(.Y0x) — X is an isomorphism
(example[(3.5.44)), whence — in view 6f (3.5.49) — a naturatphism of7-fans :

(3.5.55) X — Proj B(.7).

To conclude, it remains to show that (3.5.55) is the only rham of 7-fans from X to
Proj #(.#). The latter assertion can be checked again locally/'orso we are reduced as
above to the case whefeis the spectrum of’, and.# is associated té. We may also as-
sume thatX = (Spec Q)*, andy is given by a morphism of monoidé: P — Q. Then the
hypothesis means that the idg/dll )@ is isomorphic to (see remark3.5.13(ii)), hence it is
generated by an element of the foyffu), for somea € I, and the endomorphism— f(a)x

of f(I)Q, is an isomorphism. In such situation, it is clear tifafiactors uniquely through a
morphism of monoids® — B(I)(,); namely, one defineg : B(I), — @ by the rule :

a ®z — f(a)7*f(z) (for everyz € I*¥), which is well defined, by the foregoing observations.
The morphisn(Spec ¢)* : X — D, (a) must then agree with (3.5555). O

Example 3.5.56.(i)) Let P be a monoid/ C P any finitely generated idea{a,, ..., a,} a
finite system of generators df setT := (Spec P)%, and lety : T' — T be the blow up of
the ideal/™~ C ¢r. ThenT’” admits an open covering consisting of the affine fang f;).
The latter are the spectra of the monoigisconsisting of all fractions of the form - f;*, for
everya € I"; we havea - f;* = b- f7* in Q, if and only if there existg: € N such that
a- fiT% =b. fI** if and only if the two fractions are equal ifi;,, in other word,Q; is the
submonoid ofP;, generated by’ and{f; - ;' | j < n}, foreveryi=1,...,n.

(i) Consider the special case whekeis fine, and the ideal C P is generated by two
elementsf,g € P. Lett € T’ be any point; up to swapping and g, we may assume that
corresponds to a prime ideplC P[f/g], hencep(t) corresponds tq := j~'p C P, where
j : P — P|f/g]is the natural map. We have the following two possibilities :

e Either f/g € p, in which case lety € F’ := P|[f/g]\p be any element; writing
x =y-(f/g)" forsomen > 0andy € P,we deduce that = 0,sox =y € F := P\q,
thereforeF” = j(F'). Notice as well that in this casg/g is not invertible inP[f/g],
henceP|f/g]* = P*, whencedim P[f/g] = dim P, and , by corollary-3.4.10(i).

e Orelsef/g ¢ p, in which case the same argument yields= j(F)[f/g]. In this
case,f/g is invertible in P[f/g] if and only if it is invertible in the faceF”, hence
htp = dim P — rkzF’ > dim P — dim F' — 1, by corollary3.4.10(i), (ii).

In either event, corollary 3.4.10(i),(ii) implies the inegjity :

1 > ht(e(t)) —ht(t) >0 for everyt € T'.
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3.6. Special subdivisions.In this section we explain how to construct — either by geoivest
or combinatorial means — useful subdivisions of given fans.

3.6.1. LetT be any locally fine and saturated fan, ahd= 7 any point. By reflexivity
(propositior 3.4.12(iv)), the elementsc 07, @7 Q correspond bijectively t@)-linear forms
ps » U(t)(Qy)®» — Q, ands € OF, if and only if p, restricts to a morphism of monoids
U(t)(N) — Z. Moreover, this bijection is compatible with specialipstimaps : ift’ is a gener-
ization oft in 7', then the formU/(#')(Q. )®* — Q induced by the image of in 0%, ®7 Q is
the restriction of, (see[3.5.20)). ’

Hence, any global sectione I'(T, 0%") yields a well defined function

pr:T(N) = Z

whose restriction t&/(¢)(N) is the restriction of &-linear form onU (¢)(N)eP, for everyt € T;
conversely, any such function arises from a unique globatiseof £%°. Likewise, we have
a natural isomorphism between tflevector space of global sectionsof 0% ®7 Q, and the
space of functiong,, : 7(Q,) — Q with a corresponding linearity property.

Let nowp : T(Q,) — Q be any function; we may attach toa sheaf of fractional ideals of
Or o (notation of (3.3.200)), by the rule :

FpoU) :={s€ OrgU) | ps > pv} for every open subsét C T
In this generality, not much can be said concernijg,; to advance, we restrict our attention
to a special class of functions, singled out by the following
Definition 3.6.2. Let T be a locally fine and saturated fan.
(@) Aroof onT is a function :
p:T(Q) —Q
such that, for every € T', there exist := k(t) € N andQ-linear forms
A Ak U(E)(Q4) — Q
with p(s) = min(\;(s) |i = 1,...., k) foreverys € U(t)(Q4 ).
(b) Anintegral roof onT"is a roofp onT" such thai(s) € Z for everys € T'(N).
3.6.3. The interest of the notion of roof on a fanis that it encodes in a geometrical way,
an integral subdivision of’, together with a coherent sheaf of fractional idealsZbf (see
definition[2.3.6(iii)). This shall be seen in several steps.begin with, letT" andp be as in
definition[3.6.2(a). For any < T, pick a system\ := {\q, ..., A\x} of Q-linear forms fulfilling
condition (b) of the definition; then for eveiy=1,... kletus set:
U(t,i))(N) := {z e UR)N) | p(x) = Ai(z)}.
Notice thatU (t)(N) = &r,, by propositior 3.4.12(iv). Moreover, say thais irredundant for
t if no proper subsystem of fulfills condition (b) of definitior.3.6.2 relative to'(¢).
Lemma 3.6.4. With the notation 0f{3.6.3) the following holds :

(i) U(t,4)(N) is a saturated fine monoid for every k.
(ii) There is a unique system @f-linear forms which is irredundant far.
(iii) If \isirredundant fort, then dim U (¢,7)(N) = htp(¢) foreveryi =1,... k.

Proof. (i): We leave to the reader the verification tliafz, ) is a saturated monoid. Next, let
o; C U(t)(R,)®*Y be the convex polyhedral cone spanned by the linear forms

(A= M) @oR[j=1,....k)

Theno, is 0, -rational, sao}’ is O -rational, ands)’ N &5, is a fine monoid (propositions
[3.3.21(i), and3.3.22(i)), therefore the same holddf@r, i)(N) = o' N Or, (corollary[3.4.D).
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(iii): Notice thathtr(t) = dim U(¢)(N), by propositioi-3.4.12(ii) and (3.5.118). In view of
corollary[3.4.10(i), it follows already thatim U(¢,7) < hty(t). Now, let\,..., \; be an
irredundant system, and suppose, by contradiction,dhatU (¢,¢)(N) < dim U(¢)(N) for
somei < k. Especially,o;’ N U(t)(R,) does not span th&-vector spacé/(¢)(R, )&?, and
therefore the duat; + U(¢)(R)" is not strongly convex (corollafy 3.3114). After relabgjjnve
may assume that= 1. Hence there exist;, b; € R andyp, ¢’ € U(¢)(R)", and an identity :

Moreover,Zsz(aj +b;) > 0. It follows that there exist € U(¢)(R)", and non-negative real
numbergc; | j = 2,...k) such that

k k
)\Z‘:ZC])\]'—FQZJ and ZC]':L
= =2

On the other hand, the irredundancy condition means thes theésts: € U(t, 1)(N) such that
Aj(z) > Ai(z) for everyj > 1. Sincey(x) > 0, we get a contradiction.

(i)): The assertion is clear, iit7(t) < 1. Hence suppose that the heightta$ > 2, and let
A={A,..., \grandy := {u1, ..., p } be twoirredundant systems farFix ¢ < &, and pick
x € U(t,7)(N) which does not lie on any proper faceloft, i)(N) (the existence of is ensured
by (iii) and proposition 3.4]7(i)); say that (x) = p(x). Sincei is arbitrary, the assertion shall
follow, once we have shown that agrees with\; on the whole ot/ (t,7)(N).

However, by definition we have, (y) > \;(y) for everyy € U(t,7)(N), and then it is easily
seen thaiKer(u; — A\;) NU(t,4)(N) is aface ofU (¢, 7)(N); sincex € Ker(u; — )\;), we deduce
thatu, — A; vanishes identically oy (¢, i) (N). O

3.6.5. Henceforth, we denote byt) := {\,..., \;} the irredundant system d-linear
forms fort. Letl < i,5 < k; then we claim thaU (t,4, j)(N) = U(t,i)(N) n U(t, 7)(N)
is a face of bothU(¢,7)(N) andU (¢, j)(N). Indeed say that,z’ € U(t,7)(N) andx + 2’ €
U(t,i,j)(N); these conditions translate the identities :

Ai(@) +Ai(@) = A(@) + (") Aile) S M) (@) < A()
whencer, 2’ € U(t,1,7)(N). Define :
Ul(t,i) := (SpecU(t,))(N)V)*  U(t,i,4) := (SpecU(t,4,7)(N)V)*  foreveryi,j < k.

According to [3.5.20) and (3.5.118), the inclusion méfs, i, j)(N) — U(t,1)(N) (for I = i, 5)

are dual to open immersions
(3.6.6) U(t,i) « Ul(t,i,5) — U(t, j).

We may then attach to and ;) the fanU (¢, p) obtained by gluing the affine farig(z, i)
along their common intersectiob&, ¢, j). The duals of the inclusions(t,i)(N) — U(¢)(N)
determine a well defined morphism of locally fine and satarées :

(3.6.7) Ult,p) — U(t)

which, by construction, induces a bijection dhpoints : U(t, p)(N) = U(t)(N), so it is a
rational subdivision, according to proposition 3.5.24.



192 OFER GABBER AND LORENZO RAMERO

3.6.8. Letnow’ € T be a generization of, clearly the systeml’ := {\|,..., \}} consist-
ing of the restrictions\; of the linear forms\; to the Q-vector subspac# (t')(Q,.)e?, fulfills
condition (b) of definitio 3.6]2, relative . However,\" may fail to be irredundant; after re-
labeling, we may assume that the subsystem. .., \;} is irredundant fot’, for somel < k.
With the foregoing notation, we have obvious identities :

U, ))(N) =U(t ) (N)nU@)N)  U{,1,5)(N) = U(t,1,/)(N) N U(')(N)

for everyi, j < [; whence, in light of remark 3.4.114(iii), a commutative diag of fans :

U(t', i) Ut i, j) U(t',7)

| | l

U(t,i) xuwy U(t") =<—U(t,4, ) xu@ Ut') —=U(t,7) xpe U

whose top horizontal arrows are the open immersions (3(@&#h ¢ replaced byt’), whose
bottom horizontal arrows are the open immersiéns (B:6.6) U (t'), and whose vertical arrows
are natural isomorphisms. Sintét’) is an open subset éf(¢), we deduce an open immersion

Jre U, p) = UL, p).

If t” is a generization of , it is clear thatjy + o j; + = j:+#, hence we may glue the fan&t, p)
along these open immersions, to obtain a locally fine andatai fan’’(p). Furthermore, the
morphismsl[(3.6]7) glue to a single rational subdivision :

(3.6.9) T(p) —T.

Remark 3.6.10.(i) In the language of definitidn 3.3.P5 the foregoing lenygpinocedure trans-
lates as the following simple geometric operation. GivearaZ (consisting of a collection
of convex polyhedral cones ofRvector spacé’), a roof onA is a piecewise linear function
F = U,ca o — R, which is concave on each € A (and hence it is a roof on each such
o, in the sense of example 3.3127). Then, such a roof detesnaimetural refinemenk’ of

A; namely,A’ is the coarsest refinement such that, for eacke A’, the functionp, is the
restriction of aR-linear form onV’. This refinement\’ corresponds to the preséefitp).

(i) Moreover, let P be a fine, sharp and saturated monoid of dimensgioget7r :=
(Spec P)#, and suppose that : T — Tp is any integral, fine, proper and saturated subdivi-
sion. Thenf corresponds to a geometrical subdivisidbrof the strictly convex polyhedral cone
Tp(Ry) = Py, and we claim that\ can be refined by the subdivision associated to a roof
onTr. Namely, letA,_; be the subset ofA consisting of allo of dimensiond — 1; every
o € A4_1 is the intersection of d-dimensional element oA and a hyperplanél, C Pﬁpv;
such hyperplane is the kernel of a linear fokpon P§P". Let us define

p(z) = > min(0,\,(x))  foreveryz € Tp(R,).

oEAG 1

Then it is easily seen that the subdivisionef(R ) associated to the rogfas in (i), refines
the subdivisionA. In the language of fans, this construction translates bens. For every
pointc € T of heightd — 1, let H, C P*° be the kernel of the surjectioR®® — ﬁ%?a
induced bylog f; notice thatH, is a free abelian group of rank one, and pick a generator
s, of H,, which — as in[(3.6]1) — corresponds to a functign: 7p(N) — Z, so we may
again consider the integral ropfon T defined as in the foregoing. Then it is easily seen
that the rational subdivisiofi(p) — T associated te, factors as the composition gfand

a (necessarily unique) integral subdivisign 7'(p) — T. More precisely, for every mapping
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e:{oeT|ht(oc)=d—1} — {0,1}, let us set
A 1= e(o) - Ay and  U(e)(N) :={x € Tp(N) | p(z) = \(2)}.

ht(o)=d—1

WheneverU (¢)(N) has dimensiow, lett. € T'(p) be the unique point such thét(c)(N)¥ =
Or)..- As the reader may check, there exists a unique closed paintl’, such that(o) -
A-(x) < 0foreveryr € U(7)(N) and every € U(r) of heightd —1. Then we have(t.) = T,
and the restrictioi/(t.) — U(r) of ¢ is deduced from the inclusiali(¢)(N) C U(7)(N) of
submonoids of »(N).

(i) Furthermore, in the situation of (ii), the ropfon 7> can also be viewed as a roof @h
and then itis clear from the construction that the morphjsri’(p) — T is also the subdivision
of T" attached to the rogf.

We wish now to establish some basic properties of the shdedictfonal ideals
Iy = I N OF
attached to a given roof df. First we remark :

Lemma 3.6.11.Keep the notation 0{3.6.5) and lets € 07, @z Q be any element such that
ps = plu- Then we have :

(i) There existy € (Or;)q (notation of (3.3.20) andc;, ..., ¢, € R, such that:

k k
pS:p<P+ZCi)\i Zcizl-
i—1 i—1

(i) The stalky,, is a finitely generated’r;-module.

Proof. (i): Let o C U(t)(Ry)%" be the convex polyhedral cone spanned by the linear forms
(N —ps) @R |i=1,...,k). Then the assumption crmeans that
Ut)(R)Neo’ =U(t)(Ry) NKerp, ®g R.

Especiallys¥ N U(t)(R) does not spalV(¢) (R, )&P. Then one can repeat the proof of lemma
[3.6.4(iii) to derive the assertion.

(ii): By remark3.4.14(i), we may write; = p,, — p,/, Wheres;, s; € (Or,)q for eachi < k;
pick N € N large enough, so that's; € 0, for everyi < k, and setr := NZf:1 si. Then
T+ I, C 03,1 (Ort)g = Ory. By propositio 3.119(ii), we deduce that- .7, , is a finitely
generated ideal, whence the contention. O

Proposition 3.6.12.LetT be alocally fine and saturated fama roof on7". Then the associated
fractional ideal.7, of & is coherent.

Proof. In view of lemm&_3.6.111(ii) and remafk 3.5113(v), it suffitesshow that 7, is quasi-
coherent,j.e. for every generizatiort’ of ¢, the image of.%,; in Or, generates th& -
module .7, .. Fix sucht’; by propositions 3.3.21(i) and_3.4.7(i), there exigtss O, =
U(t)(N)¥ such thatU (t')(N) = Ker \; especially, we see that(¢')(N)? is a direct summand
of U(t)(N)#P. Now, lets’ € .7, » be any local section; it follows that we may fisde 07,
such thatp, : U(t)(N)®» — Z is aZ-linear extension of the correspondifglinear form
ps » U(t')(N)EP — 7Z. Let also{ )\, ..., Ay} be the irredundant system @Flinear forms fort
(relative to the roop). For everyi < k we have the following situation :

Ar = A®q R € U(t,i)(Ry)" (ps = Ai) ®g R € Ut i)(Ry)".

However,U(t',i)(R;) = U(t,1)(Ry) N Ker Ag, henceU(t',q)(Ry)Y = U(t, 1) (Ry)Y + RAg.
Especially, there exists € R, andy € U(t)(R;)" such thatps — \;) ®g R = ¢ — r;Ag. Let
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N be an integer greater thamax(r, ..., ry); it follows thats + N\ € ., and its image in
4, v equalss’. O

Proposition 3.6.13.In the situation of(3.6.3)suppose that is an integral roof oril". Then the
morphism(3.6.9)is the saturation of a blow up of the fractional ide4].

Proof. We have to exhibit an isomorphisih: T'(p) — X := Proj #( )™ of T-fans. We
begin with :

Claim3.6.14 (i) The fractional ideal?, &, is invertible.

(il) For everyn € N, denote bynp : T(Q,) — Q. the function given by the rule —
n - p(x) for everyx € T(Q.). Then:

B(I) =2 =] %,

neN

Proof of the claim. (ii): The assertion is local off’, hence we may assume tHat= U (t)
for somet € T, in which case, denote by := {\,..., \;} the irredundant system @p-
linear forms fort. Letn € N, ands € .7,,(U(t)); it is easily seen that th&-monoid %’ is
saturated, hence it suffices to show that there exists agente> 0 such thatkps; = py for
somes’ € #*(U(t)) (notation of [3.6.11)). However, lemnia3.6.11(ii) implie®ra precisely
that we may find such, so that the correspondinglies in the ideal generated by

(i): The assertion is local ofi(p), hence we consider againe 7" and the corresponding
as in the foregoing. It suffices to show thgt := .%,0y (., is invertible for everyi = 1,.. .k
(notation of [3.6.b)). However, by inspecting the condinrs it is easily seen thay (U(t, 1))
consists of alls € (U(t,4)(N)")#" such thatps(z) > p(z) for everyz € U(t,i)(Qy), i.e.
ps(x) > Ni(z) for everyx € U(t,4)(Q). However, since is integral, we have,; € 07,
if we apply lemmd_3.6.11(i) witll" replaced byU(t,:), we conclude that# (U(t,7)) is the
fractional ideal generated by, whence the contention. O

In view of claim[3.6.14(i) we see that there exists a uniquephism f of T-fans fromT'(p)
to X. It remains to check thagt is an isomorphism; the latter assertion is local0phence we
may assume that = U(¢) for somet € T', and then we let agaik be the irredundant system
for t. A direct inspection yields a natural identification@f,-monoids :

B (Ut,1)n) — Ut,4)(N)Y  foreveryi=1,....k

whence an isomorphisii(¢,7) — D, (\;) C X, which — by uniqueness — must coincide
with the restriction off. On the other hand, the proof of claim_3.6.14(ii) also shokat t
X =D, (A)U---UD;(\), and the proposition follows. O

Example 3.6.15.Let P be a fine, sharp and saturated monoid.
(i) The simplest non-trivial roofs offi» := (Spec P)* are the functiong, such that

pa(z) := min(0, A\(x)) for everyz € Tp(Q.).

where\ is a given element oHomg (75(Q4)%?, Q) ~ P ®z Q. Such ap, is an integral
roof, provided\ € P#P. In the latter case, we may wrife= p,, — ps,, for somes;, sy € P.
Setp' == py + psy, i.€. p = min(ps, , ps,)Mplest non-trivial roofs of» := (Spec P)* are the
functionsp, such that

pa(z) ;== min(0, A\(x)) for everyz € Tp(Q.).

where\ is a given element dflomg (75 (Q )¢, Q) ~ P# ®; Q. Such g, is an integral roof,
provided\ € P*P. In the latter case, we may write = p,, — ps,, for somes;, s, € P. Set
P = px+ psy, €. p) = min(ps,, ps,); ClearlyT(py) = T'(p’), and on the other hand lemma
[3.6.11(i) implies that the idea#,, is the saturation of the ideal generatedspyandss.
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(i) More generally, any systemy, . .., A, € Homg(7p(Q; )8?, Q) of Q-linear forms yields
aroofp onTp, such thap(z) := >, min(0, \;(z)) for everyz € Tp(Q..). A simple inspec-
tion shows that the corresponding subdivisiBfp) — 7" can be factored as the composition
of n subdivisions; : T; — T;_1, whereTy := Tp, T,, := T'(p), and eachy; (for i < n) is the
subdivision ofI;_; corresponding to the rogf,, as defined in (i).

(i) These subdivisions of » "by hyperplanes” are precisely the ones that occur in remark
[3.6.10(ii),(iii)). Summing up, we conclude that every propgegral and saturated subdivision
g : T — Tp of Tp can be dominated by another subdivisipn T'(p) — Tp of the type
considered in (ii), so thaf factors as the composition gfand a subdivisio : T'(p) — T
which is also of the type (ii). Especially, bothandh can be realized as the composition of
finitely many saturated blow up of ideals generated by at vaselements of°.

3.6.16. LetP be a fine, sharp and saturated monoid. A proper, integral afiesaturated
subdivision of

Tp := (Spec P)ﬁ
is essentially equivalent to @)V -rational subdivision of the polyhedral core= P} (see
(3.4.6) and definition 3.3.25). A standard way to subdivigelghedrornr consists in choosing
a pointz, € ¢ \{0}, and forming all the polyhedra, x F', whereF' is any proper face af, and
xo * F denotes the convex span.af and F'. We wish to describe the same operation in terms
of the topological language of affine fans.

Namely, pick any non-zerg € Tp(Q.) (p corresponds to the point in the foregoing).
Let U(yp) C Spec P be the set of all prime ideajssuch thatp(P\p) # {0}; in other words,
the complement of/ () is the topological closure of the supportwin Tp, especiallylJ (y)
is an open subset dfp. Denote by; : P = I'(Tp, Or,) — T'(U(p), Or,) the restriction map.
The morphism of monoids :

P—=TU(p), Or,) x Q. x> (j(2), 0(2))
determines a cocartesian diagram of fans
B/

U(p) x (Spec Q. )f U(p) x (Spec N)?

9 |

Tp T,-1n = (Spec ¢ 'N)*

Lemma 3.6.17.With the notation of(3.6.16) the morphisms) and )’ are proper rational
subdivisions, which we call treubdivisions centered at

Proof. Notice that both3 and 5’ are homeomorphisms on the underlying topological spaces,
and moreover botlog 52° @7 1o andlog 5% ®; 1¢ are isomorphisms. Thus, it suffices to
show thaty is a proper rational subdivision, hence we may repladey ¢ !N, which allows

to assume thap is a morphism of monoid® — N, and is a morphism of fans

T' = U(p) x (SpecN)* — Tp.
In this situation, by inspecting the construction, we findtth restricts to an isomorphism :

v U () = Ulp)

and the preimage of the closed sub%gt\ U(y) is the preimage of the closed point €
(Spec N)# under the natural projectidfi’ — (Spec N)#; in view of the discussion of (3.5.119),
this is naturally identified witl/ () x {m}. Moreover, the restrictiofy (o) x {m} — Tp\U(p)

of ¢ is the map(t,m) — t U o~ 'm (recall thatt C P is a prime ideal which does not contain
©~'m). Thus, the assertion will follow from :
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Claim 3.6.18 TheQ-linear map

log Y ®z 1o : PP @2 Q — (O, x Z) @2 Q
is surjective for every € U(y), and the induced map :
(3.6.19) T'(Q4) = Tpon(Qy) = Tp(Qy)

is bijective.
Proof of the claim. Indeed, letF; C PV be the face of" corresponding to the pointe U(yp),
under the bijectior (3.5.21); them¢ F}, whence a natural isomorphism of monoids :

(Ft + ng)v :> ﬁTp,t x N : A= ()\|F7 )\(80))

whose inverse, composed wilbg ¢ ), yields the restriction map — (F; + Ny)". This
interpretation makes evident the surjectivitylog wapm) ®z 1g. In view of examplé_3.5]9(jii),
the bijectivity of [3.6.19) is also clear, if one remarksttha

Pl = |J (Fi+No).
teU(p)

The latter identity is obvious from the geometric interptin in terms of polyhedral cones. A
formal argument runs as follows. Let € Py; since P spansPg”, the cong Pg)" is strongly
convex (corollary 3.3.14), hence the lipe+ Ry C Pg" is not contained i/, therefore there
exists a largest € R such thaty’ — rp € Py, and necessarily > 0. If ¢’ —r¢p = 0, the
assertion is clear; otherwise, [Etbe the minimal face oV such thaty’ — rp € Fg, so that
¢ = (¢ —ry)+rp e (F+ Np)g. Thus, we are reduced to showing tha# F'. But notice
thaty' — ry lies in the relative interior of”; therefore, ifp € F, we may finds > 0 such that
¢ — (r + ¢)p still lies in Fg, contradicting the definition of. O

3.6.20. Lemm&3.6.17 is frequently used to construct sugidivs centered at anterior point
of Tp, i.e. a pointy € Tr(N) which does not lie on any proper face B (N) (equivalently,
the support ofp is the closed pointnp of 7). In this case/(p) = Tp\{mp} = (Tp)a_1,
whered := dim P. By lemmd3.6.1]7, th&-pointy lifts to a uniqueQ . -pointp of (Tr)4_1 X
(SpecN)#, and by inspecting the definitions, it is easily seen that deuarthe identification of
remark3.5.8(iii) — the support @f is the point(&, my), where@ € Tp is the generic point.
More precisely, we may identif§Spec N)*(Q, ) with Q. , and(Tr),_1(Q, ) with a cone in the
Q-vector spacd’r(Q, )P, and thenp corresponds to the poid, 1) € Tr(Q. )%P x Q.
Suppose now that we have an integral roof

p:(Tp)a1(Qy) = Q

and letr : T'(p) — (Tr)4_1 be the associated subdivision. Let also (7Tp)4_1 x (Spec N)* —
T'r be the subdivision centered@atwe deduce a new subdivision :

7.‘.X]'(Specl\l)ﬁ (
—_—

(3.6.21) T* :=T(p) x (Spec N)* Tp)a_1 x (SpecN)? 2 T

whose restriction to the preimage @fr),_1 is Tp-isomorphic tor.

Lemma 3.6.22.In the situation of(3.6.20) there exist an integral roof
p:Tp(Q) = Q

whose restriction tq7p),_1(Q.) agrees withp, and a morphisM™ — T'(p) of Tp-monoids,
whose underlying continuous map is a homeomorphism.
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Proof. According to remark3.518(vi), we have a natural identifmat

Tr(Q4) = T(P)(Qs) x (SpecNF(Qy) = T(p)(Qy) x Q4 € Tr(Q4)® x Q.

mapping the point to (0,1). For a givenc € R, denote byp, : Tp(Q,) — Q the function
given by the rule (z,y) — p(x) + cy for everyx € T'(p)(Q.) and everyy € Q...

Lett € T'(p) be any point of heighd — 1; by assumption, there exists@linear form ), :
U(m(t))(Q4 )% — Q whose restriction td/ (¢)(Q. ) agrees with the restriction of Therefore,
the restriction ofp. to U(t,my)(Q4) = U(t)(Q4) x Q. agrees with the restriction of the
Q-linear form

Aie 1 U(m(0)( Q) x Q=Tp(Q1)* - Q  (z,y
For any two points,t’ € T'(p) of heightd — 1, with w(¢) = =
generator§xy, ..., z,} for U(¢')(N), and letyy, ..., y, € U(t)(Q)

T =y + aip in the vector spac (r(t))(Q. )sP.

) = M) + cy.
(t), pick a finite system of
& ay,...,a, € Qsuchthat
In casez; € U(t)(N), we shall haves; = 0, and otherwise we remark that > 0. In-
deed, ifa; < 0 we would haver; — a;p € U(t)(Q+)®* N Tp(Q1) C U(n(t))(Q,); however,
U(m(t))(Q.) is a proper face of »(Q..), hencep € U(n(t))(Q, ), a contradiction.

We may then find: > 0 large enough, so thai, (z;) < A\ .(x;) for everyz; ¢ U(t)(N). It
follows easily that

(3.6.23) Moo(@) < Mo(z)  forallz € UE, my)(Q)\U(E my) (Qy).

Clearly we may choose large enough, so that (3.6123) holds for every pait as above,
and then it is clear that. will be a roof onTp. Notice that the points of heiglt of 7 are
precisely those of the forrft, my), for ¢t € T of heightd — 1, so the points of (p.) of height

d are in natural bijection with those @f*, and if 7 € T'(p.) corresponds to* € 7™ under
this bijection, we have an injective map(7*)(N) — U(7)(N), commuting with the induced
projections tdl'»(N). There follows a morphism dfp-fansU (7*) — U(7) inducing a bijection
U(m)(Qy) = U(7)(Qy). SinceT (p.) (resp.T™) is the union of all suctt/ () (resp.U (7)),
we deduce a morphisif* — T'(p.) inducing a homeomorphism on underlying topological
spaces. Lastly, say that = (¢,m); thenU(7*)(N)&? = U(t)(N)& @& Zyp, and on the other
handU (¢)(N)#? is a direct factor ot/ (1) (N)#P (since the specialization magy, . — 07, is
surjective). It follows easily that we may choose & suitable positive integer, in such a way
that the resulting roop := p. will also be integral. O

3.6.24. LetP be a fine, sharp and saturated monoid, and set as suak (Spec P)*.
There is a canonical choice of a point T»(N) which does not lie on any proper face of
Tp(N); namely, one may take thé-point o » defined as the sum of the generators of the one-
dimensional faces df»(N) (such faces are isomorphicy by theoreni 3.4.16(ii)).

Setd := dim P; if p is a given integral roof fof7r),_1, andc € N is a sufficiently large,
we may then attach to the datump, p, c) an integral roofp of T extendingp as in lemma
[3.6.22, and such that ) = c. More generally, lef” be a fine and saturated fan of dimension
d, and suppose we have a given integral rppf, onT,_;; for every pointt € T of heightd
we have the corresponding canonical papptin the “interior” of U(¢)(N), and we may then
pick an integerc, large enough, so that;_; extends to an integral rogf;, : T(Q.) — Q
with pa(ps) = ¢4 for everyt € T of heightd, and such that the associated subdivision is
Tp-homeomorphic td"(ps—1) x (SpecN).

This is the basis for the inductive construction of an inéégvof onT» which is canonical in a
certain restricted sense. Indeed, fix an increasing sequ#mpositive integers := (co, ..., cq);
first we definep; : T1(Q,) — Q. to be the identically zero map. This roof is extended
recursively to a functiom, onT},, for eachh = 2, ..., d, by the rule given above, in such a way
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thatp,, () = ¢; for every pointt of heighti < h. By the foregoing we see that the sequence
can be chosen so that shall again be an integral roof.

3.6.25. More generally, let” := {P,..., P} be any finite set of fine, sharp and satu-
rated monoids. We let”-Fan be the full subcategory dfan whose objects are the fafis
such that, for every € T, there exists” € .# and an open immersiobi(t) C (Spec P)*.
Then the foregoing shows that we may find a sequence of irgegef) := (co, ..., cq), With

d := max(dim P; | i = 1,...,k) such that the following holds. Every objettof .#-Fan is
endowed with an integral rogf : T'(Q.) — Q. such that:

e pr(py) = ¢; whenevemt(t) =i > 2, andpy vanishes o’} (Q.).
e Every open immersiog : 7" — T in .-Fan determines an open immersign:
T'(pr) — T(pr) such that the diagram

T'(pr) —T(pr)

" l lw

T’ T

commutes (where; andrr are the subdivisions associatedstoandpr).
e If dim 7" = d, there exists a natural rational subdivision

(3626) Td*1<pTd71> X (Spec N)ﬁ — T(pT)

which is a homeomorphism on the underlying topological spac

3.6.27. Notice as well that, by constructidh,(pr,) = T3; hence, by composing the mor-
phisms[(3.6.26), we obtain a rational subdivisioW@pr) :
Ty x (Spec N®4=1)f ... Ta—s(pr,_,)x (Spec N®2)# Tu—1(pr,_,) x(Spec N) = T(pp).

In view of theorend 3.4.16(ii), it is easily seen that everfynaf open subsect @f; is isomorphic
to (Spec N)#, and any two such open subsets have either empty intensgctielse intersect in
their generic points. In any case, we deduce a natural epimsm

(Q+)T1 — ﬁThQ
(notation of [[3.3.20)) from the constafit-monoid arising fromQ, ; whence an epimorphism :
O+ (QY) (o) = Oriom)a

which is compatible with open immersiops 77 — T in .-Fan, in the following sense. Set
d' := dim 7", and notice that’ < d; denote by, : Q¢ — QP the projection on the first’
direct summands; then the diagranmi/dfmonoids :

g7 ~,
(Qfd)T/(PT/) - g ﬁT(pT)vQ

(3628) (ﬂ—dd/)T/(pT/)l i(log 9)q
, s
Q) r(pp) — O (or10

commutes.
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3.6.29. Letf :T" — T be a proper morphism, with’ locally fine, such that the induced map
T(Q,) — T'(Q,) isinjective, and let € T be any element. For evetye f~!(s), we set

Gy :=U(t)(Q4)®* NU(s)(N)eP H, :=U(t)(N)# 6 = (Gy : Hy)
and definej(f, s) := max(d, | t € f~1(s)).

Lemma 3.6.30.For everys € T'we have :
(i) 6(f,s) € N.
(i) Ift,¢' € f~Y(s), andt is a specialization of’ in 77, thend, < &;.
(i) If fis arational subdivision, the following conditions are @galent :
(&) d(f.s) =1.
(0) U(s)(N) = Uye-1(5) UBN).

Proof. (i): Since f~1(s) is a finite set, the assertion means that +oo for everyt € f~1(s).
However, for such &, let P := 0 s and() := Oy 4; then

U(t)(Q4)% = Homz(Q,Q)  and  U()(N)® = Homy(Q%, Z)

(remark[3.4.T4(i) and propositidon_3.4112(iii)). By projiam 3.5.24 we know that the map
(log [)F* ®7 Q : P% ®; Q — Q%P ®7 Q is surjective. Sincé) is finitely generated, it follows
that the image)’ of PeP in Q%P is a subgroup of finite index, and then it is easily seen that
o = (QF : Q').

(i1): Under the stated assumptions we have :
Gy =G NU)(Q)*  Hy=HNU®)(Q4)

whence the contention.

(iii): Assume that (b) holds, and let € U(t)(Q, )s NU(s)(N)& for somet € f~1(s). Pick
any elementy, € U(t)(N) which does not lie on any proper face®f, ,; we may then find an
integera > 0 large enough, so that + apy € U(t)(Q4). Sety; := ¢ + apy andy, = ayy;
theny, o € U(t)(Q4) NU(s)(N) = U(t)(N), hencep = ¢ — ¢o € U(t)(N)8P. Sincey is
arbitrary, we see that = 1, whence (a).

Conversely, suppose that (a) holds, anddet U(s)(N); then there exists € f~!(s) such
thaty € U(t)(Q4). Thus,p € U(t)(N)EP N U(¢)(Q4) = U(t)(N), whence (b). O

Theorem 3.6.31.Every locally fine and saturated fah admits an integral, proper, simplicial
subdivisionf : T" — T, whose restrictiorf ' Ty, — Tiim iS an isomorphism of fans.

Proof. Let 7" be such a fan. By induction oim € N, we shall construct a system of integral,
proper simplicial subdivisiong;, : S(h) — T}, of the open subsets, (notation of [3.5.16)),
such that, for everyt € N, the restrictionfh:}1 (Ty) — Ty, of f,11 isisomorphic tof,, and such
thatf,lehﬁim — T}.5m 1S @an isomorphism. Then, the colimit of the morphisfpwill be the
sought subdivision of .

Forh < 1, we may takeS(h) := Tj,.

Next, suppose that > 1, and thatf, ; : S(h — 1) — T,_; has already been given; as
a first step, we shall exhibit a rational, proper simpliciabdgivision of7},. Indeed, for every
t € Ty, \ Th—1, choose &N-pointp, € U(t)(N) in the following way. Ift € T4, then lety, be
the (unique) generator of an arbitrarily chosen one-dinoead face ofU (¢)(N); and otherwise
take any pointp, which does not lie on any proper facelft)(N).

With these choices, notice th&t(y;) x (SpecN)* = U(t) in caset € Ty, and otherwise
U(yp;) = U(t),—1 (notation of [3.6.16)). By lemma3.6]17, we obtain corregbog rational
subdivisiond/ () x (Spec N)* — U(t) of U(t) centered ap,. Notice that ift lies in the sim-
plicial locus, this subdivision is an isomorphism, and iy aase, it restricts to an isomorphism
on the preimage o/ (¢),1.
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By composing with the restriction gf,_; x (Spec N)#, we get a rational subdivision:
g0 T, = [, 1,U(¢r) x (SpecN)F = U (1)

whose restriction to the preimage Oft¢),_; is an isomorphism. Moreovey, is an isomor-
phism ift lies inTy,,. Also notice thay; is simplicial, since the same holds féy_;.
If ¢,¢ are any two distinct points af of heighth, we deduce an isomorphism

g (U NUX)) = g, (U NU())

hence we may glue the faff$ and the morphismsg; along these isomorphism, to obtain the
sought simplicial rational subdivisian: 77 — Tj,.

For the next step, we shall refigdocally at every point of heighth; i.e. for suchs, we shall
find an integral, proper simplicial subdivisigih : 7 — U(s), whose restriction t@d/(s);_;
agrees withy, hence withf;,_;. Once this is accomplished, we shall be able to build thelsbug
subdivisionf;, by gluing the morphismg, and f;,_; along the open subsetgs);_;.

Of course, ifs lies in the simplicial locus of’, we will just take for f, the restriction ofy,
which by construction is already an isomorphism.

Henceforth, we may assume thHat= U(s) is an affine fan of dimensioh with s ¢ T,
andg : 7" — T is a given proper rational simplicial subdivision, whosstrietion tog—17},_;
is an integral subdivision. We wish to apply the criterioneshmd_ 3.6.30(iii), which shows that
g is an integral subdivision if and only (g, s) = 1. Thus, lett;, ..., t; be the points ofl”
such thav,, = 6(g, s) foreveryi = 1,..., k. Sinced(g, s) is anyway a positive integer (lemma
[3.6.30(i)), a simple descending induction reduces to theviing :

Claim 3.6.32 Giveng as above, we may find a proper rational simplicial subdivigia 7”7 —
T such that the following holds :

(i) The restriction ofy’ to ¢'~'T},_; is isomorphic to the restriction of
(ii) Let t},...,t,, € T" be the points such that, = 6(¢', s) foreveryi = 1,... . k. We
haved(g', s) < d(g,s), and ifo(g’, s) = d(g, s) thenk’ < k.

Proof of the claim. Sett := ¢;; by definition, there existe’ € U(s)(N) which lies in
Ut)(Q4) \ U(t)(N); this means that there exists a morphignfitting into a commutative
diagram :

(log 9)¢
ﬁT,s ﬁT’,t

”'l |

N Qy.
Say thato , ~ N®", and let(, ..., 7,.) be the (essentially unique) basis@f, , .; theny =
a7 + - --a,m,., fOr somea,...,a, > 0, and after subtracting some positive integer multiple
of 7, we may assume théat< a; < 1 for everyi = 1,...,r. Moreover, the coefficients are

all strictly positive if and only ify is a local morphism; more generally, we tebe the unique
generization ot such thatp factors through a local morphis#i» » — N. Sete := ht(t’), and
denote byr,, ..., . the basis o¥}, ., so that

(3.6.33) p="bym + -+ beme

for unique rational coefficients, . .., b, such thab < b; < 1 foreveryi =1,...,e.
Denote byZ C T" the topological closure oft’}; for everyu € Z NT", the morphismp
factors through a morphisg, : 0, — Q., and we may therefore consider the subdivision
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of U(u) centered ap,, as in [3.6.16), which fits into a commutative diagram of fans :

(U(u)\Z) x (Spec Q4 )" — (U(u)\Z) x (Spec N)*

l |-

U(u) U'(u) := (Spec ¢, 'N)*.

We complete the familyy, | v € Z), by lettingU’(u) := U(u) and, := 1y, for every
u € T"\ Z. Notice then, that the topological spaces underlyitig) andU’(u) agree for every
u € T’, and for everyu,, uy € 17", the restrictions of),, andi,, :

z/ijil(U(ul) NU(ug)) — Uluy) NU (uz) (1=1,2)

are isomorphic. Furthermore, by construction, each e&in U (u) — T of g factors uniquely
through a morphisn®, : U'(u) — T, hence the family(3, o ¢, | v € T") glues to a well
defined morphism of fang’ : 7" — T. By a direct inspection, it is easily seen thats a
proper rational simplicial subdivision which fulfills cotidn (i) of the claim.

Moreover, the map of topological spaces underlyjhfgactors naturally through a continuous
mapp : T — T', so thaty’ = g o p. The restriction/ := p~ (7" \Z) — T of ¢ is isomorphic
to the restrictiorf” \ Z — T of g, hence :

& =0,y  foreveryt € p™'(T"\ 2).

It follows that, if £ > 1 and7” \ Z contains at least one of the poirits. . ., tx, thend(¢’, s) >
8(g, s). On the other hand;~! (7" \ Z) contains at most — 1 pointsu of 7" such thatj, =
(g, s), and for the remaining points € p~ (7" \ Z) we haved,, < 4(g, s). Since obviously

5(9/7 S) = maX(d(g\/pfl(T’\Z)a 5)7 5(g|/p*127 S))
we see that condition (ii) holds provided we show :
(3.6.34) 0(g(p-12,5) = max(by, ..., b.) - (g, 5).

Hence, let us fix, € Z, and let(v, z) € (U(u)\ Z) x (Spec N)* be any point (seé (3.5.119)); if
r = g, then(v,z) ¢ p~1Z, so it suffices to consider the points of the fofmm) (wherem ¢ N
is the maximal ideal). Moreover, say tHatw) = d; in view of lemm&3.6.30(ii), it suffices to
consider the pointsy, m) such thaht(v) = d — 1. There are exactly such points, namely the
prime idealsy; := (7; o o) 'm, wherery, ..., n. are as in[(3.6.33), and : O, — Op 4 iS
the specialization map.

In order to estimaté,, ., for somev := v;, we look at the transpose of the map

(log g )iomy : Ois = Ofry X L = 2> ((log g)iP (2), ¢%(2)).
Let(py, ..., pa) bethe basis o}, ordered in such away that = ;o0 foreveryi = 1,.. . e.

By a little abuse of notation, we may then den@ig| j # 7) the basis oy, ,, so that the dual
group(O%;,, x Z)" admits the basi$p?” | j # i} U {¢}, whereg is the natural projection onto
Z. Setas welp! := p; o (log g)&P for everyi = 1, ..., d. With this notation, the above transpose
is the group homomorphism given by the rule :

p;—p, forj#i and g bip) -+ bepl
from which we deduce easily thét, .., = b; - ¢, whencel(3.6.34). O

Proposition 3.6.35.Let (T", +, 0) be a fine monoid)/ a finel"-graded monoid. Then :

(i) There exists a finite set of generatérs= {4, ..., v} of I, with the following prop-
erty. For everyy € T', we may findiy, . . ., a; € N such that:

vy =ay + - +apy, and MWZM’?E"'M’?:'
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(i) There exists a subgroufg C I'sP of finite index, such that :
M, = M7} for everyy € H N T and every integet > 0.
(In (i) and(ii) we use the multiplication law of? (1), as in(@.1.1).

Proof. Obviously we may assume th&t maps surjectively ontd, in which cases := I'¢P is
finitely generated, and its imadge into G := G ®z R is a free abelian group of finite rank.
The same holds as well for the imageof log MeP in Mg’ := log M @z R. Letp: G — G’
be the natural projection. According to proposition 3.%iiD2we have :

(3.6.36) Mg = Mg N ME
(notation of (3.3.20)). Lefft” : ME® — G be the induced-linear map, and denote by

fr : Mg — Gg the restriction offg". By proposition 3.3.28(ii), we may find & -rational
subdivisionA of fg(Mg) such that :

(3.6.37) fe'la+b) = fg'(a) + fg'(b)

for everyo € A and everyu, b € o. After choosing a refinement, we may assume thas a
simplicial fan (theoreri 3.6.31). Let € A be any cone; by propositidn 3.3122(i), the monoid
N := 7 N G is finitely generated, and then the same holdsibi s N, by corollary[3.4.P.
However, the latter is just’ := @, ., -1 y M, (lemma2.3.29(iii)). Sef’ := T Np ' N,

Claim 3.6.38 p(I") generates.

Proof of the claim.Clearly thel'-grading of A/ induces a surjectiod/y; — I'y (notation of
(3:3.20)). By proposition 3.3.22(iii), we halg = fr(Mgr) N Gg, henceN C 7N Gg C Iy.
Thus, for everyn € N we may finde € N such that - n € p(I'), henceu - n € p(I”). On the
other hand)V generates, since the latter i§’-rational. The claim follows. O

In view of claim[3.6.38, we may replace by M’, andI" by I/, which allows to assume
that fr(Mg) is a simplicial cone, and(3.6.37) holds for every € fr(Mg). Next, letS :=
{e1,...,e,} C p(T') be a set of generators of the cofig My ); from the discussion in (3.3.15)
we see that, up to replacirtgby a subset, the ray®, - e¢; (withi = 1,...,n) are precisely the
extremal rays offg (Mg), especially, the vectoss, . . ., e, areR-linearly independent. Choose
g1,---,9n € I' such thap(g;) = e; for everyi = 1,...,n. According to corollary 3.413, there
exist finite subsety; ..., Y, C M, such that:

Mg, = M, -3, foreveryi=1,...,n.
Claim3.6.39 (My)g = fz'(0) N MgP.

Proof of the claim.To begin with, we may writef; ' (0) = (f8°)~1(0) N Mg, hencef; ' (0) N
Mg = (f8")7'(0) N My, by (3.6.36). Now, suppose € (f5")~'(0) N Mg; then we may
find an integern > 0 such thatux = m ® 1 for somem € log M. Say thatm € log M,;
then f5°(v) = 0, thereforey is a torsion element af’, and consequentlym < log M, for an
integerb > 0 large enough. We conclude that= (bm) ® (ba)~! € (My)q, as claimed. ¢

On the other hand, sind®, ¢; is aG’-rational polyhedral conef; ' (R, ¢;) is an L-rational

to replacing the elements 6f by some positive rational multiples, we may assume fhéat)
is either0 or ¢;, for everys € S;. In this case, it follows easily that

(3.6.40) fat(e) = fa'(0) + T

where :
T, = {Zts~s\tseR+,Ztszl}

seS; sES;
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is the convex hull of5; (and as usual, the addition of sets[in (3.6.40) refers to diian law
of Z(MEP), seel(3.111)). Next, notice that C Mg, by (3.6.36); thus, we may find an integer
a > 0 such that: - s lies in the image ofog M, for everys € S;. After replacinge; by a - e; and
S; by {a-s|s e S;}, we may then achieve that (3.6140) holds, and furthernSpies in the
image oflog M, therefore in the image afg 1/, . It follows easily that[(3.6.40) still holds with
S;replaced by the sél; ® 1 := {m®1|m € 3;}. Let¥, C log M be afinite set of generators
for the monoidM,; claim[3.6.39 implies thak, is also a set of generators for tlherational
polyhedral congfy, ' (0). Let P € M be the submonoid generated By= S U, U---UY,,
andA C I' the submonoid generated by, . .., g,; clearly thel’-grading of M restricts to a
A-grading onP. Notice thaty; ® 1,. .., ¢, ® 1 are linearly independent iffg, since the same
holds forey, ..., e,; especiallyA ~ N®”,

Claim3.6.41 (i) Theset ® 1 := {s® 1| s € ¥} generates the condx.

(i) P,yp = P, - P, foreverya,b € A.
(iif) There exists a finite set C M suchthatM/ = A - P.

Proof of the claimBy (3.6.40) and the foregoing discussion, we know thatUY;)®1 generate
fa'(Re;), foreveryi = 1,...,n. Since the additivity property (3.6.87) holds for every <
fr(Mg), assertion (i) follows. (ii) is a straightforward consegaoe of the definitions. Next,
from (i) and proposition_3.3.22(iii), we deduce thaly = Py. Thus, letm,,...,m, be a

system of generators for the mondid; it follows that there are integefs, ..., k. > 0, such
thatm;*, ..., mk € P, and therefore the subsét:= {[]/_, m% | 0 < t; < k; for everyi < r}
fulfills the condition of (iii). O

We introduce a partial ordering a#, by declaring that. < b for two elements:, b € G, if
and only ifb — a € A. Now, leta € G be any element; we set

Ga):={ge€CG|g<a}.

The subset(a) inherits a partial ordering fronty, anda is the maximum of the elements of

G(a); moreover, notice that every finite subsetC G/(a) admits a supremusup S € G(a).

Indeed, it suffices to show the assertion for a set of two efeste = {0,, b, }; we may then

writea—b; = 3 7_, kizg; for certaink;; € N, and themsup(by, bo) = a—> 7 min(kij, kgj)- g;.
Let A be as in claini 3.6.41(iii), and denote By C I' the image of4; then

M =M,-Mg  where My := 5 log M,.

beB

For everya € G, let alsoB(a) := B N G(a); invoking several times clail 3.6.41(ii), we get :

- Y

beB(a
U Mb supB(a —b " Pa sup B(a)
beB(a)
C Msup B(a) * PafsupB(a)-

Finally, say that:—sup B(a) = >, t;¢; for certainty, . . ., ¢, € N; applying once more claim
[3.6.41(ii), we conclude that :

M, C My - [ M-
=1
The converse inclusion is clear, and therefore th&’set {g;,...,9,} U {sup B(a) | a € G}
fulfills condition (i) of the proposition.
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(ii): Forh € A®?, sayh = 3" | a;g;, Withintegersuy, ..., a,, welet|h| :==>""  a;|g; € A.
Choose any positive integersuch that :

(3.6.42) bl<a-) g foreveryb e Bn A

and letH C As®P be the subgroup generated by, . . ., ag,.
Claim3.6.43 B(h) = B(kh) for everyh € H and every integet > 0.

Proof of the claim.Let . := """ | a;g; € H, and suppose thate B(kh) for somek > 0;
thereforekh — b € A, henceb € A#P, and we can writé = " | §;¢; for integersy, ... ., 3,
such thatca; — 5; > 0 for everyi = 1,...,n. In this case,[(3.6.42) implies that > 0 for
everyi < n, anda; > « > ; whenevers; > 0. It follows easily thatt’h — b € A for every
integerk’ > 0, whence the claim. O

Using claim$ 3.6.41(ii) and 3.6.43, and arguing as in thedoing, we may compute :
My = Msup B(ah) * Pah—sup B(ah)

= Msup B(h) * Pah—sup B(h)
= Msup B(h) * Pr—sup B(h) - ppt
C Mp.
The converse inclusion is clear, so (ii) holds. O

3.6.44. LetM be an integral monoid, and € log M®P any element. Fot € {1,—1} we
have a natural inclusion

Je i log M — M(e) := log M + eNw

(i.e. M(¢e) is the submonoid ofi/e* generated byl/ andw*®). Let us writew := b~1a for
somea, b € M; then the induced morphisms of affine schemes- Spec Z[j.] have a natural
geometric interpretation. Namely, |t X — Spec Z[M | be the blow up of the ided| C Z[M]
generated by: andb; we haveX = U; U U_;, whereU,, for e = +1, is the largest open
subscheme oK such thatw® € Ox(U.). Then.. is naturally identified with the restriction
U. — Spec Z[M] of the blow upf. More generally, by adding td/ any finite number of
elements ofd/8P, we may construct in a combinatorial fashion, the stand#ngeacharts of a
blow up of an ideal ofZ[ M| generated by finitely many elementsiaf. These considerations
explain the significance of the followirftattening theorem

Theorem 3.6.45.Letj : M — N be an inclusion of fine monoids. Then there exists a finite set
Y C log M#P, and an integek > 0 such that the following holds :

(i) For every mapping : ¥ — {+£1}, the induced inclusion :
M(e) :=log M + > e(0)No = N(c) :=log N + Y _¢(0)No

oeEYN (LD
is a flat morphism of fine monoids.
(i) Suppose thaj is a flat morphism, and let : M — M= be the natural inclusion.
Denote byQ the push-out of the diagramy < M M. A5t (wherek,, is the
k-Frobenius). Then the natural map®* — Q' is flat and saturated.

Proof. (i): (Notice thatlog M, log N and P(¢) := ) . e(0)No may be regarded as sub-
monoids oflog NP, and then the above sum is taken in the mor{citilog NeP), +) defined
as in [3.L1).) SeG := N&/M*, and letN** = __, N5 be thej-grading of N& (re-
mark [3.2.5(iii)); notice that this grading restricts jegradlngs forN and N(e). Let also
= {y € G| N, # @}, and choose a finite generating 4et, ..., .} of I' with the
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properties of proposition_3.6.85(i). According to corofi@.4.3, for every; < r there ex-
ists a finite subseX; := {t;;,...,tn,} C M such thatV,, = N, - X;. Moreover, N, is a
finitely generated monoid, by corollary 3.4.2. &t be a finite system of generators fyg,
and for everyi < r defineX; := {t;,;, —t; |1 < j <l < n;}. We claim that the subset
Y =3y UX|U---UX will do. Indeed, first of all notice that C log M&P. We shall apply
the flatness criterion of rematk 3.2.5(iv). Thus, we havehowsthat, for everyy € T, the
M (e)-moduleN (¢), is a filtered union of cosetgn} + M (¢) (for certainm € N,). Hence, let
r1,22 € N(g),; We may writex; = m; + p; for somem,; € log N andp, € P(¢) (¢ = 1,2);
since{x;} + M(e) C {m;} + M(e), we may then assume that= p, = 0, hencer,, z, € N.
Thus, it suffices to show thaY, is contained in a filtered union of cosets as above. However,
by assumption there exist, ..., a, € Nsuch thay = > 7, a;y; andN, = N5t --- N§7; we
are then easily reduced to the case where +; for some: < r. Thereforez; = o; + b;,
whereo; € ¥; andb; € Ny, for j = 1, 2. Notice thatP(s) contains eithet; — 09, Or o — 04
(or both); in the first occurrence, set:= o5, and otherwise, let := o,. Likewise, say that
Yo =A{v1,...,yn}, sothath; = ", a;,ys for certaina;, € N (j = 1, 2); for everys < n, we
seta’ := min(ays, ass) if ys € P(e), and otherwise we set := max(a;s, ass). One sees easily
thatz,, 2o € {o + > ._, alys} + M(e), whence the contention.

(i): By proposition 3.6.3b(ii), there exists a subgrotipC G of finite index, such that :

7 (™) =7 ()"

for every integern > 0 and everyh € H. Letk := (G : H), and defineV’ as the fibre product
in the cartesian diagram :

N/ L) G
(3.6.46) ul lkc
N ——@

The trivial morphism0,, : M — G (i.e. the unique one that factors througlh}) and the
inclusion satisfy the identity :k; o 0); = 7 o j, hence they determine a well-defined map
p: M — N

Claim3.6.47 ¢ is flat and saturated.

Proof of the claim.For the flatness, we shall apply the criterion of remark ¥i2.5First, ¢ is
injective, sinceu o p = j. Next, notice that the sequence of abelian groups :

0 — M £ (N)ep T G0

is short exact; indeed, this is none else than the pullBack?’ along the morphisrk, of the
short exact sequence

&P

(3.6.48) &= (0— M= L5 N T @ ).

It follows that is flat if and only if, for everyr € 7/(N’), the preimagén’)~!(z) is a filtered
union of cosets of the formin} - ¢(M’). However, the induced map’)~1(g) — 7 1(¢*) is a
bijection for everyy € G, and the flatness gfimplies thatr—!(z*) is a filtered union of cosets,
whence the contention. Notice also thatk, C H; hence, by the same token, we derive that
(7")"1(g™) = (7')~(g)" for everyg € G, thereforep is quasi-saturated, by proposition 3.2.31.
Since we know already thatis integral (theorern_3.2.3), the claim follows. O
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Next, we wish to consider the commutative diagram of monoids
M—1=N
(3.6.49) kl lw
M ——> N’
such that) is the map determined by the pair of morphisfifisky). Let P be the push-out of
the mapg andk,,; the mapsp andvy determine a morphism: P — N'.

Claim3.6.50Q (i) The diagram[(3.6.46} of associated abelian groups, is cartesian.

(i) The diagram of abelian groups (3.6149)s cocartesianife. 72° is an isomorphism).
(iii) There exists a morphism : N/ — P suchthat\o 7 = kp and7 o A\ = k.

Proof of the claim.(i): Suppose that € (N')®? is any element such thét’)sP(x) = 1 and
ueP(x) = 1; we may writex = b~'a for somea, b € N’, and it follows thatt'(a) = «'(b) and
w(a) = u(b), hencen = bin N, since the forgetful functaMnd — Set commutes with fibre
products. Thus: = 1. On the other hand, suppose thd@(b—'a) = z* for somea,b € N
andx € G; therefore,r(b*~1a) = (bx)*, so there exists € N’ such thatu(c) = b*~'a and
7'(c) = bx. Likewise, there existd € N’ with u(d) = b* andr'(d) = b. Consequently,
(7')8*(d~1c) = z andu(d~c) = b~ta. The assertion follows.

(i): Quite generally, letr := (0 - A — B — C' — 0) be a short exact sequence of objects
in an abelian category’, and for every objeck of ¢, letky := k-1x : X — X. Then one
has a natural map of complexeg : F «xkc — E (resp.fg : E — k4 * E) from E to the pull-
back of £ alongk. (resp. from the push-out df alongk 4 to E), and a natural isomorphism
wg : kax E = Exkc inthe categorExt, (C, A) of extensions of” by A (this is the category
whose objects are all short exact sequences of the form0 — A — X — C — 0, and
whose morphisms are the maps of complexes which are thatident4 andC'). These maps
are related by the identities :

(3.6.51) Broagowg =k 1k,x wrpofgoar =k lg,..

We leave to the reader the constructionugf In the case at hand, we obtain a natural isomor-
phismw, : k5Y « & = & x kg, where& is the short exact sequence [0f (3.6.48). An inspection
of the construction shows that the m&p is precisely the isomorphism defined by.

(iii): Let i/ : N — P be the natural map, and set= /o u. By inspecting the constructions,
one checks easily that® is the map defined bys o ars. Then the assertion follows from
(.6.51). O

Let P’ be the push-out of the diagraif <~ A = M*: from claim[3.6.47, lemma_3.2.2(i)
and corollary 3.2.25(iii), we deduce that the natural M&p* — P’ is flat and saturated, hence
P’ is saturated. On the other hand, directly from the defingtie get a cocartesian diagram

P—=qQ
(3.6.52) L l
N — P,

The induced diagranm (3.6.52) of saturated monoids is still cocartesian (remark 2]3.31(v
however, claini_3.6.50(iii) implies easily that** is an isomorphism, therefore the same holds
for (7/)***, and assertion (ii) follows. O

4. COMPLEMENTS OF COMMUTATIVE AND HOMOLOGICAL ALGEBRA

This chapter is a miscellanea of results of commutativebatgéhat shall be needed in the
rest of the treatise.
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4.1. Complexes in an abelian categoryLet <7 be any abelian category. We denote(iy)
the category of (cochain) complexes of objectstfand byD(.«) the derived category of/.
Hence, an object df(.«7) or D(«7) is a pair
K*® = (K°*dY%)
consisting of a system of objedt&™ | n € Z) and morphismsdy. : K™ — K" | n € Z) of
</, called thedifferentialsof the complexi’®, such that
dilodi, =0  foreveryn € Z.
The morphismg* : K* — L*in C(«/) are the systems of morphisiis” : K™ — L" |n € Z)
of <7 such that
" ody =djtt o™ foreveryn € Z.
We will usually omit the subscript when referring to the dréntials of a complex, unless there

is a danger of confusion. Léte 7Z be any integer; theohomology of<* in degreei is the
object of. &7 :

H'K® :=Kerd' /Imd" .
Clearly, for everyi € Z, the ruleK* — H'K* extends to a functor
H :C(o) — .

Also, let] C Z be any (bounded or unbounded) interva, [ is either of the forn¥Z N [a, +oo],
or ZN|] — oo, b] (for somea, b € N), or the intersection of any of these two. We shall denote by

Cl(¢)  (resp.D!(¥))

the full subcategory o€(%) (resp. ofD(%)) whose objects are the complex&$ such that
K* = 0 wheneveri ¢ I (resp. such thati‘K* = 0 wheneveri €¢ Z). For instance, if
I = Z N [a,+oc[, thenC!(¥) (resp. D!(¥)) is also denoted=%(%) (resp. D=%(C)), and
likewise for the case of an upper bounded interval. Moreaverset

C ()= JCw) C(&):=]C"()

nez nel

soC™ (&) (resp.CT(«)) is the full subcategory df(.«7') whose objects are tH®unded above

(resp. bounded belojvcomplexes ofe7. Likewise we define the full subcategoriBs (<)

andD* (<) of D(«/). Recall that, for any interval, the categornyD!(%) is also naturally

equivalent to the localization & (¢’) by the multiplicative set of all morphisms @@ (¢) that

are quasi-isomorphisms, and likewise Bor (27) andD* (&) (verification left to the reader).
For everya € 7Z, the inclusion functor

CCYe) — C(e?)  (resp.C=*(/) — C(A))
admits a right (resp. left) adjoint
=0 C(o) — C=%() (resp.t=*: C(&) — C=*())

called thebrutal truncation functornamely, for any compleX™, we lett=%(K*) be the unique
object ofC=%(.«7) that agrees wittk™® in all degrees> a, and with the same differentials &%,
in this range of degrees (and likewise f6f (K*)).
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4.1.1. Thereis an obvious functor
o — C(o) : A A0

that sends any object of .7 to the complex withA placed in degree zerd.e. such that4[0]*
equalsA if i = 0, and equal$ otherwise (clearly, there is a unique such complex). On thero
hand, theshift operatoris the functor

o) —Cer) : K*— K°[1]
given by the rule :
K*[1]" := K"t = —ditt foreveryn € Z.
Clearly the shift operator is an automorphism@fe7), and one defines the operatsr —

K*[n], for everyn € Z, as then-th power of the shift operator (in the automorphism group of
C(«)). Then, we can combine the two previous operators, to ddimedamplex

Aln] := (A[0])[n] for everyn € 7Z and everyA € Ob(«).

Definition 4.1.2. Let 7 be an abelian category;, * : K* — L* two morphisms irC(<7).
(i) A (chain) homotop§rom ¢*® to +* is the datun(s™ : K™ — L""! | n € Z) of a system
of morphisms ineZ such that
" =Y ="M odr +di os™  foreveryn € Z.

(i) We say thatp® and* as in (i) arechain homotopidf there is a chain homotopy
between them. It is easily seen that this defines an equsaleriation~ on the set
Homc ) (K*, L*), which is preserved by composition of morphismsptf~ ¢* and
a®: K'* — K*, p*: L* — L'* are any two morphisms, thest o a®* ~ 1* o * and
B o p®* ~ [B* o). It follows that there exists a well definédmotopy category

Hot(.«)

whose objects are the same as thosg(ef ), and whose morphisms are the homotopy
classes of morphisms of complexes, and a natural functor

(o) — Hot ()

which is the identity on objects, and the quotient magfom-sets.

(iif) We also say that a morphism : K* — L°* is ahomotopic equivalencd the class of
©* is an isomorphism ifot(<7), i.e. if there exists a morphism*® : L* — K* such
thaty® o p* ~ 1. andp o) ~ 1;.. We say that a complek’® is homotopically
trivial, if the zero endomorphisih- 1. is @ homotopy equivalence.

Remark 4.1.3.(i)) If F : &/ — ' is any additive functors of abelian categories, we get
induced functors

C(F): C(«) = C() Hot(F) : Hot(<7) — Hot(&")
by the rule :
F(K*®)":=F(K") and dp = F(dy) for everyn € Z and everyK*® € Ob(C()).

(i) Furthermore, ifp® ¢* : K* — L* are chain homotopic morphisms @{.<7), then it is
easily seen that, for eveiye Z, the induced morphisms in cohomology

Hi .,Hi’l/J. . HZKO — HzLo
coincide. Hence, the cohomology functidf factors (uniquely) through a functor
H':Hot(o/) — o/  foreveryi € Z.
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Remark 4.1.4. The indexing notation that makes use of superscripts totdghe degrees in a
complex, is known traditionally asohomological degree notatio®ometimes it is more natural
to switch to thehomological degree notatigthat makes use of subscript indexing; namely, one
associates to any cochain compl€®, thechain complex<, given by the rule :

K, =K™" and d, =d": K, > K, for everyn € Z.
Likewise, one seté#l, K, := H "K, for everyn € Z, and calls this object of# thehomology
of K, in degreen.

4.1.5. Adouble complexf < is an object ofC(C(«7)) (and likewise for a morphism of
double complexes). In other words, a double complex is &trip

K.. = (K",dz‘,d;’)
consisting of a systerfix? | p, ¢ € Z) of objects ofe/, and morphismg}?, d?? called respec-
tively thehorizontalandvertical differentials, fitting into a commutative diagram

qu
Kre — ~ portla

dgql ld€+1,q for everyp,q € Z
KPpat d—l;’q>[(p+1,q+1
and such that
B od =0 T odtt=0  foreveryp,q € Z.
4.1.6. There are natural functors
C(C()) = C(C()) : K** — fI(K**) C(C(e)) = C() : K* s (K**)
where :

e Theflip fl(K**) of K** is the double compleX™*® such thatF?? := K% for every
p, q € Z, with differentials deduced from those &f**, in the obvious way

e Thediagonal (K**)% is the complexD*® such thatD? := K*” for everyp € Z and
with differentials

dPthao P DP — DPYL for everyp € Z.

Suppose that all coproducts (resp. all products) are reptalle ine/. Then there are two
other natural functors
Tot® : C(C(«7)) — C(«)  (resp.Tot" : C(C(=7)) — C(=) )
defined as follows. Theotal complexTot®(K**) (resp. Tot" (K**)) is the complexT™ such
that
™= K™ (resp.Tm:= [] E™)
pt+g=n p+q=n
and with differentials™ — T™*! given by the sum (resp. the product) of the morphisms
P+ (=1)P - dP? : KP1 — KPPt @ kP forall p,q € Z such thap + ¢ = n.

We often omit the superscrigt when dealing with the total complex functor; to avoid confu-
sion, we stipulate thahe notationTot shall always refer to the functarot®, so if we need to
use the other total complex functor, we shall denote it eitpliby Tot™. Notice that we have
natural isomorphisms

Tot(K**) = Tot(fI(K**))  (resp.Tot"(K**) = Tot"(fI(K**)) )

given, in each degree € Z, by the direct sum (resp. the direct product) of the morpBism
(—=1)P7 - 1w, for everyp, q € Z such thap + ¢ = n.
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Example 4.1.7.(i) To any two objectd<* andL* of C(<), we may attach the double complex
of abelian group$lom?) (K*, L*), given by the rule :

Hom”#(K*, L*) := Hom,, (K7, LY) for everyp,q € Z
with differentials

d? := Hom, (d", 114) dP4 = (—=1)7" - Hom,, (15 -»,d?) for everyp, q € Z.
Then set
(Hom?, (K*, L*),d} ) := Tot"Hom? (K*, L*).
Letn € Z be any integer; with this notation, a simple inspection shtvat :
e Homc()(K*, L*[n]) = Kerdj .

o Lety® Y*: K* — L*[n| be any two morphisms; then the set of homotopies fgm
to ¢* is naturally identified with the subset

{s* € Hom ™"(K*, L*) | " (s°) = ¥° — ¢°}.
e Consequently, we have a natural identification :
Hompor(or) (K*®, L*[n]) = H"Hom?,(K*, L*®).

(i) The constructions of (i) can be used to end6y/) with a naturaR-category structure,

whose2-cells are given by homotopies of complexes. Indeed, letrite w
st =t
if s*:= (s"|n € N)isahomotopy fromp*® to¢*. Then, if\* : K* — L* is another morphism,
andt® : ¢* = \* another homotopy, we define a composition law by setting
Ot = (s"+1t"|neN)

and it is immediate that®* © ¢* is a homotopyy®* = A°*. Moreover, if5°,+* : L* — P°*

are two other morphisms ii(«7), andu : §* = ~* another homotopy, we have a Godement
composition law by the rule

u'*s'::(B"Hosn—i—u"ozp"|n€N):ﬁ'o<p'z>’y'oz/1'.
The associativity of the laws and® thus defined are easily checked by direct computation.

Now, suppose that® : L* — P* is yet another morphism, and: v = § another homotopy.
A direct calcultation yields the identity

(u®*s*) O (**t*) = (u* V) *(s*Ot°) +¢*
wherec” ;= d% 2 ou™ L o t" — u" o t"*! o d} for everyn € Z, which can be rewritten as
¢ =di?((uot)®)  where(uot)" :=u"""ot" for everyn € Z.
Summing up, we conclude th@t.<7) carries &-category structure, whogecellsy = ¢ (for
any twol-cellsy, v : K* — L*) are the classes
5 € Hom,!(K*, L*)/Im(d}?,)  suchthatl,',(s5) = ¢* — ¢°.

(iii) Moreover, if I is any additive functor as in remark 4.11.3(i), the induceactor C(F')
extends to a pseudo-functor for theategory structures given by (ii); indeedsff: K* = L*
is a homotopy, obviously the systgifis™ | n € N) is a homotopyF's® : F'(K*) = F(L*).

Example 4.1.8.(i)) Suppose thate’, @, ®, V) is a tensor abelian category. Then there exists a
natural functor

—X—-: (&) x C(«) = C(C())
defined as follows. Given two complex&% andL*®, we let

(K* Ky L)P9:= KP @ L1 foreveryp,q € Z
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with differentials
Ayt = db @ 114 APl = 1gr @ d1 for everyp, q € Z.
If all coproducts are representablesdfy we may set as well :
K*® L* := Tot(K* K L*).
The commutativity constraints g7, @) yield natural isomorphism&* X L* = fI(L* X K*),
as well as
(4.1.9) U, K*®L S LK.

Namely, one takes the direct sum of the m&p$)?? - W 14, fOr everyp, g € Z.

(i) Likewise, if P* is another complex of7, the double complexeds* @ L*) X P* and
K* X (L* ® P*) are not isomorphic, but the associativity constraintszofinduce natural
isomorphisms irC(.«) :

Qi p K@ (L*®P) = (K*®L%)® P

Namely, one takes the direct sum of the morphidms; p (for everyi, j, k € Z). With these
natural isomorphismg; (<) is then naturally a tensor abelian category as well.

(iii) In the situation of (i), notice that the natural morpm K* ® L’ — (K*® L*)"*/ induces
morphisms

Ker (di) ® Ker (d}) — Ker (d?éL)
(Ker (di) @ Im (7)) @ (Im (di ') @ Ker (d})) — Im (di2 )
so, the induced maler (d%.) ® Ker (d},) — H*(K* ® L*) factors through a natural pairing :
H'(K*)®@ H'(L*) — H'"(K*® L*)  foreveryi,j € Z.
(iv) Moreover, if P* is a third complex, in view of (ii) we get a commutative diagra

HK* @ (HIL*® H*P*) —= (H'K* ® HIL*) @ H*P* —~ H"i(K* ® L*) @ H*P*
| |s
HK®® Hj"'k(L' ® P*) A Hi-i-j-i—k(Ko ® (L* ® P*)) _o Hi+j+k((Ko ® L*) ® P*)
where« is the associativity constraing, v, 6 and\ are given by the above pairing, ands

deduced fromby, ; .
(v) If o also admits an interndom functor, we may define as well a functor

Hom*® : C()° x C(«) — C(C(H))
following the trace of example 4.1.7(i); namely, we set
HomPI(K*®, L*) == Hom(K P, L7 for everyp,q € Z
with differentials
= SHom(dF 1) dP9 = (1) AHom(1g-»,dl)  foreveryp,q € Z.
If all products are representable.dr, we may then define
Hom®(K*®, L*) := Tot"" A#om**(K*, L*).

(vi) Suppose thaty is both complete and cocomplete, aRtlis any other complex; to ease
notation, set/*® := Zom*(K*, L*) and N*® := P* ® K*; we have natural isomorphisms
d

Home (o) (P°*, H*) = Equal(Hom?, (P*, H*) d:iv Hom', (P*, H*))
h
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where
dy = [ [Homy (P",dy)  and  d, =[] Homu(dp, H™')
nez nez
(see example 4.1.7(i)). However, notice that

Hom{,(P*, H*) HHomﬂ P H Som(K 7P, L7))
nezZ p+qg=n-+a

:H H Hom,, (P", #om (K P, L))

neZ p+q=n+a

=] [] Homu(P"e K™ L)

neZ p+q=n+a
= [[Hom,(  P"® K" L)
q€L n—p=q—a
for everyn, a € Z, whence
d/

Home (o) (P°*, H*) = Equal(Hom?, (N*®, L*) —>Hom£{(N‘ L*))
dh

where
d;, = [ [Homy (%, L%  and  d) := ][ Hom (N?,df)
ne” nez
so finally :

Homc( )(P H') —) Homc(ﬁ)(N',L')

which says thatZom*® is an internaHom functor forC(.7).
(vii) In the situation of (vi), set

Homen(K*, L*) = Ker (d° : H* — H")
and takeP* := Z[0], whereZ is any object of7; it is easily seen that the natural map
Hom, (Z, #omc(r)(K*, L*)) = Home(o) (P, H*) — Home(o)(Z[0] @ K°®, L®)
is an isomorphism : details left to the reader.

4.1.10. Suppose that is a small abelian category, and (€t*, d2.) be any complex of finitely
generated abelian groups; with the notatio of (112.43pktain an objectG*,, d*,) of C(«/T);
on the other hand, ifK*, d3) is any object ofC(.«7), we may also consider the objee} =

(hlen, hiln | n € N) of C(2/T), and sinces/" is an abelian tensor category, we may form the
tensor product

G* Ky, K* .= G*, K Rl

according to example4.1.8(i). Arguing as n"(1.2.43), we #®t this object of (C(/1)) is
isomorphic to an object df(C(.«7)), and after choosing representing objects, we get a functor

C(Z-Mody,) x C(«/) — C(C(«/))  (G*,K*) — G* Ky K*

which is additive in both arguments. Arguing as in remark48gi,iii), we may also define
more generally this functor in casé is an arbitrary abelian category, anduif is cocomplete,
we can extend the functor to the whole@f.-Mod). It is then natural to define

G*®y K®* = TotG* X, K* for everyG* and K* as above
Likewise, we sefi* X; G* := fl(G* Kz K*) andK* ®; G* := Tot(K* Ky G*).
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Remark 4.1.11. (i) With the notation of[(4.1.10), notice the natural isoiploism
K*[1] 5 Z[1) @z K*  foreveryK*® € Ob(C(&))
which explains the sign convention in the definition of thitsiperator in [4.1.1).
(i) Moreover, denote by< (1)* € Ob(Cl=1:%(Z-Mod)) the object such thak (1)~} := Z,

K{(1)° := Z ® Z, and with differentiali—* given by the rule n +— (n, —n) for everyn € Z.
Letey := (0,1) ande; := (1,0) be the canonical basis &f (1)°; we have two morphisms

1 2 ZJ0] - K(1)* fori =0,1
given, in degree zero, by the rulen: — n - ¢; for everyn € N. For any pair of morphisms
e®,*: L* — M*in C(</), and any homotopy® := (s" | n € Z) from ¢* to ¢*, we obtain a
morphism of complexes
o*: K(1)* ®z L* — M*®
as follows. For every, € Z, the morphismv™ : L™ ¢ L™ ¢ L™ — M™ restricts top™ (resp.

Y™, resp. s™) on the first (resp. second, resp. third) summand. Conwerded datum of a
morphismo® : K(1)* ®z L* — M* yields a homotopy from* o (1§ ®7 L*) to 0® o (1§ @z L*).

4.1.12. In the situation of example 4.11.8, suppose nowdhd a category with enough pro-
jective objects. Then, for every bounded above compiéxve may find a quasi-isomorphism
py : Pr — K* with P} a bounded above complex of projective objects, andif— L* is
any morphism of complexes, there exists a commutative amgnC— (.</)

Py . p

| s

KoLLo

where P} is unique up to homotopy, so the rulss — P andy® — P yield a well defined
functor

C (&) — Hot ()
and moreover notice that,¢f* as above is a quasi-isomorphism, thiéhis a homotopic equiv-
alence. Hence, l&k* and L* be any two objects of ~(.«7); we may define two functors

K*®— (resp—@I%) : C(a)— Hot()
by the rules :
M®* — K*® Py, (resp.M — Py, ® L*)

and in light of example 4.11.7(iii), we see that both functiesisform quasi-isomorphisms into
homotopic equivalences, so they induce well defined fusabor the derived categories, and

L
moreover it follows that the notatioR®* @ L* is unambiguous : we may compute this object

L L
by applying the functok* @ — to L*, or by applying the functor ® L*® to K*, and the two
resulting complexes are naturally isomorphi®ife) to the same compleR?. @ P;. The latter

L
assertion also implies th&f* @ L* is independent, up to unique isomorphisnbifk?), of the
choices ofPy, and P;. Hence we have obtained a natural functor

_&—:D () x D () = D ()
called thederived tensor produciWWe also let

L
Tor? (K*,L*) := Hy(K*® L*)  foreveryi € Z.
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L
In cases” = A-Mod for some ringA4, it is customary to denote this functor by® 4 —, and
then one also writeFor; instead ofCor:-Med,

i

Remark 4.1.13.(i) Using the commutativity and associativity constraiiaisthe tensor product
in <7, we deduce — in light of example 4.1..8(i,ii) — natuaakociativity isomorphisms

L L ~ L L .
KL Q") = (K*®L)®Q* inD™ ()
as well axcommutativity isomorphisms
L N L ]
KL - L*®K* in D™ (&)

for any bounded above complex&s, L*, andQ®.

(i) Also, itis easily seen that, ik * € Ob(D=%(«7)) andL® € Ob(D=(.&7)), thenK'@Ié)L‘ €
Ob(D=**(7)), for everya, b € Z.

(iii) Inthe situation of (4.1.12), take/ = A-Mod for some ringA4, and suppose furthermore
thaty : A — B is aring homomorphisn¥{*® a bounded above complex dfmodules, and.*
a complex ofB-modules. Notice thaP* ® 4 L* is naturally a complex oB-modules; also, if
L* — @* is any morphism of complexes @&f-modules, then the induced ma&p ®4 L* —
P* ®4 Q° is B-linear. It follows easily that the derived tensor produeigs a functor

D~ (A-Mod) x D~ (B-Mod) — D~ (B-Mod)  (K*,L*) — K* G, L*

such that, denoting* : D~(B-Mod) — D~ (A-Mod) the “forgetful” functor, we have a
natural isomorphism

L ~ L :
K*®4¢"L* = ¢"(K*®4 L*) in D™ (A-Mod).
4.1.14. LetnowM;, My, N?, N3 be any four objects of (<), and to ease notation, set
M7y := M7 @ My Nip = Ny ® Ny Py = Py, Pl2 = Pan,
as well asP? := Py, andp} := pj},. fori =1,2. There is a commutative diagram@r (<)

©12

Pt @ Ps

P@A 20

M,

Py

wherey?$, is uniquely determined up to homotopy, whence a map

oL ° .L ° ~ ° ° ° 50;2®N1.2 ° o ° L °
(M} ® N7) @ (M3 ® Ny) — (Pf ® Py) @ Nj, Py @ Niy — M7y @ Ny,.

Taking into account example 4.1.8(iii), we deduce a bilirgsgring

Tor? (M?,N?) ® Torf%(M;, N3) — Tor?,

i (M, NT,) for everyi, j € Z.
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Moreover, suppose that’s andN3 are two other bounded above complexes&fby inspect-
ing the constructions, we find a commutative diagram

PP ®¢3s ©1,23
PP @ (Py ® Py) P ® Py Plos
(] (] (] pI®p53 (]
PI®(p3®p3) P1,23
{ ]
M 1,23
q>;3 CD;VI Pq:]u
[ ]
M 12,3
(P1@p3)®P3 .. P23
P12@p3
P120P3 90;2’3
(Pt ® P3)® P3 P, ® Py PPy 3

where M7, == Mp, ® M3, M3y := My @ Mg, M?,5 := M} ® My, and likewise forP? ,,
Pg3, and P, 5 and the morphisnpss, ¢F o3, ©123: 033, 05 23, Plas- Here®y, and @3 are the
associativity constraints.

Therefore, sef} := Tor{” (M}, N?) for everyi € Z andj = 1,2, 3, and also

ik ¥ ° . 1,23 / ° . 12,3 . « . .
"= Torid(Mjk?Njk> = Torf%(Ml,237Nl,23) = Torf{(M1273,N1273)

K3 3

for everyi € Z, with j = 1,2 andk = j + 1; in light of example_4.1]8(iv), we deduce a
commutative diagram in? :

1,23
T ® (TJQ O T) — T ® 7}2-% - Tz'+j+k

(4.1.15) i l

(T} T?) @ T — T2

3 12,3
itj @ Iy — 1T,

i+jtk

whose horizontal arrows are given by the above bilinearnmiand whose left (resp. right)
vertical arrow is the associativity constraint (resp. iduoced by the associativity constraint

P3,).

4.1.16. Koszul complex and regular sequencestf := (f;|i = 1,...,r) be afinite system of
elements of a ringl, and(f) C A the ideal generated by this sequence; we recall the definitio
of theKoszul compleX, (f) (seel28, Ch.llI§1.1]). First, suppose that= 1, sof = (f) fora
single elemeny € A; in this case :

K.(f):=0— AL A0
concentrated in cohomological degréesnd—1. In the general case one lets :
K.(f) = Ko(f1) @4 @4 Ko(f2).
For every complex ofi-modules)M® one sets :
K. (f, M*) := M* ®4 K,(f) K*(f, M*) := Tot*(Hom% (K, (f), M*))

and denotes byd,(f, M*) (resp. H*(f, M*)) the homology ofK,(f, M*) (resp. the cohomol-
ogy of K*(f, M*)). Especially, ifM is any A-module :

Ho(f, M) = M/(£)M  H°(f, M) = Homu(A/(£), M)

(where, as usual, we regaitd as a complex placed in degrep
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4.1.17. Letr > 0 andf be as in[(4.1.16), and s&t:= (fi,..., fr—1). We have a short exact
sequence of complexe®): — A[0] — K.(f,) — A[l] — 0, and after tensoring witlK, (")
we derive a distinguished triangle:

K.(f) = K. (f) > K. (F)[1] S K. (F)[1].

By inspecting the definitions one checks easily that the dagpnmapo is induced by multipli-
cation byf,. There follow exact sequences :

(4.1.18) 0 — Ho(f, H,(f', M)) — H,(f, M) — H°(f,, H,_(f', M)) = 0
for every A-moduleM and for everyp € N, whence the following :

Lemma 4.1.19.With the notation of{4.1.17) the following conditions are equivalent :

(@) H;(f, M) = 0 for everyi > 0.
(b) The scalar multiplication byf, is a bijection onH,(f’, M) for everyi > 0, and is an
injection onM /(f") M. O

Definition 4.1.20. The sequencé is said to becompletely secaran the A-module M, if we
haveH,(f, M) = 0 for every: > 0.

The interest of definition 4.1.20 is due to its relation to tiation of regular sequencef
elements ofd (seee.g.[15, Ch.X,§9, n.6]). Namely, we have the following criterion :

Proposition 4.1.21.With the notation 0i{4.1.16) the following conditions are equivalent :

(a) The sequenckis M-regular.
(b) For every;j < r, the sequencefi, .. ., f;) is completely secant ok

Proof. Lemma4.1.19 shows that (b) implies (a). Conversely, supiat (a) holds; we show
that (b) holds, by induction on If » = 0, there is nothing to prove. Assume that the assertion
is already known for alli < r. Sincef is M-regular by assumption, the same holds for the
subsequenc¥ := (fi,..., f,—1), andf, is regular on)M /(f')M. HenceH,(f’, M) = 0 for
everyp > 0, by inductive assumption. Then lemina 4.1.19 shows thaf, M) = 0 for every

p > 0, as claimed. O

Notice that any permutation of a completely secant sequenagain completely secant,
whereas a permutation of a regular sequence is not alwayaregd\s an application of the
foregoing, we point out the following :

Corollary 4.1.22. If a sequence€ f, g) of elements ofd is M-regular, and M is f-adically
separated, thefy, f) is M-regular.

Proof. According to proposition 4.1.21, we only need to show thatsbquencé¢g) is com-
pletely secanti.e. that g is regular on)M/. Hence, suppose thain = 0 for somem € M; it
suffices to show that: € "M for everyn € N. We argue by induction on. By assump-
tion g is regular onM/ f M, hencem € fM, which shows the claim fon = 1. Letn > 1,
and suppose we already know that= f"~1m’ for somem’ € M. Hence0 = gf™" 'm/, so
gm’ = 0 and the foregoing case shows that= fm” for somem” € M, thusm = f"m”, as
required. OJ

4.1.23. In the situation of (4.1.116), suppose that (¢; | i = 1,...,r) is another sequence
of elements of4; we setfg := (f.g; | i = 1,...,r) and define a map of complexes

pe - Ko(fg) — K, (f)
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as follows. First, suppose that= 1; thenf = (f), g = (g) and the sought magp, is the
commutative diagram :

For the general case we let :
Pg = Py D QA Py,
Especially, for everyn, n > 0 we have mapg;. : K,(f"™™) — K,(f"), whence maps
P K™ M) — K (£, M)
and clearlyp?,., = ¢, o g, for everym,p,q > 0.

4.1.24. LetA be any ring,/ C A a finitely generated ideaf, := (f; | i = 1,...,r) afinite
system of generators fdt Moreover, for everyr > 0 let 1™ C A denote the ideal generated
by f" .= (f|i=1,...,r). Forallm > n > 0 we deduce natural commutative diagrams of
complexes :

K (f™) — A/I1(™]0]

Prm—n l \L Tmn

K (f") ——= A/I™]0]
(notation of [4.1.23)) where,,, is the natural surjection, whence a compatible system obmap
(4.1.25) Homp(a-nod)y(A/1™[0], C*) — Hompamod)(Ke(f"), C*).

for everyn > 0 and every complex’® in D*(A-Mod). Especially, let us také€" of the form
M|[—i], for someA-moduleM and integei € N; sinceK,(f") is a complex of freel-modules,
(4.1.25) translates as a direct system of maps :

(4.1.26) Ext!,(A/I™ M) — H'(f", M)  foralln € Nand everyi € N.

Notice that/™"*! c I™ c I" for everyn > 0, hence the colimit of the systemn (4.11.26) is
equivalent to a natural map :

(4.1.27) colim ExtYy(A/I", M) — colim H'(f", M)  for everyi € N.
ne

neN
Lemma 4.1.28.With the notation 0f4.1.24) the following conditions are equivalent :
(a) The mapd.1.27)is an isomorphism for every-module) and everyi € N.
(b) COhII\In Hi(f", J) = 0 for everyi > 0 and every injectivel-moduleJ.
ne

(c) The inverse systeiif/,K.(f") | n € N) is essentially zero whenevér> 0, i.e. for
everyp € N there existg > p such that;K,(f) — H;K,(f?) is the zero map.

Proof. (a)=- (b) is obvious. Next, it/ is an injectiveA-module, we have natural isomorphisms
(4.1.29) H'(f",J) ~ Hom(H;K,(f"),J)  foralln € N.

which easily implies that (¢} (b).

(b)=-(c) : Indeed, for anyp € N let us choose an injectiop : H;K,(f") — J into an
injective A-moduleJ. By (4.1.29) we can regarg as an element of/*(f", J); by (b) the
image ofy in Hom 4 ( H;K,(f?), J) must vanish ify > p is large enough. This can happen only
if H;K.(f9) - H;K.(f?) is the zero map.
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(b)=(a) : LetM — J* be an injective resolution of th&-module)M . The double complex

COhfwn Hom?, (K, (f"), J*) determines two spectral sequences :
ne

EP .= colim Hom AK,(F"), H1J®) = colim Ext? (K, (f*), M)
FP? .= colim H?(f", J?) ~ cglleilr\]n Hom 4 (H,K,(f"), J7) = colim Ext? (K, (f"), M).

neN neN
Clearly E?? = 0 whenever > 0, and (b) says that!? = 0 for p > 0. Hence these two spectral
sequences degenerate and we deduce natural isomorphisms :

colim Extd (A/I™ M) ~ Fy? 5 B ~ colim HI(f", M).
ne

neN

By inspection, one sees easily that these isomorphismbesame as the maps (4.1.27) 1

Lemma 4.1.30.In the situation of(4.1.24) suppose that the following holds. For every finitely
presented quotien® of A, and every € B, there exist® € N such that

Anng(b?) = Anng(bP) for everyq > p.
Then the inverse systeH; K, (f") | n € N) is essentially zero for every> 0.

Proof. We shall argue by induction an If » = 1, thenf = (f) for a single elemenf € A. In
this case, our assumption ensures that there gxist8! such thatAnn 4 (f9) = Ann4(f?) for
everyq > p. It follows easily thatH: (¢ ) : HiK.(f*™*) — HK,(f") is the zero map for
everyk > 0 (notation of [4.1.283)), whence the claim.

Next, suppose that> 1 and that the claim is known for all sequences of less thelements.
Setg := (f1,..., f,—1) and f := f,. Specializing[(4.1.18) to our current situation, we derive
short exact sequences :

0 — Ho(f", HyK.(g")) = HK.(E") = H(f", H,1Ka(g")) = 0

for everyp > 0 andn > 0; for a fixedp, this is an inverse system of exact sequences, where
the transition maps on the rightmost term are giverfty”. By induction, the inverse system
(H;K.(g") | n € N) is essentially zero for > 0, so we deduce already that the inverse system
(H;K.(f") | n € N) is essentially zero for ail > 1. To conclude, we are thus reduced to show-
ing that the inverse systefl;, := H°(f", HiK.(g")) | n € N) is essentially zero. However
A, = HK.(g") = A/(g7,...,g9" ) is afinitely presented quotient df for any fixedn € N,
hence the foregoing case= 1 shows that the inverse systéf,,,, := Anny, (f™)|m € N)is
essentially zero. Let» > n be chosen so that,,, — T,., is the zero map; then the composition
T = T — Tonn — Ton = T,, 1S zero as well. O

Remark 4.1.31.Notice that the condition of lemma4.7]130 is verified wheis noetherian.

4.1.32. Minimal resolutions.Let A be a local ringf its residue field// an A-module of finite
type, and :

d d d
B LSS LS M

a resolution ofM/ by free A-modules. We say thdt.,, d., <) is afinite-free resolutiorif each
L; has finite rank. We say thaL,, d,, <) is aminimal free resolutiorof M if it is a finite-free
resolution, and moreover the induced maps, L, — k ®4 Imd; are isomorphisms for all
1 € N (where we letl, := ). One verifies easily that il is a coherent ring, then every finitely
presentedd-module admits a minimal resolution.
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4.1.33. LetL := (L4, d,,c) andL’ := (L,,d,, ") be two free resolutions af/. A morphism
of resolutionsL — L' is a map of complexe®, : (L.,d,) — (L,,d,) that extends to a
commutative diagram

Lo—8>M

]

L= M
Lemma 4.1.34.Let L := (L,,d., <) be a minimal free resolution of ad-moduleM of finite
type,L' := (L,,d,, ") any other finite-free resolutiorg, : L' — L a morphism of resolutions.
Then p, is an epimorphism (in the category of complexesdaiodules),Ker ¢, is a null
homotopic complex of freé-modules, and there is an isomorphism of complexes :

L., 5 L, ® Ker op,.

Proof. Suppose first that = L. We setdy := ¢, L_; := M, ¢_, := 1), and we show
by induction onn that ¢, is an isomorphism. Indeed, this holds for= —1 by definition.
Suppose that > 0 and that the assertion is known for glk n; by a little diagram chasing
(or the five lemma) we deduce that_; induces an automorphisim d,, = Imd,,, therefore
On @4 ly : k®y L, = k®4 L, is an automorphism (by minimality df), so the same holds
for ¢,, (e.g.by looking at the determinant qf,,).

For the general case, by standard arguments we constructgisio of resolutionsi), :
L — L'. By the foregoing casey, o 1, is an automorphism of, so ¢, is necessarily an
epimorphism, and.’ decomposes as claimed. Finally, it is also clear #atp, is an acyclic
bounded above complex of freemodules, hence it is null homotopic. O

Remark 4.1.35. (i) Suppose thatl is a coherent local ring, and &t := (L,, d,,s) andL’' :=
(L,,d,,<") be two minimal resolutions of the finitely presentéeémodule)!. It follows easily
from lemmd4.1.34 that and L’ are isomorphic as resolutions bf.

(i) Moreover, any two isomorphismé — L' are homotopic, hence the ruléZ — L,
extends to a functor

A-Mod,, — Hot(A-Mod)

from the category of finitely presentettmodules to the homotopy category of complexes of
A-modules.

(iii) The sequence ofi-modules(Syz4, M := Imd, | i > 0) is determined uniquely by/
(up to non-unique isomorphism). The graded modiyte’, M/ is sometimes called theyzygyof
the module)M. Moreover, ifL” is any other finite free resolution @f/, then we can choose a
morphism of resolutiong” — L, which will be a split epimorphism by lemnmia4.1134, and the
submodulei, (L)) C L, decomposes as a direct sumset:%, M and a freed-module of finite
rank.

Lemma4.1.36.Let A — B afaithfully flat homomorphism of coherent local ringg,a finitely
presentedd-module. Then there exists an isomorphism of gradledodules :

B ®4 SyzyM — Syz%(B @4 M).
Proof. Left to the reader. O

Proposition 4.1.37.Let A — B be a flat and essentially finitely presented local ring homemo
phism of local rings)M an A-flat finitely presented@-module. Then th&-moduleM admits a
minimal free resolution

ds do dy

Yo

L, Ly

Lo
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Moreover,Y] is universally A-exact i.e. for every A-moduleN, the compleX:, ®4 N is still
exact.

Proof. To start out, let us notice :

Claim4.1.38 In order to prove the proposition, it suffices to show that gieery A-flat finitely
presented3-module N, and everyB-linear surjective mag : L — N, from a freeB-module
L of finite rank,Ker d is also anA-flat finitely presented3-module.

Proof of the claim.Indeed, in that case, we can build inductively a minimal hetson ¥, of
M, such thatV; := Ker(d; : L; — L;_1) is an A-flat finitely presented3-module for every

1 € N. Namely, suppose that a complEY) with these properties has already been constructed,
up to degree, and letkg be the residue field oB3; by Nakayama’s lemma, we may find a
surjectiond; 1 : L;11 — N;, whereL,, is a freeB-module of ranklim, , (N; ®p ). Under
the assumption of the claim, the resulting compX ™" : (Lis1 — Li — Li_y — -+ — M)
fulfills the sought conditions, up to degrée- 1.

It is easily seen that the compl&k thus obtained shall be universalliyexact. O

Let us write A as the union of the filtered family4, | A € A) of its noetherian subalgebras.
Say thatB = C,, for some finitely presented-algebraC, and a prime ideap C C, and
M = N, for some finitely presented-module N. We may find\ € A, a finitely generated
Ay-algebraC'y and aC,-module N, such thatC = C) ®4, A, andN = N, ®4, A, for every
> AletC, = A, ®a, CyandN, := A, ®4, N,; also, denote by, the preimage of in
Cy, and setB, := (C)p,, M, := (N,)p,- According to[32, Ch.IV, Cor.11.2.6.1(ii)], we may
assume thab/, is a flat A,-module, for everyu > \. Moreover, suppose thdt: L — M
is a B-linear surjection from a fre&-module L of rankr; then we may fing: € A such that
d descends to #&,-linear surjectiond,, : L, — M, from a free3,-moduleL,, of rankr. It
follows easily thatk,, := Kerd, is a flatA,-module, for every: > X, and the induced map
K, ®p, B — K := Kerd is a surjection, whose kernel is a quotientTafi* (A, M,),; the
latter vanishes, sinc&/, is A,-flat. Hence K is A-flat; furthermore K, is clearly a finitely
generated3,-module, hencéy is a finitely presented-module. Then the proposition follows
from claim[4.1.38. O

4.2. Simplicial objects. In this section, we introduce the simplicial formalism, ainprovides
the language for the homotopical algebra of sedfioh 4.5.

Definition 4.2.1. Let ¥ be any category, and < N any integer.
() We denote byA thesimplicial categorywhose objects are the finite ordered sets :

n]:={0<1<---<n} for everyn € N

and whose morphisms are the non-decreasing functions.

(i) Aisafull subcategory of thaugmented simplicial category", whose set of objects is
Ob(A)U{@}, with Homa~ (&, [n]) consisting of the uniqgue mapping of sets— [n],
for everyn € N. Itis convenient to set-1] := &.

(i) The augmentedk-truncated simplicial category,, is the full subcategory of\"
whose objects are the element$0f(A") of cardinality< k+ 1. Thek-truncated sim-
plicial categoryis the full subcategorp,. of A whose set of objects 8b(A7)\ {@}.

(iv) A simplicial object(resp. araugmented simplicial objectesp. ak-truncated simpli-
cial object resp. &-truncated augmented simplicial objgof % is a functorA® — ¢
(resp.(AM)° — €, resp. Ay — €, resp.(A7)°). The morphisms of simplicial objects
of ¢ are just the natural transformations (and likewise for thadated or augmented
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variants). Clearly, these objects form a category, and weahesnotation

s.¢ = Fun(A’, %) 5.¢ := Fun((A")°, %)
s;.€ = Fun(A}, %) 5,.¢ == Fun((Ap)%,%).

(v) Dually, acosimplicial objectF™® of ¥ is a functorF’ : A — %, or — which is the
same — a simplicial object ia°. Likewise one defines the truncated or augmented
cosimplicial variants, and we set

c.% = Fun(A, %) ¢.%¢ = Fun(A", %)

. € = Fun(A, €) € = Fun(A},%).
4.2.2. Notice thdront-to-backinvolution :
(4.2.3) A=A (a:[n] = [m])— (o’ : [n] — [m]) foreveryn,m € N
defined as the endofunctor which induces the identit9dA ), and such that :

a’(i) :=m —a(n —1) for everya € Homa ([n], [m]) and everyi € [n].
Another construction of interest is the endofunctor
v A= A

given by the rule In] — [n+ 1] for everyn € N, and which takes any morphism: [n] — [m]
of A, to the morphismy(«) : [n + 1] — [m + 1] which is the unique extension afsuch that
v(a)(n + 1) := m + 1. Notice thaty restricts to functorsy, : A,y — Ay for everyk € N.

e Given a simplicial object’ of ", one gets a cosimplicial objeét’ of ¢, by the (obvious)
rule : (F°)[n] := Fn| for everyn € N, andF°(«) := F(«)° for every morphismy in A.

e Moreover, by composing a simplicial (resp. cosimplicidbjext F' (resp. G) with the
involution (4.2.3), one obtains a simplicial (resp. coslicipl) object FV (resp.G"). Likewise,
given a morphismy : F; — F,, the Godement product’ := « * (4£.2.3) is a morphism
FY — Fy.

e For F' andG as above, we may also consider the simplicial (resp. cosiaplobject
~vF := F o ~° (resp.7G := G o 7), and this definition extends again to morphisms, by taking
Godement products. The object’ (resp. () is called thepath spaceof F' (resp. ofG). If
Fis a(k + 1)-truncated simplicial object, then we can consiggF := F o ~¢, which is a
k-truncated simplicial object (and likewise for truncat@sienplicial objects).

4.2.4. There is an obvious fully faithful functor :
C —sC€ : A—sA (resp. € = 5.6 : A spA)

that assigns to each objedtof & the constant simplicial object. A (resp.constant truncated
simplicial objects;.A) such thats.A[n] := A for everyn € N (resp. for everyn < k), and
s.A(a) := 14 for every morphisn of A (resp. ofA). Of course, we have as well augmented
variantss. A ands;,. A, and cosimplicial versions A, ¢;,. A, €. A, ¢;. A.

Moreover, we have, for every integerc N, the k-truncation functor

s.truncy, : 8. — $,..€ (resp. s.truncy : 5.€ — 5,.6 )

that assigns to any simplicial (resp. augmented simplicbject ' : A° — % (resp. F' :
(AM)° — %) its composition with the inclusion functak) — A° (resp. (A7)° — (A")?).
Again, we have as well the corresponding cosimplicial weTst.trunc, andec.trunc. Also,
for everyn € N, we have the functor

o[n|:s.o — o A — Aln).
Lastly, any functokp : Z — % induces functors
5.0:8%8 — s.€C Spp S B — 5.6 : Fr— ol



222 OFER GABBER AND LORENZO RAMERO

and there are of course augmented variantsandsy,., as well as the corresponding cosim-
plicial versions.

4.2.5. Forgivem € N, and everyi =0,...,n, let
gi:[n—1] = [n] (resp.n; : [n+ 1] — [n])

be the unique injective map iA" whose image misses(resp. the unigue surjective map in
A with two elements mapping t). The morphisms; (resp. n;) are calledface mapgresp.
degeneracy mapsBYy direct inspection, one checks that they fulfill the itiees :

€j0€ =€ 01 if i<y
mjom=mnionw i<y
giomj—q i<y
njoeg; =4 1 ifi=jori=j5+1
gimrom; ifi>j+1.
Example 4.2.6.(i) For instance, notice the identities :
e/ =¢ny n'=mn.;  foreveryn € Nandeveryi=0,...,n.
(i) Foreveryr, s € N, we set
€0 =€p0-0&y: [r] = [r+s].
This is the injective mapping whose imag€is.. . ., r + s}; therefore, its front-to-back dual
€00 = Epps O - Oy 1 [r] = [+ 4]
is just the natural inclusion map. We shall also use the rootat
€10 [=1] = [s] for everys € N
for the unique morphisnw — [s] in A”; of course, we have™| , = ¢*, , for everys € N.

4.2.7. ltis easily seen that every morphiam [n] — [m] in A admits a unique factorization
a = ¢ o7, where the monomorphismis uniquely a composition of faces :

£=2¢;,0---0¢, with0 <i, <---<i; <m
and the epimorphism is uniquely a composition of degeneracy maps :
n="1j0---0n; witho <j; <--- <3 <m

(see[75, Lemma 8.1.2]). It follows that, to give a simplicdject A[e] of a category?, it
suffices to give a sequence of objectsn] | n € N) of ¢, together wittface operators

0; = Algi] : Aln] — A[n — 1] i=0,...,n
for every integern > 0 anddegeneracy operators

o; = Alni] : A[n] — Aln + 1] i=0,...,n
for everyn € N, satisfying the followingsimplicial identities

0;00; =0j_100; ifi<jy

0;00; =044100; |fZ§]
(4.2.8) 0100, ifi<j
dioo; =4 1 ifi=jori=j+1

Under this correspondence we haye= A(s;) ando; = A(n;) ([75, Prop.8.1.3]). Likewise, a
k-truncated simplicial object of is the same as the datum of a sequentie| | n =0,..., k)
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of objects of#’, and of a system of face and degeneracy operators restricted sequence of
objects, and fulfilling the same identitiés (412.8).

Dually, a cosimplicial objecti[e] of ¥ is the same as the datum of a sequente] | n € N)
of objects of¢’, together withcoface operators

d': Aln — 1] — A[n] i=0,...,n
andcodegeneracy operators
o' Aln+1] — Aln) i=0,...,n
which satisfy thecosimplicial identities
Fod =0 o ! ifi<j

oloo' =000t ifi<j
(4.2.9) o ool ifi<y
dod =11 ifi—jori—j+1
d ool ifi>jt1

and likewise fork-truncated cosimplicial objects.

4.2.10. An augmented simplicial object of a categ@fycan be viewed as the datum of a
simplicial objectA[e] of ¥, together with an objeci[—1] € Ob(%), and a morphisns :
A[0] — A[—1], which is anaugmentationi.e. such that :

gody=co0d.
Dually, an augmented cosimplicial object ©f can be viewed as a cosimplicial objedfs],

together with a morphism : A[—1] — A[0] in €, such that)® is an augmentation fal°|e].
We say that) is anaugmentatiorior Ale].

Remark 4.2.11.Let A be a simplicial object of the catego®y.

(i) Foreveryn € Nwe haveyA[n] := A[n + 1] (notation of (4.2.2)), and the face operators
vAlei] : vAn + 1] — ~vA[n] fori < n + 1 (resp. degeneracy operatord[n;] : vA[n] —
vA[n+ 1] fori < n)of yAared; : A[n+ 2] — Aln+ 1] (resp.o; : A[n+ 1] — A[n+2]); i.e.
we dropd,,.» ando,, ;1. Likewise for the truncated variants.

(i) The discarded face8, ., and degeneracies,,; can be used to produce natural mor-
phisms

5. A[0] 245 v A 24 A
Namely, we set
faln] :==0,0---004 galn] :== O0niq for everyn € N.

For everyk € N, the same operation on an objett Ob(s;.1.%") yields natural morphisms

s.trunci A f—A> YA A, s truncgA.

(iii) Since there is a unique morphism , : [n] — [0] in A for everyn € N, it is easily seen
that the systemiA[o,, o] : A[0] — A[n]) defines a natural morphism

s.Al0] — A ins.%.

(iv) Likewise, suppose : A[0] — A[—1] is an augmentation fad; since there is exactly
one morphism™{{ : @ — [n]in A" for everyn € N, we see that the systefr[e"{(] | n € N)
defines a natural morphism

A — s.A[—1] ins.%.
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Definition 4.2.12. Let ¥ be any category. Denote by
et A7 — [1]/A° i=0,1

the functor that assigns to ealeh) € Ob(A) the unique morphisrin| — [1] of A whose image
is {i}. Letalsot : [1]/A° — A° be the target functor (see_(1.1112)). Létand B be two
simplicial objects of¢’, andf, g : A — B two morphisms.

(i) A homotopyfrom f to g is the datum of a natural transformation
u:Aot= Bot

such that x eg = f andu x e; = g.

(i) If Afe]is an augmented simplicial object®f with augmentation given by a morphism
p: A — s.A[—1]in s.%, then we say thatl is homotopically trivial if there exists
a morphismy : s.A[-1] — A and homotopies andv, respectively froml, 4;_; to
p o1, and froml, to e o .

(iif) Dually, if C'andD are cosimplicial objects &f’, andp, ¢ : C' — D any two morphisms
in ¢.¢, then ahomotopyfrom p to ¢ is a homotopy fromp° to ¢° in s.%°. Likewise we
define homotopically trivial cosimplicial objects.

Remark 4.2.13.(i) In the situation of definition 4.2.12, suppose thatA’ — Aandq : B —
B’ are any two morphisms in%’; then the natural transformation

(gxt)ouo(pxt): Aot= B ot
is a homotopy frony o p to g o g. Moreover, ifF : € — & is any functor, then
Fxu:FAxt= FBxt

is a homotopy from¥' f to Fg.

(i) However, unlike the case for chain homotopies, simplibomotopies cannot be com-
posed in this generality; hence, the simplicial catego#y cannot be made into Zcategory,
by taking the homotopies &scells.

(i) In the same vein, for a general categafy the relation “there exists a homotopy from
f to g” on morphisms ofs.%” is neither symmetric nor transitive (though it will followdm
theoreni4.2.38 that this is an equivalence relation, in gageabelian).

4.2.14. Notice that there are exactly+ 1 morphismsp : [n] — [1] for every[n] € Ob(A),
and they can be labeled by the cardinalityof (0) : for everyn € N and everyt < n + 1, we
shall writeg,, ;. : [n] — [1] for the unique morphism such thag}g(o) has cardinalityc. With
this notation, notice that

_Joenar ik ek ik
Pk © & = { On_1k—1 fi<k and Pk O T = Oni1e+1 11 <k

Hence, a homotopy from f to g as in definitio 4.2.12, is the same as a system of morphisms
Un i - Aln] — Bln] for everyn € Nand everyk <n + 1
such that, ,.1 = f[n| andu, o = g[n] for everyn € N, and the diagrams

Un, k Un, k

Aln| Bln] Aln] Bln]
Aln —1] - Bln —1] Aln+ 1] - Bln + 1]

commute for every, € N and everyk < n + 1, wherea :=0if : > k, anda := 1if i < k.
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4.2.15. Abisimplicial objectin a categorys is an object of the categowry(s.%’). The latter
can also be regarded as the category of all funatdrs A° — %; it follows that a bisimplicial
object of ¢ is the same as a systefH[p, ¢] | (p,q) € N x N) of objects of#, together with
morphisms

Ala, 8] : Alp, q] = Alp', ] for all morphismsx : [p'] — [pl], 8: [¢'] — [q] of A

compatible with compositions of morphisms 4xy in the obvious way. More generally, we
may define inductively the category afsimplicial objectss™..<7, for everyn € N, by letting
Y./ == o/, ands" .7 := s.(s""'.&7), for everyn > 0. Thediagonal functor

A—AxXA [n] — ([n], [n]) a— (o, a) for all n € N and all morphisms: of A

induces a functor
Ny s2C — 5.6 A AR,
Especially, we havel®[n] := A[n, n] for everyn € N, and the face operatoés on A% [n] are

of the form Ale;, ¢,], for everyi = 0, ..., n (and likewise for the degeneracies). Also, ftie
functor

AXxA—AxXA ([m], [n]) — ([n], [m])
induces an endofunctor
fl: %ot — s*.of
in the obvious way. Furthermore, the endofunctors

AxATE2 A A A XA
induce functors
st P s o
that admit descriptions as in remark 4.2.11(i). Correspayig, we get natural morphisms
gfj) cyA— A fori=1,2andeveryAd € Ob(s*.&)
as in remark4.2.11(ii).

Remark 4.2.16.(i) Let ¥ be a category whose finite coproducts are representablealdaet
f.Set be the category of finite sets. To every objSabf s.f.Set and everyX € Ob(s.%), we
attach a bisimplicial object X X of ¢ as follows. For every,, m € N, we letS X X[n, m]
be the coproduct of finitely many copies &fm], indexed by the elements 6fn|; hence, for
everya € S[n] we have a natural morphisip : X|[m] — S X X[n,m]. If ¢ : [n] — [n/] and
Y i [m] — [m/] are any two morphismsiA°, we letSK X ¢, ¥] : SKX [n, m] — SKX[n', m/]
be the unique morphism such thaK X [p, 1] o i, = igj,)a) © X [¢] for everya € S[n]. Clearly,
this rules extends to a well defined functor

s.f.Set x s.€ — s> € (S, X)— SKX.

Likewise, we defineX X S := fI(S X X) (notation of [4.2.15)). If all coproducts &f are
representable, we may even extend the above constructabitcary simplicial sets.

(i) Inthe same vein, let7 be any abelian category, and any object ofs.Z-Mod;, (nota-
tion of (1.2.43)). For anyd € Ob(s.«), we may define a bisimplicial objedt/ X; A of <7,
by the rule :[n, m] — M|[n] ®z A[n| for everyn,m € N and[p, | — M|p] @z A[y] for all
morphismsp, ¢ of A (where these mixed tensor products are as defindd in (1)2.@Barly
these rules yield a well defined functor

s.Z-Mody, x 5.9/ — s*.of (M, A) — M Xy A.
Likewise, we setd Xz M := fl(M Xz A).
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(iii) Furthermore, if(¢’, ®) is any tensor category, and, Y any two simplicial objects of
%, we may define a bisimplicial objeéf X Y, by the same rule as in (ii). This yields a functor
5.6 x 5.6 —s2¢  (X,)Y)— XXY.

In this situation (resp. in the situation of (i), resp. oj)iwe shall let also
XY =(XKRY)* (resp.S® X := (SKX)%, resp. M @z A := (M Ky A)*)
which we shall call theensor producbf X andY (resp. ofS and X, resp. of M and A).
Notice the natural identifications
SKAS (S®sZ)Xz A foreveryS € Ob(s.f.Set) and everyd € Ob(s.«).
Likewise, if U is any unit object fof%’, ®), we get natural identifications
SHX S (SesU)KX for everyS € Ob(s.f.Set) and everyX € Ob(s.%)

via the isomorphismsy : X = U ® X provided by proposition 1.2.6.

(iv) Notice also that, iff,¢g : S — T are any two morphisms of simplicial finite sets, then
—in light of remark’4.2.13(i) — any homotopyfrom f to g induces a homotopy ® X from
f® X tog® X. Moreover, for every: € N, let A, be the simplicial finite set given by the rule

Ag[n] := Homa([n], [k]) and Ay[e] := Homa (e, [k])
for everyn € N and every morphisnp in A. Especially,A, is the constant simplicial set
associated to the set with one element, and theredgyyes X = X for every X € Ob(%).
Also, the rules :[n] — (e;[n] : [n] — [1]) (for i = 0,1; heree; is the functor introduced in
definition[4.2.1P) define morphisms
€Z<ZAQ—>A1 ZZO,l
and we notice that the datum of a homotapiyom f to ¢ as in definition 4.2.12(i), is the same
as that of a morphism
u: A ®A—B suchthatio (e; ® A) = fanduo (ef ® A) = g.

Indeed, givernu, we construct: as follows. For every: € N and everyp € A, [n], let u[n]
be the unique morphism such tha@t:] o i, = u,. The naturality ofu easily implies that
this rule amounts to a morphistas sought. Conversely, givén we can construct a natural
transformation., by reversing the foregoing rule.

Remark 4.2.17.(i) Let (¢, ®) be a tensor category with interridbm functor.7Zom, and unit
objectU. To every two objects(, Y of s.4", we may attach an object

Hom(X,Y) of c.s.¢

as follows. For every,, m € N, we let#om(X,Y)[n, m] := #om(X|[n],Y|m]), and for ev-
ery two morphismsp, ¢ of A, we definesZom(X,Y)[p, ¥| := Hom(X|[yp|,Y[]). Since this
is a mixed simplicial-cosimplicial object, we cannot extra diagonal object from it; however,
if € is complete, we can at least define

Homs.z(X,Y) = BEqual([[,cy #om(X,Y)[n,n] T>H ][] 220M(X, Y ) [m, n])

where the second product ranges over the morph@snfs& and where

= [[ #om(X[e.Y[n])  and = ] Hom(Xm),Yg]).

pi[n]—[m] @i[n]—[m]
Arguing as in example 4.1.8(vi), it is easily seen that theeenatural isomorphisms
Homy (Z, #om,(X,Y)) = Hom, (5.2 @ X,Y)
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for everyZ € Ob(%) and everyX,Y € Ob(s.%).
(i) Suppose additionally, that all finite coproducts@fare representable. For evely e
Ob(%), and everyX € Ob(s.%¥’), consider the simplicial set

Homg (Z, X)

such thatHom¢ (7, X)[n| := Homy(Z, X[n]) for everyn € N, with face and degeneracies
deduced from those of, in the obvious way. For any € N, let alsoA,. be the simplicial set
defined in remark4.2.16(iv); we have natural isomorphisms

Homy (Z, #om, (A, @ s.U, X)) = Hom, (A ® 5.7, X)
= Homy get (Ag, Homeg (7, X))
= Homy (Z, X)[K]

where the last isomorphism follows from Yoneda’s lemma oition[1.1.20(ii) : details left
to the reader). Applying again Yoneda’s lemma, we deducdwalasomorphism

Hom e (A, @ s.U, X) = X[K] for everyk € N.
(iii) Notice that every morphism : [k] — [k'] in A induces a morphism
A<p = HOH’IA<—, (p) : Ak — Ak/

and clearlyA, 0o A, = Ay, if ¢ 1 [K'] — [£”] is any other morphism ak. Hence, the system
(A; | i € N) amounts to an object afs.Set. Moreover, since the Yoneda isomorphisms are
natural in bothX andA,, we get a commutative diagram

Homso(Ap @ s.U, X) — X[K]
jfoms‘g(Aw@s.U,X)l lX[go]
Hom g (A, ® s.U, X) —— X[k

for every morphisnmyp as above.

(iv) Notice as well that the considerations of (i) and (t8n be repeatednutatis mutandi
for truncated simplicial objects : KX is an object ok,,.%’, thenHom (Z, X) shall be an object
of s;..Set, and we shall have natural isomorphisms

Hom, «(strunc, (A @ s.U), X) = X|[k] for everyk <n
and similarly for the commutative diagrams of (iii) (desdiéft to the reader).

4.2.18. Let? be a category with smalHom-sets, and suppose that all finite colimits®fare
representable. Then proposition 1.1.34 and remark_1).38§ that, for every integdr € N,
the k-truncation functor os.% admits a left adjoint

sk : §,.€ — 5.6

which is called thekt-th skeleton functor By inspecting the proof dfoc.cit. we see that, for
everyk-truncated simplicial objedk, this adjoint is calculated by the rule :

(4.2.19) skxA[n] := colim Fi]

p:[i]—=n]

wherei ranges over all the integess k, andy over all the morphismg| — [n] in A°, and the
transition mapd'[i| — F[j] in the colimit are the morphism&[¢)] given by all commutative
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triangles

P
(4.2.20) ' x % !
[n]

A morphisma : [n] — [m] in A° induces a morphisrsk, F'[«] : skyA[n] — skyA[m]; namely,
for everyyp : [i] — [m] one has a natural morphisfn : F'[i] — coskyF'[m|, andsk,F'[a] is the
colimit of the system of morphisms

Jaop © Fli] — sk Alm] forall ¢ : [i] — [n].

It is clear that, for every,, m < k and everyx : [n] — [m], the colimit [4.2.1DB) is realized by
F[n], and under this identificationk; A[«] agrees withF'[«|, so the unit of adjunction

F — s.trunc;, o sk, F

is an isomorphism. Dually, if all finite limits are represaile in%’, the truncation functor
admits a right adjoint

cosky, : 8,. € — 5.€
called thek-th coskeleton functorand a simple inspection of the proof laic.cit. yields the

rule:
coskpFin] := lim F[i]

e:[n]—[d]
wherei ranges over the integers k, andy : [n| — [i] over the morphisms id\°, and the
transition maps are as in the foregoing (except that the d@sats arrows in the commutative
triangles[(4.2.20) are reversed). Especially, we easitijude that the counit of adjunction

s.truncy, o coskp ' — F

is an isomorphism. Moreover, # is another category with smallom-sets, whose finite
colimits (resp. finite limits) are all representable, and % — ¥ is any functor, then for any
F € Ob(sy.#) there is a natural transformation

ski(sk.0F) — s.p(ski F') (resp.s.o(cosky F') — cosky(sg.@F))
which is an isomorphism, ip is right exact (resp. ip is left exact).

4.2.21. Lets be an abelian category, addany object ofs..o#. For everyn > 0, set

dp =Y (=10,  Aln] = An—1].
=0
Directly from the simplicial identitie§(4.2.8) we may coatp
n n+l
dpodnyr =Y Y (-1)" 0,00,
i=0 j=0
n n+l

=> > (- Z+j-j1o8+28o8+zz 1) 8; 00

=0 5>t =0 j<i
n  n+l

_ Z Z (—1)"™7 - 8;_1 0 8; + ZZ(_l)iH - 0; 00,

i=0 j—1>i i=0 j<i
=0
for everyn € N, so we are led to the following :
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Definition 4.2.22. Let .o/ be an abelian category, akds N any integer.

(i) If Ale]is any simplicial object of7, with face operatorg;, theunnormalized complex
associated tod[e] is the compleX A, d.) € Ob(C=%(«7)) such thatd,, := An] for
everyn € N, andd,, is defined as in(4.2.21), for eveny> 0.

(i) If Ale] is ak-truncated simplicial object of7, theunnormalized complex associated
to Ale| as the complexA,, d,) whereA,, andd,, are defined as in (i) for eveny < k,
andA, :=0, d, := 0 for everyn > k.

(iii) If Ale] is as in (i) (resp. as in (ii)), thaormalized complex associated Age| is the
subcomplexV, A of A, such that

NoA:= A[0] and N,A:= ﬂ Ker 0; for everyn > 0 (resp. for0 < n < k).
=1
So, the differentialv,, A — N,,_1 A equalsd,, for everyn € N (resp. for every, < k).
(iv) If Ale]is asin (i) or (ii), thehomology of4 in degreen is
H,A:=H,A, for everyn € N.
(v) Lete : A — A_; be an augmentation fot[e]. One says that the augmented simplicial
object(A, ) isaspherical if H,,A = 0 for everyn > 0, ande induces an isomorphism
HoA S A_.

4.2.23. Let«Z be an abelian category, and recall thatey and s,.<7 are both abelian cat-
egories as well, for every,, k € N (remark[1.2.36(ii)); also, clearly the rule of definition
[4.2.22(iii) yields natural additive functors

Ny :s.o/ —Ct)  Nyg:spod = CFer)  Ale] = N,A  foreveryk € N
and the rules of definitidn 4.2.22(i,ii) yield additive fuocs
Uy :s.of = CO) Uyy:spo — CER(e7)  Ale]— A,  foreveryk € N.

Remark 4.2.24.Let o7 and A be as in[(4.2.21); directly from the simplicial identiti€6Z.8)
we may compute

k—1 n
d, oo = Z(—l)i - 01 00; + Z (—=1)" - 01 0 0;_1.
i=0 i=k+2

Especially, if we let
n—1
Dy :=0 and D,A:= Zlm (0i: Aln — 1] — An]) for everyn > 0
=0

we see thatl,, restricts to a morphisrd, : D, A — D,,_, A for everyn > 0, hence(D, A, d,)
is a subcomplex o#4,, called thedegenerate subcompleand clearly we obtain an additive
functor

Dy :s.of — C(A) A DGA.

Proposition 4.2.25.The natural injections induce a decomposition
Ay =NA® DA  inC0().

Proof. First, we notice thatv, A N D,,A = 0 for everyn € N. Indeed, it suffices to check that
N,ANIm(o;) = 0 for everyi = 0,...,n — 1, but the latter follows easily from the identity
Oit1 0 0; = 1ap,—1). To conclude the proof, it suffices to show théfA + D, A = A, for
everyn € N. Indeed, sef, := A, and define inductivelys; := K,_; N Ker 0; for every

i =1,...,n; to prove the latter assertion, it suffices to check that

(4.2.26) (14, —0;-0)(K;) C Kiq foreveryi =0,...,n.
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However, we have :
8]- o (]‘An —0; - 82) = (‘3j — 0;-10 @_1 o (‘3j Wheneve[j <1
and@- o (1An —0; 82) = @ — 82 =0, WhenceMG). O

Example 4.2.27.() Let S be any simplicial set, and s&f := S ® s.Z (notation of remark
[4.2.16(iii)); we wish to give an explicit description of taemplex,Z° . To begin with, notice
thatZ°[n] is the free abelian group with basis indexeddiy|, for everyn € N, and for every
x € S[n] denote by, € Z°[n] the corresponding basis element. Next, set
n—1
D,S:=|JIm(o;: S[n—1] - S[n]) and N,S:=Sn]\D,S  foreveryn € N.
=0
From propositiofi 4.2.25, we see thgtZ° can be naturally identified with the direct summand
of Z[n] generated by the systefn, | z € N,.S), for everyn € N. In order to describe the
differentiald,,, let us define, := ¢, if x € N,,S, ande, :=0if z € D, S. Then we may write
d,(e;) = Z(—l)i €8,z for everyn € N and everyr € N,,S.
=0
The verifications are straightforward, and shall be leftiiteader.
(i) For instance, for any € N consider the simplicial seA; as in remark 4.2.16(iv), and
define
K(i)e := N, ZA
whereZ4i is defined as in (i). Notice that this notation agrees with tiaemark’ 2.1 I1(ii). It
is easily seen that a morphign] — [¢] of A liesin D, A, if and only if it is not injective; hence
N, A, is the set of all injective maps : [n] — [i] of A. We deduce a natural isomorphism

K(i), = Apt'Z®*t  foreveryi,n € N.

Namely, to any mag as above, we assign the exterior prodegh) A --- A ey, Where

eo, - . ., e; denotes the canonical basis #f"!. Under this isomorphism, the differential of
K (i), gets identified with the differential of the Koszul complettaghed to the sequence
141 = (1,...,1) € Z%*! (see example“4.4.48). Summing up, we obtain natural shert ex

act sequences
0 — K(@i)e[l] = Ko(1;11) = Z[0] = 0 for everyi € N
where[1] denotes the shift operator, afD] is the complex witlZ placed in degree zero : see

@.1.1).

(i) Let o/ be any abelian category, any object ofs..«# and Z any object ofeZ. Notice
that the simplicial seHom,, (7, A) defined in remark 4.2.17(ii) is actually a simplicial abelia
group, and a direct inspection of the argumentdoafcit. yields a natural isomorphism of
abelian groups

Hom, 7-Moa(Z2, Hom,, (Z, A)) & Hom,,(Z, Afi])  for everyi € N.
4.2.28. Keep the notation of remark 4.2.24, and let
i NA—S A gt Ay — NLA

be respectively the injection and the projection with kémgA. Then the rules A — j& and
A+ g2 define natural transformations

j.:Nm{:>Um{ q.:U%:>Nm7.
With this notation, we may state :
Theorem 4.2.29.With the notation of remarfd.2.28) we have :
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(i) The injection? is a homotopy equivalence, aiy A is homotopically trivial.
(i) More precisely, there exist natural modifications
j.oq.wluﬂ qoojowlNd
on the2-categoryC(.«7) as in exampl@.1L.7(ii) (see definitio.3.7).
(i) Especially, the natural map
H,N,A — H;A
is an isomorphism, for everyc N.
Proof. Clearly (ii)=-(i), and (i}=(iii), by virtue of remarkKZ4.1B(ii). To show (ii), set; := 14,
andy:! == 144, — 0,109, : A, — A, for everyn > 0. We notice :

Claim 4.2.30 The systen{y? | n € N) defines an endomorphism df,, which is homotopi-
cally equivalent tal 4, .

Proof of the claim.Indeed, lets,, := (-1)" -0, : A, — A, for everyn € N, and define
s, := 0 for everyn < 0. Using the simplicial identitie$ (4.2.8) we compute :

n

Sp1 0 dy 4+ dpy1 08, =(—1)""1. Z(—l)j (0p—100; — 0j00,) — Lap

J=0

—

n—

=op + (1" () (1) - (0p-100; — 0pe1 00;) — Lapy

<.
Il
o

=gy — 1p
for everyn > 0, and forn = 0 we have as welk_; o dy + d; o sg = 0, whence the claim. ¢
Notice that the homotopy exhibited in the proof of claim 3®is natural in4, so it already

yields the first sought modification. Next, for every sim@loobject B of <7, let vB and
gs : 7vB — B be asin remark4.2.11(i,ii), and define inductively

ByA:=A and p""'A:=Kergss  foreveryn € N.
A simple inspection shows that
Ny A C B AJf] and  ["A[0] = N, A for everyi,n € N.

Hence, we may define a subcomplBﬁi”) of A, for everyn € N, as follows. Fori =0,...,n
we let B™ := N;A, and fori > n we let B™ := (8"A)[n + i] (notation of [Z.L]1)). The
differential of B{" is of course just the restriction of that af,. By construction,N,A is a
subcomplex oBB{™, for all n € N. Next, we define an endomorphigff?) of B, by setting

=1,  foreveryi<m,and [ =" fori>n.

Notice that the restriction of.(") to the subcomple¥, A is just the inclusion map/, — B™.

Clearly B®+) c B™ for everyn € N, and we remark thaf{" factors through the inclusion
map Bt ¢ B™. Indeed, sinceB™ = B for everyi < n, the assertion is obvious
for this range of degrees; so we have only to check@jat factors throughg™+! A, for every
n € N, and an easy induction reduces to checking #jafactors throughBSl). But the latter
assertion comes down to the identity ! = 0 for everyi > 0, which follows easily from the
simplicial identities[(4.2]8).

If (s, |i € N) is the homotopy betweehs. 4, and2"4 supplied by claini4.2.30, then we
obtain a homotothE") | i € N) betweenl B and £, by setting

tm .= for everyi < n, and tz(") ‘= Si_n, fori > n.

)
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Notice thatlm ¢ C D, A for everyi,n € N. Thus, for everyn e N, letnl : B —
B pe the morphlsm of complexes deduced fréif and;{"” : B®™ — A, the inclusion
map, and sett™ := " o - - - o A; it follows easily that the composition

) = o g™ A, - A,

is homotopically equivalent tb 4, , for everyn € N. More precisely, a direct inspection shows
that the system of morphisms

Z](k+1 o tk+1) o ¢b) for everyi ¢ N

provides a homotopy betwedn, andp{". Furthermore, it is clear that

P =p"  and ™ =7""  foreverym > nandevery <n

so, we finally get an endomorphigm : A, — A, by settingp; := pg” for everyi € N, and a
homotopyr, betweerp, and1 ,4,, with 7; := TZ-(Z) for everyi € N. By constructionp, factors
throughj2, and moreover, the restriction of to the subcomplexV, A is justjs, sojd is a
homotopy equivalence, via natural homotopies, as stated.

Lastly, notice thattm; C D;,1A for everyi € N, from which it follows easily that
pi(D;A) C D;A for everyi € N, and then the foregoing implies thBer p, = D,A. We
conclude thai), A is homotopically trivial, as stated. O

4.2.31. By iteratindJ, we get a functor from bisimplicial objects to double conxgle

U2, 0 2ot 29 C(of) =20 C(C(r)) Alo, 0] i Au
and notice that this functor is naturally isomorphic to thedtor

ot 227 Cls.et) SV ().
In the same vein, theorem 4.2129 yields natural decompasitof additive functors :
(4.2.32) U2, = (C(N.y) © C(Dy)) © (Ny.y © Dy.r)
and if we let
N?, ;= C(N,) o N, : s/ — C(C()) A Ny A

the natural morphism
|f1 : Tot Neo A — Tot Age

is a homotopy equivalence.

4.2.33. We wish next to exhibit two natural transformations

A
AL Y oA, L A% foreveryA € Ob(s?.).

Namely, for evenyh € N, define :
. Shﬁ as the sum, for alb, ¢ € N such thap + ¢ = n, of theshuffle maps

Shﬁq = st Ay, 0+ 0 Mvgs My © 777 0 77up] D Apg = Anpn

where the sum ranges over tBbuffle permutation$u, v) of type (p,q) of the set
{0,...,p+ g — 1} (these are the permutations described in [363.15]), and,, is
the sign of the permutatiofy, v)

o AW as the sum, for ajh, ¢ € N such thap + ¢ = n, of the Alexander-Whitney maps

Aw;1 = Ale?0, el o]t Ann — Apg
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(notation of example_4.2.6(ii)). Clearly, for evepyq € N the ruleA — A, , defines a functor

op,ql: st — o

A

A . .
and the mapS§h,' andAW. yield natural transformations

Shyq:e[p,q] = e[p+q,p+ AW, , : e[p+q,p+q] = o[p,q|.

Proposition 4.2.34.With the notation of@.2.23) the sequencésh: | n € N) defines a mor-
phism of chain complexes

ShZt : TotA.. — ALY foreveryA € Ob(s%.«7).
Proof. For any bisimplicial object! of <7, setA_, , = A, _1 := 0 for everyp, g € Z, and let
Aleo, 1g) : Aog = A1 g Ay, e0) 1 Apo = Ap 1 Aleo, e0] = Ao — A1
be the zero maps; likewise, IShf‘Lq A = A andSh;‘ﬁ1 Ay 1 = Ap_1 1 bE
the zero maps, and notice that afﬂrgfo is the zero map. We define

p q

dﬁ,’qh = Z(_l)i'A[giv 1[(1]] P Apg = Apiyg d;,’qv = Z(_l)j 'A[l[plv & Apg — Apg

=0 =0
so, for everyn € N the differentiald,, in degreen of Tot A,, is the sum of the maps
AN+ (=17 Ay — A1y @ Apgy forallp,g € Nsuchthap +¢=n

whereas the differential of2* is the morphism
dt =Y " Alsiei] App = Ancim
i=1

and we have to check the identity

(4.235)  d}, oSh) =Sh}, odl'+4 (—1)P-Sh) _odl’  forallp,qeN.

p+q p—1,q

Now, we setB := v,A, C := 1A, D := v,B (notation of [4.2.15)), but for the purpose of
this proof, we shall modify the differentials of the doubtentplexesB,, andC,, in certain low
degrees : namely, we define

dé”f;f = Aleo, 11g] dﬁ’(j’ = A[1y,), €] for everyp, ¢ € N.

Claim4.2.36 With the foregoing notation, the following holds :
(i) Shi', = (—=1)7-Sh_ | o A[l), 0 + ShY . _ 0 Aln,, 1;y] foreveryp,q € N.
(i) Alepsq—1,Eprq-1]0Shy 1, =Shi | 0 Ale,e,] foreveryp,q > 0.
(ill) Aleprqr€prql 0 Shio, = (=1)7-Sho, o Ale,, 1ig) + Shil ;0 A1y, g,]  for every
p,q € N.
Proof of the claim(i): First, we notice the identities :

A[l[erq}a 771!2—|—q] © Shﬁ,q = Shg,q © A[l[p]a nq]

(4.2.37) h "
A[anr% 1[p+q]] © Shp,q = Shp,q © A[nlh 1[61]]

for everyp,q € N

that are deduced from the identities

Mur © = O Ny, ©Mptq =Mg CMuy © 0Ny,

Ty © = O My OTlptrq =Tp O Ty OOy,
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which in turn follow from the simplicial identities for degeracy maps. By applying the first
(resp. second) identity (4.2.137) with replaced byB (resp. byC) andp replaced by — 1
(resp. withq replaced by; — 1) we get :

A[l[erq]? np+q*1] © Shf—l,q = Sh]l))—l,q © A[]‘[p]u nq]
A[np‘HI*h 1[p+q}] © Shgqfl = Shzl)),qfl © A[nlh 1[q]]

Now, suppose first that ¢ > 0, and let(x, ) be any(p, q)-shuffle of{0,...,p + ¢ — 1}; then
eithery, = p+q¢—1ory, = p+q—1. Inthefirst (resp. second) case, after removipgresp.
v,) We get a(p — 1, ¢)-shuffle (resp. &p, ¢ — 1)-shuffle)(z, 7) with

e = (—1)7-c,  (resp.egm = £,).

However, the first (resp. second) left-hand side_of (412c@Btains precisely all the terms of
the first (resp. second) type occurring in the definitiorShziq, so we get (i) in this case. The
cases where either= 0 or ¢ = 0 can be dealt with by a similar, but simpler, argument.

(i) follows by naturality ofSh,_, ,_;, applied to the morphisrg(Al) ) g§§> : D — A from
(4.2.15).

(ii): The case where = ¢ = 0 is obvious, and the other cases follow by composing both
sides of (i) WithA[e,14, £5+4], @pplying (i), and recalling thaj, o ¢, = 1}, : details left to the
reader. O

Now, a simple inspection shows that (4.2.35) follows fromiml4.2.36(iii) and the following
Claim4.2.39 d2,,_, o Sh)' = Sh?!

p

(4.2.38) for everyp, ¢ € N.

A odlh 4+ (1P -Sh? ods | foreveryp,q € N.

Proof of the claim. Consider first the case whepe= 0. If ¢ < 1, it is easily seen that both
sides of the stated identity vanishyif> 2, the left-hand side is

q—1
dy o Ao+ omg 1, gl =Y (1) Al o+ ong 1 0e;e]
=0
and the right-hand side is
q—1
Ao o+ omg o, Lglodsy = (=1)"- Alpo - 01,s,5i]
=0

S0 in this case the assertion comes down to the obvious fgenti
MO+ 0My_10& =1gO0---0Mn,2:[qg—2] = [0] foreveryi =0,...,q— 1.

Likewise we deal with the case whege= 0. It follows already that[{(4.2.35) holds for these
values of(p, ¢), and for every bisimplicial object of <7; especially, we get

(4.2.40) dP o Shi, = Shf’,_,ody’  foreveryq € N.
Next, forp = ¢ = 1, a direct computation shows that both sides equal
Aleg oo, 1] — A[Lpy,e00mo) - Arg — Aqy.

We prove now, by induction oq, that the assertion holds fpr= 1. This is already known for
q < 1, so suppose that > 1, and that the assertion holds for= 1 and every; < r. The latter
implies that also[(4.2.35) holds for these value$of;), and for every bisimplicial object of
</ ; especially, we get

(4.2.41) dPoShy _, =Sh{ _odl, —ShD, _,odl)" ).
On the other hand, claim 4.2]36(i) says that
dy o Shi, = (=1)" - d o Shg), o A[1py,m,] + d o Shy),_ o Al 1y
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Combining with [4.2.40) and_(4.2.41) we obtain
dvaShﬁr = (=1) ShOr 1Od(lJ),}voA[1[1},77r] (Sh0r 1Odfrh 1 Sthr 2Od1r 1) o A, 1[7»}]-
However, we have
iy o Alnt, 1] = Al o €0, 1y — A[Lpyy, Ly = Algo 0 70, 1] — Lagiay
so we can rewrite? o Sh', = ¢ + 2 — 3, Where
1 :=Shg, 1 0 (=1)" - doy’ 0 ALy, me] = Laps) = (—=1)" - She),_y 0 Allpy, mea] o diy
= Shi—1 © Algo © 10, 1]
¥3 _Shl -2 © df:il o Aln, 1[71]-
On the other hand, using clalm 4.2.36(i), we can compute
Shér dOBrh 1= Shé),r—l © A[UO, 1[r]] © dég,;»h—l = ¥2
Shjléx,rfl © dlcrv 1= ((_1)“1 : ShOD,rfl © A[l[l]a Nr—1] + Sh?,rfz o Alni, 1[7"—1}]) © dg,rvfl
=3 — ¥
which shows that the claim holds fpr= 1 andg = r, and concludes the induction.
Lastly, we prove the claim for evepy g € N, by induction orp + ¢; notice that the foregoing
already shows that the assertion holds whengver; < 2. Thus, letr > 2, and suppose that

the claim is already known for every payjr, ¢) such thap + ¢ < r; then also[(4.2.35) holds for
such values op andgq, and especially we get

(4.2.42) dP  oShD =sh)
Let (p/, ¢') be a pair such that + ¢’ = r; combining [4.2.42) with claifi4.2.86(i), we get
A0,y oShy  =(=1)7 - (ShD_, ,od)"  —(=1)"-ShD |, od)" ) o ALy, ng]

P’ +q’
(Sh/ 1,¢'— lodDh 1+< ) 'Sth QOdll));)’ 1)0"4[7]17'71[11’}]'

od + (—=1)P-Sh) _;odl”  whenevep +q < r.

On the other hand, after noticing that

dl]? Z’ 1° A[np ) ’}] - (_1)p/ : 1A[p’7q/] :A[Up/—h 1[q/]] o df/ﬂ,q,
dp 1q ° Ay, ng] = (= 1)q/ Lap g =ALp, Ng-1] 0 ds, 1

we may apply claini 4.2.36(i), to compute
Sh '—1,q' © dB/ h1 o =((—1 ) Sh "o © Al ng] + Sh;? 1g—1° A1, 1)) o dﬁ’ﬂ,q/
=(- ) Sh’Qq’Od’lq’oA[ 1 me) — (= ) Sh’lq’l
+Sh '—1,q'— 1Od 7 1 0 Al 1]
and
Sh;l ¢—1° d;(;z' 1= ((=1) ~1.ShD p'—1,q—1° A[l[p/] nq’fl]
+ Sh g2 9 Ay, Lig—y]) o dp V1
=(—1)* ~1.ShD p'—1,q'—1° d[zﬂ ' ° Al [p'17?7q/] + Sh]ly)’—Lq’—l

+ShD L podit o Ay, 1],

Finally, the sought identity for the paip’, ¢') foIIows by comparing the last two identities with

the previous one fod”), ,_, o Sh?} ,, and this concludes the proof of the inductive step. [

p'+q'— p',q""
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Proposition 4.2.43.With the notation of(@.2.23) the sequencéAW: | n € N) defines a
morphism of chain complexes

AWZ : AD — TotA,,  foreveryA € Ob(s*.«7).

Proof. Denote byi! the differential ofTot A,,, and keep the notation of the proof of proposition
4.2.34; we have to check the identity

(4.2.44) AW, od? =d¥ o AW,  foreveryn € N.

However, say that, ¢ € N andp + ¢ = n; the projection of the right-hand side 6f(4.2.44) on
the direct summand,,_, , of (TotA..),—; equals

(4.2.45) Ao AW, + (1P d 0 AW,y .
Unwinding the definition [(4.2.45) is found to be
P q+1
Y (1) - Afepgoench] = (=17 (=1) - Alegtih, el 0 €l
i=0 i=0

which we may rewrite as

p—1 p+q
(4.2.46) S (1) - Alelh o el gl + > (—1) - AT, Pt 0 iyl
=0 i=p

On the other hand, the projection of the left-hand sidé éf.#4) ontoA4, , , equals

n

j{:(-&)i-/Heiosgilﬂ,siosg;ﬂ.

=0
To compare the latter witlh (4.2.46), it suffices to remark tha
qV e . D e .
v el oeg; ifi<p 1 €00 ifi<p
Eiogg‘l’oz{ TR T and - goe, = o oo i
Ep1,0 1>p €g+1,0CEi 1>Dp

which are all deduced from the simplicial identities for theThe proposition follows. O

4.2.47. Propositiorls 4.2.34 and 4.2.43 yield natural foansations of functors

he

Tot, U2, Uy oAy,

AW,

Now, denote by, : C(«/) — Hot(«7) the natural functor (this induces the identity on the
objects, and the projection on the group of morphisms)gtfaiow natural transformations

hs*She

h. o Tot U2, hyoUyoA,. between functors®..«Z — Hot (/).

h oy %AW

Theorem 4.2.48Eilenberg-Zilber-Cartier) With the notation ofd.2.47) we have :

() h, * AW, andh, x Sh, are mutually inverse isomorphisms of functors.
(i) More precisely, there exist natural modifications (see dedim1.3.7)

AW, 0 Shy > Lryyz,  She o AW, ~ 1y on,, -

Proof. Let p2 : Tot A,, — Tot N,,A be the projection whose kernel is the sum of the re-
maining three direct summands in the decomposifion(4.2.32); explicitly, in each degree

n € N, this kernel is the sum of the subobjebts A[r;, 1] andIm A[1,, ;] of A, 4, for every
1=0,...,p—1,7=0,...,9g — 1, and everyp,q € N such thatp + ¢ = n. Likewise, let
jd: NJA® — A2 andqZ : A2 — N,A® be as in[(4.2.28); theoreim 4.2129 and the discussion
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of (4.2.31) show that the pairgZ', i) and(j2, qZ') induce mutually inverse isomorphisms in
Hot(<7), so it suffices to check that the same holds for the compasitio

Sha .= qt o Shi 0id : Tot N,y A — N,A®  AWZ := pAo AWZ 04 : NyA® — Tot N, A
for every bisimplicial objectd of <. However, we have

Claim4.2.49 p# o AW 0 Sh 02 = Ly, a.

Proof of the claimMore precisely, say that+ ¢ = n, consider the composition
A

] Shp,q AW;?
Joat Apg > Aptgpia > (Tot Aes)n

and letg, , : A,, — (Tot A..), be the inclusion map; we shall show thg, — g,, C Ker p2.
Indeed, we have

Z Z € Ay, 0+ 0omy, 0 0 s My © 70" O My, © 52—@',0]

1=0 (p,v)
(notation of (4.2.38), and;, , , is defined as in the proof of propositibn 4.2.43). However, if
i < p,thenn,, o---on,, o}, ;,isof the formr oz, forsomer: [p+q—i—1] — [q], sothe
corresponding term does lie ier p:/. If i > p, thenp,, o---on, o Eio “is of the formr o,
for somek < v, and somer : [i — 1] — [p], so this term likewise lies ifer p. It remalns to
consider the terms with= p; however, a simple inspection shows thato - --on,, o e, " Vis
of the same form as above, unlegss eitherp — 1 or p (details left to the reader); furthermore,
if 1y = p—1, theny, > p, in which case,, o---o1,, ocl,_, , is of the form described above.
In all these cases, the corresponding term again lié&irp/'. So, it remains only to consider
the single case wherg, v) is the identity permutation, whose sign equilsn this case, the
corresponding term is none else tha,, 1], whence the claim. O

Claim[4.2.49 and theorem 4.2]29(ii) already yield the exise of the sought modification
AW, o Shy ~> 11 vz, Nextwe define, for every € N, a natural transformation

Sp:enjoA, = en+1]o0A,

(notation of [4.2.4); se” is a morphismA[n, n] — A[n+1,n+ 1] for every objectd of s2..27).
The construction is by induction am: for n = 0 we lets; : A[0,0] — A[l, 1] be the zero
morphism; forn > 0 we set

s4 = Sh" o AW o Ay, me] — 52, whereAd’ := (v, 09, (AY))Y

(notation of [4.2.15) and (4.2.2) : explicitly, we havé[p,q] := Al[p + 1,q + 1] for every
p,q € N, andA/[Ei, 6]] = A[€i+178j+1], and likewise forA/[€i7?7j], A/[T]Z‘, 6]] andA’[m, T]J], for
every face and degeneracy mapf We have

Claim4.2.50 The systenfq;’, , os20j2 | n € N) is a homotopyZ o Shl o AW 0t = 1, 4a.

Proof of the claimDenote byi the differential ofA2, and letds' : A® — 0ands?, : 0 — A
be the zero morphisms We check, more precisely, that

o(dd osit+s2 0d?)=qtoSht o AWS —q?  foreveryn € N.
We argue by induction on, and the assertion is clear for= 0. Forn = 1, notice that
Shi' o AW;' = Aley oo, 1] + A1y, g0 0 M0 © Ay — Ay
It follows that
st = Shi" o AW o Alno, o] = (Aler 0 19 © 10, m0] + Alno, m])
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whence
A A A A
dy osy = Shy o AWT — 1) + Aleg o ey 019,61 0 1))

(details left to the reader). Singe A[n, 7] C Ker g3, the assertion follows in this case. Next,
suppose that > 1, and that the sought identity is already known for every. r, and every
bisimplicial objectA; especially, it holds ford’, so if we letdZ’ be the differential ofd’,, we get

(4.2.51) Q?Ll © (d?/ Lt s, 0 d 1) = qfll © Shf& © AW;L& - qyﬂr
On the other hand, after notlcmg that

/

d;" o Alno. o] = Lajr.r) — Alno, 0] © d;
we may compute
d? o 52 =d% o ShA o AWA o Alng, no] — d& o s,
=ShA o AWA 0 d¥ o Alng,mo] — d o s
=Sh?" o AWA" — Sh¥" o AW o A[n, mo] 0 d | — d? o s,
which, combined with[(4.2.51), implies
(4.2.52) g o (d¥ ost + st 0dY ) =—q¥ .
Furthermore, notice the natural morphisnmstnge’
(g 0o g D)+ A — A

supplied by((4.2.15); explicitly, for eveny, ¢ € N, this morphism is given by the discarded face
operatorAleo, o) : A[p+ 1,9 + 1] — A[p, q]. Then, the naturality of,, Sh, andAW, implies

Aleo, £0] 0 52 = Aleg, £0] 0 Sh? o AW o Alng, no] — Aleo, g0] 0 s,
= Sh# o AW 0 Afng 0 g9, 1 0 £0] — 52| 0 Aleo, 0]
—=Sht o AW — s | o Aleg, €]
Lastly, recalling thatl = Aleg, so] —d? |, the latter identity can be added o (4.2.52), to deduce
Qfll © (dr—i—l o5 s 0d)) = qr 1o Shit o AW — Qfll-
Now, to prove the assertion in degredt suffices to observe that* factors throughy' ;. ¢

Claim[4.2.50 and theorem 4.2]29(ii) supply the second somgkification, and conclude the
proof of the theorem. O

4.2.53. Let(«/,®) be an abelian tensor categoryje| and B[e] two objects ofs.<7, and
define the bisimplicial objectsl X B and B X A, as well as the simplicial objectd ® B
andB ® A of &/ as in remark 4.2.16(iii). Notice that the system of commivitgtconstraints
(Y am,B[ | » € N) amounts to an isomorphism

\I/A®B:A®BJ>B®A ins.o

whence an isomorphisi 4, : (A ® B)s = (B ® A), on the respective unnormalized
complexes.

Proposition 4.2.54.With the notation 0f{4.2.53) the diagram of chain complexes

Ve, Be

Tot(AX B)ee Tot(B X A)ee
ShﬁMBl lSh?‘m

YaeB)e
(A® B). (B® A).
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commutes, wheré®, 5 is the commutativity constraint for the unnormalized cheomplexes
A, andB,, as in(4.1.9)

Proof. The assertion boils down to the identity

(4.2.55) (—1)77 - Sh2> 4 0 Wy g = Wagn), B © Shis >

for everyp, ¢ € N with p + ¢ = n. For the latter, suppose first that= 0, in which case
Sh;’?B = A[T/Q 0---0 T/q_l] X ]—B[q} and ShiEA = ]-B[q] (29 A[T/O 0---0 nq—l]

from which we derive[(4.2.55), using the naturalitybf(details left to the reader). Likewise
we argue for the case whege= 0. For the general case, we proceed by inductiomoifhe
cases: = 0, 1 have already been dealt with, so suppose 2, and that the sought identity is
already known for every pair of integers whose sum is, and every objectd, B of s.<. By
the foregoing, we may also assume that hoth > 0, and then clairh 4.2.36(i) implies that

Sha™P = (—1)7 - ShIA7P o (14, ® Bln,]) + Sh12=1" o (A, @ 1p).

However, it follows easily from remaik 1.2.134(iii) that is an additive functor in both of its
arguments; combining with the inductive assumption, weudedhat

U afn) Bla) © Shpg® = (=17 - SO TEI 0 W) pigi) © (Lag) © Blng))
+ (=17 ShIEEIA o W,y g © (Al @ pgg)
= (=1)P" - ShP¥0% o (Blng) @ 1ag) © Y a5l
+ (=P S E A o (1 @ Alny]) 0 Wap iy
=(=1)- Shi?A o W Afp], Blq]

where the last equality follows again from cldim 4.2.36(ijlahe additivity ofd. O

4.2.56. The shuffle map is alsssociativein the following sense. Let

A= (Alp,grl|pgreN)

be any triple simplicial object of the abelian categery and denote byl»? (resp.A??)) the
diagonal bisimplicial object af7 extracted fromA by the rule

AU [p gl == Alp,p,q]  (resp.A®V[p,q] := Alp,q,q])  foreveryp,q € N.

Let alsoA... be the triple chain complex associated4oand A%, the diagonal chain complex

extracted fromA,,.. Moreover, denote byl’ (resp.A”) the bisimplicial object of..e# given by
the rule :

[p.a] — Alp,q.e] (resp.[p,q] — Ale,p,q])  foreveryp,q€N.
Proposition 4.2.57.With the notation o0f{4.2.56) we have a commutative diagram@n.?)

Tot(Ases) Tot(A%?)
l lShAu’z)
sha2® )
Tot (A(.Q.’g) ) : AL

whose top horizontal (resp. left vertical) arrow is obtaines the composition &hZ’ (resp.
Sh") with the functorTot o C(U,,) : C(s.7) — C(C(«)) — C().
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Proof. For everyp, ¢, r € N, denote by
A/ . — ’
Shp7q[r] cAlp,q,r] = Ap+q,p+q, 1] = Al 2)[p +q,7]
A// . ,
Shi [p) + Alp, q,r] — A®¥p, q + 1]

respectively thgr]-component oiSh;ff; and the[p]-component oiSh;;f. The assertion boils
down to the identity :

(1,2) ’ (2,3) "
Shye © Shot [r] = Shil Lo Shi[p]  foreveryp,¢,r € N.

To check the latter, set
D' :=myomA D) = qy 094 (A1?)

and define likewisé” and D) (notation of [4.2.15)). Also, leti[p, ¢, 7] := 0 whenever one
of the indicesp, ¢, r is < 0, and defineSh,, , to be the zero map, when eitheor ¢ is strictly
negative (cp. the proof of proposition 4.2.34). We arguerguction onn := p + ¢ + r;
the casen = 0 is trivial, so suppose that > 0, and that the assertion is already known for
all indices whose sum is. n, and all triple simplicial objects of7. Notice as well that the
assertion trivially holds as well if any of the indicesy, r is strictly negative, since in this case
both sides are the zero map. Hence, we may assume.that € N; in this case, by applying
claim[4.2.36(i), first taAd(1:?) and then tad’, we compute

(1.2) / . (1.2) :
Sh?—l—q,r © Sh;q[r] = (_1) ’ Sh;?—i—q—l,r © A[l[erq]v 1[p+q]7 777"] o Sh;q[r]

(1,2) '
+ Shz?-i-q,r—l 0 Alllp+q, Mp+qs L] © Shﬁ,q[r]

. (1,2) '
=(—1)"-Sh2. 7 o Sh [r + 1] 0 A[1y), 1y, 7]

p+q—1,r
+ShPLY | o ShY [r] o Al g, 1] (by @237))
= (=1)7 - ShDEE o ShY ) e 1] 0 A[Lyy, 1y, ]
+(=1)"-Sh20? o ShY 4 1] 0 Alny, 11, )]
+Sh20™ 0 Sh2! ] o Alny, mg, 1]
= (=1)7 - Sh2L, 0 Sh [p] © Al 14, ]

r (2,3) "

+(=1)" - Shy ooy 0 She™ s [p+ 1] 0 Ay, 11, 70,]
(2,3) "

+Shl o Shé),r—l[p + 1] o A[np, g, 1]

P,q+r—
where the last identity holds by inductive assumption. Gndther hand, by applying claim
4.2.36(i) toA>?3) we get
(2,3) " r (2,3) "
Shﬁ,qfr © Sh?,r [p] = (_1)q+ ' Sh}l))fl,qurr ° A[I[P}’ ?7Q+T7 77q+r] © Shﬁr [p]

(2,3) "
+ ShD © A[% 1[q+r}7 1[q+r}] © Sh?,r [p]

p,q+r—1
r (2,3) "
=(=1)*". Shfﬂ,qw o Shfm [p] o ALy, 1g: 1)
(2,3) "
+Shy e 0 Shyl [+ 1] 0 Al 1y, 1) (by @2.37))
and after applying again claim 4.2]36(i) & and comparing with the foregoing expression for
ShA* o Sh [1], we obtain the sought identity. O

Theorem 4.2.58 Dold-Puppe-Kan) For any abelian category?, and anyk € N, we have :

(i) The functordN,, andN,, ; are equivalences.
(i) If f, g are any two morphisms in.<7, then there exists a simplicial homotopy frgim
to g if and only if there exists a chain homotopy frovgf to V,g.
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Proof. We easily reduce to the case whetéis small, and then there exists a fully faithful
imbeddings — %, whereZ# is a complete and cocomplete abelian tensor category, with
internalHom functor (lemma1.2.42).

(1): We first construct an explicit quasi-inverse for thedtorsN, andN 4 ;, as follows. For
everyi € N, consider the cochain complégx (i), defined in example_4.2.27(ii); notice that
every morphisny : [i] — [//] in A induces a morphism

K{(p)e := NJZ2% : K(i)g — K{i'),
(notation of remark 4.2.17(iii)). Hence, the systéhi(i), | i« € N) amounts to a cosimplicial
object of C=°(Z-Mod). Now, letU be a unit of the tensor categog; for any objectC, of
C=(2) (resp. ofC[=*0( %)), we set
Kcli] == stomez) (K (i)e ®z U[0], C,) for everyi € N (resp. for every < k)
whereJZomc ) is the functor constructed in example 411.8(vii), and theaditensor product

is defined as in(4.1.10). By the foregoing, it is clear thatshistem K [i] | « € N) amounts to
an object ofs.Z (resp. ofs;.%). In order to computéV, K, let us set

Z = Im (28 2R 5 7R =T ZY K (i)e = NJZG
n=1
for everyi > 0, as well a&Z5* := ZA° and K (0), := K(0),; thus,K (i), is also the quotient of
K (i), by the sum of the images of the morphisiiéz,,), forn = 1,..., 4. With this notation,
a simple inspection of the definition shows that

N; K¢ = Homez) (K (i)e @7z U[0], C,) for everyi € N (resp. for every < k).
On the other hand, using the explicit description of exard@e27 (i), it is easily seen that
=\ ~ | Z ifn=iorn=i—1>0
K (i) = { 0 otherwise

More preciselyK (i); (resp. K (i);_,) is generated by the basis elemeptof K (i); (resp.e.,

of K (i);—1) corresponding to the identity map, (resp. corresponding tq : [i — 1] — [i]).
Furthermore, example_4.2]27(i) shows that the differémti&);, — K (i);_; mapse; to e,
So it corresponds to the identity m&p— 7Z, under the foregoing identification. Taking into
account remark 1.2.12(iv), we deduce thaf¢ is the kernel of the morphism

(4259) CZ D Cz'fl — Cifl D Cz;z
given by the matrix

(_l)l ’ dzc 101‘—1

0 (~1)-df,

and sincel{ | o d¢ = 0, the latter is justC;; more precisely(; is identified with this kernel,
via the monomorphism

This identificationV; K~ — C; can also be described as follows. For evBrg Ob(%), let
Homy(Z, C,)

be the cochain complex such thdbm4(Z, C,),, := Homgyg(Z, C,,) for everyn € Z, with
differentials induced by those df,, in the obvious way; then we have natural identifications

Homc z-Moa) (F(z},, Homgy(Z, Cy)) 5 Homc () (?(z). ®gz Z10], C,) 5 Homy(Z, N;K¢)
(see example_4.1.8(vii)) whose composition with the indLisemorphism
Homy(Z, N;K¢) = Homg(Z, C;)
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is given by the rule :

(4.2.61) (pe : K(i)e — Homy(Z,Cy)) — (piler) : Z — Cy).

It remains to determine the differentié.;l‘i1 : Nis1 Ko — N;K¢; by definition, the latter is
induced by the morphis (), : K (i), — K (i + 1),. In turn, the foregoing description says
that K’ (<¢),. is naturally identified with the morphism &f(Z-Mod)

K (i) 0 0 7 7 0
| ]
K(i+1) 0 Z 7 0 0

(where the two copies df on the top horizontal row are placed in homological degiesasd
i — 1), sodY,, is deduced from the morphism &%)

0—Cip1®C,—=C; & Ci4 0 0
l ] l
0 0 CioCiy —Cioi®Cig —=0

whose rows are given by the morphisms (4.2.59). Therefdeethe identification[(4.2.60),
the morphismd); becomes none else thgr1)™! - d% ,, i.e. we have obtained a natural
isomorphism

w? NJKo = C,
for every complex irC<(%) (resp. inC[=*%(%)).
Conversely, leB[e] be any object 0.4, andZ any object of%; clearly

No(Ar ®5.7) = K(i)e ®z Z[0] for everyi € N.
In view of examplé 4.118(vii) and remark 4.2117(ii), we dedwa natural transformation
Homgy(Z, Bli]) = Hom, 4(A; ® s.Z, B)
(4.2.62) lb
Homgy(Z, Ky, gli]) <= Homc(z) (K (i)e @z Z[0], NoB)

which, by Yoneda’s lemma, comes from a unique morphis#in
P : Bli] = Kn,pli]  foreveryi € N.

The same construction applies, in ca3ds an object ofs,.% : we need only replace the
group Hom, »(A; ® s.Z, B) by Homg, »(s.trunc,(A; ® s.Z), B) in (4.2.62) : see remark
[4.2.17(iv). Moreover, remafk4.2117(iii) implies that thestemy)? := (¢P | i € N) amounts to

a morphismB — Ky, g In 5.2 (resp. ins;.%). By the same token, thé-linear isomorphism

a maps the abelian subgrotfom4(Z, N; B) isomorphically onto the subgroup

Hom, »(Z5" ®z 5.7, B) = Hom, 7 mea(Z6, Homy(Z, B))
for everyZ € Ob(£) and everyi € N, whereHomy(Z, B) is the simplicial abelian group as
in example 4.2.27(iii). Explicitly, if5 : Z — N;B is any morphism, then(/3) is the unique
morphismZ — Homy(Z, B) of simplicial abelian groups such thats3)(e;) = 3, where
e1 € K (i); C Z&[i] is the basis element described in the foregoing. Likewisehave natural
identifications

Homc(z-moa) (K (i)e, Homg(Z, N,B)) 5 Homc () (K (i)e @z Z[0], NoB)
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andb restricts to a map
Hom, 7mo0d(Z8, Homy(Z, B)) — Homczmoa) (K (i)e, Homy(Z, NoB)) ¢ = Nap.

Again, the same applies to an objectspi#, by taking suitable truncated variants of the above
constructions. Taking into accouhf (4.2.61), we conclindét? induces an isomorphism

NP : NB S N, Ky,

which is inverse ta,+ 5. To finish the proof of assertion (i) for the catega# it then suffices
to remark :

Claim4.2.63 The functordN, andN j are conservative.

Proof of the claim. We show, by induction on, that if a morphisnh in s.% or s;,.2 (for any
k € N) induces an isomorphismV, i, thenh[n] is an isomorphism for every € N (resp. for
everyn < k). The assertion is obvious far= 0, hence suppose that> 0, and that:[n — 1] is

known to be an isomorphism wheneveis a morphism irs. % or in s;,.. % (for arbitraryk € N)

such thatV, . is an isomorphism. Let : A — B be any such morphism in% or in s;.%.

If his a morphism irsy. %4, we are done, hence we may suppose that eithea morphism in
s.Bork > 0. Set

A" :=Ker(gs : vA — A) (resp.A" :=Ker(ga : 7x_1A — s.truncg_1A))

as well asB’ := Ker(gp) (notation of remark 4.2.11(ii)). Notice thaf, is an epimorphism,
sinced, ., admits the section,,,, for everyn € N (resp. for everyh < k). Therefore, we
have a commutative diagram snZ with exact rows

0 A vA A 0

h' l vh l l h
0 A vA A 0

(resp. a corresponding diagram d4p ;.%). By inspecting the definitions, it is easily seen
that N,A” = (N, A)[—1], N,A" = (N,A)[—1], andN,h' = (N,h)[—1]; especially,N, /' is an
isomorphism, s@&/[n — 1] is an isomorphism, by inductive assumption. The same hd#is a
for h[n — 1], and we conclude thath[n| is an isomorphism. Buth[n] = h[n + 1], SO we are
done.

Lastly, in order to prove assertion (i) for the original gaigy <7, it suffices to notice :

Claim4.2.64 Let C, be any object o€ (.«7) (resp. ofCl=**l( 7)), and regard’, as an object of
C(%) (resp. ofC[=F%(2)), via the fully faithful imbeddingez — 4. ThenK is isomorphic
to an object ok..«7 (resp.s,.7), regarded as a full subcategory«#4 (resp. ofs;.%), via the

same imbedding.

Proof of the claim. This follows easily, by remarking that (i), lies in C[-*%(Z-Mod) for
every: € N, andK (i), is a finitely generated abelian group for every € N : details left to
the reader. O

(ii): First, let f,g : A — B be two morphisms in..o7, andu : A; ® A — B a homotopy
from f to g (see remark 4.2.16(iv)); especially,
uo (A, ®A)=f and  wuo (A, ®A)=g.
Notice that
Z.Al ®Z A, = TOt(Al X A)..
(notation of remark 4.2.16(iii) and example 4.2.27(i))er follows a morphism ik (<)

e ZAY @7 Ay 225 (AL ® A)s 225 No(A; @ A) 2% N,B
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whereSh, denotes the shuffle map for the bisimplicial objddk A, andq, is the projection
defined in[(4.2.28). Moreover, the mags,[0] : Ag[0] — A4[0] (: = 0, 1) induce morphisms
Cin =22 @7 A, 1 A, » 2% ®y A, C (28 ®7 AL)s

that amount to morphisms of cochain complexgs: A, — Z2' ®7 A, (i = 0, 1), and a simple
inspection of the definitions shows that

Sheo€ie= (A, ®A), fori =0,1
whence

ao o El,o = fo and :Jo o EO,. = Jo-
The construction makes it clear thatrestricts to a morphismV, A — K (1), ®7 N, A, and the
latter is none else than the mgmw; N, A, with the notation of remark 4.T.111(ii). We conclude
that the morphism

Te: K(1)g @z NoA — Z58 @7 Ay =5 N, B

is a homotopy fromV, f to NV, g (notation of [4.2.218)).

Conversely, suppose thad : K (1), ®z NeA — N, B is a homotopy fromV, f to N,g. Since
K(1), is a direct summand &£ and N, A is a direct summand of,, we may extend, to a
morphism

Te : Z2 @4 Ay — N,B
such thaty, is the zero morphism on the direct summands other thiah, ®z N,A. Next,
consider the composition

Vet No(A1 ® A) 25 (A @ A)y 205 A, @7 28 5 28 @7 A, 5 N,B

wherej, is the natural injection (se€_(4.2]28AW, is the Alexander-Whitney map for the
bisimplicial objectA X A; (notice thatA; ® A = (AKX A,)?), and¥, is the commutativity
constraint (see example 4.11.8(i)). By (i), the morphignecomes from a unique morphism

v: AT RA— B ins.«.

On the other hand, sinc¥,,,A is contained in the kernel oﬁ[e%] for everyp,q € N, itis
easily seen that the diagram

Li®ZNoA

N, A K(1)s ®z NJA
N.(A5i®A)l l
No(Ay @ A) 2P0 7806, A,
commutes foi = 0, 1. We conclude that is a homotopy frony to g. O

Corollary 4.2.65. Let.«# be any abelian category. We have :
() If £ € Nis any integer, and! any k-truncated simplicial object of7, then

H;(coskyA) =0 for every: > k.
(i) Every homotopically trivial augmented simplicial obje€td is aspherical.

Proof. (i): Denote byt : C=0(«7) — C[7%%(o7) the brutal truncation functor (s€e(#.1)). In
light of theoreni4.2.38, we see thay, admits a right adjoint;, : C%% (&) — C=0(.«), and
clearly there are natural isomorphisms

N,coskip A = v, N, A for every A € Ob(sy.o7).
Taking into account theorem 4.2]129(iii), we are then reduoeshowing
Claim4.2.66 H;(v;kK,) = 0 for every(K,,d,) € Ob(CI=*) and everyi > k.
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Proof of the claimIndeed it is easily seen that :

K; for<k
(vpeKo); =< Kerd, fori=Fk+1
0 fori > k+1
and the differential ot K, in degree< k agrees with that of(,, whereas in degrele+ 1 it is
the natural inclusion map (details left to the reader). Tlagrcfollows immediately. O
(i) follows directly from theorems 4.2.58(ii) ad 4.2]29( and remarkK4.113(ii). O

4.3. Injective modules, flat modules and indecomposable modules

4.3.1. Indecomposable moduleRecall that a unitary (not necessarily commutative) tihcp
said to bdocalif R # 0 and, for every: € R eitherz or 1 —z is invertible. If R is commutative,
this definition is equivalent to the usual one.

4.3.2. Let% be any abelian category arldd an object of¢’. One says thabd/ is indecom-
posableif it is non-zero and cannot be presented in the favin= N; & N, with non-zero
objectsN; and N,. If such a decomposition exists, thBnd4 (/N;) x Endy(N2) C Endg (M),
especially the unitary ringind, (M) contains an idempotent elemen$ 1,0 and therefore it
is not a local ring.

However, if M is indecomposable, it does not necessarily follow that, (1/) is a local
ring. Nevertheless, one has the following:

Theorem 4.3.3(Krull-Remak-Schmidt) Let (A;),c; and (B;);c; be two finite families of ob-
jects of ¢, such that:
(@) DicrAi ~ DjesB;.
(b) End«(A;) is alocal ring for everyi € I, andB; # 0 for everyj € J.
Then we have :
(i) Thereis asurjectiop : I — J, and isomorphismB; = ®;c,-1(;)A4;, for everyj € J.
(i) Especially, if B; is indecomposable for every € J, then/ and J have the same
cardinality, andy is a bijection.

Proof. Clearly, (i}=(ii). To show (i), let us begin with the following :

Claim4.3.4 Let M, M, be two objects o¥’, and setM := M, & M,. Denote by, : M; — M
(resp. p; : M — M;) the natural injection (resp. projection) for= 1,2. Suppose that
«a: P — M is a subobject of\/, such thap,«a : P — M, is an isomorphism. Then the natural
morphisms : P @& My — M is an isomorphism.

Proof of the claimDenote byrp : P&M, — P andn, : P® M, — M, the natural projections;
theng := anp + esms. Of course, the assertion follows easily by applyingiHemma (which
holds in any abelian category) to the commutative ladddn exiact rows :

P

0——=My; —— P @ M, P 0

€2 p1

0 M, M M, 0.
Equivalently, one can argue directly as follows. By defontiCoker /5 represents the functor
¢ — Z-Mod : X — KerHomy(8,X)

and likewise forCoker p;a; however, it is easily seen that these functors are nayusdmor-
phic, hence the natural morphigtoker 5 — Coker p;« is an isomorphism, sg is an epimor-
phism. Next, let : Ker 5 — P @& M, be the natural morphism; singea is an isomorphism,
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wp ot = 0, sot factors through a morphism Ker 8 — M. It follows thate, ot = S ot = 0,
thereforet = 0, and finallyKer 8 = 0, sincet is a monomorphism. O

SetA = ®;c;A;, and denote; : A; — A (resp.p; : A — A;) the natural injection (resp.
projection), for everyi € I. Also, endow!’ := I U {oo} with any total ordering/’, <) for
which oo is the maximal element.

Claim4.3.5 Let (a; : A — A);e; be afinite system of endomorphisms such thgt ; a; =
1,4. Then there exists a mapping: I — J such that the following holds :

(i) aguye : A; = Ais amonomorphism, for evetye I, and letP; := Im(ay)e;).

(i) Foreveryl € I', the natural morphisr; : €, _, PZ@EBZ.ZZ A; — Alisanisomorphism.

Proof of the claim.We both definep(l) and prove (ii), by induction oi. If [ is the smallest
element ofl, thens;, = 1,4, so (ii) is obvious. Hence, ldte I be any element € I’ the
successor of, and assume thaj; is an isomorphism. Set; := B, a;p, for everyj € J, and
M, =@, , P ® P, Ai; also, lete; : Ay — M; andp; : M; — A, be the natural morphisms.
Clearly) ;. ;a’ = 1, SOY_,;paie; = 14,; sinceEndy (A;) is a local ring, it follows that
there existg; € J such tha]p;a;.le; is an automorphism ofi;. However,
(4.3.6) aj e = B a;,pie; = B aje
so assertion (i) follows for the indéxby settingp(l) := j;.

Next, setM;, := A, andM;, := EBKle' @ EBM A;. The foregoing argument provides
a subobjecty : P := Im(al,€;) = M, = M1 & M, such thapa : P/ — M, is an
isomorphism. By claini_4.314, it follows that the natural mgp: P/ & M;, — M is an
isomorphism. On the other hanfl, {4]3.6) implies thatestricts to an isomorphism : P/ —
P,. We deduce a commutative diagram

’

, B,
Pl D Ml,2 M,

'Yl@lMl,zl ‘/51
By
M : A

whose vertical arrows and top arrow are isomorphisms. Timeshottom arrow is an isomor-

phism as well, as required. O
For everyj € J, lete; : B; — A (resp. p; : A — Bj) be the injection (resp. projec-

tion) deduced from a given isomorphism as in (a), ancuget= ¢’p’; for every;j € J. Then

> jesa; = 1a, so claim4.3.b yields a mapping: / — J such that the following holds. Set
Pj := ®icp1(jIm(a e;) for everyj € J; then the natural morphism : ®;c,P; = Ais an
isomorphism. However, clearly(F;) is a subobject ofm(e}), for everyj € J. Hence,p
must be a surjection, an@l restricts to isomorphismsg; — Im(ef) for everyj € J, whence
isomorphisms?; = B;, from which (i) follows immediately. O

Remark 4.3.7. There are variants of theordm 4]3.3, that hold under diftessets of assump-
tions. For instance, in [37, Ch46, Th.1] it is stated that the theorem still holds wheand

J are no longer finite sets, provided that the categ@rgdmits generators and that all filtered
colimits are representable and exac#in

4.3.8. Letus now specialize to the case of the categeMod, whereA is a (commutative)

local ring, say with residue field. Let M be any finitely generated-module; arguing by

induction on the dimension adf/ ® 4 k£, one shows easily that/ admits a finite decomposition
M = &]_, M;, where); is indecomposable for every< r.
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Lemma 4.3.9.Let A be a henselian local ring, andl/ an A-module of finite type. Thel is
indecomposable if and only End 4 (M) is a local ring.

Proof. In view of (4.3.2), we can assume that is indecomposable, and we wish to prove that
End4 (M) islocal. Thus, letp € End 4(M).

Claim4.3.10 The subalgebral[y] C End4(M) is integral overA.

Proof of the claim.This is standard: choose a finite system of generatfis<;<, for M, then
we can find a matria := (a;;)1<;,j<- Of elements of4, such thaty(f;) = Z;Zl a;; f; for every
i < r. The matrixa yields an endomorphism of the freeA-module A®"; on the other hand,

letey, ..., e, be the standard basis df*” and define ami-linear surjectionr : A®” — M by
the rule:e; — f; for everyi < r. Theny o m = 7o ¢; by Cayley-Hamiltony) is annihilated by
the characteristic polynomigl(7’) of the matrixa, whencey(y) = 0. O

Since A is henselian, clairh 4.3.10 implies thafy] decomposes as a finite product of local
rings. If there were more than one non-zero factor in thisodgmsition, the ringd[y] would
contain an idempotenrt# 1,0, whence the decompositioif = eM @ (1 — e) M, where both
summands would be non-zero, which contradicts the assampithus,A[y] is a local ring, so
that eitherp or 1,, — ¢ is invertible. Sincep was chosen arbitrarily iftnd 4 (M), the claim
follows. O

Corollary 4.3.11. Let A be a henselian local ring. Then:

(i) If (M,;);er and (IV;);es are two finite families of indecomposabemodules of finite
type such thatp;_, M; ~ @5_,N;, then there is a bijectio : I = .J such that
M; ~ Ng; for everyi € I.
(i) If M and N are two finitely generatedi-modules such that/®* ~ N®* for some
integerk > 0, thenM ~ N.
(i) If M, N and X are three finitely generated-modules such thak & M ~ X & N,
thenM ~ N.

Proof. It follows easily from theorerh 4.3.3 and lemima 413.9; theaidefre left to the reader.
O

Proposition 4.3.12.Let A — B be a faithfully flat map of local rings}/ and N two finitely
presentedd-modules with aB-linear isomorphisnw : B ®4 M = B®4 N. ThenM ~ N.

Proof. Under the standing assumptions, the natédinear map
B XA HOHIA(M, N) — HOHIB(B XA M,B XA N)

is an isomorphism|[([36, Lemma 2.4.29(i.a)]). Hence we catewr = Y., b; ® ¢; for some

b € Bandy; : M — N (1 < i < r). Denote byt and K the residue fields off and B
respectively; we sep, := 1, ®4 ¢; : k ®4 M — k ®4 N. From the existence ab we
deduce easily that := dim;, £k ® 4 M = dim, k ®, N. Hence, after choosing bases, we can
view p,, ..., %, as endomorphisms of thievector space®". We consider the polynomial
p(Th,...., T,) =detX\_, T; - 3,) € k[Ty,...,T,]. Letby,...,b, be the images of,...,0b,

in K; it follows thatp(by, . . ., b,) # 0, especiallyp(Ty, ..., T,) # 0.

Claim4.3.13 The proposition holds it is an infinite field or ifk = K.

Proof of the claim. Indeed, in either of these cases we can find...,a, € k such that
p(ai,...,a.) # 0. For everyi < r choose an arbitrary representativec A of @;, and set
@ =Y . a;p;. Byconstructionl, ®4 ¢ : k®4 M — k ®4 N is an isomorphism. By
Nakayama’s lemma we deduce thaits surjective. Exchanging the roles bf and N, the same
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argument yields arl-linear surjection) : N — M. Finally, [61, Ch.1, Th.2.4] shows that both
1 o w andy o 1) are isomorphisms, whence the claim. O

Let A" be the henselization of, and As", Bs" the strict henselizations of and B respec-
tively. Now, the induced mags® — B! is faithfully flat, the residue field oft*" is infinite, and
w induces aB*"-linear isomorphisnB*" @, M = B*" ® 4 N. Hence, claini 4.3.13 yields an
Ash-linear isomorphisn® : A% @4 M = A" ® 4 N. However, A" is the colimit of a filtered
family (A, | A € A) of finite étale A"-algebras, s@ descends to ar,-linear isomorphism
By : Ay ®@a4 M ~ Ay, @4 N for some) € A. The AP-moduleA, is free, say of finite rank,
hences), can be regarded as att-linear isomorphisnjA" @ 4 M)®" = (A" @ 4 N)®". Then
A @, M ~ A" ® 4 N, by corollary[4.3.T11(ii). Since the residue field 4f is &, we conclude
by another application of claim 4.3]13. O

4.3.14. Injective hulls. The notion of injective hull plays a central role in the theof local
duality : for a noetherian local ring, one constructs a caradj module as the injective hull of
the residue field (see [44, Exp.IV, Th.4.7]), and in sedtidh Bjective hulls of the residue fields
of a monoid algebra will also enable us to perform a certampmatation of local cohomology,
which is a crucial step in the proof of Hochster’s theorem. phésent here the basic results on
injective hulls, in the context of arbitrary abelian categs.

Definition 4.3.15. Let .7 be any abelian category, afid N — M a monomorphism in7 .

(i) We say that)/ is anessential extension o¥ if the following holds. For any subobject
P C M we have eithe”? = 0 or PN Im f # 0 (here0 denotes the zero object of :
see remark1.2.29(i)).

(i) We say that)M is aproper essential extension of if it is an essential extension o¥,
and f is not an isomorphism.

(i) We say that)M is aninjective hullof N, if M is both an essential extension &t and
an injective object ok .

Lemma 4.3.16.Let .o/ be an abelian category, anblan object ofeZ. Suppose that :

(a) «7 is cocomplete.
(b) All colimits of &7 are universal (see examplel.24(v).

Then we have :

(i) 1 isinjective if and only if it does not admit any proper esgdrextensions.
(i) If N — M is any monomorphism, the set of all essential extensionsadntained in
M admits maximal elements.

Proof. (i): Suppose thaf is injective, and letf : I — M be any monomorphism which is
not an isomorphism. Thefi admits a left inverse, sé is a direct summand af/, henceM

is not an essential extension bf Conversely, suppose thatdoes not admit proper essential
extensions; lef : N — M be a monomorphism ig/ andg : N — [ any morphism ineZ. We
consider the cocartesian diagramdh

N

g lg’
f/

I——P

and notice thaf’ is a monomorphism, since the same holdsffoBy Zorn’s lemma — and due
to conditions (a) and (b) — we may find a maximal subobjgct P such that) NI = 0, and
clearly P/Q) is an essential extension b{via h); thereforeP/() = I, soP = [ & (@), and if we
letp : P — I be the resulting projection, we see thatg¢’' : M — I is an extension of. This
shows that is injective.
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(i): By Zorn’s lemma, it suffices to check the following assen. Suppose thdtP; | j € J)
is a totally ordered family of essential extensiong\otontained inV (for some totally ordered
small indexing set/). ThenP := UjeJ P; is again an essential extension/éf(notice that this
union (.e. colimit) is a subobject of\/, due to condition (b)). However, say th@tc P and
@ N N = 0; due to condition (b), we hav@ = UjeJ(Q N P;), and clearly(Q N P;) N N =0,
so@ N P; = 0forevery;j € J, and finally@) = 0. O

Proposition 4.3.17.Let o/ be an abelian category fulfilling conditiofa) and (b) of lemma
[4.3.16 and M any object ofeZ. We suppose moreover that :

(c) < has enough injective objects.
Then we have :

(i) M admits an injective hull. More precisely, M — I is any monomorphism into an
injective object, then a maximal essential extensiol/ah [ is an injective hull of\/.
(i) Letf: M — FE be an injective hull of\/, andg : M — I any monomorphism into an
injective object. Thep factors throughf and a monomorphisi: £ — 1.
@iy If f: M — Eandg : M — E’ are two injective hulls ofi/, there exists an isomor-
phismh : E = E'suchthatho f = f'.

Proof. (i): Let £ C I be such a maximal essential extension\éf(which exists by lemma
4.3.16(ii)); by virtue of lemma 4.3.16(i), it suffices to dkethat £ does not admit proper
essential extensions. However, suppose that £’ is a proper essential extension; sircis
injective, the inclusion morphisth — I extends to a morphisrfi: £ — I. By maximality of
E, we must then havEer f # 0; on the other hand, obviousk N Ker f = 0, which is absurd,
sinceF’ is an essential extension 6f

(ii): Since I is injective,g extends to a morphisth : £ — 1, and clearlyM N Ker h = 0.
SinceF is an essential extension 6f, it follows thatKer h = 0.

(iii): By (ii) there exists a monomorphisth : £ — FE’ such thath o f = f’. SinceFE is
injective, it follows thatim & is a direct summand of’; but £’ is an essential extension 6f,
solmh = F’,i.e. his also an epimorphism, hence an isomorphism. O

4.3.18. We specialize now to the case wheféas the categoryd-Mod of A-modules, with

A an arbitrary noetherian ring. Recall that,Mf is any A-module, then the setss M of all
associated primesf M consists of the prime ideals C A such that there exisiss € M
with Anny,(m) = p. (This is the correct definition only for noetherian rings e shall see in
definition[5.5.1 a more general notion that is well behavedfbitrary rings.) By proposition
[4.3.17(i,iii) the injective hull ofM exists and is well defined up to (in general, non-unique)
isomorphism, and we shall denote By (M) a choice of such hull.

Lemma 4.3.19.Let A be a noetherian ring. The following holds :
(i) If (Ix | X € A) is a (small) family of injectivel-modules, thed := @,_, I, is an
injective A-module.
(i) If S C Ais any multiplicative subset, an/ any injectiveA-module, then/s is an
injective As-module.

Proof. (i): Let us first recall :

Claim4.3.20Q Let R be any ring,M an R-module. The following conditions are equivalent :

(&) M is an injectiveR-module.

(b) For every ideal/l C R, every R-linear mapJ — M extends to anRk-linear map
R — M.

(c) Exty(R/J, M) = 0 for every ideal/ C R.
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Proof of the claimOf course, (a}-(b)=-(c). To check that (¢}>(a), letN C P be an inclusion
of R-modules, and' : N — M an A-linear map. We leb be the set of all pair&V’, f’), where
N’ C Pis anR-submodule containingy, andf’ : N’ — M an R-linear map extending. The
setS is partially ordered, by declaring thav’, /') > (N”, f") it N” C N"and f{y., = f", for

any two pairs(N’, f'), (N”, f") € S. By Zorn’s lemma,S admits a maximal elemeit), g).

Suppose) # P,and letr € P\ Q. SetQ)’ := @ + Rz andJ := Anng(Q’'/Q); there follows
an exact sequence éfmodules

0-Q—Q —R/J—=0

and then (c) implies that the restriction mépmpz(Q)’, M) — Hompg(Q, M) is surjective;
especiallyg extetnds to arR-linear map)’ — M, contradicting the maximality of). Hence
@ = P, which shows (a). O

In view of claim[4.3.20, it suffices to show that evetylinear mapf : J — I from any ideal
J C A, extends to aml-linear mapA — I. However, since/ is finitely generated, there exists
a finite subsef\’ C A such that the image of is contained i’ := @, _,, I,. Clearly!’ is an
injective A-module, sof extends to am-linear mapA — I’, and the assertion follows.

(ii): Let J C Ag be any ideal, and writd = Is for some ideal C A; sinceA is noetherian,
we have

Extly (As/J, Ms) = As ®4 Ext}y (A, M)

so the assertion follows from claim 4.3120. O

We may now state :

Proposition 4.3.21.Let A be any noetherian ring)/ any A-module. We have :

(i) Foreveryp € Spec A, the A-moduleE 4(A/p) is indecomposable (s€d.3.2).

(i) Let! be any non-zero injectivd-module, anc € Ass I any associated prime. Then
EA(A/p) is a direct summand af. Especially, if/ is indecomposable, thehis iso-
morphic toE4(A/p).

(iii) AssaM = AsspaFEs(M).

(iv) If p,q € Spec A are any two prime ideals, then themodulest4 (A/p) and E4(A/q)
are isomorphic if and only ip = q.

(V) Eay(Ms) ~ As ®4 E4(M) for any multiplicative subsef C A.

Proof. (i): Set B := A/p, and suppose thal,(B) is decomposable; especially, there exist
non-zero submodule¥,, M, C E4(B) with M; N M, = 0. Thus,(M; N B)N (M;nN B) =0,
and sinceB is a domain, we deduce that; N B = 0 for i = 1,2. But sinceE4(B) is an
essential extension @, this is absurd.

(il): By assumption, there exists € I such thatAnn(z) = p, so the submodulelz C
I is isomorphic toA/p; then, by proposition 4.3.17(ii) there exists a monomasphi :
EA(A/p) — I, and sincel4(A/p) in injective, the image of is a direct summand df.

(iii): Clearly Assa(M) C AssaE4(M). Conversely, supposee AsssE4(M); then there
exists anA-submoduleV C E4 (M) isomorphictoA/p. SinceE4 (M) is an essential extension
of M, we haveN N M # 0, sop € Assa(M).

(iv) follows directly from (iii).

(v): We know already thaty” := Ag ®4 FE4(M) containsMg and is injective (lemma
[4.3.19(iii)), so it remains only to check th@’ is an essential extension @ff. Thus, let
x € E'\ Ms; we have to check tha¥V := Agsx N Mg # 0, and clearly we may assume
thatr € E4(M). Set.7 := {Anny(tx) | t € S}; sinceA is noetherian, admits maximal
elements, and notice thdisx = Agtx for anyt € S. Hence, we may replaceby tx for some
t € S, after which we may assume thahn 4 (x) is maximal in.7. We may writeAzNM = Iz
for someideall C A, soN = Igx; letaq,...,a;, € A be a system of generators fbrand
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notice that/x # 0, sinceE£4(M) is an essential extension 8f. Suppose thalv = 0; then
there exists¢ € S such that the identitya,2 = 0 holds inA for¢ = 1,..., k. However,
Ann,(z) = Annx(tx) by construction, sdx = 0, a contradiction. O

Theorem 4.3.22.Let A be a noetherian ring/ an injectiveA-module. We have :
(i) I decomposes as a direct sum of the form

(4.3.23) I~ P Ea(A/p)")
pESpec A
for a system of (small) set, | p € Spec A).
(i) Moreover, the cardinality o2, equalsdim,,,) Hom 4, (x(p), I,), for everyp € Spec A
(wherex(p) := A,/p,). Especially, this cardinality is independent of the deposi-

tion (4.3.23)

Proof. (i): Denote by.# the set of all indecomposable injective submoduleg,and by.”
the set of all subset§ C .7 such that the natural malp := .., G — I is injective. The
set. is partially ordered by inclusion, and by Zorn’s lemm#, admits a maximal element
A in light of propositior 4.3.2/1(ii), it suffices to check thia, = I. However,l , is injective
(lemma[4.3.19(i)), hencé = I, @ J for someA-moduleJ, and it is easily seen that is
injective as well. We are thus reduced to showing that 0. Now, if J # 0, letp € AssyJ
be any associated primé (|61, Th.6.1(i)]); then(A/p) is an indecomposable injective direct
summand of/ (proposition 4.3.21(i,ii)), and therefore, & E4(A/p) is a submodule of,
contradicting the maximality of# .
(ii): In light of (i) and propositiori 4.3.21(iii,v) we have

Homa, ((p), 1) = Homa, (x(p), Ea(A/);™") = #(p) ") @) Homs, ((p), Ea, (5(1)))
so we are reduced to showing the following :
Claim4.3.24 Letm C A be any maximal ideal, and set= A/m; then
d := dim, Homu(k, E4(k)) = 1.

Proof of the claim. Sincex C E4(r), obviouslyd > 1. On the other hand, we have a natural
identification

Homy(k, Ea(k)) = F :={x € Ex(r) | mz = 0}.
If d > 1, we may findz € F such thatdxz N x = 0; but this is absurd, sinc&,(x) is an
essential extension af. O

4.3.25. When dealing with the more general coherent ringftsaippear in sections 5.7 dnd|5.8,
the injective hull is no longer suitable for the study of Ibcahomology, but it turns out that
one can use instead a “coh-injective hull”, which works psivell.

Definition 4.3.26. Let A be a ring; we denote byl-Mod,,, the full subcategory ofi-Mod
consisting of all coheremd-modules.
(i) An A-moduleJ is said to becoh-injectivef the functor
A-Mod,, — A-Mod® ' M — Homu(M, J)

is exact.
(i) An A-moduleM is said to bev-coherentf it is countably generated, and every finitely
generated submodule 61 is finitely presented.

Lemma 4.3.27.Let A be aring.
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(i) Let M, J be twoA-modules,N C M a submodule. Suppose thatis coh-injective
and both)M and M /N are w-coherent. Then the natural map:

Homu (M, J) — Homu (N, J)

IS surjective.
(i) Let (Jy | A € A) be a filtered family of coh-injectivel-modules. Themglilxxn Jy is
€

coh-injective.
(i) Assume that! is coherent, letV/, be an object oD~ (A-Mod.,,) and /* a bounded
below complex of coh-injectivé-modules. Then the natural map

Hom? (M,, I*) — RHom% (M., I*)
is an isomorphism i (A-Mod).

Proof. (i): Since M is w-coherent, we may write it as an increasing unign., M, of finitely
generated, hence finitely presented submodules. Forreachi, the image of\/,, in M/N is
a finitely generated, hence finitely presented submoduéetbreN,, := N N M,, is finitely
generated, hence it is a coherenmodule, and clearly = | J,, . V,. Supposep : N — J is
any A-linear map; for every, € N, setP,,, := M,,+ N,,.1 C M, and denote by,, : N,, — J
the restriction ofp. We wish to extend to a linear mapy’ : M — J, and to this aim we
construct inductively a compatible system of extensiphs P, — J, for everyn > 0. For
n = 1, one can choose arbitrarily an extensighof ¢, to P,. Next, suppose. > 0, and
that !, is already given; sincé,, C M,,, we may extend, to a mapy! : M, — J. Since
M, N N,+1 = N, and since the restrictions of andy, ., agree onv,, there exists a unique
A-linear mapy/, ., : P, — J that extends both! andy,, 1.

(i): Recall that a coherentl-module is finitely presented. However, it is well known that
an A-module M is finitely presented if and only if the funct@p — Hom, (M, Q) on A-
modules, commutes with filtered colimits (seq. [36, Prop.2.3.16(ii)]). The assertion is an
easy consequence.

(iii): Since A is coherent, one can find a resolutipn: P, — M, consisting of freeA-
modules of finite rank (cpl [36,7.1.20]). One looks at the spectral sequences

EY : Homu(P,, I?) = RP*"Hom? (M,, I°)
FP?: Homyu(M,, I?) = H”*9Hom?, (M,, I*).
The resolutiony induces a morphism of spectral sequené®s — FE?*; on the other hand,

since? is coh-injective, we have E5? ~ Homy(H,F,, 19) ~ Homu(H,M,,1?) ~ F3}?, so
the induced mag?? — E?? is an isomorphism for eveny, ¢ € N, whence the claim. O

4.3.28. LetA be a coherentring7 C Spec A a constructible closed subset; we denote by
A-MOdCOh’Z

the full subcategory oA-Mod,.;, whose objects are the (coherermodules with support
contained inZ. Let/ C A be any finitely generated ideal such tlat= Spec A/I; it is easily
seen that
Ob(A-Modo,z) = _J Ob(A/I"-Mod.a).
neN
Now, consider a functor
T : A-Mod;,, ; — Z-Mod.
Notice that'M is naturally anA-module, for every coherent-module) : indeed, ifa € A
is any element, we may define the scalar multiplicatiorlon 7'M as theZ-linear endomor-
phismT'(a - 1,,). In other words factors through the forgetful functot-Mod — Z-Mod,;
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especially, if we set
Hp = coliII\TnT(A/[")
ne

we get a naturali-linear map
M5 coli&nHomA(A/I”, M) — coligl Homu (T M, T(A/I")) — Homa(T M, Hr)
ne ne
whence a bilinear pairing

M xTM — Hp
which in turns yields a natural transformation

wy cTM — HOH’IA(M, HT) for everyM € Ob(A'MOdCO}Lz).

Lemma 4.3.29.In the situation of(4.3.28) the following conditions are equivalent :

(@) w is an isomorphism of functof& = Hom 4 (—, Hr).
(b) T is left exact.

Proof. Clearly (a)=-(b). For the converse, suppose first that Spec A, in which case, notice
that Hy = T A andw, is the natural isomorphistfiA = Hom 4 (A, T A); then, if M is any
coherent4-module, pick a finite presentation

Yoo AT S AP 5 M 0

and apply thé&-lemma to the resulting ladder gf-modulesvy, with left exact rows, to deduce
thatw,, is an isomorphism. Next, for a general idéand )/ an A-module withSupp M C Z,
we may findn € N such thatV/ is anA/I"-module; sinced/I* is coherent, the foregoing case
then shows that the induced map
TM — Hom (M, T(A/I%))
is an isomorphism, for everly > n. To conclude, it suffices to remark that the natural map
C%IiII\In Hom (M, T(A/I*)) — Hom (M, Hy)
S

is an isomorphism, sinc#/ is finitely presented(([36, Prop.2.3.16(ii)]). U

We wish next to present a criterion that allows to detect, rgtbe functord” as in [4.3.28),
those that are exact. A complete characterization shalinengnly for a restricted class of
coherent ring; namely, we make the following :

Definition 4.3.30.Let A be a coherent ring. We say thais anArtin-Reeging, if the following
holds. For every finitely generated iddat- A, every coherenti-module)/, and every finitely
generatedd-submoduleV C M, theI-adic topology ofM/ induces thd-adic topology onV.

We can then state :

Proposition 4.3.31.In the situation of(4.3.28)suppose furthermore that is an Artin-Rees
ring. Then the following conditions are equivalent :

() Hr is a coh-injectiveA-module.

(b) T is exact.

Proof. Clearly (a}=-(b). For the converse, Iét/ be any coherenti-module, andV C M any
finitely generatedd-submodule; it suffices to check that the induced map

Hom (M, Hr) — Homu (N, Hr)

is surjective. However, lef : N — Hp be anyA-linear map; sinceV is finitely presented,
there exists: € N such thatf factors through am-linear mapf, : N — T(A/I") ([36,

Prop.2.3.16(ii)]), and clearly" N C Ker f,,, soI"N C Ker f as well. Since thé-adic topol-
ogy of N agrees with the topology induced by thadic topology of)/, there existé € N such
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that/*M NN C I"N. SetN := N/(I*M n N); thenN is a finitely generatedi-submodule
of M/I*M, and especially it is a coheredtmodule. By constructionf factors through ant-
linear mapf : N — Hyp; assumption (b) and lemrma4.3.29 imply tifaéxtends to ami-linear
mapM/I*M — Hyp, and the resulting map/ — Hy extendsf, whence (a). O

Remark 4.3.32. (i) In the terminology of definitioln 4.3.30, the standard iAfRees lemma
implies that every noetherian ring is an Artin-Rees ring. 3hell see later that, it is any val-
uation ring, then every essentially finitely presentédlgebra is an Artin-Rees ring (corollary
and theorein 5.7.29).

(i) On the other hand, ifA is noetherian, claih 4.3.20 easily implies that&module is
coh-injective if and only if it is injective.

(iii) Combining (i) and (ii) with proposition 4.3.31, we recer [44, Exp.IV, Prop.2.1].

Example 4.3.33.Let k be a field,A a noetherian,-algebramn € A a maximal ideal such
thatx := A/m is a finite extension of,, and setZ := {m} C Spec A. Then every object of
A-Mod, 7 is a finite dimensionat,-vector space, and therefore the functor

T : A-Modoh 7z — ko-Mod M +— Hom,, (M, Kqg)
is exact. Proposition 4.3.81 and remark 4.8.32(ii) thentsay

Hp = coliIIVn Hom,,(A/m", kg)
ne

is an injectived-module. More precisely, notice thHbm 4 (x, Hy) = Anng,.(m) = T'(k) ~ &,
thereforeH is the injective hull of the residue fiekd

4.3.34. Flatness criteria. The following generalization of the local flatness criter@answers
affirmatively a question raised in [32, Ch.IV, Rem.11.3.12]

Lemma 4.3.35.Let A be aring,/ C A an ideal, B a finitely presentedi-algebra,p C B
a prime ideal containing B, and M a finitely presented3-module. Then the following two
conditions are equivalent:

(a) M, is a flat A-module.
(b) M,/IM, is aflatA/I-module andlor;' (M,, A/I) = 0.

Proof. Clearly, it suffices to show that ()(a), hence we assume that (b) holds. We write
as the union of the filtered familyA, | A € A) of its local noetherian subalgebras, and set
A= AJI I, = InNA,, A, = A,\/I, for every\ € A. Then, for some\ € A, the 4-
algebraB descends to ad \-algebraB,, of finite type, andV/ descends to a finitely presented
By-moduleM,. For everyu > A we setB,, := A, ®4, By andM, := B, ®p, M. Up to
replacingA by a cofinal family, we can assume that and M, are defined for every, € A.
Then, for every\ € A letg, : By — B be the natural map, and set:= g, 'p.

Claim4.3.36 There exists\ € A such thatM,, ,, /I, M, ,, is a flatA),-module.

Proof of the claimSet B} := B\ ®4, A} andM; := M, ®4, A) for every\ € A; clearly the
natural maps

colim A\ — A/TA  colimBy — B/IB  colim M} — M/IM
AeA AeA AeA

are isomorphisms. Then the claim follows from (b) and [32,I¢Cor.11.2.6.1(i)]. O

In view of claim[4.3.36, we can replack by a cofinal subset, and thereby assume that
My, /1M, ,, is a flatA}-module for every\ € A.

Claim4.3.37 (i) The natural mapcalei}\n Tor{* (M, A}) — Tori(M, A’) is an isomorphism.
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(i) For every\, u € A with ;o > ), the natural map:
Pt Ay ®a, Tori™ (M, A}) — Torf“(Mu, A)
IS surjective.

Proof of the claim.For every\ € A, let L,()M)) denote the canonical free resolution of the
Ax-modulelM,, ([17, Ch.X,§3, n.3]). Similarly, denote by.,()/) the canonical free resolution
of the A-module. It follows from [18, Ch.II,§6, n.6, Cor.] and the exactness properties of
filtered colimits, that the natural mapnileirAn Lo(My) — Lo(M) is an isomorphism. Hence:

L
colitn Hy(Ay ©a, M) = colim He(A) @4, Lo(M)))
~ Hy (A ®4 C(,)\lei/I\n LJ(M)))
~ H (A" ®4 Lo(M))

~ Hy(A $4 M)
which proves (i). To show (ii) we use the base change spesscplences foror ([75, Th.5.6.6])
E2.: Tory» (Tor!> (My, A,), A),) = Tor)?, (M, A))

p+q
F :Tor;l/A(Tor?A(M)\,A//\),AL) = Tor (My, A,).

ptq
SinceF} = 0, the natural map

Foy = A, @4, Tor)>(My, Ay) — Tor{™ (M, Al)
is an isomorphism. On the other hand, we have a surjection:
Tor’fh(M,\, AL) — B = Torf“(Mu, AL)
whence the claim. O
We deduce from claimn 4.3.87(i) that the natural map

C(;\lel/r\n TorfA(M&P,\v A/A) - Torf(Mpa A,) =0

is an isomorphism. Howevefiori* (M, ,,, A}) is a finitely generated, ,, -module by [17,

Ch.X, §6, n.4, Cor.]. We deduce thdf,,, = 0for someu > A; thereforél“orf“(MM,pN, Al) =
0, in view of claim[4.3.3(ii), and then the local flatnessemibn of [28, Ch.0510.2.2] says
thatM,,,, is a flatA,-module, so finally), is a flat A-module, as stated. O

Lemma 4.3.38.Let A be aring,I C A anideal. Then:

() The following are equivalent :
(@) The mapA — A/I is flat.
(b) The mapA — A/I is a localization.
(c) For every prime ideap C A containing/, we havel A, = 0, especiallyV/(I) is
closed under generizations fpec A.
(i) Suppos¢ fulfills the conditionga)-(c)of (i). Then the following are equivalent :
(a) I is finitely generated.
(b) I is generated by an idempotent.
(c) V(I) C Spec A is open.

Proof. (i): Clearly (b)=(a). Also (a}(c), since every flat local homomorphism is faithfully
flat. Suppose that (c) holds; we show that the natural dap= (1 + I)™*A — A/l is
an isomorphism. Indeed, notice thaB is contained in the Jacobson radical Bf hence it
vanishes, since it vanishes locally at every maximal idéd.o
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(ii): Clearly (c)=(b)=-(a). By condition (i.c), we see that every elemenf afanishes on an
open subset dipec A containingV’ (1), hence (a}-(c) as well. O

4.3.39. For every ringl, we let.#(A) be the set of all ideal$ C A fulfilling the equivalent
conditions (i.a)-(i.c) of lemmia4.3.B8, arii( A) the set of all closed subsBtC Spec A that are
closed under generizations$pec A. In light of lemmd 4.3.38(i.c), we have a natural mapping:

(4.3.40) J(A) = Z(A) - e V(D).

Lemma 4.3.41.The mappind4.3.40)is a bijection, whose inverse assigns to &y 2°(A)
the ideall[Z] consisting of all the elemenfse A such thatf A, = 0 for everyp € Z.

Proof. Notice first that/ [V (I)] = I for everyl € .#(A); indeed, clearlyl C I[V(I)], and if
f e I[V(I)], thenfA, = 0 for every prime ideap containing/, hence the image of in A/
vanishes, s¢ € [. To conclude the proof, it remains to show thatZifis closed and closed
under generizations, thén(I[Z]) = Z. However, say that = V'(J), and suppose thgte J;
thenSpec A, C Z for everyp € Z, hencef is nilpotent inA,, so there existe € N and an
open neighborhood” C Spec A of p such thatf™ = 0 in U. SinceZ is quasi-compact, finitely
many such’ suffice to coverZ, hence we may find € N large enough such thgt' € 1[Z],
whence the contention. OJ

Proposition 4.3.42.Let f : X’ — X a quasi-compact and faithfully flat morphism of schemes.
Then the topological space underlyidgis the quotient ofX’ under the equivalence relation
induced byf.

Proof. The assertion means that a subget X is open (resp. closed) if and only if the same
holds for the subsef~'Z of X’. For any subsef of X (resp. ofY’), we denote byZ the
topological closure o in X (resp. inY’). The proposition will result from the following more
general :

Claim4.3.43 Letg : Y/ — X be a flat morphism of scheméds, Y” — X a quasi-compact
morphism of schemes, and set= A(Y"”). Then

67 =417

Proof of the claim Quite generally, ifl" is a topological spacé]/ C T an open subset, C T
any subset, and the topological closure of in X, thenZ N U is the topological closure
of Z NU in U (where the latter is endowed with the topology inducedXy: indeed, set
Z':=7ZNnU,W :=X\U,and notice that

ZUW=ZUW=ZUW=2ZUW

hence we may assume thatC U, in which case the assertion is obvious.

Now, let(U; | < € I) be any affine open covering of, and set/, := ¢~ 'U;, U" := h™'Uj;
for everyi € I; by the foregoing, we are reduced to showing the claim widnd# replaced
by the morphismg : U; — U; andhyy» : U — U;, hence we may assume thtis affine.
Likewise, by considering an affine open coveringdfand arguing similarly, we reduce to the
case wher@”’ is affine as well. In this situation, sinéds quasi-compact,” is a finite union of
affine open subsets/, ... U/, hence we may replacdé” by the disjoint union ot/y, ... U/,
and assume that” is also affine. Say thak = Spec A, Y’ = Spec B’ andY” = Spec B”,
and denote by C A the kernel of the ring homomorphisih — B” corresponding t&; then
7 = Spec A/I. Leth’ : Y' xx Y" — Y’ be the morphism obtained fromby base change, and
notice thaty—!Z is the image of.’; therefore, if we lefl’ C B’ be the kernel of the induced map
B' — B'®4 B", we havey—1Z = Spec B’ /I'. However, since3’ is a flatA-algebral’ = I3/,
whence the claim. O
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Let nowZ C X be a subset, such thdt := f~'Z is closed inX’, and endowZ’ with the
reduced subscheme structure. The restrictionZ’ — X of f is then quasi-compact, and
clearly f~*(hZ') = Z'. Thus, claini4.3.43 says thAt'Z = Z’, which means that = Z, i.e.

7 is closed, as stated. O

Corollary 4.3.44. Let A be aring whose séilin A (resp.Max A) of minimal prime (resp. max-
imal) ideals is finite. I1fZ C Spec A is a subset closed under specializations and generizgtions
thenZ is open and closed.

Proof. WhenMin A is finite, any sucl¥ is a finite union of irreducible components, hence itis
closed. But the same applies to the complemerif,oi’hence the contention. Whehis semi-
local, consider the faithfully flat mag — B, whereB is the product of the localizations of
at its maximal ideals. Clearly the assertion holdsBohence forA, by propositioh 4.3.42. [

The following result is borrowed from [65, Cor.2.6].

Proposition 4.3.45.Let R be a ring, R’ any finitely generated?-algebra, and suppose that
Spec R is a noetherian topological space. Then the same holdSgec R'.

Proof. Let us first remark :

Claim4.3.46 LetT be a quasi-compact and quasi-separated topological sp#ckave :

(i) T is noetherian if and only if every closed subsefof constructible.

(i) Denote by% the set of all non-constructible closed subset% ppartially ordered by
inclusion. If ¢ is not empty, it admits minimal elements, and every minintahent
of ¢ is an irreducible subset af.

Proof of the claim{i) shall be left to the reader.

(ii): Let {Z; | i € I} be a totally ordered subset &f, and setZ := (., Z;; we claim
thatZ € ¥¢. Indeed, if this fails,Z is constructible, hence its complement is a quasi-compact
open subset of’, and therefore it equal§ \ Z; for somei € I; but thenZ = Z;, so Z; is
constructible, a contradiction. By Zorn’s lemma, we dedinag¢ 4 admits minimal elements.
Let Z € ¥ be such a minimal element, and suppose #het not irreducible; thel = 7, U 7,
for some closed subsef§, 7, strictly contained inZ. By minimality of Z, both Z; and 7, are
constructible, and therefore the same must holdZoa contradiction. O

Let R’ be a finitely generated®-algebra. In order to show th&pec R’ is noetherian, we
may assume thak’ is a free polynomialR-algebra of finite type, and then an easy induction
reduces to the case wheRé = R[X]. Now, suppos&” := Spec R[X] is not noetherian, and
let f : Y — X := Spec R; by claim[4.3.46 we may find an irreducible non-contructititesed
subsetZ C Y. By assumption, the topological closurg of f(Z) in X is an irreducible
constructible closed subset, and therefgréiV is a constructible closed subset¥f(recall
that every morphism of schemes is continuous for the coctdbta topology). It follows that
every constructible subset ¢f 'V is also constructible as a subsetYof especially,Z is not
constructible inf ~!1W. We may then replac& by W andY by f~'W, and assume from start
that f(Z) is a dense subset of and R is a domain, in which case we skt := Frac R. Let
p € Y be the generic point of; sop is a prime ideal of?[X], andp K[X] is a principal ideal
generated by some polynomiglX) € p. Letc € R be the leading coefficient gf( X), set
U := Spec R[c™'] and notice thaf (Z) N U # @. Hence,Z \ f~'U is a closed subset af
strictly contained inZ, so it is constructible. It follows thaZ N f~'U is a non-constructible
subset ofY’; sincef~!U is a constructible subset af, we conclude thaZ N f~'U is a non-
constructible subset of 'U. Hence, we may replack by R[c~!] and assume from start that
pK[X] is generated by a monic polynomjglX ) € p. However, we notice :



258 OFER GABBER AND LORENZO RAMERO

Claim 4.3.47 Let A be a domainK the field of fractions of4, p C A[X] any ideal, and
p(X) € p a monic polynomial that generate& [ X|. Thenp(X) generates.

Proof of the claim.This is elementary : consider agyX) € p, and letg(X) = ¢(X) - p(X) +
r(X) be the euclidean division af by p in K[X]. Sincep generatep K[ X]|, we haver = 0,

and sincep is monic, itis easily seen thate A[X], whence the claim. O
Claim[4.3.47 says thatis a principal ideal of?[ X]; but in that caseZ must be constructible,
a contradiction. O

4.4. Graded rings, filtered rings and differential graded algebras.

4.4.1. Graded rings.To motivate the results of this paragraph, let us reviewflyribe well
known correspondance betweemgradings on a modul&/ (for a given commutative groulp),
and actions of the diagonalizable groyI') on M.

Let S be a scheme; on the categ@yh /S of S-schemes we have the presheaf of rings :

ﬁSch/S : SCh/S — Z-Alg (X — S) — F(X, ﬁx)

Also, let M be ands-module; following [24, Exp.l, Déf.4.6.1], we attach fd the Ogep, 5-
module#,, given by the rule :(f : X — S) — ['(X, f*M). If M and N are two quasi-
coherentUs-modules, and : S’ — S an affine morphism, it is easily seen that

(442) F(S/, %Omﬁsch/s(WM, WN)) = HOH’I@S(M, f*ﬁsl ®ﬁs N)
(seell24, Exp.l, Prop.4.6.4] for the details).
Let f : G — S be a groupb-schemei.e. a group object in the categoBch/S. If f is affine,

we say thats is anaffine groupS-schemein that case, the mutiplication la@ x s G — G and
the unit sectiort' — G correspond respectively to morphismsgfalgebras

AG : f*ﬁg — f*ﬁg ®ﬁs f*ﬁg £q: ﬁg — f*ﬁg
which make commute the diagram :

f*ﬁG

Ag

J+0c ®es [:0c
Acl ll.f* o5 ®AG
[+06 @y f+Oc f[+06 o, [+O0c Qe [+OG
as well as a similar diagram, which expresses the unit ptppée : seel[24, Exp.I1§4.2].

Ac®ly, 04

Example 4.4.3.Let G be any commutative group. The presheaf of groups
Dg(G) : Sch/S — Z-Mod (X = S) = Homyz mod (G, O (X))
is representable by an affine grodpschemeDs(G), called thediagonalizable group scheme
attached taz. Explicitly, if S = Spec R is an affine scheme, the underlyisgscheme of
Ds(G) is Spec R[G], and the group law is given by the map®falgebras
A¢: R[G] = R|G]®r R|G] = R[G x G] g+ (g,9) foreveryge G

with unit e : R[G] — R given by the standard augmentation (see [24, EXd.4]). For a
general schem§, we haveDg(G) = Dgpecz(G) Xspecz S (With the induced group law and
unit section).

Definition 4.4.4. Let M be ands-module,G a groupS-scheme. AG-module structuren M
is the datum of a morphism of presheaves of groupSdy S :

hG — szfutﬁs(:h/s (WM)
(wherehg denotes the Yoneda imbedding : see (1.1.19)).
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4.4.5. Suppose now thgt: G — S is an affine grougs-scheme, and/ a quasi-coherent
Os-module; in view of [(4.4.2), @&-module structure o/ is then the same as a map @j§-
modules

pr s M = [0 @y M

which makes commute the diagrams :

M I3, f*ﬁG ®ﬁs M M 153 f*ﬁG ®ﬁs M
M]Ml lAG@l]\/] 1JM l&c@)lh{
1, 6,®pM
f+O0c @py M [+06 Qey [+06 @, M

Example 4.4.6.Let " be a commutative group;2s(I")-module structure on a quasi-coherent
Os-moduleM is the datum of a morphism @fs-modules

Mar - M — ﬁs[r] ®ﬁs M = Z[F] Xz M

which makes commute the diagrams|of (4.4.5)S = Spec R is affine, M is associated to an
R-module which we denote also By in this casey,, is the same as a syste(m(”) |vyel)
of Os-linear endomorphisms af/, such that :

o for every:c € M, the subsefy € I | M ( ) # 0} is finite.

° Mg\}) ONM =0y, -1y and EWGF par = Lar.

In other words, thm(”) form an orthogonal system of projectors bf, summing up to the
identity 1,,. This is the same as the datum of @rading onM : namely, for a giverDg(T")-
module structure:,,, one lets

gr M = p$)(M)  foreveryy el
and conversely, given B-gradinggr, M on M, one defineg:,,; as theR-linear map given by
the rule iz — v ® z for everyy € I" and everyr € gr. M.

4.4.7. Suppose now that: X — S is an affineS-scheme, andg : G — S an affine group
S-scheme. AG-actionon X is a morphism of presheaves of groups :
hg — @utgen/sn(hx).
(notation of [1.1.19)); the latter is the same as a morphisstschemes
(4.4.8) GxgX — X
inducing aGG-module structure op, O :
9+O0x — f.0q Qg 9 Ox

which is also a morphism afs-algebras. For instance,$f = Spec R is affine, and> = Dg(I")
for an abelian groug’, we may writeX = Spec A for some R-algebraB, and in view of
exampld_4.4]6, thé&'-action onX is the same as the datum of'agradedR-algebra structure
on B, in the sense of the following :

Definition 4.4.9. Let (T", +) be a commutative monoid a ring.

(i) A I'-graded R-algebrais a pairB := (B, gr,B) consisting of ank-algebraB and a
I'-gradingB = P, - gr, B of the R-module B, such that

gr.B-gr,BCgr, B for everyy,y € T.

Y+

A morphism ofl'-gradedR-algebras is a map ak-algebras which is compatible with
the gradings, in the obvious way.
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(i) Let B := (B,gr,B) be al'-gradedR-algebra. AI'-graded B-moduleis a datum
M = (M gr, M) consisting of a-moduleM and al’-gradingM = . .- gr, M of
the R-module underlyingV/, such that

gr,B-gr,M Cgr M for everyy,y €T

Yy
A morphism ofl'-gradedB-module is a magf : M — N of B-modules, such that
f(gr,M) C gr. N, foreveryy € T.

@iy If f: I — I'is any morphism of commutative monoids, amfl is any I'-graded
R-module, we define thE’-gradedR-modulel” xr M by setting

gr.(I" xp M) := gty )M for everyy e I,

Notice that if B := (B, gr,B) is al'-gradedR-algebra, thed” x B with its grading
gives al’-gradedR-algebral” x B, with the multiplication and addition laws deduced
from those ofB, in the obvious way. Likewise, ifM, gr, M) is al’-gradedB-module,
thenI” x M is naturally al’-gradedl” x B-module.

(iv) Furthermore, ifN is anyI”-gradedR-module, we define thE-gradedR-moduleN
whose underlying?z-module is the same d€, and whose grading is given by the rule

gr (Nyr) = EB gr,N.
YEF~H)
Just as in (iii), ifC := (C,gr,C) is al’-gradedR-algebra, then we get B-graded
R-algebraC ., whose underlying-algebra is the same @5 Lastly, if (N, gr,V) is
al’-gradedC-module, thenV,r is al’-gradedC ,.-module.

Example 4.4.10.(i) For instance, thé?-algebraR[I'] is naturally al’-gradedR-algebra, when
endowed with thé'-grading such thatr. R[I'] := R for everyy € I".

(i) Suppose that' is an integral monoid. Then, tolagradedR-algebraB, the correspon-
dance described in_(4.4.7) associatd3dI'¢P)-action onSpec B (whereS := Spec R), given
by the map ofR-algebras

Up:B— B[l['lC B[I'**] : b—b-vy for everyy € T', and every € gr. B.
Remark 4.4.11.(i) Let R be aring; consider a cartesian diagram of monoids
Iy —14
FQ - FQ

and letB be anyl';-gradedR-algebra. A simple inspection of the definitions yields agnitty
of I'y-gradedR-algebras :
I'y XTo B/Fo = (Fg X1 B)/FQ.

(i) Suppose that is a finite abelian group, whose order is invertibleZin ThenDg(T) is
an étaleS-scheme. Indeed, in light df (2.3]52), the assertion is ceduo the case whete =
Z/nZ for some integen > 0 which is invertible in0s. However,R[Z/nZ| ~ R[T]|/(T" — 1),
which is an étalek?-algebra, ifn € R*.

(i) More generally, suppose thétis a finitely generated abelian group, such that the order
of its torsion subgroup is invertible ifis. Then we may writd” = L ¢ I, whereL is a free
abelian group of finite rank, ard,, is a finite abelian group as in (ii). In view df (2.3152) and
(i), we conclude thaDg(I") is a smoothS-scheme in this case.

(iv) LetI be as in (iii), and suppose that is anS-scheme with an action @ := Dg(I').
Then the corresponding morphism (4]14.8) and the projegtionGG x s X — G induce an auto-
morphism of the&z-scheme> x ¢ X, whose composition with the projectipr : G xg X — X
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equals[(4.4)8). We then deduce that bath (4.4.8)apdre smooth morphisms. This observa-
tion, together with the above correspondance betwegraded algebras andg(I")-actions, is
the basis for a general method, that allows to prove pragseoti graded rings, provided they can
be translated as properties of the corresponding schetmek are well behaved under smooth
base changed/Ne shall present hereafter a few applications of this nektho

Proposition 4.4.12.LetI" be an integral monoidB a I'-graded (commutative, unitary) ring,
and suppose that the order of any torsion elemeritfis invertible inB. Then :

(i) nil(B[I']) = nil(B) - B[I.

(i) nil(B) is al'-graded ideal ofB.

Proof. (i): Clearly nil(B) - B[I'] C nil(B[I']). To show the converse inclusion, it suffices to
prove thatnil(B[I']) C pB[I'| for every prime ideap C B, or equivalently that3/p[l'] is a
reduced ring for every sugh Since the natural map — I'¢P is injective, we may further
replacel’ by I'¢?, and assume that is an abelian group. In this casB,/p[l'] is the filtered
union of the ringsB/p[H|, whereH runs over the finitely generated subgroup$ 'pit suffices
therefore to prove that eadh/p[H] is reduced, so we may assume thas finitely generated,
and the order of its torsion subgroup is invertibleBn In this caseB/p[T'] is a smoothB/p-
algebra (remark 4.4.11(iii)), and the assertion follovesir{33, Ch.IV, Prop.17.5.7].

(ii): The assertion to prove is thatl(B) = . . nil(B) N gr, B. However, let)p : B —
B[] be the map defined as in example 4.4.10(ii); now, (i) implregt ¢ restricts to a map
nil(B) — nil(B) - B[I'|, whence the contention. O

For a ring homomorphism — B, let us denote byA, B)” the integral closure ofl in B.
We have the following :

Proposition 4.4.13.LetI" be an integral monoidf : A — B a morphism ofl’-graded rings,
and suppose that the order of any torsion element&fis invertible inA. Then :

() (A, B)"[L*] = (A[l'*], B[I'*P])".

(i) The grading ofB restricts to al’-grading on the subringA, B)".

Proof. (i): We easily reduce to the case whérés finitely generated, in which casgI'®?] is a
smoothA-algebra (remark 4.4.11(iii)), and the assertion follovesf [31, Ch.IV, Prop.6.14.4].
(ii): We consider the commutative diagram

AT Al
| |
9B
B —— BT
whered, anddp are defined as in examgle 4.4.10(ii). Say that (A, B)”; thendg(b) €

(A[T], BIT'])”. In light of (i), it follows thatdg(b) € (A, B)”[['*?] N B[I'] = (A, B)”[[']. The
claim follows easily. g

Corollary 4.4.14. In the situation of propositiod.4.12 suppose moreover, thatis a domain.
Then we have :

() The integral closureé3” of B in its field of fractions id¢P-graded, and the inclusion
mapB — B is a morphism of*¢P-graded rings.
(i) Suppose furthermore, thitis saturated. TheB” is aI'-graded ring.

Proof. (Notice that, sincd’ is integral, the grading oB extends trivially to d'¢P-grading, by
settinggr, B := 0 for everyy € I'*? \ T'.) Clearly B is the filtered union of its subalgebras
A xp B, whereA ranges over the finitely generated submonoid§.oHence, we are easily
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reduced to the case whdras finitely generated. Let be the multiplicative system of all non-
zero homogeneous elementsif It is easily seen thatt := S~!B is aI'*"-graded algebra,
K = gryAis afield, andlimg gr, A = 1 for everyy € I'*". Moreover, we have

gr,A-gr,A=gr , A  foreveryy v eI

Y+
Claim4.4.15 Ais a normal domain, and If is saturated]’ xr« A is normal as well.

Proof of the claimPick a decomposition®® = L & T', whereL is a free abelian group, arid
is the torsion subgroup a@feP. It follows easily that the induced map éf-algebras

(L XTep A) QK (T XTep A) — A

is an isomorphism. MoreoveF, := T xr A is a finite field extension oK', andL X e A ~
K[L]. Summing upA is isomorphic toF'[L]|, whence the first assertion.

Next, suppose that is saturated; theR ~ I'* x I'* (lemmd3.2.10), and we have a decompo-
sition™ = H®T, whereH is a free abelian group. In this case, we may take- (I'*)&P ¢ H,
and the foregoing isomorphism induces an identification

I xreo A~ EI* @ HJ
so the second assertion follows, taking into account the&d&.16(iii). O
The corollary now follows straightforwardly from claim 418 and proposition 4.4.1.3. [

Proposition 4.4.16.Suppose thafl”, +) — (I", +) is a morphism of fine monoid®, a finitely
generated (resp. finitely presentelgraded R-algebra, and)M a finitely generated (resp.
finitely presented)'-graded B-module. We have :

() TV xr B is a finitely generated (resp. finitely presentédalgebra.
(i) TV xr M is a finitely generated (resp. finitely present€dx -~ B-module.
(i) gr,M is afinitely generated (resp. finitely presented)3-module, for every, € I

Proof. Let B,, denote the direct surB & M, endowed with thgz-algebra structure given by
the rule :

(bl, ml) . (bz, mg) = (blbz, byms + bzml) for everybl, by € B andml, mo € M.

Notice thatB,, is characterized as the uniqéealgebra structure for which/ is an ideal with
M? = 0, the natural projectiod3,; — B is a map ofR-algebras, and th&-module structure
on M induced viar agrees with the givel-module structure of/.

Claim4.4.17 The following conditions are equivalent :

(a) TheR-algebraB,, is finitely generated (resp. finitely presented).
(b) B is afinitely generated (resp. finitely presentédalgebra andV/ is a finitely gener-
ated (resp. finitely presente@module.

Proof of the claim. (b)=-(a): Suppose first thab is a finitely generatedz-algebra, and\/
is a finitely generated-module. Pick a system of generatatg := {b,...,b,} for B and
Yy i={my,...,my} for M. Then itis easily seen thaiz U X), generates th&-algebraB,,.
For the finitely presented case, pick a surjectioiedlgebrasy : R[T}, ..., Ts] — B and of
B-moduley : B¥% — M. LetY; be a finite system of generators of the idKat . Pick also
a finite systend, .. ., b, of generators of thé&-moduleKer v); we may writeb; = Zle bije;
for certainb;; € B (Whereey, ..., e is the standard basis é®*). For everyi < r andj < k,
pick P,; € o 1(b;;). Itis easily seen thaB,, is isomorphic to thek-algebraR[T1, . .., T 4] /1,
whereT is generated b¥; U {>-" | P;Tys |i=1,... v} U{TTjis | 0 < i, j <k}
(a)=(b): Suppose thaB,, is a finitely generate&-algebra, and let,, . . ., ¢, be a system of
generators. For evely= 1, ...,n, we may writec; = b; + m; for uniqueb; € B andm; € M.
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SinceM? = 0, itis easily seen that,, . . ., m,, is a system of generators for ti'emodule),
and clearlyby, . .., b, is a system of generators for tiiealgebras.

Next, suppose thaB,, is finitely presented oveR. We may find a system of generators of
the typeb,, ..., bs, mq, ..., my for certainb; € B andm; € M. We deduce a surjection of
R-algebras

2 R[Tla .. '7T8+k]/(Ts+iTs+j | 0 S Z,] S k) — BM

such thatl; — b, for everyi < s andTj,, — m; for everyj < k. Itis easily seen thder ¢
is generated by the classes of finitely many polynomials.. . , P,, where

k
B :Qi(T17~~~7Ts)+ZTs+jQij(T17---aTs) 1= 1,...,7“

J=1

for certain polynomials);, Q;; € R[T1,...,Ts]. It follows easily thatB = R[T},...,Ts]/1,
where! is the ideal generated by, . .., Q,, and M is isomorphic to the3-module B¥* /N,
whereN is the submodule generated by the sys{@le Qij(b1, ..., bs)e; |i=1,....r} O

Suppose now thab is a finitely generatede-algebra; them3 is generated by finitely many
homogeneous elements, day. . ., b, of degrees respectivety, ..., v,. Thus, we may define
surjections of monoids

(4.4.18) N® =T e fori=1,...,s

(whereey, ..., e, is the standard basis f**) and of R-algebrasy : C — B, whereC' :=
R[N®#] is a free polynomialR-algebra. Notice that' is a N**-gradedR-algebra, and via
(4.4.18) we may regarg as a morphism of -gradedR-algebrasCr — B. ThenI := ker ¢
is al'-graded ideal of”, and if we set” := N®* x I we deduce an isomorphism Bf-graded
R-algebras

B =1 Xr BS (P X NDs C)/F//(F/ X1 I)
(see remark 4.4.11(i)).
Claim4.4.19 P xyes C'is a finitely presented-algebra.

Proof of the claim.Indeed, thisk-algebra is none else thd® P|, hence the assertion follows
from corollary{3.4.2 and lemma3.1.7(i). O

From claim 4.4.109 it follows already th&' is a finitely generated-algebra. Now, suppose
that M is a finitely generate®@-module, and set/’ := I x M; notice that

(4.4.20) I xr (By) = By,

In view of claim[4.4.1V, we deduce thaf’ is a finitely generated®’-module. Next, in cas®

is a finitely presented-algebra,/ is a finitely generated ideal @ r; as we have just seen, this
implies thatl” xp I is a finitely generatedl” x C/r)-module, and then claiim 4.4]119 shows
that B’ is a finitely presented-algebra. This concludes the proof of (i).

Lastly, if moreover)M is a finitely presented-module, assertion (i), together with (4.4.20)
and claim 4.4.17 say that” is a finitely presente@’-module; thus, also assertion (ii) is proven.
(ii): For any giveny € T, let us consider the morphisy: N — I" such thatl — ~, and set
B’ := N xr B. By (i), the R-algebraB’ is finitely generated (resp. finitely presented), and the

B’-moduleM’ := N xr M is finitely generated (resp. finitely presented). After agpig B by
B’ andM by M’, we may then assume from start that N, and we are reduced to showing
thatgr, M is a finitely generated (resp. finitely presentgd)5-module.
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Let mq,...,m; be a system of generators 6f consisting of homogeneous elements of
degrees respectively, . . ., j;. We endowB®* with the N-grading such that

t
gr, B¥ = @ gry,_j, Bei
i=1

(whereey, ..., e, is the standard basis d@®'); then theB-linear mapB®" — M given by
the rulee; — m,; for everyi = 1,...,t is a morphism ofN-gradedB-modules, and if\/ is
finitely presented, its kernel is generated by finitely manynbgeneous elements, .. ., b.
In the latter case, endow agai®* with the uniqueN-grading such that thé-linear map
¢ : B® — B given by the rulec; — b; for everyi = 1,..., s is a morphism ofN-graded
B-modules. Now, in order to check that, M is a finitely generatedr,B-module, it suffices
to show that the same holds far, B®'. The latter is a direct sum @f, B-modules isomorphic
to eithergr,B or gr, B. Likewise, if M is finitely presentedgr, M/ = Coker gr, ¢, and again,
gr, B®* is a direct sum ofr, B-modules isomorphic to either, B or gr, B; hence in order to
check thagr, M is a finitely presentedr, B-module, it suffices to show that, B is a finitely
presentegr,B-module. In either event, we are reduced to the case wheréN and M = B.

However, from (ii) we deduce especially that B = {0} xy B is a finitely generated (resp.
finitely presented)R-algebra, hence3 is a finitely generated (resp. finitely presentdg))
algebra as well;, we may then assume tRat= gr,B. Let X be a system of homogeneous
generators for th&-algebraB; we may then also assume that

(4.4.21) S Ngr,B = 2.

Then itis easily seen that tié modulegr, B is generated by Ngr, B. Lastly, if B is a finitely
presented?-algebra, we consider the natural surjection R[X] — B from the free polynomial
R-algebra generated by the 3gtand endowR[X:] with the unique grading for which is a map
of N-gradedR-algebras; thed := Ker ¢ is a finitely generateti-graded ideal witlgr,/ = 0.
As usual, we pick a finite systelil of homogeneous generators fqrclearly B, is isomorphic
to gr, Bo[X]/gr, 1. On the other hand, (4.4.21) easily implies thatR[>] is a freeR-module of
finite rank, and moreoveyr, I is generated by’ Ngr, I; especiallygr, B is a finitely presented
R-module in this case, and the proof is complete. O

4.4.22. Let(l',+) be a monoidR aring, B := (B, gr,B) al'-gradedR-algebra, and\/ a
I'-gradedB-module. We denote by/[v] theT'-gradedB-module whose underlying-module
is M, and whose grading is given by the rule :

graM[y] = grg,, M for everyy € I.

Remark 4.4.23.(i) In the situation of[(4.4.22), pick any systesn:= (z; | i € I) of homo-
geneous generators 8f, and say that; € gr, M for every: € I. Then we may define a
surjective map of'-gradedB-modules

L=@Bl-v]=+M : ez foreveryicl
i€l
where(e; | i € I) denotes the canonical basis of the figanoduleL (notice thate; € gr. L
for everyi € I).

(ii) IncaseM is a finitely generated-module, we may pick a finite systexmas above, and
then L shall be a freé3-module of finite rank.

(i) Especially, suppose thd? is a coherent ring andl/ is finitely presented as @-module;
then, in the situation of (ii), the kernel of the surjectibn— M shall be again a finitely
presented’-gradedB-module, so we can repeat the above construction, and finctinely a
resolution

)>RS I SRS Vi
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such thatl,, is a free B-module of finite rank, and the maf), is a morphism ofi’-graded
B-modules, for every, € N.

(iv) In the situation of (iii), suppose furthermore th&tis a flat R-algebra, in which case
gr, B is a flat R-module, for everyy € I'. Then itis clear that the resolutidnyields, in each
degreey € I" a flat resolutiort, of the R-modulegr, M.

4.4.24. Filtered rings and Rees algebras&ome of the following material is borrowed from [9,
Appendix Ill], where much more can be found.

Definition 4.4.25. Let R be a ring,A an R-algebra.
(i) An R-algebra filtration onA is an increasing exhaustive filtratidiil, A indexed byZ
and consisting of2-submodules ofi, such that :
1 € FilgA and  Fi;A-Fil;A C Fil;; ;A for everyi, j € Z.

The paird := (A, Fil, A) is called diltered R-algebra
(ii) Let M be anA-module. AnA-filtration on M is an increasing exhaustive filtration
File M consisting ofR-submodules, and such that :

Fil A - FiM C Fil; ;M for everyi, j € Z.

The pairM := (M, Fil,M) is called &filtered A-module
(iii) Let U be an indeterminate. THRees algebraf A is theZ-graded subring ofi[U, U~ !]

A)e:=EU" FiLA.
1€EZ

(iv) Let M := (M, Fil,M) be a filtered4A-module. TheRees modulef M is the graded

R(A).-module :
=@Pu-FiLM.
1€EZ
(A, Fil,A) a filtered R-algebra, gr, A the associated

Lemma 4.4.26.Let R be aring, A :=
!7the Rees algebra of. Then there are natural isomor-

gradedR-algebra,R(A), C A[U,
phisms of gradedk-algebras :

R(A)e/UR(A)e = gr,A  R(A)[U] = AlUU™

A
U-

and of R-algebras :
R(A)./(1 — U)R(A)s ~ A.

Proof. The isomorphisms witlar, A and with A[U, U] follow directly from the definitions.
For the third isomorphism, it suffices to remark that/, U—']/(1 — U) ~ A. O

Definition 4.4.27. Let R be aring A := (A, Fil, A) a filtered R-algebra.

(i) Suppose that! is of finite type overR, letx := (z1,...,z,) be a finite set of gener-
ators forA as anR-algebra, andk := (ky, ..., k,) a sequence af integers; theggood
filtration Fil, A attached to the paifx, k) is the R-algebra filtration such thatil; A is
the R-submodule generated by all the elements of the form

H:ch where : Zajkjgi and ay,...,a, >0
, o
for everyi € Z. A filtration Fil, A on A is said to begoodif it is the good filtration
attached to some system of generatoesnd some sequence of integkts
(i) The filtration Fil, A is said to bepositiveif it is the good filtration associated to a pair
(x,k) as in (i), such that moreovét > 0 for everyi = 1,...,n
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(i) Let M be afinitely generated-module. AnA-filtration Fil, M is called agood filtra-
tionif R(M, Fil, M), is a finitely generate®(A),-module.

Example 4.4.28.Let A := R[t;,...,t,] be the freek-algebra inn indeterminates. Choose any
sequencék := (ky,...,k,) of integers, and denote [#il, A the good filtration associated to
t := (t1,...,t,) andk. ThenR(A, Fil,A), is isomorphic, as a gradefd-algebra, to the free
polynomial algebraA[U] = R[U, t4, .. .,t,], endowed with the grading such thHate gr, A[U]
andt; € grkiA[U] for everyj < n. Indeed, a graded isomorphism can be defined by the rule :
U +— U andt; — U* - ¢, for everyj < n. The easy verification shall be left to the reader.

4.4.29. Letd andM be as in definition 4.4.27(iii); suppose that:= (m, ..., m,) is afinite
system of generators éf, and letk := (k4, ..., k,) be an arbitrary sequenceointegers. To
the pair(m, k) we associate a filtered-moduleM := (M, Fil, M), by declaring that :

(4.4.30) FibM :=my - Fil,_y A+ ---+m, - Fil;_, A for everyi € 7Z.

Notice that the homogeneous elements U*:, . . .. m,, - U*" generate the graded Rees module
R(M),., henceFil, M is a goodA-filtration. Conversely :

Lemma 4.4.31.For every good filtratior¥'il, M on M, there exists a sequenae of generators
of M and a sequence of integekssuch thatil, M is of the form(@.4.30)

Proof. Suppose thakFil, M is a good filtration; themR(A/), is generated by finitely many ho-
mogeneous elements, - U*, ..., m, - U*. Thus,

R(M); :=U"-FilbM =my -U" - A_p, 4+ +m, - U - Ay, for everyi € Z
which means that the sequeneas= (m,, ..., m,) andk := (ki, ..., k,) will do. O
4.4.32. LetA — B be a map of noetherian rings, C A an ideal,M a finitely generated
A-module, andV a finitely generated3-module. It is easily seen that

T; := Tor (M, N)

is a finitely generated-module, for every € N. We endowA (resp. B) with its /-adic (resp.
I B-adic) filtration, extended to negative integers, by the il := A for everyk < 0, and
denote byA (resp. B) the resulting filtered ring. Also, we definelfiltration onT;, by the
rule :

Fil, T; := Im (Tor*(I"M, N) — T;)  foreveryi € Nandn € Z.
Proposition 4.4.33.The B-filtration Fil,T; is good, for every € N.

Proof. Pick a finite set of generators, . . ., f, for I, and consider the surjective map of graded
A-algebras
(4.4.34) AU ty,....t,] > R(A)W : U—1€RA)_y ti—f; fori=1,...r

(for the grading ofA[U, ¢4, ..., t,] that places the indeterminatas. . . , ¢, in degreel, andU
in degree—1). The B-module

(4.4.35) Pie := @ Tor} (I"M, N)
ne”L
carries a natural structure of grad&d® 4 R(A),-module, whence a graded[U, 1, . .., t,.]-

module structure as well, via_(4.4]34), and it suffices taxsho

Claim4.4.36 P,, is a finitely generate®[U, ¢4, . . ., t,]-module, for every € N.
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Proof of the claim. Let Fil, M be thel-adic filtration on}M, and notice thaR (M, Fil,M), is
) tr]'

a finitely generate® (1 ),-module;a fortiori, it is a finitely generated gradet{U, ¢, . . .
module. By remark 4.4.23(iv), we may then find a resolution

oo Ly s Ly = o= Lo 2% R(M, Fil, M),
where eacll., is a freeA[U, t4, ..., t.]-module of finite rank, eacli, is a morphism of graded
AlU, t1,...,t.]-modules, and the restriction of the resolution to the sundsaf degreeé is

a flat resolution off‘)M, for every: € N. There follows a natural isomorphism of graded
B-modules

(4.4.37) P, = Hi(Ls®4 B) for everyi € N
and a simple inspection shows that tB&/, ¢y, . .., t,]-module structure o, , deduced via
(4.4.37) agrees with the foregoing one, so the assertitmis! O

4.4.38. In the situation of(4.4.82), séf, := A/I""! for everyn € N. We deduce, for every
i € N, a morphism of projective systems Bfmodules

Xi = (Tor (M, N) @4 A, | n € N) 25 Vi := (Tor (M ®4 A, N) | n € N)

where the transition maps of! andY/ are induced by the projections,,; — A, for every
n € N, and the morphismg!, are induced by the projectiodd — M @4 A,,.

Corollary 4.4.39. With the notation of{4.4.38) we have :

(i) The morphisny? is an isomorphism of prd>-modules, for every € N.
(i) The natural map

lim Tor (M, N) @4 A, — lim Tor (M/I"M, N)

ne ne
is an isomorphism, for everyc N.

Proof. (i): The assertion means that the systeisr ! | n € N) and(Coker ¢!, | n € N) are
essentially zero, for everyc N. However, se/ := 1 € R(4)_1, and notice that the long exact
Torl(—, N)-sequence arising from the short exact sequence

0—I"M - M — M/I"M — 0
yields a natural identification
Coker ¢, = Ker (U" : P,,, = P, )

whereP, , is defined as in[(4.4.85), arid" denotes the scalar multiplication by the same ele-
ment, for the naturaR(A).-module structure of;,. Moreover, under this identification, the
system(Coker i | n € N) becomes a direct summand of the systenBahodules

(4.4.40) (KerU" : P,y = P,o | n € N)

whose transition maps are given by multiplication By By the same token, the projective
system(Ker ¢! | n € N) is a quotient of the projective systedj := (Fil, T; ®4 A, | n € N),
for everyi € N. Now, it follows easily from proposition 4.4.83 and lemm#&.21, that, for
everyi € N, there existg € N such that

Fil,pieTy € I"FT, € I*Fil, T,  for everyk,n € N.

Taking k = n, we conclude that the systed{ is essentially zero, so the same holds for
(Ker ¢!, | n € N), for every: € N. Lastly, sinceB[U, t1, . .., t,] is noetherian, claimn4.4.86 im-
plies that there existy € N such thatker UN*+* = Ker UV for everyk € N. It follows easily
that the system {4.4.40) is essentially zero, and then the salds for{ Coker ¢!, | n € N), for
every: € N.
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(ii) is a standard consequence of (i) : see€ [75, Prop.3.5.7]. O

4.4.41. Differential graded algebrasThe material of this paragraph shall be applied in section
4.5, in order to study certain strictly anti-commutativadgd algebras constructed via homo-
topical algebra. Especially, the graded algebras apppamithis paragraph are usualhot
commutative, unless it is explicitly said otherwise.

Definition 4.4.42. Let A be any ring.
() A differential gradedA-algebrais the datum of

e a complex B*,dy) of A-modules
e an A-linear mapu*? : B @ 4 B? — BP*4for everyp,q € Z

such that the following holds :

(a) SetB := @pez B?; then the system of maps® addsuptoamap: B®4 B — B,
and one requires that the resulting p@lt, 1) is an associative unitar§-gradedA-
algebra. Then, one sets b := u(a ® b), for everya,b € B.

(b) We have the identities

% (a-b) = db(a) - b+ (—1)P - a - db(b) for everyp, ¢ € Z and everyw € B?, b € B.

We call B theassociated graded-algebraof B*. A morphismB*® — C* of differential graded
A-algebras is a map of complexesAdmodules such that the induced map of associated graded
A-modules is a map aofi-algebras. We denote by

A-dga

the resulting category of differential gradddalgebras.
(i) We say that the differential gradetl-algebraB® is strictly anti-commutativaf we have
(i) a-b=(=1)*"-b-aforeveryp, q € Z and everyu € B?, b € B?
(i) a-a =0 foreveryp € Z and everyu ¢ B*»*!,
If only condition (a) holds, we say th&t*® is anti-commutative

(iii) Let (B*,dy) be a differential graded-algebra,B its associated graded-algebra, and
(M, d3,) a complex ofA-modules.

(@) We say thafl/* is aleft B*-moduleif the A-moduleM := P, M" is a graded left
B-module (for the naturé-grading on)/), and we have

dy*(b-m) = (db) - m + (=1)" - b df, (m)

for everyp, q € Z, everyb € BP, and everym € M4,
(b) We say that\/® is aright B*-moduleif M is a graded righf3-module, and we have

B (m - a) = diy(m) - a + (~1) - m - &5 (a)

for everyp, q € Z, everyb € BP, and everym € M1,

(c) We say thatM/* is a B-bimoduleif it is both a left and rightB*-module, and with
theseB*-modules structures, thé-module M becomes a-bimodule (.e. the left
multiplication commutes with the right multiplication).

We call M theassociated gradeé-moduleof M. A morphismM*® — N°* of left (resp. right,
resp. bi-) B*-modules is a map of complexes dfmodules, such that the induced map of
associated graded-modules is a map of left (resp. right, resp. bimodules.

(iv) Let C* be anyZ-gradedA-algebra, and\/*® any Z-gradedC*-bimodule. AnA-linear
graded derivatiorfrom C* to M* is a morphism of graded-moduleso : C* — M* such that

I(ry) =0(x) -y +x-9(y) for everyz,y € C.
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Remark 4.4.43.Let B* be any differential graded-algebra.
(i) Notice that condition (b) of definition 4.4.42(i) is tharse as saying that*® induces a
map of complexes
u®: B*®4 B* — B°.
Moreover, in light of examplé_4.1.8(i), we see that is anti-commutative if and only if the
diagram

Bo ®A Bo Bo ®A Bo

B.
commutes, where the horizontal arrow is the isomorphisdh.94 that swaps the two tensor
factors. Hence, in some sense this is actually a commutationdition.
(i) Likewise, if M* is a complex ofA-modules with a graded left (righfy-module structure
on the associated gradeédmoduleM, thenM* is a left (resp. right)3*-module if and only if
the scalar multiplication of th&-moduleM induces a map of complexes

B*®s M®* — M*® (resp.M*® @4 B®* — M*).
(ii) Itis easily seen that the multiplication maps? induceA-linear maps
(HPB®) @4 (H'B*) — H?*B*  foreveryp,q € Z
anfifwe letH*B* .= @pez H?B*, then the resulting map
(H*B*) ®4 (H*B*) — H*B*

endowsH * B* with a structure o¥.-graded associative unitadralgebra, which shall be strictly
anti-commutative whenever the same holdsB6r Likewise, if M* is any left (resp. right, resp.
bi) B*-module, thenr/*M* is naturally aZ-graded left (resp. right, resp. bij* B*-module.

(iv) Let M* be aleftB*-module, and denote y,? : B? ® 4 M7 — MP* the (p, ¢)-graded

component of the scalar multiplication &f*, for everyp, ¢ € Z. ThenM*[1] is also naturally
a left B*-module, with scalar multiplicatiop;\;m given by the rule :

phtpy = (=P i foreveryp,q € Z.

Likewise, if N* is a right B*-module, with scalar multiplicatiop$?, then N*[1] is naturally a
right B*-module, with multiplicatior.37,, given by the rule :

phiy = Hi foreveryp,q € Z.

Lastly, if P* is a B*-bimodule, then the left and righ*-module structure defined above on
P*[1], amount to a naturdB-bimodule structure o*[1].

(v) Let C* be anyZ-gradedA-algebra,N* any Z-graded left (resp. right, resp. bi#-
module. We letN[1]* be the gradedi-module given by the ruléV[1]? := NP*! for every
p € Z. We shall always viewN[1]* as a left (resp. right, resp. biff-module, via the scalar
multiplications obtained from those of*, following the rules spelled out in (iv). This ensures
that the functor fromB*-modules toH*B*-modules that assigns to amy*-module M* its
homologyH*M*, is compatible with shift operators.

4.4.44. LetA be ring, (B*,d%) any differential gradedi-algebra, and® C B* a (graded)
two-sided ideal of3* (i.e. a bi-submodule of thé&*-bimoduleB*). Let

0:H*(B*/I*) — H*I*[1]
denote the natural map induced by the short exact sequercengiiexes
0—1°*— B*— B*/I* — 0.
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We have :

Lemma 4.4.45.In the situation of(4.4.44) the map? is an A-linear gra