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1. Introduction

1.1. The last decade has been a time of tremendous activity in p-adic Hodge
Theory. We do not intend to give a complete account of these new developments
here, but let us at least mention the surveys [2] providing an overview of recent
topics in the theory of p-adic representations, the survey of p-adic cohomology [34],
the survey of p—adic Hodge theory for torsion coefficients [8], Tsuji’s survey of his
proof of the Cy—conjecture of Fontaine [51], and for an introduction to the main
ideas of p-adic Hodge theory the beautiful article [27]. We should also note that in
the last decade there has been an increasing interest in non—abelian p-adic Hodge
theory and its relationship to motives [20], [35], [41], [52].

Instead of attempting the impossible task of trying to cover all of these topics
in one article we will instead discuss one aspect of the theory: Faltings’ method of

©0000 (copyright holder)



2 MARTIN C. OLSSON

almost étale extensions. Faltings’ method is one of the most powerful tools in p-
adic Hodge theory and yields in particular a proof of the Cy—conjecture of Fontaine
which was first proven by Tsuji in [49] using syntomic cohomology. It is also to the
author’s knowledge the best technology currently available to deal with coefficients
and cohomology with compact support of open varieties. Unfortunately for various
reasons (not the least of which is the very technical nature of Faltings’ theory), the
approach to p-adic Hodge theory using “almost mathematics” does not seem to be
so widely studied.

1.2. Let us begin by reviewing the main result of p-adic Hodge theory in the
simplest situation of good reduction, and the various approaches to the theory in
this context.

Let p be a prime, and let V be a complete discrete valuation ring of mixed
characteristic (0,p) and perfect residue field k. Let K be the fraction field of V,
and fix an algebraic closure K «— K. Let W C V be the ring of Witt vectors of k,
and let Ky C K be the field of fractions of W. The ring W comes equipped with a
lifting of Frobenius o : W — W which also induces an automorphism of Ky which
we denote by the same letter.

Let X/V be a smooth proper scheme. The theory of p-adic Hodge theory con-
cerns the comparison between the étale cohomology H* (X, Q,) and the algebraic
de-Rham cohomology Hj (X k) of the generic fiber.

To understand this comparison one must consider the additional structures that
these cohomology groups are endowed with. The étale cohomology H* (X3, Qp)
is a continuous Gk := Gal(K/K)-representation, and the de Rham cohomology
H}p(Xk) comes equipped with the following data:

(i) A descending filtration " (the Hodge filtration).

(ii) A graded Kjy-vector space M,y with a o-semi-linear automorphism ¢ :
My — My (Frobenius) and an isomorphism K ®x, Mo ~ Hjp(Xk). The
Ky-vector space My is given by the crystalline cohomology of the closed
fiber of X.

This package is formalized by defining a filtered p-module to be a triple (D, ¢, Filp)
consisting of a finite dimensional Ky-vector space D with a o-semi-linear automor-
phism ¢ : D — D and a descending separated and exhaustive filtration Filp on
DK =D ®K0 K.

To pass between the étale and de Rham cohomologies (with their additional
structure) one uses Fontaine’s ring Beis(V) (see section [IT). This is a Ko-algebra
which comes equipped with a Frobenius automorphism ¢ and an action of Gg. The
ring Beis(V) is a subring of a larger K-algebra Bqr (V') which is a discrete valuation
field. In particular, the valuation on Bgr (V') defines a filtration on Bagr (V). If E is
a filtered K-vector space then we view F ®x Bqr (V') as filtered using the product
filtration.

For a continuous G -representation W define

D(W) := (W &g, Bexis(V)) .

This is known to be a finite-dimensional QQ,-vector space, and it has a natural struc-
ture of a filtered p-module. Namely, it inherits a semi-linear Frobenius automor-
phism ¢ pw) from the automorphism on Beris(V'), and there is a filtration Filp )
on D(W)k := D(W) ®g, K induced by the filtration on D(W)x @k Bar(V).
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The representation W is called crystalline if the natural map (which is always
injective)
(1.2.1) D(W) ®k, Baris(V) = W ®q, Beris(V)

is an isomorphism. In this case we say that (D(W), pw), Filpw) is associated
to W. If W is crystalline one can recover W from (D(W), o p(w, Filpw)) as

{x € DW) @k, Beris(V)|p(x) =2, @1 € Fil®(D(W)k @k Bar(V))}.

A filtered ¢-module (D, @, Filp) is called admissible if it is isomorphic to
(D(W), epwy, Filpaw)) for some crystalline representation .
The main result of p-adic Hodge theory in the present situation is the following:

THEOREM 1.3 ([14), 18|, 49]). The Gk -representation H* (X4, Qp) is crys-
talline and is associated to Hip(Xk) with the additional structure (i) and (i)
above.

REMARK 1.4. In the present good reduction setting, theorem was first
proven by Fontaine and Messing in [I8] under the assumption that p > dim(Xk)
and Ky = K. Subsequently Kato and Messing were able to extend this result to
the case when dim(Xg) < (p —1)/2 [31}, B2]. The general result was then proven
by Tsuji and Faltings who also proved a comparison result without the assumption
of good reduction (where the statement is more complicated).

REMARK 1.5. One application of from which the terminology ‘p-adic Hodge
theory’ derives, is the following. As mentioned above the ring Bgr(V) is a discrete
valuation field, and its residue field is C, (the p-adic completion of K). Using
this one shows that there is an isomorphism of graded rings with G g-action (the
subscript HT stands for Hodge-Tate)

BHT(V) = gI‘*BdR(V) ~ @iez(cp(i),
where multiplication on the right is given by the natural isomorphisms C, (i) ®
Cp(j) — Cp(i+ 7). Now if W is a crystalline representation, then the isomorphism
induces upon tensoring with Bqgr (V') and passing to the associated graded
modules an isomorphism

gr*(D(W)K) [029] BHT(V) ~W ®Qp Bur.
In the case when W = H™ (X, Q,) the degree 0 part of this isomorphism yields a
G i-equivariant isomorphism
H™(Xg,Qp) ® Cp = ®BijmmH' (Xi, ¥, ) ®K Cp(—5)

called the Hodge-Tate decomposition of H™ (X7, Q,) ® C,,.

1.6. Let H;(X/Kyp) denote the crystalline cohomology of the closed fiber of

X, so we have the Berthelot-Ogus isomorphism
Heio(X/Ko) @k, K ~ Hig(X/K).
The main difficulty in proving [I.9]is to construct maps

?

(1~6-1) H* (X?’ Qp) ®Qp BcriS(V) H:ris(X/Ko) @K BcriS(V)~

- = >
- _
?
In fact it suffices to construct a map in one direction which respects the various
structures and in addition is compatible with cycle classes. For then it is essentially
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formal that it is an isomorphism (as we explain in section . Unfortunately there
is no known construction of a map relating the two cohomology theories directly,
and all known proofs of use an intermediate theory to relate the two.

There are three main approaches to proving Let V C K be the integral
closure of V, and let X3, be the base change of X.

(i) (Syntomic cohomology). This approach has been developed by Fontaine,
Messing, Hyodo, Kato, and Tsuji among others (see [18), 26, 30, [32], [49] [51]).

Here one defines certain syntomic cohomology groups Hy,,(Xv, 7 (1)qg,) (r >
0). There are maps

(1.6.2) ot H (X7, (1), ) — H* (X7, Qp(r))
and
(163) /BT : Hs*yn(X77 y(T)Qp) - ékris(X/KO) ®KO BCTiS(V)‘

The key result in this approach is to show that for » >> 0 the map «, is an iso-
morphism. By inverting the map «, and applying suitable Tate twists one obtains
the desired morphism [1.6.1]

The proof that for » >> 0 the map «,. is an isomorphism requires a detailed
analysis of p-adic vanishing cycles. Let Y denote the base change of Xy to the
residue field k of V so we have a commutative diagram

By the proper base change theorem we have
H* (X3, Z/(p")(r)) = H*(Y,i"Rj.Z/(p")(r))-

The syntomic theory provides a crystalline interpretation of the p-adic vanishing
cycles i* Rj.Z/(p"™)(r).

Suppose T is a flat and local complete intersection scheme over W (such a
scheme T is called syntomic over W), and assume that T is quasi-projective. Then
we can find an immersion ¢ : T — Z, where Z is a smooth W-scheme such that
there exists a morphism F : Z — Z lifting the Frobenius morphism on Z Qw k,
and such that the diagram

A A

i !

Spec(W) —Z—= Spec(W)

commutes (for example Z can be chosen to be a suitable projective space). Let
iy Iy — Z,

be the morphism over W,, := W/p™ defined by reduction modulo p". Let D,, be the
divided power envelope of T}, in Z,, and let J,ET] (r > 0) be the r-th divided power

ideal of D,, (which we view as a sheaf on T7). For r < 0 we define Jh=0 D, We
then get a complex on T;

Jol. gl =1 g len —Jr-2g QQZ,L —
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In case r = 0 this is simply the complex computing the crystalline cohomology of
T, /W,, and in general a crystalline interpretation is given in [4, 7.2]. The map Fy
induces a map

£ I — gl
Define ﬁ;(r)T to be the mapping fiber of the map of complexes

o =,

This complex %(T)T is in fact independent of the choice of i : T'<— Z and can be
defined globally using hypercovers.

Returning to our smooth proper scheme X/V, note that for every finite exten-
sion V' —>K’ the base change Xy is syntomic over W and therefore one obtains a
complex .%, () x,,, on the closed fiber of Xy, and hence also by pullback a complex

on Y. By passing to a suitable limit one then obtains a complex .%,(r) Xy O Y.
Let Z/p™Z(r)" denote (ﬁZP(T)) ®Z/p"Z, where r = (p—1)a+b (a € Z and

0 < b<p-—2). The key result of Tsuji is then the following:
THEOREM 1.7 ([49] §3]). There is a canonical G g -equivariant morphism
(1.7.1) Fn(r)xy — T RjLIp"L(r)'.

If 0 < g < r then there exists an integer N depending only on p, q, and r such that
the kernel and cokernel of the map

HUTn(P)xy) — R0 L(rY
is annihilated by p .
We define
Hiyn (X, 7 (1), ) i= Qp @ lim H (Y, 70 (1) )

syn
The map a,- in is obtained from the map by passing to the limit in n
and tensoring with Q,. It follows from the second statement in that for r >> 0
the map «,- is an isomorphism.

On the other hand, by construction there is a natural map

Hiyn( X, Zu(r) xy) = H*(V, I,

syn

where on the right we write Jg ! for the limit of the complexes obtained from the
Xy (V C V' a finite extension).

It is fairly easy (at least in comparison to the proof of to show that for
r > m there is a canonical isomorphism

Bais(V) ™ @w Hiio(X/W) =~ Q, @ linH* (Y, JL?]),

where Beyis (V)T is defined in[11.1.6] (the ring Beyis (V') is a localization of Beys (V) T).
The map 3, in [1.6.3] is defined to be the map induced by the natural inclusion
5 gl

(ii) (K -theory). This approach developed by Niziol [36, [37] offers perhaps the
most direct relation among the two cohomology groups. The key point is that there
are regulator maps

st gt Kj(Xg, Zfp") — H* 7 (X, Z/p" (i),
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where K;(X5,Z/p") denotes algebraic K-theory with coefficients, which is filtered
by the ~-filtration. Using Thomason’s comparison theorem between algebraic and
étale K-theory [48], Niziol then describes the kernel and cokernel of the regulator

et
map cf;.

There is also a syntomic regulator map
" gr! Kj(Xge, Z/p") — H* (Y, (D).

Upon passing to the limit in n, applying a suitable Tate twist, and using the map
[1.6.3] we obtain a diagram

Q®lim gt K (X%, Z/p™)(—1)

. c°t
CCrlS

H%_j (X/KO) QKo Bcris(v) H*= (Xf’ QP) ®Qp Bcris(V)-

cris

By analyzing the kernel and cokernel of ¢°* Niziol then shows that this induces the
desired homomorphism [I.6.1]

(iii) (Almost mathematics). This approach, which is the subject of the rest of
the paper, was developed by Faltings in a series of papers [13}, 14}, I5]. To indicate
the flavor of Faltings’ approach, let us give a brief sketch of his argument in the
simplest case of constant coefficients and a proper scheme.

Faltings’ approach is in some sense also based on a calculation of a kind of
p-adic vanishing cycles. The key result is the almost purity theorem (see [2.17))
which enables one to compute Galois cohomology in the local situation. Let R be
a smooth V-algebra and assume given an étale morphism

(1.7.2) Spec(R) — Spec(V[T{, ..., T7))

for some integer d. Assume that Spec(R/pR) # () and that R ®y V is an integral
domain. Let R, be the algebra obtained by adjoining all the p°-roots of T; in
R®y V for all i and s. Let R C K denote the normalization of R in the maximal
field extension Frac(R) C L which is unramified over R ®y K. We then have an
inclusion Ro, C R. Let A (resp. A.,) denote the Galois group of R (resp. Rs)
over Ryr. The main implication (see of Faltings’ almost purity theorem is that
the natural map of Galois cohomology groups

H*(Aw, Roo/pRoo) — H*(A,R/pR)

is an almost isomorphism, which means that the kernel and cokernel is annihilated
by any element in the maximal ideal of V. On the other hand, the Galois group
A is easy to describe and in fact is isomorphic to Z,(1)?. This implies that the
cohomology groups H* (A, R /PRoo) are computed by a certain explicit Koszul
complex. In particular, there is a natural map

(1.7.3) Ry @y \(V/pV)*(—1) = H* (A, Roo/PRoxc).
which in fact is a direct summand.

This (almost) description of H*(A, R/pR) of course depends on the choice of

chart It can be made canonical by using the basis d7T;/T; for QF, v to identify
the map |1.7.3| with an almost morphism

A (Qkjv @r Ry/pRy(~1)) — H* (A, R/pR)
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which is independent of choices.

These local calculations enable one to define a new cohomology theory which
plays a similar role to the syntomic cohomology. First Faltings defines a ringed
topos (2%, O g{?) which maps to X and such that locally on X when one has
a map the cohomology of the structure sheaf modulo p in 2% is given by
the group cohomology described above. Using these local descriptions one sees
that the cohomology groups H* (2%, Oa-_/(p)) are almost finitely generated over
V /pV, satisfy Poincaré duality, and there is a theory of Chern classes. There is
also a natural map

(1.7.4) H*(X%,Z/(p)) @V — H (2%, O/ (p))

which one then shows is an almost isomorphism.

To go from this isomorphism to a comparison isomorphism between étale and
de Rham cohomology then requires a number of steps. Principal among them are
the following:

(1) Recall (see section that the ring Beys(V) is obtained by localization
from a W-algebra A.is(V') with G g-action and Frobenius automorphism.
The ring A.is(V) contains certain ideals m, (where a runs over positive
elements of Z[1/p]), and one can consider almost mathematics over the
ring A.is(V) (and hence also over Beis(V)). A map of Acis(V)-modules
M — N is an almost isomorphism if the kernel and cokernel are annihi-
lated by every m,, for all a.

To pass from a mod p theory to a p-adic theory, one first replaces the
sheaf € g-_/(p) in the above with a suitable sheaf .7.;; defined using the
same construction as the construction of As(V), and then shows that
there is an almost isomorphism of Ayis(V)-modules

H* (X7, Q) @q, (Aaris(Vg,) = H (2, Heris) © Q.
In fact this is not quite correct, and one has to work instead with the
formal completion X of X along the closed fiber and a variant topos 27

instead of Z%.
(2) Construct a map

Hio(X/Ko) ® K, Beris(V) = H* (2%, Pexis) @A i (v) Beris(V)
thereby obtaining an almost morphism of Be,is(V')-modules
HEio(X/Ko) @Ky Beris (V) = H* (X5, Qp) ®g, Baris(V)

which by the usual argument using Chern classes will be an almost iso-
morphism.
(3) Lift this almost isomorphism to an actual isomorphism over Bes(V).

1.8. Our aim in this paper is to give a detailed account of Faltings’ method
in the case of a variety with good reduction (and also an open variant) using the
basics of almost mathematics and the almost Purity theorem as a “black box”
(the interested reader should consult the very thorough treatment of the necessary
almost mathematics in [21]). We pay particular attention to the Q,—theory which
is not discussed in detail in the literature and consider non-constant coefficients
(the ability to deal with nonconstant coefficients is one of the big advantages of
Faltings’ approach).
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1.9. The paper is organized as follows.

In section |2| we give the basic definitions of almost mathematics and state the
purity theorem in the form needed in this paper. The main result is

As mentioned above, the importance of the purity theorem is that it enables
one to (almost) compute certain Galois cohomology groups. We perform these
computations in sections [3] and ] The main results are and [L.7] We also
consider in this section cohomology with compact support using the theory of loga-
rithmic structure. These computations are the key local results needed for Faltings’
approach to p-adic Hodge theory.

We then begin the necessary foundational work for our study of the topos 3&%’
which will serve as the intermediary between étale and crystalline cohomology.

It is well-known (see [I, XI §3]) that if Y/K is a smooth K-scheme, then for
every point y € Y (K) there exists an open neighborhood U of y such that U is a
K(m,1). This means that for any locally constant sheaf of torsion abelian groups
the natural map (see section [5| for a description of this map)

(1.9.1) H*(m(U,y), F) — H*(Ue, F)

is an isomorphism, where H* (71 (U, y), F) denotes the continuous group cohomology
of F' viewed as a representation of m (U,y). In Faltings’ approach a generalization
of this result is needed. Namely, if X/V is a smooth proper scheme then we need
that for any geometric point £ — X of the closed fiber, there exists an étale
neighborhood U of Z such that the geometric generic fiber Uz of U is a K(m,1).
We prove this result in section |5 as well as variants for open varieties.

We then introduce the topos 2% and its open variant %fo in section @ In the
proper case there are morphisms of topoi

vx : X — Xet
and
ux Xf,et — %?
Any locally constant sheaf L of Z/(p")-modules on X7 defines a sheaf £ on 2%
such that v%.% = L. Furthermore we show in section [6] that the natural map

(1.9.2) H* (%, %) — H* (X4, L)

is an isomorphism. On the other hand, the topos 2% has a structure sheaf &g
and there is a natural map

(1.9.3) H' (%%, %) — H (%5, L @ Oy.).

Perhaps the main result in the whole theory is which implies that this map is
an almost isomorphism (and in above situation provides the isomorphism .

The proof of [6.16] occupies the following two sections[7]and [§] The introduction
of cohomology with compact support poses some additional technical problems. In
particular, we spend some time explaining how to compute compactly supported
cohomology using group cohomology in section [7} Then in section [§] we prove
by developing the necessary theory of Chern classes and verifying that the
comparison maps between the various cohomology theories are compatible with
Chern classes. For technical reasons we consider in this section a more general
theory of cohomology with partial compact support along a boundary.

We then turn to lifting this mod p result to a theory with Q,-coefficients. In

section |§| we introduce a variant 3&/”%0 of the topos 3&%’ which is necessary to deal
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with Qp-coefficients. The main point is to replace X by its p-adic completion.
Fortunately the almost puri/t}\f theorem also holds in this context and as we prove
in the cohomologies of 22 and 272 are almost isomorphic.

Then in sectionsthroughwe explain Faltings’ proof of the C¢,ys—conjecture
of Fontaine relating p-adic étale cohomology and crystalline cohomology.

Locally the comparison map is obtained by on the one hand computing crys-
talline cohomology using an embedding into a smooth scheme, and on the other
hand computing étale cohomology using group cohomology. Of course to define
the map globally requires simplicial techniques. In section [I0] we explain how to
compute étale cohomology using group cohomology using simplicial techniques (the
only real issue is how to deal with base points for simplicial schemes).

In section we review the necessary fac:c's about Fontaine’s rings A and
Beris- We also consider a certain localization Be.s of Beris which arises when one
considers almost mathematics over B is.

In section we extend our earlier computations of cohomology in the topos
%fo to cohomology with coefficients in sheafified versions of Fontaine’s rings Acis
and Be;is. The main point is to show that the notion of almost isomorphism behaves
well upon taking various inverse limits.

Then in [I3] we define the transformation from crystalhne to etale cohomology
over ch and state the comparison theorem over ch see , and then in
section [14f we complete the proof of the comparison theorem over ch Again the
key point is to show that the comparison map is compatible with Chern classes.

Fnally we explain in section [I5] how to pass from the comparison theorem
over ﬁcris to the comparison theorem over Bg.s. This follows from some formal
properties of these rings and Berger’s theorem that any de Rham representation is
potentially semistable [3, 0.7]. The main result is[15.5]

REMARK 1.10. The results of Faltings discussed in this paper suffice for the
applications we studied in [41].

REMARK 1.11. Faltings has proven a version of the purity theorem in the
substantially more general case of a variety with a certain kind of toroidal reduction
[13] section 2b] (in particular it applies to varieties with semistable reduction).
This enables Faltings to prove the Cgi-conjecture of Fontaine. While the main
ideas in this more general context remain the same, there are several additional
technical complications and for the sake of exposition we restrict ourselves to the
good reduction case in this paper.

Also as discussed in [I3 p. 258] there are some additional subtleties in de-
veloping the Q,-theory for coefficients in the semistable reduction case. The main
problem lies with the construction of the so-called Hyodo-Kato isomorphism which
requires certain finiteness properties of crystalline cohomology over the divided
power envelope of the closed immersion Spec(V/pV) — Spec(W|t]) obtained by
sending ¢ to the class of a uniformizer # € V. As this divided power envelope is
not noetherian such finiteness of cohomology does not follow from standard tech-
niques. In the case of constant coefficients the necessary finiteness properties follow
from a comparison with the de Rham-Witt complex, but for general coefficients
this method does not apply.

1.12. Prerequisites. In order to study open varieties, we work in this paper
with logarithmic geometry in the sense of Fontaine, Illusie, and Kato [29]. This is



10 MARTIN C. OLSSON

not necessary for the proper case, so the reader not familiar with this theory can
still read the paper restricting themselves to the case of empty boundary divisor.
For the discussion of the comparison theorem the reader is assumed familiar with
crystalline cohomology as well as the convergent topos [39], [45].

1.13. Acknowledgements. It is a pleasure to thank A. Abbes for encour-
agement to write up these notes on Faltings’ papers, and for pointing out several
important corrections in an earlier version. I initially learned about the approach
to p-adic Hodge theory using almost mathematics during a visit to U. Paris-Sud
during summer of 2003. I would like to thank L. Illusie for the invitation and help-
ful conversations, and O. Gabber and T. Tsuji for very interesting lectures. The
paper also benefitted from very helpful comments from the referees.

2. Almost mathematics and the purity theorem

2.1. Fix a ring V together with a sequence of principal ideals m, C V indexed
by the positive elements A, of some subgroup A C Q which is dense in R and
contains 1. Let m denote a generator of my, and for @« € Ay let 7@ denote a
generator of m,. We assume that 7% is not a zero-divisor in V and that for every
o, 3 € A, there exists a unit u € V" such that 7, - Tg = UTa48- We let m denote
the ideal Ugsomy-

Observe that since each 7@ is a nonzero divisor in V the ideal m, is a flat
V-module. This implies that m is also a flat V-module, as it is the filtering direct
limit of the flat V-modules m,. This implies in particular that the multiplication
map m ®y m — m is an isomorphism.

EXAMPLE 2.2. The most important example for this paper is the following.
Let V be a complete discrete valuation ring of mixed characteristic (0,p), field of
fractions K, and perfect residue field k. Let K be an algebraic closure of K and
let V be the integral closure of V in K. We then take 7 to be a uniformizer of V,
A = Q, and m,, the ideal of elements of valuation > «.

2.3. Let V — Mod denote the category of V-modules, and let ¥ C V — Mod
denote the full subcategory of modules annihilated by m. The category X is a Serre
subcategory in the sense of [23] Chapitre III, §1], and therefore one can form the
quotient category of V' — Mod by the category 3. We denote this quotient category
by V" — Mod. By [23] Chapitre III, Proposition 1] the category V" — Mod is an
abelian category. The objects of V" — Mod are called almost V-modules and the
objects of ¥ are called almost zero. It follows immediately from the definition that
the tensor structure on V — Mod induces a tensor structure on V' — Mod. There
is a natural localization functor

(2.3.1) V —Mod — V" — Mod

which is compatible with the tensor structure.

Morphisms in V*—Mod have the following simple description. If M € V —Mod,
then the category of almost isomorphisms ¢ : M’ — M has an initial object given
by the morphism m ® M — M. From this and the definition of the localized
category V" — Mod given in [23, Chapitre III, §1] we have

(2.3.2) Homyra_y; (M, N) = Homy,_ ;o q(m® M, N)
for any M, N € V — Mod.
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DEFINITION 2.4. Let R be a V-algebra and let M be an R-module.
(i) M is almost projective if Ext’ (M, N) € ¥ for all R-modules N and i > 0.
(ii) M is almost flat if Tor®(M, N) € ¥ for all R-modules N and i > 0.
(iil) M is almost faithfully flat if M is almost flat and for any two R—-modules N
and N’ the map

(2.4.1) Homp(N, N') — Homp(N ® M, N’ ® M)

has almost zero kernel.
(iv) M is almost finitely generated (resp. almost finitely presented) if for every
a € Ay there exists a finitely generated (resp. finitely presented) R—module N,
and maps ¥, : N, — M and ¢, : M — N, such that ¢, o ¢, = 7@ - id and
Go 0 e = 7 - id.

LEMMA 2.5. If f : A — B is a morphism of V —algebras whose underlying
morphism of V-modules is almost faithfully flat, then for any A-module M the
natural map M — M ®4 B is almost injective.

PrROOF. Let K be the kernel of M — M ®4 B. We need to show that the
inclusion K < M is the zero map. For this it suffices to show that K ® 4 B —
M ®4 B is the zero map. This follows from noting that we have a diagram
(251) K@AB#M(@ABLM@AB@AB;M@AB,
where ¢ is the map obtained from multiplication B ® 4 B — B, bo a is the zero

map, and co b is the identity. O

2.6. Let A be a V-algebra, let P be an A-module, and let wp/a denote the
canonical morphism

(2.6.1) P ®4 Hom(P, A) — Hom(P, P)

By [21], 2.4.29 (1b)], if P is almost finitely generated and almost projective then
the map wp,4 is an almost isomorphism. In particular, if

(2.6.2) evp/a i P ®aHom(P,A) — A

is the evaluation morphism then we obtain an almost trace map in V* — Mod
(2.6.3) Trp/s : Hom(P,P) — A

by sending ¢ : P — P to evP/A(w;/lA(go)).

DEFINITION 2.7. A morphism A — B of V-algebras is an almost étale covering
if the following two conditions hold:
(i) B is almost finitely generated, almost faithfully flat, and almost projective as
an A-module,
(ii) B is almost finitely generated and almost projective as a B ® 4 B—module.

2.8. Let A — B be an almost étale covering. For every b € B multiplication
by b induces a morphism of A-modules u;, : B — B. Let

(2.8.1) trg/a:B— A

be the morphism in V* — Mod sending b to Trp/a(u)-



12 MARTIN C. OLSSON

LEMMA 2.9. Let A — B be an almost étale covering. Then the trace map
trp/a : B — A induces an epimorphism in V*—Mod. In particular, for any a € A
and « > 0 the element ©®a is in the image of the trace map m @ B — A (this is
the morphism in V — Mod obtained from the trace map and .

PROOF. Let @@ denote the cokernel of the trace map B — A. Since A — B is
almost faithfully flat, the vertical arrows in the following diagram

B P 4 Q ——0
(2.9.1) pr;l l l
Beo B EeR/E g Q@aB —— 0

induce monomorphisms in V* — Mod. It follows that to show that @ is almost zero
it suffices to show that the trace map B ® B — B is almost surjective. This is seen
by observing that the composite morphism

trg/BeB 'BRB/B

t
B—=B®B——8B
is the identity in V* — Mod. O

DEFINITION 2.10. Let A — B be an almost étale covering, and let G be a finite
group of automorphisms of B over A. We say that B/A is Galois with group G if
the natural map

(2.10.1) BeB— [[B, b&cw(...,b-g(c),...)
geG

is an almost isomorphism.

2.11. If A — B is an almost étale Galois covering with group G, then trp, 4 :
B — Ain V*—Mod can be described as follows. Momentarily let T : B — B denote
the morphism b+— > g(b). The map T is a morphism of A-modules. We claim
first of all that the induced morphism 7% : B — B in V' — Mod factors through
A (since A — B is almost faithfully flat the map A — B induces a monomorphism
inV*— Mod). Indeed let @ denote the cokernel in the category of A-modules of
A — B so that there is a commutative diagram with exact rows

A— B — Q — 0

(2.11.1) l l l

B — BB —— Q4B —— 0.
Since A — B is almost injective, it suffices to show that c o k o T is almost zero
and hence it suffices to consider the morphism B — B ®4 B. Since B/A is almost
Galois we can replace B ® B by [, B. This reduces the problem to the case

when B = ngG A in which case the statement is clear.

LEMMA 2.12. The two morphisms T trp/q : B — A in V" —Mod are equal.

ProOOF. We think of these morphisms as actual morphisms m® B — A. Then
using the fact that A — B is almost faithfully flat as above, one reduces to the case
when B =[] gec A in which case the result is immediate. (]
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2.13. In addition there is a canonical morphism e : V — B ® B in V* — Mod
defined as follows. Namely, since B is almost projective viewed as a B ® B-module
via the diagonal, we obtain a morphism in V* — Mod

-1

“p/B®B eVB/B®B
— —

(213.1)  Endpep(B) B ®pep Hom(B, B® B) B® B.

We define e to be the morphism obtained by composing this map with the natural
map V — Endggp(B). In what follows, we will usually view e as an element of
Hom(m, B ® B) using [2.3.2l We often write 7%e for the value of e : m — B® B
on . Note that the composite of e with the multiplication map B ® B — B is
simply the structural morphism V — B.

EXAMPLE 2.14. Suppose A — B is actually an étale morphism (in the usual
sense). Then the diagonal Spec(B) — Spec(B®B) is an open and closed immersion,
and hence defined by an idempotent e € B ® B. An elementary verification shows
that the above defined morphism V — B ® B is equal to the map sending 1 to e.

EXAMPLE 2.15. Let V be as in and let A — B be a morphism of V-
algebras. Assume that A and B have no p—torsion. Then (1)) implies that
A[l/p] — B[1/p] is finite étale. Then for any o > 0 the element 7% € B ® B is
equal in B ®4 B[1/p] to 7 times the idempotent defining the diagonal.

2.16. We can now state the version of the almost purity theorem needed for
the good reduction case (see [I3] §2b] for the most general statement). Let V be a
complete discrete valuation ring of mixed characteristic (0, p), let K be the field of
fractions of V', and assume that the residue field k£ of V' is perfect. Let d > 0 be an
integer, and consider a flat, formally étale morphism of rings

(2.16.1) VIT,...., T — R
with R noetherian, and Spec(R/pR) # (). Assume further that
RV = R®y Vv

is an integral domain. Let V[Tll/pw, . ,T;/pw} denote the V[T, ..., T4]-algebra
obtained by first extending scalars to the normalization V of V in K, and then
adjoining p"—th roots Til/ P" of T; for all i and n. Denote by R, the base change

(2.16.2) Reo == ROy, 1 VITYP . Ty
Let RZ, denote the localization
(2.16.3) R% = R ®vry,.. 1y VIIT, ..., T),

and let RZOX denote RS, @y K ~ R}, ® K.

THEOREM 2.17 (Almost Purity). Let R? = — 5% denote a finite étale mor-

phism, and let S denote the normalization ,of Ry in S%. Then the morphism
R — S« is an almost étale covering. If RZO? — S% is Galois then Roo — Sao
is also an almost étale Galois covering.

REMARK 2.18. Throughout the remainder of the paper we will repeatedly re-
turn to the setup of In what follows, if T — Spec(R) is a morphism of schemes,
then we write T° for the fiber product

T°:=T XSpec(V[T1,...,Tq)) SpeC(V[Tli7 s ?T;C])
If T is affine, say T' = Spec(A), we also write A° for the coordinate ring of T°.
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2.19. In order to deal systematically with cohomology, it will also be useful to
have an almost version of the derived category. Let (T, A) be a ringed topos with
A a sheaf of V-algebras. As in the punctual case discussed above, define an object
M € A — Mod to be almost zero if M is annihilated by n® for all « € A;. Let
A% — Mod denote the localization of A — Mod by the full subcategory of almost
zero modules.

Let D(A) denote the derived category of A—modules in T, and let ¥ denote
the multiplicative set of morphisms in D(A) which induce almost isomorphisms
on cohomology sheaves. By [53] 10.3.7] one can then form the localized category
$-1D(A) which we denote by D(A). The category D(A) is naturally a triangulated
category and the localization functor D(A) — D(A) is a triangulated functor.
Furthermore, the ¢-structure on D(A) induces a t-structure on D(A) whose heart
is the category A*—Mod. For any * € {+, —, b, [a, b]} we also have the corresponding
subcategories D*(A) C D(A).

Let f: (T',A") — (T, A) be a morphism of ringed topoi with A’ also a V-
algebra. If f : M — N is a morphism in D(A’) inducing almost isomorphisms
on all cohomology sheaves, then the morphism Rf, : RfsM — Rf.N also induces
almost isomorphisms on all cohomology sheaves. It follows that the functor Rf.
descends to a functor, which we denote by the same symbols, Rf, : D(A") — D(A).

REMARK 2.20. As in[2.3:2] for any objects M, N € A—Mod there is a canonical
isomorphism

(2.20.1) Hom ga —Mod (M, N) ~ Hom g _podg(m ® M, N).

This implies in particular that morphisms in A* — Mod can be constructed locally
in T by gluing.

We conclude this section with the following three results about projective sys-
tems which will be used in what follows.

_ Lemma 221, Let p. : {Fp} — {Gn} be a morphism of projective systems of
V —modules such that for every n the map p, : F,, — G,, is an almost isomorphism.
Then p : @Fn — @Gn 1s an almost isomorphism.

PROOF. Say f = {f.} € lim F), maps to zero under p, and let € € AT be an
element. Then for every n the element f,, € F;, is annihilated by 7€ whence f is
also annihilated by 7¢. Therefore p is almost injective.

For almost surjectivity, consider an element g = {g,} € lim G,,. Choose any
element € € A and write € = ¢g + €1 with €p, €1 also in Ay. Choose for each n
an element f,, € F,, such that p,(f,) = 7g,. If f,41 € F, denotes the image of
fn+1, then the element fn+1 — fn is in the kernel of p,, and is therefore annihilated
by m€t. It follows that the sequence {7 f,,} defines an element of lim F, mapping
to m€g. 0

LEMMA 2.22. Let {C2} be a projective systems of bounded below complezes of
V -modules such that for every n and j the map CfLH — CJ is almost surjective.
Then the cone of the natural map

(2.22.1) lim C* — Rlim C®
— Pa—

is almost zero.
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PROOF. The spectral sequence associated to the “stupid filtration” on the com-
plex of projective systems {C®} gives a spectral sequence [10, 1.4.5]

(2.22.2) EY = R1lim CP = RPTIlimC*.
— —

From this it follows that it suffices to show that R’ }iﬂle is almost zero for all p
and all ¢ > 0. This reduces the proof to the case when {C2} is just a projective
system of V-modules with almost surjective transition maps. For every n, let D,
denote the cokernel of the inclusion mC,, C C,,. Then each D,, is almost zero so
for every i the map

(2.22.3) R'lim{mC } — R'lim{C}

is an almost isomorphism. The projective system mC. has surjective transition
maps. Indeed if 7% € C,, for some « € A, then write a = a1 + ag with ag,as €
A . By our assumptions the element 7 ¢ lifts to Cp 41 so m%c lifts to mC4q1. It
follows that R’ lim{mC'}, and hence also R im{C'}, is almost zero for alli > 1. [J

LEMMA 2.23. Let {C2} be a projective system of bounded below complezes of
V -modules such that each of the maps Cl— CJ is almost surjective. Assume
that for every integer i the module R @Hl(cn) 18 almost zero. Then the natural
map

(2.23.1) H(lim C,,) — lim H*(C,,)
pa— P
is an almost isomorphism.

PRrROOF. The stupid filtration on the complex of projective systems {C,} in-
duces a spectral sequence (the “second spectral sequence of hypercohomology”)
[10} 1.4.5]

(2.23.2) EY = RlimH?(C,) = H'I(RlimC,).
— —

By our assumptions Rliilq HP(C,,) is almost zero unless ¢ = 0 so this shows that
the right side of [2.23.1|is almost isomorphic to HZ(RlinCn) On the other hand,
by the preceding lemma @1 C,, is almost isomorphic to Rliin C,, which implies the
lemma. O

3. Galois cohomology

The main application of the Almost Purity Theorem is to the computation of
Galois cohomology.
The key lemma is the following:

LEMMA 3.1. Let G be a finite group, A a ring, and f : A — B an A-algebra
with G-action over A. For b € B define the trace of b, denoted tr(b), to be the
element tr(b) := > 5 9(b). Let b € B be an element with tr(b) in the image of A,
and let a map to tr(b). Then for any B—module M with semi-linear action of G
and i > 0, the cohomology groups H'(G, M) are annihilated by a.

Proor. First let us make some standard remarks about injective objects in
the category of B-modules with semi-linear action of G.

Let B{G} be the non-commutative ring with basis {e,},c¢ and multiplication
given by (bey) - (b'eyr) = bg(b')egq. Then the category of B-modules with semi-
linear action of G is canonically equivalent to the category of left B{G}-modules.
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In particular, this category has enough injectives. In fact, injective modules can be
constructed as follows. The forgetful functor

F : (left B{G}-modules) — (left B-modules)
has a right adjoint I given by sending a left B-module M to
I(M) = Homleft B—modules(B{G}a M)

Here I(M) is given the structure of a left B{G} module by having e € B{G} act
by sending ¢ : B{G} — M to the map

T o(1-e), T€ B{G}.

Since the functor F is exact, the functor I takes injectives to injectives. It follows
that if M is a left B{G}-module, and F'(M) — N is an inclusion of the underlying
B-module into an injective B-module, then the resulting inclusion M < I(N) is
an inclusion of M into an injective B{G}-module. Note also that I is an exact
functor. In particular,

Applying this discussion with B = Z, we see that if M is any abelian group
then since [ is an exact functor taking injectives to injectives we have

HY(G,1(M)) =0, fori> 0.
Also note that for an arbitrary ring with G-action B and left B-module M, the
underlying Z{G}-module of I(M) is isomorphic to Homz(Z{G}, M). In particular,
if N is an injective object in the category of left B{G}-modules then

HY(G,N) =0, fori>0.

We conclude that if M is a B-module with semi-linear action of G, then H*(G, M)
can be computed as follows: Choose an injective resolution M — I" in the category
of left B{G}-modules, and let I"*“ be the complex obtained by taking G-invariants.
Then
HY(G,M) = H'(I"9).

Returning to the proof of the lemma, let M — I' be an injective resolution
by B-modules with semi-linear G—action. Let m € (I*)¥ be an element defining a
class in H* (G, M). Then since I" is a resolution there exists an element m’ € I*~!
mapping to m. Then tr(bm’) € (I°~')%. On the other hand, the image of tr(bm’) in
I' is equal to tr(bm). Since m is G-invariant, we have tr(bm) = tr(b)-m = f(a)-m.
Therefore f(a)-m is a boundary which proves the lemma. O

3.2. Let V be as in and let f : A — B be an almost étale covering. Assume
that A and B are integral domains flat over V and integrally closed in their fields
of fractions. Then since A ®y K — B ®y K is étale, we get a morphism between
the field of fractions Frac(A) — Frac(B). Assume that this field extension is Galois
with group G. Then G also acts on B over A since B is integrally closed in its field
of fractions.

LEMMA 3.3. The extension A — B is Galois with group G.

PrRoOOF. We have to show that the map
(3.3.1) BoaB— [[B, b@c (....bg(c),... )gec
geG

is an almost isomorphism. Let e, € ngc B be the idempotent (0,...,1,0,...,0)
with a 1 in the g-th component and zeros in the other spots. We first show that
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for every a € A the element 7%¢, is in the image. This will imply that is
almost surjective.

For this note that the map [3.3.1]is naturally a G-equivariant morphism where
h € G acts on B®4 B by b®c— b® h(c), and on [[ .o B by sending (fy)gec
to the element with g-component fg5. This implies that it suffices to show that for
every a € Ay the element 7%e; is in the image, where 1 € G denotes the identity
element. This element is in fact equal to the image of the element 7%e defined in
2.13] To verify this note that the map B — B[1/x] is injective so it suffices to show
that the image of 7% in [ .5 B[1/7] is equal to m¥e; which follows from the fact
that A[l/n] — BJ[1/m] is étale and Galois with group G. This completes the proof
of the almost surjectivity of

For the almost injectivity, let M denote the kernel of so we have an
almost exact sequence

OHMHB@)ABHHBHO.
geG

Using this sequence and the fact that B®4 B and [] geq B are almost flat over A,
one sees that M is almost flat over A.

Now observe that since A[1/n] — B[1/x] is étale and Galois in the usual sense,
every element of M is annihilated by some element 7® for some o € A,. We
therefore get that

M = Ugen, Tori' (M, A/ (n®)).
Now since M is almost flat each of the modules Tor{ (M, A/(7®)) is almost zero,

which implies that M is also almost zero. (]

PROPOSITION 3.4. Let M be a B—-module with semi-linear action of G. Then
H(G, M) is almost zero for alli > 0 and M is almost isomorphic to B ®4 M.

PROOF. By and for any a € A, the element 7® € A is in the im-
age of the trace map. From this and it follows that 7¢ annihilates all higher
cohomology groups.

For o € A, let 7e € B ® B be the element defined in 2.I3] Write 7% =
> bi ®¢; with b, ¢; € B. Since 7%e maps to 7* in B under multiplication we have

(3.4.1) = bic;.
On the other hand,
(3.4.2) > bi-glei) =0

for any nontrivial ¢ € G. Indeed this can be verified after tensoring with K in
which case it is immediate. Define a map

(3.4.3) r:M — By M, mHZbiQ@tr(ci-m),

7

and let s : B®@4 MS — M be the natural map. Then
(3.4.4) ros(b@m) = Z b; ® tr(c;bm) = Z b; ® tr(c;b)m,
i i
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since for m € M% we have tr(bm) = tr(b)m. Now for any ¢ € A, we have
wétr(c;b) € A so we also have

’/TZb ® tr(e;b)ym =7 thrcl

On the other hand, using we have
(3.4.5)

Zb ctr(eb) = Zbi~(2g(0i)~g(b)) = ZZbi -g(e)g(b) = Zbi~cib: T b.

This shows that 7¢r o s is equal to multiplication by 7T for any a,e € A;. The
same argument shows that r is B-linear. Computing we also find that

(3.4.6) sor( Zb ):ZZbi~g(Ci)g(m):Zbiocimzwo‘m.
(]

To conclude this section, we record some calculations which will be used later.
Let K denote an algebraically closed field of characteristic 0, let p be a prime, and
for an integer n > 0 let p,» denote the group of p"—th roots of unity in K, and
let pipee = Uppipn C K. We view g, as a topological group with the discrete
topology.

Raising to the p-th power defines a homomorphism fi,n+1 — ppe and we let
Z,(1) denote linn ppn. We view Z,(1) as a topological group with the profinite

topology. Let d > 1 be an integer, and let A denote Zp(l)d. Let V C K denote a
subring containing pipe. If M is a V-module and n is an integer we write M (n)
for M ®z, Z,(1)®™ (if n < 0 then Z,(1)®" is defined to be the continuous dual of
Z,(1)®").

PROPOSITION 3.5. Let 1 A — ppee be a continuous homomorphism, v a
positive integer, and let L, denote the corresponding rank 1 module over V/pV
with continuous action of A.

(i) If p is trivial, then the V /p"V -module H*(A, L,,) is isomorphic to the exterior
algebra \*(V /p"V)2(-1).

(ii) If p is non—trivial, then there exists an integer n > 0 such that if ¢ is a primitive
p"—th root of 1 then H*(A, L,) is annihilated by ¢ — 1.

PrOOF. For 1 < ¢ < d let p; : Zy(1) — ppo denote the restriction of p
to the i—th factor of Z,(1)%. Then L, is isomorphic to tensor product of the
representations L, of Z,(1). By the Kiinneth formula it therefore suffices to
prove the proposition in the case when d = 1.

Since p is continuous there exists an integer n such that the image of Z,(1) is
contained in p,n. Let g5 denote the quotient Z,(1)/p™*Z,(1). For each s the action
of Z,(1) on L, factors through g, so

(3.5.1) H'(Z,(1). L) = lim H' (g, L.

Choose a generator o € Z,(1), and let D : L,, — L, be the map sending | € L,, to

o(l) —1. Let Ny : L, — L, denote the map l — Egeg g(1). Then as in [43] VIII,



ON FALTINGS’ METHOD OF ALMOST ETALE EXTENSIONS 19
§4] for i > 0 the cohomology groups H'(gs, L,,) are equal to the i~th cohomology
group of the complex

(3.5.2) L, 2>, Y., 2,1, 2

Furthermore, the maps H'(gs, L,,) — H'(gs+1, L,) occuring in the direct limit(3.5.1
are given by the morphisms of complexes

D N, D N, D
Ly, Ly, L, Ly Ly,
(3.5.3) idl idl Xp"J/ ><p"l xp2"
D Ngt1 D Ngi1 D
L, L, L, L, L,

Since L,, is annihilated by a power of p this implies that H*(Z,(1), L,) = 0 for all
7> 2.

If L, is the trivial representation, then N, is multiplication by p™* and D is the
zero map. Since L, is annihilated by a power of p it follows that H'(Z,(1),L,) =
V/p"V. Now this isomorphism depends on the choice of generator o € Z,(1). We
can make this more canonical as follows. An element 7 € Z,(—1) can be thought of
as a morphism 7 : Z,(1) — Z,. For any such morphism 7, we obtain an extension
of Z,(1)-modules

(3.5.4) 0—%2,—F—Z,—0

where E is the Z,-space Z2 with action of o € Zy(1) given by (a,b) — (a,b+a-7(0)).
This defines an isomorphism Z,(—1) — H*(Z,(1), L,,) proving (i).

For (ii), let o € g5 be a generator, let a € L, be a nonzero element, and let ¢
be a primitive p"—th root of 1. By choosing n appropriately we have o(a) = (“a
for some positive integer a prime to p (since L, is nontrivial). If u € V" denotes
the unit 1+ ¢ + --- + (%! then we can also write this as D(a) = (( — 1)ua. It
follows that (¢ — 1)a is equal to D(u~'a). In particular for any element a € L, in
the kernel of N the corresponding cohomology class is killed by (¢ — 1). [

3.6. In fact the proof of shows more. Let I'a denote the functor taking
A-invariants. Fix a basis 01,...,04 for A, and let L,, denote the representation of
Zp(1) obtained from p by restricting to the i-th factor. Let D, : L,,, — L,,, be the
map o; — 1 Then the proof of shows that

RTA(L,)

is represented by the tensor product of the complexes (concentrated in degrees 0
and 1)

(3.6.1) J A

This tensor product is an example of a Koszul complex. Let F' be a ring, let
n > 0 be an integer, and let F|xq,...,x,] be the polynomial ring over F. For an
F-module M, we define the Koszul complex (see for example [12] §17.2])

Kos(M) := Hompy, . o 1(H ", M),

where Z" is the standard Koszul resolution of F' viewed as an F[zq, ..., x,]-algebra
by sending all the z; to 0. By definition, £~ is a complex concentrated in degrees
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[—n,0], 2~ = A\"(F™), and the differential
d:.0—t - p—itl
sends mi A --- Am; to
D (=1 p(my) cmy A Adng A A,
j=1

where ¢ : F™ — F is the map
(a1,...,an) — Zajxj.
J

As explained in [12] 17.15], the complex J¢" is self-dual in the sense that there is
a canonical isomorphism

A [—d] ~ Homp (%, F).
If M is any F[z1,...,z,]-module, we then get isomorphisms

Hom' (Kos(M), F) Hom (Hom (¢, M), F)
Hom (Hom'(#",F)® M, F)
Hom (¢ [—d] ® M, F)
Hom' (" [—d], Hom(M, F))
Kos(Hom(M, F))[d].
Now if L is any continuous representation of A on a finitely generated free

V /p"-module, then a generalization of the above argument, which we leave to the
reader, shows that the cohomology

(3.6.2)

11 R

RT'A(L)
is represented by the Koszul complex Kos(L) (taking F =V /p"V), where we view
L as amodule over V /p"[z1, . .., x4] by choosing a basis o1, ..., 04 for A and letting

xz; act on L by o; — 1.
The duality [3.6.2] then yields an isomorphism

(3.6.3) RHom(RT'A(L),V/p") ~ RT a(Hom(L, V' /p"))[d].

This isomorphism of course depends on the choice of basis for A. It can be made
canonical as follows.

From (i), we get a trace map
t: RCA(V/p") — V/p'V(=d)[-d],
which induces a pairing
(3.64) RI'A(L) ® RUA(Hom(L, V /p")) — RUA(V /p") ——V [p"(~d)[—d],
where the first map is induced by the natural pairing
L ®Hom(L,V/p") — V /p".
The map [3.6.4] induces a morphism
(3.6.5) RT A(Hom(L,V /p")) — RHom(RUA(L),V /p"(—d)[—d)),

which upon choosing a basis becomes identified with the map [3.6.3] Therefore [3.6.5]
is an isomorphism.
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3.7. Now let V, R, etc. be as in Recall that Spec(Rg) is assumed
geometrically connected. Let k(R) denote the field of fractions of R, fix an algebraic
closure k(R) C k(R), let k(R)* C k(R) denote the union of the finitely generated
subfields k(R) C L C k(R) for which the normalization of R} in L is étale over
RS . Let R denote the normalization of R in k(R)".

Let 7 — Spec(Rg) denote the geometric generic point Spec(k(R)) and let A
denote the fundamental group i (Spec(R%),n). Also let Ao denote the Galois

group of R, over Ry-. Note that A, is isomorphic to Zp(l)d. The natural map
R.o — R defines a homomorphism § : A — A. Let ¥ denote its kernel.

REMARK 3.8. The R.-algebra R is almost faithfully flat, being a filtering direct
limit of almost étale coverings of R by

LEMMA 3.9. The morphism § : A — A, is surjective.

PROOF. Let z € Spec(Ry7) be a point in the closed fiber, let R’ denote the
Zariski local ring of z, and let A’ denote the fundamental group of Spec(R') X gpec( Re)
Spec(R%). Then there is a canonical map A’ — A and it suffices to prove that
A’ — A is surjective. This is equivalent to showing that for any collections of
nonnegative integers a = (a1, ..., aq) the ring

(3.9.1) Ry :=R[z1,...,z)/ (a0 —t1,...,a2"" —tg)

is an integral domain, where ¢; € R’ denotes the image of T; in R’ under
Since R’ is a local ring, for this it suffices to show that the closed fiber Spec(R,/pRa)
is connected. This is clear because Spec(Rq/pRa) — Spec(R'/pR’) is a homeo-
morphism, and (R’'/pR')eq is an integral domain being a localization of the ring
(Ry7/pRy7)red which is an integral domain by assumption. O

LEMMA 3.10. For any R-module M with continuous action of A and i > 0,
the natural map H (Ao, M=) — H'(A, M) is an almost isomorphism.

Proor. Consider the spectral sequence

(3.10.1) EP = HP(Aso, HY(S, M)) = HPI(A, M)
arising from writing the functor M — M?* as the composite of functors
b3} Aco
(310.2)  Repyy(A) M5 Repyg(Aoe) " (abelian groups).

The map in the Lemma is then the natural map Ei® — H?(A, M). To prove the
lemma it therefore suffices to show that for ¢ > 0 the group H4(X, M) is almost
zero. For this note that

(3.10.3) HY(2, M) = lim HY(S/H, M™),

H

where the limit is taken over normal subgroups H C ¥ of finite index, so it suffices
to prove that each HY(X/H, M™) is almost zero. Let R, — Sy be the finite
extension corresponding to H. Then by [2.17| the ring Sy is almost étale and Galois
over Ry. The result therefore follows from O

3.11. Let 7 > 0 be an integer. We can use the above results to (almost) compute
the cohomology groups H*(A, R/p"R).
For this note that the natural map

(3.11.1) Roo/p"Roo — (R/p"R)”
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is an almost isomorphism. Inded this map becomes an almost isomorphism after
applying ®r_ R by and since Ro, — R is almost faithfully flat (3.8), this
implies that [3.11.1]is an almost isomorphism. Using it follows that the natural
map

(3.11.2) H*(Aso, Roo /P Roc) — H*(A, R/p"R)

is an almost isomorphism. It therefore suffices to compute H* (Ao, Roo/p" Roo)-

LEMMA 3.12. let S — S’ be a flat ring homomorphism, and let M be an S-
module with continuous action of a profinite group G over S. Then the natural
map

(3.12.1) H*(G,M)®s S — H*(G,M ®g S")
is an tsomorphism.

PROOF. Since S — S’ is flat, we have
(3.12.2) (M @5 S = MH @55

for any subgroup H C G. By the definition of continuous group cohomology, we
have
(3.12.3)
HY(G,M) = lim H'(G/H,M"), H'(G,M ®s5') = lim (G/H,M" @55
HCG HCG
where the limit is taken over normal subgroups H C G of finite index. This therefore
reduces the proof to the case when G is finite.

Let P, — Z denote the canonical resolution of Z defined in [43 VII, §3].
Recall that P; is isomorphic to 7% Then by loc. cit. the cohomology groups
HY(G, M) are equal to the the cohomology groups of Hom(P,, M) and similarly for
HY(G,M ®g S’). The lemma then follows by observing that the natural map

(3.12.4) Hom(P,, M) @5 S — Hom(Ps, M ®g S")
is an isomorphism since each P; is a finitely generated free module. O

3.13. It follows that
H*(Aso, Roo /P Roo) =~ H*(Ano, Soo /D" Soo) @5 Ry,

where S = V[T1,...,Ty]. Now the Galois cohomology of So./p"Se can be com-
puted directly as follows. For positive numbers a = (a1, ..., aq) lying in Z[1/p] we
have a well-defined element 7¢ = T% ... T% € S,. Let piq : Zp(1)? — ppeo be the
character giving the action on T%. If we consider an element %iLnn(Cl’n, ooy Cdn) €

Zp(l)d7 where (; ,, is an n—th root of unity, and if we write a; = b;/p™ for some
m, then p1q sends lim (Cin, .-, Can) to (fjm e dbfm. As in|3.5let L, denote the

corresponding rank 1 free (V/p"V)-module with continuous A.,—action. Then as
an S—module with continuous A,,—action, we have

(3131) Soo = (®g,0§ai<1 for all ¢ Lﬂg) ®V SV
Using [3:12) again we have
(3.13.2) H* (Ao, S /P Soc) ~ H* (Ao, ®aLy,) @y Sy

Consider the decomposition

Qalp, = Ly ® (Sazolp,)-
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By (i)) we have an isomorphism

H* (Do, Ly) = N\(V/p'V)(-1),
and by (ii)) for any o € A4 the cohomology
H* (A, Ly,)

is annihilated by m® for all but finitely many a. From this we conclude the following;:

COROLLARY 3.14. The Ry-module H*(A,R/p"V) is almost finitely presented,
HY(A,R/p"R) is almost zero for i > d, and for every i we have an almost isomor-
phism

H'(AR/p'R) =~ (Ry @ A(V/p'V)(-1)) & N,

where N is annihilated by ¢ — 1, for a primitive p-th root of unity C.

3.15. Let J C R be the ideal (T} - - - T,), and let J C R be the ideal of elements
mapping to nilpotent elements in R/(Ty ---Ty). Then we can also use the above

techniques to (almost) compute H*(A,J/p"J). Let JE) € S be the ideal gener-
ated by elements 77" --- T with a; € Z[1/p] and a; > 0 for all i, and let Jo C Roo

denote the ideal Jéf ). ]joo. Note the following about these ideals:
(i) We have Joo = J N Ry. Therefore by the natural map

Joo R, R—J
is an almost isomorphism.

(ii) Let Ao, denote the quotient Ry /Joo. Note that Aoy = Reo ®s., (Soo/JéoS)),
and therefore is étale over S,/ Jg ) Tt follows that A, is p-torsion free, since
Soo/ Jéf )~ V. In particular, the sequence

0— Joo/P " Joo = Roo/P " Roo — Ao /P Ao — 0
is exact.

(i) We have a commutative diagram

0 (JOO/pTJOO) (chc E > Roo/pTRoo ®RQC E > Aoo/pero ®Rm E

i | i

0————=J/p"J R/p"R R/(p", J),
where the middle vertical arrow is an almost isomorphism, and the left vertical
arrow is almost surjective. It follows that the natural map
(Joo /D" Jo0) ®r. R — T /p"J
is an almost isomorphism. As in this implies that the natural map
Joo /P Joo — (T /" T)®
is also an almost isomorphism.

Using these observations, and the group H*(A,J/p"J) is almost
isomorphic to

Going through the last step in the above proof one obtains:
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PROPOSITION 3.16. The Ry--module H* (A, J /p"J) is almost finitely presented,
Hi(A,J/p"J) is almost zero for i > d, and for every i we have an almost isomor-
phism

HY(A,T/p" ) =@ N(V/pV)(-1)) @ N,
where N is annihilated by ¢ — 1, for a primitive p-th root of unity C.
3.17. In particular, projection onto the first factor of H%(A,J/p"J) defines a

trace map

tr: HY(A,J) — J @y V/p'V(—d).
This can be described more canonically as follows. If we write

HYA,T/p"T) ~J @ (V/p'V)(—d) ® N,,

where N, is annihilated by ¢ — 1, then as r varies we get a compatible collection of
maps

tr, : HY(A,J) — J @y V/p'V(—d)
such that the composite map

J @y V/p'V(=d) = HYA,J) = J @y V/p'V(=d)

is the identity. Since each N, is annihilated by ¢ — 1, there is a unique such
compatible collection of maps tr,.

3.18. Let L be a representation of A on a finitely generated free Z/p"-module.

PROPOSITION 3.19. (i) The Ru.-module (L ® R)*-module is almost finitely
presented.

(ii) For every i the cohomology group H' (A, L ® R) is almost finitely presented
over Ry, and these groups are almost zero for i > d.

Proor. For (i), note that by the second statement in the natural map
(L&®R)”@r . R—L®R

is an almost isomorphism. From this it follows that (L ® R)* is almost finitely
presented since R/Ry is almost faithfully flat by (see [21], 3.4.1] for descent in
the almost category).

For (ii), let R,, C Ry denote the subring generated by V and Til/ P (notation
as in [2.16). Let A, oo C Ao denote the subgroup of elements acting trivially on
R, so the quotient Aoy /A, o is finite. Since (L ® R)* is almost finitely presented

over R, for every a € A, there exists an integer n and a finitely presented free
module M, over R, with a morphism

Ma ®Rn Roo — (L ®R)E

whose cokernel is annihilated by m®. By possibly increasing n, we may assume that
the map is A, o-invariant, where A,, o, acts trivially on M,. Applying induction
from A, o to Ao we obtain a morphism of A, ,-modules

N, QR, Ry — (L ®§)Ev

where N, is a finitely presented free R,,-module, the cokernel is annihilated by m,,
and A, o acts trivially on N,. The kernel of this map is again almost finitely
presented over R.,. Repeating the argument (and possibly replacing n by a bigger
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integer), we find that there exists a finitely presented R,-module M, with semi-
linear A-action (which restricts to the trivial action of A, ) and a morphism
My ®R, Reo — (L ®E)E

whose kernel and cokernel is annihilated by m®.
By the same argument used in [3.13] we can then find a decomposition as a
R,-module with A,, -action

where RT'A,  (Hy) is annihilated by (,» — 1 for some primitive p"-th root of unity
Cpn. After possibly increasing n, we may further assume that the p-adic valuation
of (pn — 1 is less than . In fact, we have a decomposition

Ma ®Rn Roo = @QMQ ®Rn Luia

where each L, is a rank 1 representation over R,, and H, is obtained by taking
the factors corresponding to L,, with a nontrivial. Since A, is commutative, the
decomposition [3.19.1] is even A -invariant. Since

RUA(Ha) = RUA_/a,  BUA, . (Ha),

this implies that RI'a_(H,) is annihilated by m®. From this we conclude that up
to m®-torsion, the cohomology RI'a(L ® R) is represented by the Koszul complex
of the A-representation M,, after choosing a basis for A,,. This implies (ii). O

REMARK 3.20. By a similar argument, the cohomology groups H (A, L ® J)
are almost finitely presented, and zero for i > d.

3.21. The method used to prove [3.19] can also be used to study the natural
duality morphism

(3.21.1) RUA(L ® R) — RHom(RTA(L* ® J),J @y V/p"V(—d)[—d))
defined in D(R). Here L* denotes the dual Hom(L,Z/p") and
(3.21.2) I'a : Rep®™(A) — (Groups)

is the functor taking A—invariants.
With notation as in the proof, we compute

RUA(L* ® )
as follows. Note first of all that since the natural maps
(LOR)*®r_ R—L®R, Jow®r R—R

are almost isomorphisms, (L® R)* is almost finitely presented, and R/ R is almost
faithfully flat, the natural map

Homp (L ® R)*, Joo) ®g.. R — Homz(L @ R, J)
is an almost isomorphism. It follows that the natural map
Homp_ (L ®R)¥, Jw) — (L* ® J)*

becomes an almost isomorphism after tensoring with R, and hence is already an
almost isomorphism. On the other hand, since (L® R)* is almost finitely presented,
we have an almost isomorphism

Homp_((L® R)*,Js) ~ Homp_ (L ® R)*, Roo) ® Juo.
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Now up to m“-torsion, this is equal to
HOHan(Ma, Rn) QR,, Joo-

Now decomposing J, into J, := Jo N R, plus a part whose cohomology is anni-
hilated by m®, we find that up to m®-torsion the cohomology

RTA(L* ®J)
is given by
(3.21.3) RTUA__(Hompg, (M, Ry,) ®gr, Jn)-
Since R, /Ry is a finite flat covering there is a trace map
tr: R, — Ry
which sends J,, to Jy-. For a collection of integers (a1, ..., aq), this trace map sends

Tlal/p" . _ng/Pn — ( Z <i1a1 » _Cidad)Tlal/pn . .ng/p”7

where ¢ is a primitive p™-th root of unity, and the right sum is taken over i €
(Z/p™)?. Since we have

d
( Z Cilal ...Cidad) — H(lJrCaj +(<aj)2+”.+(caj)p"71)’

i=(i1,..s0d) j=1
it follows that
deg(Rp/Ry) - TSP oT8/P" i prja; for all j

t Tal/p" o .Tad/p" _
o d ) 0 otherwise.

We therefore can describe the projection onto the po-component (notation as in

3.13)) as the map

1
tr, == —————
deg(Ry/ RV)
As before this map sends J,, to J3-, and in fact it follows from this description that
the map

“tr: Ry, — Ry

Jn — Homp_(Ry, Ji7), xw (y— tr(zy))

is an isomorphism of free R,-modules of rank 1. We therefore obtain an isomor-
phism between [3:21.3] and

RUA, (Hompg, (M, Ry) ®g, Homg_ (R, J57)).

REMARK 3.22. Note that the trace maps tr,, are compatible, and induce a trace
map
troo 1 Roo — Ry,
which again is just the projection onto the po-component.
LEMMA 3.23. For any finitely presented R,-module W, the natural map
Homp, (W, Rn) XR,, HOIHRV(R”, Jv) — HOIHRv(VV, Jv)

is an isomorphism.
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PROOF. If W is a finitely generated free module, the result is immediate. For
the general case, write W is a cokernel

W = Coker(F1 — Fg)

of a morphism between finitely presented free R,-modules. We then have an exact
sequence

0 — Hompg, (W, R,) — Homg, (F», R,) — Hompg, (F1, R,).

Tensoring this sequence with Hom Rv(Rn, J37) and comparing it with
0 — Hompg (W, J37) — Hompg(Fs, J37) — Hom(F}, J37)
then gives the result. O
3.24. We therefore obtain that up to m®-torsion, RU'a(L* ® J) is equal to
RU A, (Homp_(M,, Jy7)).
By Koszul duality this induces an isomorphism up to m®-torsion
RHom(RTA(L ® R), Ji7) ~ RUA(L*, J))[d].

We leave to the reader the verification that up to m®-torsion this map induces the
map thereby proving the following theorem:

THEOREM 3.25. The morphism |3.21.1| s an almost isomorphism.

3.26. More generally if E C {1,...,n} is a subset and Dg C D the union of
the divisors D; with ¢ € E, then we define Jg C R to be the ideal of elements

mapping to nilpotent elements in the coordinate ring of Dg X x Spec(R).

If F C{1,...,n} denotes the complement of F, then there is a canonical map
Jp ® Jg — J which induces for any representation L of A a canonical map
(3.26.1) RUA(L® Jg) @ RTA(L* ® Jp) — RTA(J).

Composing with the trace map we obtain a morphism
(3.26.2) RIA(L® Jg) — RHom(RUA(L* @ Jg),J @y V /p"V(—d)[—d)).
A local calculation as in the proof of shows that this is an almost isomorphism.

4. Logarithmic geometry

4.1. In order to globalize the results of the preceding section, it is useful to
introduce a bit of log geometry in the sense of Fontaine, Illusie, and Kato [29].

4.2. Let S be a scheme which we view as a prelog scheme with the trivial log
structure, and let (X, Mx) — S be a morphism of prelog schemes (we usually write
« : Mx — Ox for the map in the definition of a prelog structure). Let E be a
quasi—coherent &x—module.

DEFINITION 4.3 ([38] 1.1.2]). A log derivation of (Ox, Mx) with values in E is
a pair 0 = (D, d), where § : Ox — E is a derivation and D : Mx — F is an additive
map such that for every local section m € Mx we have a(m)D(m) = d(a(m)) (so
D(m) should be viewed as “dlog(a(m))”).

REMARK 4.4. Note that the map D and the equation a(m)D(m) = d(a(m))
determines the derivation ¢ since a derivation is determined by its value on the
sections of 0%.
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45. If Q%X7 My)/s denotes the logarithmic differentials [29, 1.7], then there is

a universal log derivation (see for example [38] 1.1])

(4.5.1) d:Ox = Uxareyyss D Mx = Qg s-

In other words, if F is a quasi—coherent &x—module then there is a canonical
bijection

(4.5.2)

(log derivations of (Ox, Mx) with values in E) ~ Homg, (Q%KMX)/S, E).
Note in particular that if X is affine and P — I'(X, Mx) is a chart, then since
Q(X P)/s ™ Q(X Mx)/S (this equality is explained in [29] 1.7]), to give a morphism
Q(X My)s — E is equivalent to giving an additive map D : P — I'(X,E) and
a derivation ¢ : T'(X, 0x) — T'(X, E) so that for all p € P we have a(p)D(p) =
(a(p))-

4.6. Now let the notation be as in|3.11] let X = Spec(R), let Mx be the log
structure defined by the divisor Spec(R) — Spec(R?), let Mg denote I'(X, Mx), and
let Q%&MR)/V denote the global sections of Q%XMX)/SpeC(V). Since there exists a

morphism as in [2.16.1} the image of Mg under the map dlog generates Q%R Mp)/ V>
and therefore for any R—module E, a homomorphism Q% RMp))V E is determined
by an additive map

(4.6.1) D: Mg — E.
As in[3:11]let r be an integer. We now construct a morphism
(4.6.2) ¢ Qparyv — H' (A R/pTR(1))

depending only on Spec(R) with its log structure. For this we first construct an
additive map

(4.6.3) D: Mg — H' (A, R/p"R(1)).
Note that the map Mpr — R is an inclusion. For every s > 0 let M, C R denote

the set of elements f € R with f?° € Mg. There is then a natural exact sequence
in the category of integral monoids

(4.6.4) 0 e M, =2, My 0.

Raising to the p-th power induces a surjection My — M. Let E := lim M, denote
the projective limit, and note that the sequences induce an exact sequence
(again in the category of integral monoids)

(4.6.5) 0 —— Zy(1) E Mg 0.

The action of A on R induces an action of A on E which makes this an extension
in the category of monoids with continuous A-action. The sequence therefore
induces an additive map

(4.6.6) Mg — HY(A,Z,(1)).

Composing with the natural map H'(A,Z,(1)) — H'(A, R/p*R(1)) we obtain a
map

(4.6.7) D: Mg — H' (A, R/p°R(1)).
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THEOREM 4.7. The map M¥ ®z R/p*R — H' (A, R/p*R(1)) induced by
descends to Q%R)MR)/V, and the resulting map

(4.7.1) Q%R,MR)/V ®r Ry/p°Ry(—1) — H' (A, R/p°R)

induces an almost morphism

(4.7.2) ANty v ©r Ryy/p° Ry (=1)) — H* (A, R/p°R).
PrOOF. For f € R*, let T denote the Z,(1)-torsor with A-action inducing
c(f) € HY(A,R/p*R(1)). The torsor Ty is equal to the projective limit Ty =

liLan,m where T, is the set of elements g € R" such that g?" = f and the map
Ttnt+1 — Ty .y sends g to gP.

LEMMA 4.8. The map ¢
of dlog : R* — Q%R,MR)/V‘

re 1 R* — HY(A,R/p*R(1)) factors through the image

PRrOOF. It suffices to show that if dlog(f) = dlog(g) then the torsors with
A-action Ty and T, are isomorphic, or equivalently that the torsor with A-action
Trg-1 =Ty A T;l is trivial. This is clear, for if dlog(f) = dlog(g) then

(4.8.1) dlog(fg~") = dlog(f) — dlog(g) =0

and hence d(fg~!) = 0. Since Spec(R ®y K) — Spec(K) is formally étale this
implies that f¢g~! € RNK = V. This in turn implies that the action of A on Ty
is trivial which proves the lemma. ([l

For the proof of [1.7] consider first the case when R = S := V[T1,...,T4]. In
this case Mr = V* @ N¢, where the i-th generator ¢; € N? maps to the element
t; in S. The class c(e;) € HY(A,S/p"S) is then given by the Z,~torsor of p-power
roots of t; in S. Note that the action of A on this torsor factors through A... It
follows that in this case the map c factors through a map

(4.8.2) ¢V oN? = HY(As, Seo /D" Soo(1)).

Furthermore, ¢(V*) = 0 which proves that é factors through Q%S Ms)/V" Chasing
through the construction of the isomorphism

(4.8.3) (S7/p"S37)" = H' (Aso, Sso/P" S (1))
given in one sees that the map ¢ induces an isomorphism
(48.4) Qg vy v s (/0" Sp) = (Syp/p7Sp) @2 B — H (Do, S /0" S (1),
This proves the theorem in the case when R = S.
For the general case choose a formally étale map S — R as in [2.16.1

LEMMA 4.9. The natural map R* &g~ Mg — Mp is surjective.

PrOOF. Let t; € R be the image of T;. Then to prove the lemma it suffices to
show that any element m € Mpr C R can be written as ut{* ---t5? where u € R*.
This is clear, for if m € Mg let a; denote the valuation of the image of m in the local
ring of the generic point of the divisor of Spec(R) lying over Spec(S/(T;)) C Spec(S)
(if the inverse image is empty then set a; = 1). Since R is regular, the elements m
and t1" ---t5* must differ by a unit. O
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By the discussion at the beginning of the proof the composite
(4.9.1) Mg ®g R* — Mp —— H' (A, R/p"R(1))
is equal to the composite

(492)  Ms®s- R* —> Qs pr) v @5 R—— H'(As, oo /p" Soc) @5 R

/

HY(A,R/p"R).
where the map a is induced by the map dlog : R* — Q%RMR)/V ~ Qs,m4),v Os R.
By the surjectivity in [.9] this implies O

COROLLARY 4.10. There is a canonical (i.e. depending only on Spec(R) with
its boundary divisor) almost morphism, called the trace map,

(4.10.1) HY A, T/p")) = Qf )y @y V/p'V(=d).
PROOF. This follows from and the observation that there is a canon-
ical isomorphism J ® Q%R’MR)/V ~ Q}%/V. (]

Restating we obtain:
COROLLARY 4.11. The trace map induces a canonical isomorphism in 5(R7)
(4.11.1)  RTA(L ® R) — RHom(RTA(L* ® J), Q% @v V/p"V(—d)[—d))

More generally, for a subset E C {1,...,n} with complementary set F there is a

canonical isomorphism in D(R)

(4.11.2)  RTA(L® Jg) — RHom(RTA(L* @ Jr), 0%y ©v V/p'V(—d)[—d))

5. Coverings by K(m,1)’s

5.1. The key to globalizing the above computations is the notion of a K (7, 1). If
X is a scheme, let Fet(X) denote the site whose underlying category is the category
of finite étale morphisms U — X, and whose coverings are surjective morphisms.
We write Xyt for the associated topos. The inclusion Fet(X) C Et(X) induces a
morphism of topoi

(511) T Xet — XFet-

If X is connected and T — X is a geometric point, then Xge is equivalent to the
category of sets F; with continuous action of the fundamental group (X, Z) so
in particular for an abelian sheaf F' the cohomology H* (X, F) is isomorphic to
group cohomology H*(m (X, ), F5).

In general, 7* identifies the category Xp.; with the category of sheaves F' € X
for which F' is equal to the union of its locally constant subsheaves.

In what follows let A denote Z/(n) for some integer n invertible on X.

REMARK 5.2. It is always true that for a locally constant sheaf L of A-modules
on X the natural map H'(Xget, L) — H'(Xet, 7*L) is an isomorphism. This follows
from interpreting these groups as classifying extensions of A by L and noting that
any such extension is also locally constant.



ON FALTINGS’ METHOD OF ALMOST ETALE EXTENSIONS 31

DEFINITION 5.3. A scheme X is a K (m,1) if for integer n invertible on X and
every locally constant sheaf F' of Z/(n)-modules the natural map F' — Rm,m*F is
an isomorphism.

THEOREM 5.4. Let V' be a discrete valuation ring with field of fractions K of
characteristic 0 and perfect residue field k. Let X/V be a smooth scheme. Then for
every point x € X in the closed fiber of X there exists a Zariski open neighborhood
U C X of x such that the geometric generic fiber Ug is a K(m,1). In particular, if
X/V is also proper then every point x € X is contained in an open subset U C X
such that Ug is a K(m,1).

PRrROOF. By induction on the relative dimension d of X/V. We can without
loss of generality assume that X is affine.

The case d = 1 can be seen as follows. Choose an embedding X — Py into
some projective space and let X be the normalization of the closure. The generic
fiber X  is then a normal proper 1-dimensional K—scheme whence a smooth proper
curve. Since X g — X is not empty, the cohomological dimension of Xz is 1. This
case therefore follows from [£.21

The case d = 1 can also be relativized. As in [1 XI.3.1] define a morphism
f:+Z — W of K—schemes to be an elementary fibration if it extends to a proper
smooth morphism f : Z — W such that the map Z — Z — W (where Z — Z is
given the reduced structure) is finite étale and surjective and for every geometric
point w — W the geometric fiber Z4 is a smooth connected (and automatically
proper) curve. Then Z; is a smooth affine curve. We extend this notion slightly
by defining a morphism f : X — Y of V—schemes to be an elementary fibration if
the generic fiber X — Yk is an elementary fibration.

LEMMA 5.5. Let f : Z — W be an elementary fibration of smooth K—schemes.
If W is a K(m,1) then Z is also a K(m,1).

PrOOF. We have to show that for any locally constant constructible sheaf L
on Z and i > 0 the sheaf Rim,L on Zpe is zero. For this we may clearly replace
W by a finite étale cover, and hence making the base change (Z — Z) — W we can
assume that the complement Z — Z is given by a nonempty collection of sections
s: W — Z. If U — Z is finite étale and surjective and U denotes the normalization
of Z in U, then it follows from Abhyankar’s lemma and the assumption char(K) = 0
that U — W is also smooth and proper and that U — U — W is finite étale and
surjective. Replacing Z by a finite étale covering where L is trivial we may therefore
assume that L = A. We may also base change to K and hence may assume that
K is algebraically closed. Furthermore, it suffices to show that for any cohomology
class & € H*(Ze, A) there exists a finite étale surjective morphism Z’' — Z such
that the pullback of o to Z’ is trivial.

Next consider the Leray spectral sequence

(5.5.1) EY = H(W,R f,\) — H(Z,\).

Let j : Z — Z and i : (Z — Z) — Z be the inclusions. Since (Z — Z) C Z
is a smooth divisor, there is by cohomological purity [I, XVI.3.9] a distinguished
triangle on Z

(5.5.2) A — Rjj*A — i, A(=1)[—1] — A[1].
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This induces a long exact sequence
(5.5.3) s REfN — REf A — R (A (1)) — - -

Now the sheaves R*f.A and R*~1(i,A(—1)) are locally constant constructible and
their formation commutes with arbitrary base change [I, XVI.2.2]. In particular,
the boundary map

Rf.i.A(—1) — R%f.A
is an isomorphism as this can be checked fiber by fiber. Also since f o1 is étale we
have R’ f,(i,A(—1)) = 0 for i > 0. This implies that

Rf,A~R°f.A, R'f A~R'f,A, R°f,A=0 fors>1.

In particular, the sheaves R®f,A are locally constant constructible. Since W is
a K(m,1) any cohomology class in H* (W, R/ f,A) for i > 0 is killed by a finite
étale extension of W. We may therefore assume that « is given by a class in
H°(W, R? f.A). Furthermore, since R f,A is zero for j > 2 it suffices to consider
the case of j = 1 which follows from [5.2] O

To prove it therefore suffices by induction on d to show that for any point
x € X of the closed fiber there exists a neighborhood U of x and an elementary
fibration f : U — W with W smooth. For if W’ C W is an open neighborhood of
f(z) which is a K(m,1) then implies that (U xw W')z is also a K(m,1). For
this we may as well replace V' by its maximal unramified extension and hence may
assume that the residue field k is algebraically closed. Furthermore it suffices to
consider the case of a k—rational point = of X.

We can without loss of generality assume that X is affine. Choose an immersion
X — P" for some r, and let X be the normalization of the closure of X. Choose a
very ample sheaf M on X and let X — Pg be the embedding into projective space
provided by M®" for some r > 2. Let Y = X — X with the reduced subscheme
structure, and let Y° C Y denote the open subset where Y is smooth over V. Note
that the generic fiber of Y° is dense in the generic fiber Y.

LEMMA 5.6. There exist hyperplanes Hy,... ,Hg_1 in Py containing x such
that the intersection L = HiN---NHy_1 has relative dimension N —d+1 over V and
L meets X transversally. We can furthermore choose the hyperplanes Hy, ..., Hy_
such that the intersection LN X g is contained in the smooth locus of X x, LxNYx
is contained in Y2, and L meets X i and Y transversally. In fact, if P denotes
the space classifying (d — 1)—hyperplanes in IP’{}T containing x (see the proof for
a precise description of this space), then there is an open subset % C P dense in
every fiber such that for any morphism Spec(V') — % the corresponding hyperplanes
Hi,...,Hy_1 satisfy the above conditions.

PRrROOF. Let x : Spec(V) — X be a morphism sending the closed point to the
previously denoted point . The functor classifying hyperplanes in PV through
x is easily seen to be represented by a projective smooth scheme over V (and
in particular with equidimensional fibers). It follows that the functor classifying
(d — 1) hyperplanes in PV containing x is also represented by a projective smooth
V—scheme P.

There is an open subset % C P classifying the condition that the intersection
L has dimension N — d + 1 in each fiber, and the open subset %4 is dense in every
fiber. The condition that L meets X transversally is equivalent to the condition
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that X N L is smooth over V. Consider the universal intersection & = (X xP)N.¥¢
over P where % denotes the intersection of the universal hyperplanes over P. Let
Z C Z be the closed subset where 2 is not smooth over P and let # C P be its
image. The subset # is a constructible subset of P whose complement is dense in
both the generic and closed fiber by [1 XI.2.1]. Therefore the complement % C P
of the closure of # is also dense in every fibre whence %4 N%> is also nonempty and
dense in every fiber. Furthermore as in the proof of [1) XI.3.1] there exists a dense
open subset ¥ C Pg classifying hyperplanes such that Lxg N X is contained in
the smooth locus of X g and Lx NYxk is contained in Y%, Let Q C P be the closure
of the complement of ¥ (with the reduced structure). The scheme @ is flat over
V' and hence the dimension of the components of the closed fiber of @ is strictly
smaller than the dimension of P,. In particular the intersection Q¢ N % N % is
dense in every fiber. This implies the lemma. O

By a similar reasoning we can also choose a hyperplane Hy not containing x
meeting X N L transversally and such that the intersection Y N (Hy N L)x = 0. If
P’ denotes the space classifying d hyperplanes Hy, ..., Hy_1, then as in the proof
of [5.6] one sees that there exists an open subset %’ C P’ dense in every fiber such
that Hy,..., Hj_1 satisfy the conditions of the lemma, Hy does not contain z, Hy
meets X N L transversally, and the intersection Y N (Hy N L)k is empty.

On Y? CY the map Q]%)N/Vlyo — Q%/O/V is surjective. Let Grpy (QI%’W/V’ d—1)
denote the scheme over PV classifying rank d—1 quotients of QI%, NV We then obtain
a morphism Y° — Grpy (Qzle/vvd —1) over PV, Let Z C GrpN(QHlJ,N/V,d —1) be
the closure of Y° and let 7 : Z — Y be the projection. Then on Z there is a
quotient Q%N/V\Z — &.

LEMMA 5.7. As in let P denote the V-scheme parametrizing (d — 1)-
hyperplanes in PN through z, and for a (scheme—valued) point of P corresponding
to hyperplanes Hy,... ,Hq_1 let L denote the intersection Hy N ---N Hy_1. Then
there exists an open subset ¥ C P dense in every fiber such that if Hy, ..., Hy_1

define a point of V" and z € Z with image y € Y then the natural map Q]%,N/V(y) —
\%4

E(z) ® QlL/V(y) is an isomorphism.

Similarly, if P" denotes the space of (d— 1) hyperplanes in PY (not necessarily
through x) then there exists an open subset ¥ C P dense in every fiber such that
if Hy,...,Hy_1 define a point of ¥ and z € Z with image y € Y then the natural
map Q;Pg/v(y) — &(z) ® QIL/V(y) is an isomorphism.

PrOOF. We give the proof of the first statement leaving to the reader the task
of proving the second statement using the same argument.

Let ¥ C P be the subfunctor associating to any V-scheme T the subset of
P(T) classifying hyperplanes Hy, ..., Hg_1 such that the map Q]%»N/v'ZT — &z, ®

\%4
QlL /T\ z, is an isomorphism. The fact that Z is proper over V implies that in fact
¥ is represented by an open subset of P. We claim that ¥ is dense in every fiber.

To verify this it suffices to consider the base change of Z by a map V — ,
where €2 is an algebraically closed field. We claim that for any nonempty affine
open subset U C Zg, there exists a dense open subset U’ C U classifying classifying
hyperplanes Hq,...,Hy_1 such that the map Qég/v(y) — E(2)® QlL/V(y) is an
isomorphism for every z € U’ mapping to y € Y. Let Xy,..., Xy denote the
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coordinates of PV. After shrinking on U and possibly changing coordinates we can
assume that U maps to the open subset AN C P given by Xy # 0 and that
&|y is isomorphic to ﬁgﬁl. There is also a dense open subset A C P classifying
hyperplanes Hy, ..., H;—1 none of which are contained in {Xy = 0}. A point of A
is given by the coefficients of linear equations

N-1
(5.7.1) > anXi=c,,
i=0
where v =1,...,d— 1 and ¢, € Q (in the case when we require the hyperplanes to

pass through x the constants ¢, will be fixed). Let R be the coordinate ring of U.

The basis dX; induces an isomorphism Qv o |v ~ RY and the quotient Qg |0 —
WAL Py /Q

QlL/Q|U has kernel the submodule generated by the vectors v, = (agy,...,aN—-1,)-
Let I C RY be the kernel of the surjection RY — &|y. The intersection I :=
FNnQY ¢ RY must have dimension less than or equal to N — d + 1 since the map
I ®q R — F is injective (because I ®q R — RY is injective) and F has rank equal
to N —d+ 1. From this it is clear that there exists a dense open subset of A such
that
I N Span(v,)9Zt = {0}.

This gives the desired dense open subset. O

We can therefore choose hyperplanes Hy, ..., Hz_1 such that the conditions in
[5.6] are satisfied, such that for every z € Z with image y € Y the natural map

Q];g/v(y) — &(z) @QIL/V(y) is an isomorphism, and such that Hy does not contain

x, Hy meets X N L transversally and such that the intersection Y N (Hy N L)k is
empty. After changing coordinates, we can further assume that Hy is the hyperplane
{Xo = 0}. Let C denote the intersection Hy N --- N Hy_1. Choosing coordinates
write

N
(5.7.2) H;i:» aiX, =0,
v=0

and consider the map

(5.7.3) PN —C =P,y =) anX,.

Let U C X be the neighborhood of  which is the complement of HyNX. We then
obtain a morphism € : U — P?~1. The fiber e le(x) is isomorphic to U N L. In
fact, let A~ C P91 denote the open subset where 1y # 0. By associating to a
point (y1,...,¥4—1) the hyperplanes y; — ajo = >, @i X, we obtain a morphism
A4l — P” over V. For s € A?"! let L, denote the intersection of the (d — 1)~
hyperplanes corresponding to the image of s. Then the fiber of € over s is equal
toUNLs. By for general choice of Hy, ..., H;_1, there exists an open subset
W C A?! containing e(z) such that for every s € W the conditions of are
satisfied for the image of s in P”. It follows that for a point s € Wx of the generic
fiber the intersection X N L is smooth. Using the argument given in [T, XI, page 7
last paragraph] one shows that the map Xx — Wk is an elementary fibration. O

COROLLARY 5.8. Let X/V be a smooth proper scheme. Then for any closed
point x € X the scheme Spec(Ox z )5 is a K(m,1).
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PRrROOF. The scheme Spec(Ox z) is a projective limit of K (m,1)’s and a stan-
dard limit argument shows that such a projective limit is also a K (m,1). ([

EXAMPLE 5.9. Let K be an algebraically closed field of characteristic 0, and
X/K a smooth K-scheme with a divisor D C X with normal crossings. Let
z € X(K) be apoint and let Y denote Spec(€x z). Then if Y° denotes Y x x (X —D)
then Y is a K(m,1).

For this note first that we are immediately reduced to the case when X =
A?, x is the origin, and D is the standard hyperplanes. By Abhyankar’s lemma
the fundamental group A of Y is isomorphic to 2(1)" where r is the number of
components of D passing through x. Let L be a locally constant sheaf of A-modules
on Y°. By devissage we may assume that A = Z/(p) and that L corresponds to
a simple representation of A. In this case L is isomorphic to a tensor product
Ly, ®---®L,, where L, is a representation of the j-th factor of 2(1) in A. By
the Kiinneth formula this further reduces the proof to the case when X = A® and
D is the origin. In this case Y is a projective limit of K (m,1)’s and hence is also

a K(m,1).
This argument also proves the following. Assume given an étale morphism
(5.9.1) 7: X — Spec(K[X1,...,X4))

such that D is equal to the inverse image of the standard hyperplanes. Let j :
X°:= (X — D) — X be the inclusion and let j be an integer. For n = (nq,...,nq)
let X,, — X denote the scheme obtained by taking the n;—th roots of X;, and let
Jn + X2 — X, be the inclusion. Then for any locally constant constructible sheaf
L and cohomology class a € R'j,L (i > 0) there exists integers n such that the
image of o in R%j,. L is zero, jy. L is locally constant constructible, and the natural
map jrjn«L — L is an isomorphism. Indeed this can be verified after passing to
the strict henselization of X at a point in which case it follows from the above
computations.

COROLLARY 5.10. Let X be a smooth proper V—-scheme and D C X a divisor
with normal crossings relative to V. Let X° denote the complement of D. Then
for any closed point x € X the scheme (Spec(Ox,z))’ = X5 X x Spec(Ox z) is a
K(m1).

PrOOF. Let X' denote Spec(Ox z) and let L be a locally constant constructible
sheaf on X%D. We have to show that for any cohomology class a € H* (X%D, L) with

i > 0 there exists a finite étale surjection V — X% over which « becomes zero.
Choose a formally étale morphism

(5.10.1) 7: X" — Spec(V[Xy,...,Xd])

such that D is equal to the inverse image of {X;--- X4 =0}. Let j: XT° < XT be
the inclusion. By and consideration of the Leray spectral sequence

(5.10.2) B} = HP(X1, Rij,L) = HP*(XI L),
there exists integers n = (n1,...,ng) such that if X! denotes the scheme
(5.10.3) X Xspec(vixy,...xa)) Spec(VX™ . X))

with inclusion 7, : X[° < X[ then « is given by a class in H’(Xl ?,jn*L), s is

locally constant constructible, and j*j,.L — L is an isomorphism. Replacing X
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by X, we may therefore assume that L extends to a sheaf on XT? which we again
denote by L and that « is obtained from a cohomology class in H i(X%, L). Since
XT? is a K(m,1) the result follows. O

In fact can be generalized as follows to also take into account a boundary.

THEOREM 5.11. With notation as in[5.4, let D C X be a divisor with simple
normal crossings relative to V, set X° := X — D. Let D = Dy U---U D, with
each D; an irreducible divisor. For a subset A C {1,...,n} (possibly empty) let D 4
denote the intersection NicaD;, and let D9 denote Dy — (UjgaDj). Then for any
point x € X in the closed fiber there exists a Zariski open neighborhood U of x such
that each Dil,? NUg is a K(m,1).

PrOOF. Note first that after possibly replacing the polarization M giving the
embedding X < PN by M®" for some 7, we may assume that the closure D; C X
of each irreducible component D; is normal. Let € : X — W be the elementary
fibration constructed in the proof of by projection from the hyperplanes H;.
Then an examination of the proof and standard Bertini type arguments shows that
we can furthermore choose the hyperplanes Hy,...,Hy_1 sothat if L=H;N---N
H;_1 then the intersection Lfﬂﬁif is transverse for all ¢ so that this intersection is
an étale K—scheme, and furthermore can choose the H;’s such that the projection of
the double intersections D; N D; have image a divisor with simple normal crossings
in W. Furthermore, we can choose the hyperplane Hy so that it does not meet the
intersections Lz N Ez‘,f- Then it follows from the proof that after some shrinking

on W the schemes Ei 7 are finite and étale over W4. This in turn implies that the
map X2 — Wy is also an elementary fibration whence X2~ is a K(r,1), and the

statement about the higher intersections follows by induction.
|

6. The topos 5&”?0

6.1. Let X/V be a smooth V-scheme, and let D C X be a divisor with normal
crossings relative to V. For an X—scheme 7 : U — X let U° denote U — 7~ (D).

Define a site .7 as follows. The objects of . are pairs (U, N), where U is
an étale separated X-—scheme of finite type and N — U% is a finite and étale
morphism. A morphism (U’, N’) — (U, N) is given by a commutative diagram of
X-—morphisms

N — N

(6.1.1) l l

v —— U
A collection of morphisms {(U;, N;) — (U, N)} is defined to be a covering if {U; —
U} is a covering in Et(X) and {N; — N} is a covering in Et(X2-). We write 272
for the resulting topos.
LEMMA 6.2. The category ¥ has finite projective limits.

Proor. By [, 1.2.3], it suffices to show that finite products and equalizers
are representable in .. If {(U;, N;)}7, is a finite set of objects in ., then their
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product is given by the pair
(621) (UlXxUQX--~XxUn,N1XX%NQX-”XX%NTL).
For the existence of equalizers, consider two morphisms f, g : (Uy, N1) — (Us, No)

in.#, and let NT (resp. U") denote the equalizer of the morphisms N; = Ny (resp.
Uy = Us). Then (U, NT) represents the equalizer of f and g. The only point that

needs verification is that NT is finite over Ug . For this note that NT is equal to
the fiber product of the diagram

Ny

A

N LXb> Ny XX% No,
where we write a, b : Ny — N for the two morphisms. Since Ny — X% is separated

this implies that NT is a closed subscheme of N;. By a similar argument UT is a
closed subscheme of U;. We therefore have a commutative diagram

NtCe—— N,

Lk

Ul Uiz

where the horizontal arrows are closed immersions, and c is finite. It follows that
Nt — U%’ is also finite. (I

REMARK 6.3. A similar argument to the one in the proof of [6.2] shows that a
finite projective limit of finite étale morphisms is finite and étale. Indeed to verify
this it suffices to consider finite products (immediate) and equalizers (proof of|[6.2)).

6.4. There is a continuous morphism of sites ./ — Et(X%) sending (U, N)
to the composite N — U% — X%. This functor preserves finite inverse limits
since it preserves products and equalizers, and therefore by [Il IV.4.9.2] induces a
morphism of topoi

(6.4.1) ux s X%

— 2%

There is also a continuous morphism of sites Et(X) — .# sending U — X to
(U,id : Uz — U%) This functor also preserves finite projective limits, and induces
a morphism of topoi
(6.4.2) vx : 2% — Xt
Note that the composite vx o ux : X%et — Xt is just the morphism of topoi
induced by the morphism of schemes X% — X.

Finally there is a morphism of sites Fet(X%:) — . sending N — X2 to the
object (X, N) € .. This morphism induces a morphism of topoi

(6.4.3) €x Ag — X%,Fet.

Observe that ex owux is the natural projection X%et — X%,Fet'

LEMMA 6.5. Let L be a locally constant constructible abelian sheaf on X%.
Then Riux.L =0 fori >0 and ux.L is the sheaf (U, N) — L(N).
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PRrROOF. Fix an integer i > 0. By any object of . can be covered by
objects (U, N) with U° a K(m,1). To prove that Riux.L = 0, it therefore suffices to

show that for any such (U, N) € .# and class 0o € H* (X%,et|u;(1(U,N)7 L), there exists

a covering (U, N') — (U, N) such that the pullback of o to H’(X% etlu}l(U’,N’)’ L)

is zero.
For this note that for any (U, N) € . there is a natural isomorphism
(6.5.1) Hi(X%eJu}_{l(U’N), L) ~ H (N, L).

Now if U° is a K(m, 1), then N is also a K (m,1). This implies that there exists a
finite étale covering N’ — N such that o maps to zero in H*(N/, L). The resulting
covering (U, N') — (U, N) in . then kills o.

The description of ux, L is immediate from the definitions. O

LEMMA 6.6. Assume that X° is a K(m,1). Then for any abelian sheaf F in

X% Fet’ the natural map F' — Rex.e\ F is an isomorphism.

PrOOF. Note that by the preceding lemma, Rex.e5 F ~ R(exoux)«(Flxo ).

K et

The lemma therefore follows from the fact that X° is a K (7, 1) which implies that
the adjunction map F' — R(ex o uX)*(F\X% ‘t) is an isomorphism. O

6.7. An annoying technical difficulty about the topos 3&%’ is that most of the
sheaves we will consider will be obtained from presheaves by sheafification. This
means that if U € Et(X) then it is rather difficult to describe the restriction of the

o
sheaf to U?’Fet.

We can overcome this as follows. Recall from [I, V, §7] (in particular [II
V.7.4.1 (4)]) the following way of computing cohomology using hypercovers. Let S
be a site with representable finite products and fiber products and let S™ be the
associated topos. Let HRg (or just HR if the reference to the site S is clear) denote
the homotopy category of hypercovers in S. This is the category whose objects
are hypercovers by objects of S of the initial object of the topos S~ and whose
morphisms are homotopy classes of morphisms of hypercovers (see [1, V.7.3.1.6] for
the notion of a homotopy between two morphisms of hypercovers). By [1 V.7.3.2
(1)] the opposite category H R° is filtering (while the category of hypercovers before
passing to the homotopy category is not filtering). Let G be a presheaf of abelian
groups on S with associated sheaf G*. For any hypercover U. of the initial object in
S7, let G(U.) denote the complex obtained by evaluating G on each of the U, to get
a cosimplicial abelian group and then taking the total complex. Two homotopic
morphisms f,¢g : U’ — U. induce the same map H*(G(U!)) — H*(G(U!)) and

hence one can form the limit
(6.7.1) h_H}l H*(GU.)).
UE€eHR
There is a natural morphism
(6.7.2) h_n}l H*(GU.)) — H*(S,G")
U.€HR

which by [I 7.4.1 (4)] is an isomorphism, where sq; (resp. cosq,) denotes the
k-th skeleton (resp. coskeleton) functor. For a fixed ¢, one can do slightly bet-
ter. Namely, recall that for an integer k an object U. € HR is k-truncated if the
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adjunction map
(6.7.3) U. — cosqysq,U.

is an isomorphism. We denote by HR; C HR the full subcategory of k-truncated
objects. By [1I, V.7.3.2 (1)] the category HRY, is also filtering, and by [L} 7.4.1 (3)]
the natural map

(6.7.4) lim HY(G(U.)) — HY(S,F)
U.€HRy

is an isomorphism for any k > q.

6.8. Now let . be as in Let F be a presheaf on . such that for every
U € Et(X) the restriction Fy of F' to Fet(Us) is a sheaf. Let vx : 222 — Xe be
the morphism of topoi defined in For any U € Et(X) let .|y denote the site
of objects in . with a morphism to the object (U, U%) The topos associated to
v is the localized topos 3&%’|U We also have the morphism of topoi
(6.8.1) v Aglv — U%,Fet'
The map of presheaves F' — F'® induces a morphism Fyy — Rey. F*. Applying the

functor H q(U%,Fet’ —) we obtain a morphism

(6.8.2) HIUUE . Fi) = H(Z |y, F*).

This map is functorial in U, so if .#°?(F') denotes the sheaf on Et(X) associated to
the presheaf

(6.8.3) U HY(UZ o FU)

we obtain a morphism of sheaves on Et(X)

(6.8.4) HUF) — Rlvx, F°.
PROPOSITION 6.9. The morphism[6.8-7) is an isomorphism.
PrOOF. The key point is the following lemma:

LEMMA 6.10. Let U € Et(X) and let (U!,N!) — (U,Usz) be a k-truncated
hypercover in . Then after replacing U by an étale cover W — U and (U', N!) —
(U, U2) by (U xy W,N!xy W) — (W, W) there exists a morphism of k-truncated
hypercovers (U!", N!") — (U!, N!) over (U,Us) such that each Ny, is finite and étale
over UZ.

PrROOF. By a standard limit argument, it suffices to consider the case when U
is the spectrum of a strictly henselian local ring (indeed the assumption that the hy-
percovers are k-truncated ensures that they are given by finitely many schemes and
maps, and hence if we prove the lemma over the strict henselization of a geometric
point £ — U we can “spread out” to get the lemma in some étale neighborhood of

In this case any étale U-scheme Z — U decomposes canonically as Z9 [ Z/,
where Z/ — U is finite étale and the inclusion Z/ < Z reduces to an isomorphism
over the closed point of U. This decomposition is functorial in Z. Let U'T be the
simplicial U-scheme [n] — U/f. The simplicial scheme U’ s again a hypercover
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of U. Indeed for any integer n > 0 to verify that the morphism of finite étale
U-schemes

(6.10.1) ULy = (005,54,U )nia

is surjective, it suffices to check that it induces a surjection over the closed point of
U which follows from the fact that U’ — U is a hypercover.
We claim that in this local case we can find a morphism (U”, N") — (U/, N!)

as in the lemma with U” = U/, We prove this stronger statement by induction on
k.
For the case k = 0, we have a commutative diagram

! a o
Ny —2— U2

(6.10.2) tl l

U{)L U,

where a and 3 are étale and surjective, and (U/,N/) — (U, U%) is obtained by

taking the 0-coskeletons of the horizontal arrows. Set Néf = Ny Xy U(’)f . We then
obtain a commutative diagram mapping to [6.10.2]

(X‘f o
Néf — UZ
(6.10.3) tfl J
f
vl .,
where the map N(/)f — U(')fi induced by ¢/ is finite and étale, and af and B/ are

K
étale surjections. Taking 0-coskeletons of the horizontal arrows in [6.10.3| we obtain

the desired hypercover in .# mapping to (U!, N!) — (U, Uz.).
For the inductive step we assume the lemma holds for k and prove it for k + 1.
By induction we can find a hypercover

(6.10.4) (cosqusq, U, Z) — (U, U%)
and a commutative diagram over U

Z. ——— cosqsq, N/

(6.10.5) l l

cosqysqpU7 ——— cosqysq, U’

Set

(6.10.6) W = Nit1 X (cosapsayN.)wrs (cosq8q,Z. ) k+1

so that there is a commutative diagram (whose top square is cartesian)
W ——  Nen
Bl lﬁ

(6.10.7) (cosqysqZ)ky1 —— (cosqysqpN.) ki1

°| !

(cosqsapUM 1 —— (cosqpsqU. )it
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The morphism
(6.10.8) o'+ (cosqySARZ ki1 — (COS%S%U/%MH

induced by o is finite and étale being an inverse limit of finite étale morphisms
It follows that (cosq,sqyZ.)k+1 is proper over U%, and therefore the morphism
« 18 also finite and étale. Since the top square is cartesian we conclude that § is
also finite étale. The morphism f is surjective since 3 is surjective (since N. is a
hypercover).

Next set

(6.10.9) W=U, W.

X (cosagsa U )i

Since UY isa hypercover of U, the morphism U,g’jrl — (cosqksqu./f)kH is surjective
and finite. This implies that the map W — W is also surjective and that W is
finite over Uz

Let Ay, C A denote the full subcategory whose objects are {[s][s < k + 1}.
Define

(6.10.10) R: A} — (Ug-schemes)

as follows. For s < k + 1 set Ry := Z,, and set Rpy1 := W. For a morphism
d:[s] = [k + 1] with s < k+ 1 define §* : Ry41 — Rs to be the composite
(6.10.11) W — (cosqysqpZ.)k+1 — Zs,

where the second morphism is the one given by the simplicial structure on cosq;sq; Z..
For a morphism ¢ : [k + 1] — [s] let 6* : Ry — Rp4+1 = W be the morphism defined
as follows. First the commutative diagram

Z, — N;
H s
(6.10.12) Z, Ni1

l l

(co80y80, Z. ) o1 — (€088, N. )41

defines a morphism h : Zs; — W. This morphisms sits in a commutative diagram

Zy, —— W
(6.10.13) ) W
5| |
[ Ut
k+1 (cosqysarU." k41

and hence factors through a morphism §* : Ry = Z; — W = Ry4+1. We leave to
the reader the verification that these definitions are compatible with compositions
of morphisms in A, ;. Since all the morphisms in the diagram

(6.10.14) 1% W (co8qy5AL Z. k41
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are surjections the truncated simplicial scheme R is a hypercover of Uz Further-
more we have a commutative diagram of truncated simplicial schemes

R —— N.
(6.10.15) | |

quHU./f — U..
Taking (k+1)-coskeletons we obtain the desired morphism of hypercovers in .. O

To deduce from this, let s € Rlex.F'® be a section over some U € Et(X).
After shrinking on U we can find a hypercover (U!, N!) — (U, Uz-) and a section
§ € Fy,(Ny) representing the class s. By after further shrinking on U, we can
assume that each Uy, is finite étale over U. In this case N. is a hypercover of Uz
in Fet(Uz-) and therefore § € Fy; (N;) = Fu(N,) defines a class in Hq(U%’Fet, Fy)
mapping to s. This shows that [6.8:4] is surjective.

For the injectivity of consider U € Et(X) and an element

(6.10.16) oe HI(US . Fy)

mapping to zero in Rivy,F*. After shrinking on U, we can find an étale hyper-
cover N. — Uz in Fet(Uz), a section ¢ € Fy(Ng) defining o, and a morphism of
hypercovers in .

(6.10.17) (U,N’) — (U,N.)

such that & maps to a boundary in Fy/(N!). By after shrinking on U we can
assume each U}, is finite and étale over U. In this case N/ — N. is a morphism of
hypercovers in Uz = such that the image of ¢ under the map Fy(N.) — Fy(N!) is

a boundary. Therefore & defines the zero section of J#4. This completes the proof

of 6.9 O

COROLLARY 6.11. With notation and assumptions as in[6.8, the natural map
(6.11.1)

lim H*(U.C,)?,Fet’ Fy)—  lim H*(U‘??,F‘et’ Rey «F*) ~ H* (2%, F).
U.GHREt(X) U.EHREt(X)

is an isomorphism.
ProOF. For any U. € H Rgy(x) there is a canonical spectral sequence

(6112) E{)q - Hq( ;’?,Fet’ FUP) i Hp+q(U'(j?,Fet’ FU)

and similarly
(6.11.3) EY = HY(U® Rey, . F*) = HPYY(U° . Rey . .F%),

p, K Fet’ - K, Fet’
and it follows from the construction that the morphism [6.11.1] is induced by a

morphism of spectral sequences from [6.11.2] to [6.11.3] The EY%-term of [6.11.2

computes the p—th Cech cohomology of the presheaf

(6.11.4) U HUUZ o Fo),
and the EX?-term of |6.11.3| computes the p—th Cech cohomology of the presheaf
(6.11.5) U H(2Z|u, F*).

Proposition [6.9) therefore shows that the map from [6.11.2] to [6.11.3] induces an
isomorphism on Fa-terms when passing to the limit over all U. € H Rgg(x)- [
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6.12. Let & denote the sheaf on . which to any (U, N) associates I'(U, Ov).
Define ﬁggo to be the sheaf associated to the presheaf ﬁggjo sending (U, N) to the
global sect1ons of the normalization of U in N. Also deﬁne Ix CO 2o to be the

sheaf of ideals associated to the presheaf / x which to any (U, N) associates the
ideal of the inverse image (with the reduced structure) of D in the normalization
N of Uz in N.

If U = Spec(R) is an affine étale X-scheme admitting a morphism as in [2.16.1
and if Ay denotes the fundamental group of Ui with respect to a generic base
point, then the sheaf 5%%(] (resp. %QU ) is the sheaf on U;’( Fet corresponding to
the Apy-representation R (resp. Jx) defined in From this, and we

conclude:
COROLLARY 6.13. For any r > 1, the sheaves
7 T 7 T
Rvx.Oq0 [P Ozo, and R'vx. Ix/[p" Fx

are almost isomorphic to quasi—coherent sheaves on Xe, are almost zero for i > d,
and there is a canonical trace morphism

(6.13.1) tr: Rlvx. fx /v fx — Qe ©v (V/p)(—=d)
defined in 0% — Mod.

COROLLARY 6.14. Assume that X is smooth and proper over Spec(V). Then
Hi(f%”?o, Ix /0" _Zx) is almost zero for i > 2d and there is a canonical trace mor-

phism defined in V* — Mod
(6.14.1) tr: H2d(§tf?°, Ix/p" Ix) = V/p'V(=d).

PROOF. By the preceding corollary and standard facts about cohomology of
quasi—coherent sheaves, we obtain that H Z(ﬁtffo, Ix/p" Fx) is almost zero for
i > 2d and that for i = 2d this group maps to H4(X,Q¢ ® V /p"V)(—d). By Serre
duality there is a canonical isomorphism
(6.14.2) HY(X, Q@ V/p'V)(—d) ~ H(X @ (V/p"), Oxev/pr) @ V(—d)
which implies the result. O

By the same argument one obtains the following:

COROLLARY 6.15. Assume that X is smooth and proper over Spec(V'). Let L
be a locally constant sheaf of free Z/p"Z—modules on X2 let L™ := HHom(L,Z/p")
denote its dual, and set L := ux.L and L* := ux,L".

(i) The sheaves Rivx (£ ® ﬁgg%) and R'vx, (£ ® Fx) are almost isomorphic
to quasi—coherent sheaves on Xet, and are almost zero for i > d.

(i) The map in E(ﬁxv)

Rux.(¥Z ® ﬁgg%) — R om(Rvx.(L" ® Ix), le(/v @V /p"(—d))

induced by the trace map|6.15.1}, is an isomorphism. B
(iii) The trace map induces a canonical isomorphism in D(V)

(6.15.1) RI(2%,.2 ® Ogo) — RHom(RU(2%,.2" @ Jx),V/p"V(-d)[-2d]).
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PROOF. Statement (i) follows from the same argument giving and this
argument combined with also gives (ii). For (iii), note that by Serre duality
and the fact that the complex Rvx.(Z*® fx) is almost isomorphic to a bounded
complex with coherent cohomology sheaves, the canonical pairing

RHom(Rvx.(Z* ® 7x),2%y ©V/p") @ RTRux.(L* © fx) = V/p'V
is perfect. Now by (ii) we have
RHom(Rvx.(£*® #x),0% v ®V/p") ~ R[(Z @ Oe)
which implies (iii). O
By the natural map

(6.15.2) H*(22,%) — H* (X%

K et’ L)

is an isomorphism. The map of sheaves .¥ — Z ® O 2o therefore induces a map
on cohomology

(6.15.3) H*(X2

f,et’L) RV — H*(ﬁ‘,%’,f@ ﬁgy%)

The following theorem will be proven in section

THEOREM 6.16. The morphism is an isomorphism. In addition there is
a canonical almost isomorphism

(6.16.1) H:(X%,et,L)@)V:H*(%fo,f@/X),

and these isomorphisms are compatible with the pairing|6.15. 1| and the usual Poincaré
duality for étale cohomology.

6.17. The isomorphism can also be generalized to a statement with par-
tial compact supports (this generalization is in fact crucial for the proof). Suppose
given a decomposition D = FU F', where F and F' are divisors on X with no com-
mon irreducible component. Define #r C O 2o to be the sheaf of ideals which to

any (U, N) € . associates the ideal of (E X x N);eqa C N, where N denotes the nor-
malization of Uz in N. Note that multiplication induces a map Zr ® r — Zx
and hence using Poincaré duality we obtain for any locally constant sheaf of Z/p"-
modules L a map

(617.1) RI(22,.%® #i) — RHom(RI(2:2,.2" ® #r),V/p'V(~d)[-2d)).

By the same argument used to prove (iii) this map is an isomorphism.

7. Computing compactly supported cohomology using Galois
cohomology

Before proving we make in this section some general comments about
how to compute compactly supported cohomology using Galois cohomology. These
observations will only be used in the proof of and can be omitted by the reader
who skips this proof.

Throughout this section A denotes the ring Z/p™ for some n, and we consider
A-modules unless otherwise stated.
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7.1. Let Y be a smooth K-scheme, D = D; U---U D,, a divisor with simple
normal crossings on Y, let A C {1,...,n} be a subset, and let D4 C Y denote the
intersection NyeaDa. Let D9 denote the complement in D4 of Ujga(D; N Da),
and let j4 : D9 — Y and j : Y° < Y be the inclusions. Assume that Y = Spec(R)
is affine, and that each D9 is a K(m,1). We will further assume that the exists a
formally étale morphism

(7.1.1) Y — Spec(K|[X1, ..., Xd])
for some d > 0 such that D is equal to the inverse image of X --- X,, = 0 for some
n <d.

7.2. We will also sometimes consider the following additional assumption (but
will always state explicitly when we assume it):

(R): For every nonempty A C {1,...,n} there exists a retraction of the inclu-
gsion Dg — Y

(7.2.1) TA :Y—>DA
such that the inverse image of D¢ contains Y.

EXAMPLE 7.3. The relevance of condition (R) for our purposes is the fol-
lowing. Let X/V be a smooth proper scheme with D C X a divisor with sim-
ple normal crossings relative to V', and let £ — X be a geometric point. Then
Y := Spec(Ox z ®v K) with the pullback of the divisor D satisfies condition (R).

7.4. For a finite étale morphism Z° — Y° let Z — Y be the normalization of Y’
in Z°, and let Z4 C Z denote the maximal reduced closed subscheme of D9 xy Z.
We then have inclusions
.z

(7.4.1) ze AL g 3 g

LEMMA 7.5. The morphism Z§ — D9 is finite and étale.

PROOF. The assertion is étale local on Y so it suffices to consider the case
when Y is the spectrum of a strictly henselian local ring. In this case the result
follows from Abhyankar’s lemma [25, Appendice 1, 5.2]. O

LEMMA 7.6. For any locally constant constructible sheaf of A—modules L on Y°
and v > 0 the sheaf j% R"j.L is locally constant constructible sheaf on D9 .

Proor. If f : Y'° — Y?° is a finite étale morphism, then f,A is a locally
constant constructible sheaf of A—modules on Y°. Furthermore, for any locally
constant constructible sheaf L on Y° there exists a finite étale covering f : Y/ — Y°
such that f*L is trivial. If we fix an isomorphism f*L ~ A" for some r then the
adjunction map L — f,A" is an inclusion. From this one deduces that for any
locally constant constructible sheaf of A—modules L on Y°, there exists a resolution
L — K* in the category of locally constant constructible sheaves of A—modules on
Y such that each K™ is a direct sum of sheaves of the form f,A for some finite
étale morphisms f : Y’° — Y°. The spectral sequence corresponding to the “stupid
filtration” on K* yields

(7.6.1) EVY = R1j,K? = RPT9j.L.

From this it follows that it suffices to prove the lemma for L = f,A for some finite
étale surjection f: Y’ — Y°.
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In this case, let f : Y/ — Y be the normalization of Y in Y’°, and let DY (resp.
D’;) denote the maximal reduced subscheme of Y’ xy D9 (resp. Y’ Xy D4) so that
we have

-7
/o J / Ja /o0
Y Y D9

(7.6.2) fl l 7 lg

yo —L .,y 24 po.

As in the subscheme D', C Y” is a divisor with normal crossings. We then have
JaR"j L = jaR"j.(fA)
~ JaRVj(RfA)
JaR" fo(RjA)
g*J/X D.jka7

12

where the last isomorphism is by the proper base change theorem (note that the
right square inis not cartesian but that D'y, — Y’ xy D4 is a closed immersion
defined by a nilpotent ideal so that étale cohomology of a sheaf on Y’ xy Dy is
equal to the étale cohomology of its pullback to D’y). It follows that it suffices to
prove that jf Rj.A is locally constant constructible on D’{. This further reduces
the proof to the case when L = A.

So let us finally prove the result for L = A. By replacing Y by Y — U;¢ 4 D; we
may assume that in fact A = {1,...,n}. Furthermore, the assertion is evidently
étale local on Y so we may assume that there is a smooth map

(7.6.3) 7:Y — Spec(K|[Ty,...,T,])
such that D; is the inverse image of the zero locus of Tj so that D4 = 7=1(0). This
morphism 7 defines a morphism

(7.6.4) HY(G™, ) — 7% R"j. A

which we claim is an isomorphism. To prove this we may replace Y by Spec(Oy,5)
for a geometric point § — D 4. In this case Y is a K (7, 1) by[5.10]with fundamental
group Z(1)" so (j5R"j.«A\)g is isomorphic to the group cohomology H"(Z(1)", L).
On the other hand, using Kiinneth and the fact that Gy, is a K (m, 1) one sees that
HY(G?,,A) is also isomorphic to H”(Z(1)™, A) and under these identifications the

map is the identity map. O

7.7. Fix a geometric generic point Spec(Q2) — Y, and let R C Q be the integral
closure of R in the compositum of all field extensions k(Y) C L C §Q for which the
normalization of R in L is étale over Y°. Let A denote the étale fundamental group
of Y° with respect to the chosen base point so that A acts on Spec(R).

Let A C {1,...,n} be a subset and let 7 — D9 be a geometric generic point.
For any choice of lifting 7 — Spec(R) we obtain a decomposition group Hy C A
defined to be the subgroup of elements fixing the image of 77. The subgroup Hy C A
is closed. Let R4 be the quotient of R by the prime ideal corresponding to the image
of 7. Then Spec(R4) — D¢ is an inverse limit of finite étale morphisms, and H 4
acts on the inverse limit. Let I4 C H4 denote the subgroup of elements which act
trivially on R4 (the inertia group). If A4 denotes the étale fundamental group of
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D9 with respect to the base point 7, then the action of Ha/I4 on R, defines a
surjection

(7.7.1) Ay — Ha/la.

LEMMA 7.8. If condition (R) holds, then the homomorphism is an iso-
morphism.

PROOF. It suffices to show that any finite set with continuous A 4-action is
obtained by pullback from a set with continous H 4/I4-action. This is clear for if S
is a set with continuous A 4—action corresponding to an étale morphism V' — D9,
then 74V — Y is an étale morphism, and the corresponding H 4 /I 4-set pulls back
to S. O

7.9. In terms of Galois representations, the sheaf j%j.L can be described as
follows. Let M be the A-representation corresponding to L. Then j%j.L is the
sheaf corresponding to the representation of A4 acting on M4 via the surjection
A4 — Ha/I4. This implies in particular the following:

COROLLARY 7.10. Let A C¢ B C {1,...,n} so that Dg C Da. Then for
any locally constant constructible sheaf of A—modules L on Y° the natural map
J5J«L — jpiasiaj«L is an isomorphism.

7.11. Let L be a locally constant sheaf of abelian groups on Y. For A C
{1,...,n} define a presheaf )4 (L) on Fet(Y°) by
(7.11.1) (2° = Y°) = T(23,4757 (Ll 20))-

In terms of Galois representations the presheaf ¥4(L) can be described as
follows. Let M be the A-representation corresponding to L, and let H4 C A be
the decomposition group of D 4 obtained by making suitable choices as in[7.7} Then
we claim that 14 (L) is the sheaf corresponding to the A-representation

(7.11.2) Ind%, (M|p,) := Hom$® (A, M|, ).

Here Ind% (=) is the right adjoint to the restriction functor from A-modules to
H g-modules.

To see this let Z° — Y° be a finite étale morphism corresponding to a A-set
S. The restriction of S to Hy decomposes into H 4-orbits

(7.11.3) Slu, =] Si-
For each i let H; C H4 denote the kernel of the map H4 — Aut(S;). We then have
Homa (S, Ind%, (M|m,)) =~ Homg, (S, M)
~ HHomHA(Si,M)

K3
~ HMHi
~ T(Z%,j5°57L).
COROLLARY 7.12. The presheaf 1 4(L) is a sheaf on Y2,,.

COROLLARY 7.13. The functor ¥4(—) is an exact functor on the category of
sheaves on Y.
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PROOF. This is because Ind% (=) is an exact functor (this follows immediately
from the definition). O

LEMMA 7.14. Let A be a profinite group and D C A a closed subgroup.

(i) Any injective A—representation I is a direct summand of an induced module
Ind% (N) with N an injective D—representation.

(ii) For any injective A-representation I and i > 0 the group H'(D,I|p) is
zero.

PROOF. Let I denote the restriction of I to D and choose an inclusion j —
N with N an injective D-representation. The adjunction map I — Ind%([ ) —
Ind5(N) is then injective. Since I is injective this inclusion I < Ind5(N) is split
which proves (i).

For (ii) note first that by (i) applied to the inclusion of the trivial group into A,
it suffices to consider the case of I = Ind®(N) (induction for the trivial subgroup
{e} — A) for some injective abelian group N. Let K, C A be a decreasing
system of closed subgroups of finite index defining a base for the topology so that
A =1lmA/K, and D = lim D/(D N K,) (note since D is closed in A such a

piinian —n
system of subgroups K, exists). We then have
H'(D,I|p) = limH'(D/(DNKp,), Hom™ (A, N)PMn)
= limlim H(D/(D N K,), Hom(A/K,,, N)P5m).
We can write this double limit as the single limit
(7.14.1) lim H'(D/(D N K,), Hom(A/K,, N)).
The D-module Hom(A/K,,, N) is a direct sum of modules Hom(D/(D N K,,), N)
which is injective in the category of D/(DNK,)-modules. From this it follows that
the higher cohomology groups are zero. O

COROLLARY 7.15. Let M be an injective object in the category of continuous
representations of A on A-modules. Then the underlying A-module of M is flat.

PrOOF. Taking D = {1} in we see that M is a direct summand of
Ind{Al}(N ) for some injective A-module N. Therefore it suffices to show that any
injective A-module is flat over A. This is a standard consequence of the fact that
A is Gorenstein of dimension 0, which implies that A is injective as a A-module
(see for example [12] §21.2]). For the convenience of the reader let us recall the
argument. It suffices to show that for any nonzero element m € M there exists an
inclusion i : A < M such that i(A) contains m. For since A is injective such an in-
clusion 7 is split so this will show that M is isomorphic to filtered colimit of finitely
generated free A-modules, and hence flat. Since M is a A-module there exists a
minimal integer s such that p*m = 0, and this gives an inclusion j : Z/(p®) — M
sending 1 to m. Since M is injective there exists a dotted arrow g filling in the
diagram

1—p"—*

0——=2/(p°) —=A



ON FALTINGS’ METHOD OF ALMOST ETALE EXTENSIONS 49

Because j is an inclusion the map ¢ is also an inclusion, since by construction g(1)
has exact order p". ([

LEMMA 7.16. With notation as in[7.7, let M be an injective representation of
A. Then

()
(7.16.1) H'(Ha,M|g,)=0
for anyi >0, and HO(Ha, M|p,) = HO(Aa, MT4).

(i) If in addition condition (R) holds then for any i > 0 we have
(7.16.2) Hi{(Aa, M) = 0.

PROOF. Since Ha C A is closed the vanishing of H*(H 4, M|y ,) follows from
[214l The statement about H is immediate.

For the vanishing of H*(A, M'4) in the case when (R) holds, note that the
short exact sequence

(7.16.3) 1—Jg—Hy—Ay—1
induces a spectral sequence
(7.16.4) ES' = HP(Aa, HI(Ia,M)) = HPI(Hy, M).

Since I4 C A is also closed we have H9(I4, M) = 0 for ¢ > 0 by and therefore
there is a canonical isomorphism

(7.16.5) HP(Aq, M) ~ HP(Hy, M).
From this (ii) follows. O
We can in fact sharpen the above lemma as follows.

LEMMA 7.17. Let A be a profinite group. A filtering direct limit of injective
continuous A—representations is an injective continuous A—-representation.

PRrROOF. Let I = li_r}nI)\ with each I, an injective A-representation. Consider
an inclusion of A-representations N «— M and a map p : N — I. We need to show
that p extends to a morphism M — I. For this write M = hL,an with each M},
a finitely presented abelian group with continuous A-action (this is possible since
the action is continuous). Let Ny denote N N M. We then inductively extend the
maps pi : Ny — I obtained from p.

For this fix some ky. The map Ny, — I factors through some I since Ny, is
finitely presented and therefore there exists an extension px, : My, — 1.

Now assume that pi : My — I has been constructed. By the definition of Ny
the map

(7.17.1) Niy1 BN, My — My
is injective. Using the above argument applied to the map
(7172) Pk+1 D p~]€ : Nk+1 @Nk Mk — 1

we then obtain the extension pg1. O

LEMMA 7.18. Let A be a profinite group and let D C A be a closed subgroup.
If M is an injective A—representation then M|p is an injective D—representation.
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Proor. Write A =lim A/K,, and set S, = A/(D, K,). Then the set of cosets
S:=A/D is equal to lim Sy, (and in particular has the profinite topology). Choose
a continuous section o of the projection A — A/D. Then for any continuous
D-representation N we have an isomorphism of D-representations

(7.18.1)  Hom$*(A, N)|p — Hom“®(S,N), (f:A — N)— (s f(o(s))).
Since

(7.18.2) Hom®*(S, N) = lim Hom(S,, N)

n

this, together with proves the result in the case when M = Ind3(N) for
some injective D-representation N. For the general case, note that by any
injective M is a direct summand of a representation Ind% (N) with N an injective
D-representation. (I

LEMMA 7.19. Let A be a profinite group and let D C A be a closed subgroup.
Assume that D C A is normal, and let G be the quotient. If M is an injective
A-representation, then MP is an injective G-representation.

PROOF. Immediate since the functor M — MP takes injectives to injectives.
O

COROLLARY 7.20. Let A be a profinite group, let D1, Ds C A be two closed
subgroups, and let M be an injective A—representation. Then for any i > 0 we have

(7.20.1) H'(Dy,Tnd3, (M|p,)|p,) = 0.

7.21. Let L be a locally constant sheaf of abelian groups on Y. Define a
complex of sheaves U(L) on Et(Y) as follows. For r > 0 set

(7.21.1) V(L) :=@acq1,. n}|Al=riAcdadsL.

Forl1 <j<rand A= {i;1 <iza <---<i,} C{l,...,n} let A; denote the set
{i1,d2, -+, 0j,4j41,. -0y} 50 that A; C A. Using we then have a map

(7.21.2) 05+ jaywJa; el = jaxjaja «Ja; oL~ jasjaje L.
Taking the sum of these maps we get a morphism

(7.21.3) 9; : W(L)"™t - W(L)".

Define

(7.21.4) 0:W(L)~t - W(L)"

to be the alternating sum 2521(71)9 ;. One verifies immediately that 6% = 0 so

we get a complex W(L) of sheaves on Et(Y).
We have W(L)° = j,.L and the composite

(7.21.5) gL —— j,L=U(L)° —2— T(L)!
is zero.

LEMMA 7.22. The map of complezes of sheaves
(7.22.1) sl — Y(L)

is a quasi-isomorphism.
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PRrROOF. It suffices to show that for any geometric point § — Y the map of
complexes of abelian groups

(7.22.2) (1L)g — W (L)y

is a quasi—isomorphism. If § maps to Y° this is immediate. If the image of 7 is
in the boundary, the ring 0y is isomorphic to the strict henselization of the ring
K[X1,...,X4] at the origin and D is the zero locus of X; --- X, for some r < d.
In this case the fundamental group A of Spec(Oy 5)° is isomorphic to Z(1)". If
M denotes the representation of A corresponding to L, then it follows from the
construction that W(L); is isomorphic to the complex

(7.22.3) M2 @ (Z — ®1<i<r — Di<iy<ip<rl — -+ ),

where
Di<i<rle — D1<iy <ig<rls — - -+

is the acyclic complex computing the Cech cohomology of Spec(Z) with respect to
the covering

H Spec(Z) — Spec(Z).
i=1
O

LEMMA 7.23. Let L be an injective A—module in Yg,,. For any subset A C
{1,...,n} the natural map jasjhj«L — Rja+jhj«L is an isomorphism.

PROOF. Let § — Y be a geometric point, and let Y denote Spec(Oy 5). Then
it suffices to show that for any v > 0 we have

(7.23.1) HY (Y3, j%j.L) = 0.

The existence of the map ensures that the morphism of fundamental groups
7 (Y°) — 7 (Y®) (obtained by choosing suitable base points) is injective. Using
this implies that it suffices to prove the lemma with Y replaced by Y. In
this case j%j.L is given by an injective representation of 71 (Y§) which implies the
lemma. (]

LEMMA 7.24. Let L be an injective A-module in Y, and assume condition (R)
holds. Then for any i > 0 and any integer r the group H*(Ye, U(L)") is zero.

PROOF. For any A C {1,...,n} of size r we have by
(7.24.1) H' (Yot jasjidel) = H' (D} o1 j23- L),
which since D9 is a K(m,1) and j%j.L is locally constant is isomorphic to
(7.24.2) H' (D% pey, jajsL).

In the notation of [7.7]} if M is the A-representation corresponding to L we then
want

(7.24.3) Hi(AA, M4y =0
for ¢ > 0. This follows from |
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7.25. It follows that for a locally constant constructible sheaf L of A—modules
on Y°, we can compute H*(Ye,j1L) as follows. Choose an injective resolution
L — I*® in the category of A-modules in Y}, and let W(I®) be the complex on Yo
obtained by taking the total complex of the double complex obtained by applying
W(—) to each IP. We then have a commutative diagram

gL —— I*

(7.25.1) bl l

T(L) —2— T(I°).

Since j; is an exact functor the morphism a is a quasi—isomorphism, and b and ¢
are quasi-isomorphisms by It follows that d is also a quasi-isomorphism. We
then have a map

(7.25.2) ['(Yet, U(I°)) — RT(Yey, 51L)

which by is an isomorphism if (R) holds.

7.26. For a sheaf of A-modules L in Y}, we can also define a complex (L) in
Y. as follows. We define

(7.26.1) U(L)" == @acq,..n},|A|=ra(L),

where ¥4 (L) is defined as in
If Ac BcC{l,...,n}, then there is a natural map

(7.26.2) Ya(L) — ¢p(L).
Indeed for any Z° — Y° with inclusions
(7.26.3) §Z 2% Z, 4 .29 — Z etc.

we have a map
(7.26.4)

Ya(L)(2°) = 5,347 51 L(Z) = 5pidedd 57 L(Zy) = j5"32 L(Zg) = ¢5(L)(Z°),
where the second to last isomorphism is by Taking the alternating sum as in
we obtain a map

(7.26.5) (L)t = w(L)",

and we write ¥(L)* for the resulting complex of sheaves on YZ,.

We can compute RI(YE,, ¥(L)®) as follows. Let L — I* be an injective res-
olution in the category of A-modules in Y, and let W(I*) be the total complex
of the double complex obtained by applying ¥(—) to each I?. By the functor
P(—)" is exact, so we have a quasi-isomorphism
(7.26.6) U(L)* — (I*).

On the other hand, it follows from that for any integer ¢ > 0 we have
HY (Y%, ¥(I*)") = 0. Therefore we obtain an isomorphism

(7.26.7) RT (Y, U(I°)) =~ (Y, U (I°)),

and hence also an isomorphism

(7.26.8) BRI (Yo, W(L)) 2= T (Vg (%))
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Now observe that by the definition of the sheaves 14 (L) we have

(7269) F(YFOetawA(Ip)) = F(DZMJEJ*IP)
It follows that
(7.26.10) LY, U(I%)) = T'(Yer, U(I1°)).

Combining [7.25.2] and [7.26.8] we obtain the following:

THEOREM 7.27. For any locally constant constructible sheaf L in Yg,,, there is
a canonical morphism

(7.27.1) R (Y, U(L)) — RT (Yo, 51L),
which is an isomorphism if condition (R) holds.

REMARK 7.28. In the above we have chosen an injective resolution of L. One
verifies immediately that the morphism in does not depend on this choice.

REMARK 7.29. The preceding constructions are compatible with finite étale
base change Y/ — Y. In particular, if a : Y3, — Ypme; and b : Yoy, — Yo are
the natural morphisms of topoi, then W(I*®) (resp. W(I*®)) is a complex of sheaves
acyclic for a, (resp. b.) and there is a canonical isomorphism

(7.29.1) a U (I%) ~ b, U(I°%)
which induces the morphism [7.27.1| by applying RI.

7.30. Let « : Z C Y be a smooth divisor meeting D transversally, and let
Z° denote Z Xy Y°. Assume that Z° is a K(m, 1) and that there is a retraction
r:Y? — Z° of the inclusion Z° — Y°. Then for any geometric point § — Z°
the identity map on m(Z°,§) factors through the map m (Z°,5) — m(Y°,5). In
particular, the map 71(Z°,5) — 71 (Y°, %) is injective and identifies 71(Z°, ) with
a closed subgroup of 71 (Y°, ).

COROLLARY 7.31. Let L be an injective sheaf on Y, and assume condition
(R) holds. Then for any A C {1,...,n} the sheaf i*WU 4(L) on Z%. is acyclic for
the global section functor.

PRrROOF. If A denotes the fundamental group of Y° and Az the fundamental
group of Z° then we have an inclusion Az C A (well-defined up to conjugation).
We also have the decomposition group Hy C A (also well-defined up to conjuga-
tion) and if M is the representation of A corresponding to L then ¢ 4 (L) corresponds
to the representation Ind%A (M). The corollary therefore follows from O

COROLLARY 7.32. Let L be an injective sheaf on Yg,, and assume condition
(R) holds. Then for any subset A C {1,...,n} the sheaf j4j.L corresponds to a
injective representation of m1(D9).

ProOF. Let A denote the fundamental group of Y°, let H4 C A denote the
decomposition group, and let T4 C Hy4 be the inertia group. We then have H4 /14
isomorphic to the fundamental group of D9. If M is the A-representation corre-
sponding to L, then j%j.L corresponds to the representation (M|, )4 of Ha/I,.
By the H4-representation M|y, is injective, and therefore the corollary fol-
lows from [Z.19 O
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8. Proof of [6.16]
Let A denote the ring Z/p™ for some n.

8.1. Note first the if Y is another smooth proper V-scheme with a divisor
Dy C Y with relative normal crossings, and if f : ¥ — X is a proper morphism
such that f~1(Dx) C Dy, then there is an induced morphism of topoi

(8.1.1) fi92 — 2%
such that the diagram

o uy o
0 _ /O
YK,et @K

(8.1.2) 7| |7
Xo s 20

K et K
commutes.

8.2. We use this to reduce the proof of [6.16] to the case when D has simple
normal crossings as follows. By [33] 4.2.12] there exists a blow-up f: Y — X with
support in D such that Y/V is smooth, Dy := f~1(D) is a divisor with simple
normal crossings on Y and the induced morphism of log schemes f : (Y, My ) —
(X, Mx) is log étale. This last observation implies that f*Q(x o) v = Uy aryy v
The morphism induces morphisms

(8.2.1) H*(ﬁ%’,f ® ﬁgg%) — H*(@?", FZ® @’@%)
and
(8.2.2) H*(%fo,g* ® Ix)— H*(Z’%’, e _7v).

We claim that and are monomorphisms in V" — Mod.

This follows from noting that by construction of the trace map, the diagrams
RU(22,% & 62) RHom(RD(2:2, 2% & _#x),V/p' V(~d)[~2d))
\Lf* I T
RO, 2 © Ou2) RHom(RT(%2, [*2* & #y),V /prV(—d)[-2d])
and
RO(22,. 29 Fas) RHom(RT(2:2, 2" ® 0x),V/p'V(—d)[—2d))

} 1

RI(#2,.4 ® Jue) RHom(RL(222, f*.2* © Oy),V [p"V(~d)[~2d))

commute.
In particular, to prove [6.16]it suffices to show that the composite morphism
(8.2.3) H* (X% L) — H (2%, 2 ® ﬁgg%) — HY (%2, "L ® ﬁgy?o)

is an isomorphism.
We may therefore assume that the divisor D has simple normal crossings. Write
D =D;U---UD, with each D; C X a smooth irreducible divisor. For a subset
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A cC{l1,...,n} we write D4 for the intersection NgeaD,. If A = () then D4 denotes
X.
8.3. Let . denote the site defining 3&%’ For an abelian sheaf .Z in 5&%’ define
a complex of presheaves ¥ (%) on . by associating to any U € Et(X) the complex
of sheaves ¥(.%y) on U%Fet obtained by applying the construction in to the
sheaf % in U%Fet.
More generally if .£*® is a bounded below complex of abelian sheaves in 3&”?0
we define ¥(.£*) to be the total complex of the bicomplex obtained by applying
U(—) to each component of Z*. Passing to the associated sheaves we also define
Pe(Z*). It follows from that if £* — #° is a quasi-isomorphism, then the
induced morphism
(8.3.1) V(L) — U (A°®)

is also a quasi-isomorphism.

We denote by U%(.Z) the associated complex of sheaves in

8.4. Let L be a locally constant constructible sheaf of A—modules in X2 . and
let 2 := ux.L denote the induced sheaf in 272. Let HR(X)" C HR(X)’be the
full subcategory of hypercoverings U. — X such that for every n the scheme U.x
satisfies the assumptions of It follows from that the subcategory HR(X)'
is cofinal in HR(X).

Let £ — I® be an injective resolution in 272. For U. € HR(X)' let

(8.4.1) vt 2 — U-(??,Fet

be the projection.
LEMMA 8.5. For every n the map
(8.5.1) Ly

s a quasi—isomorphism. Consequently, L|Uo? e eu.«1°® is an injective resolution
-, K ,Fet

in the category of A—modules in the simplicial topos U_"? Fot’

PRroOF. By the natural map . — Rux.L is an isomorphism. It follows

that if 7 : UZ,F,et — U;KF& is the projection then the right side of computes

Rm, L. The result then follows from the fact that U° - is a K(m,1). O

8.6. We can also apply the ¥(—)-construction in to the simplicial sheaves
L|U.°?p ) and ey ,I®. This gives complexes of sheaves Uy (L) and U(ey.I®) on
Uk ot and a commutative diagram of quasi-isomorphisms

gLy, —— ji(evI*®)

(8.6.1) l l

\I/U(L> — @<€U*I.)-
In particular we have
(8.6.2) RU(U. % oo 3t Ll &) = RU(U. % o, ¥(evs®)).

There is a canonical map
(8.6.3) DU % ots Y(eval®)) = RU(U. 7 o1, ¥evI®))

)
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LEMMA 8.7. The map
(8.7.1) B B
hOCOth.EHR(X)’F(U K,et? \IJ(EU*I.)) — hOCOth.EHR(X)’RF(U.’?@U \Ij(éU*I.))

)
induced by[8.6.3 is an isomorphism.

PROOF. Write just ¥ (I*®) for W(ey.I*). The map on cohomology obtained from
extends to a map of spectral sequences from

(8.7.2) EY = lim HY(T(U, 7, U(I*))) = lim H*(T(U. 2, T(I°)))
U. U.

to

(873) B =lmHI(U,z (1) = lim H*(U £, T(1*)).
U. U.

It follows that it suffices to show that for every (p,q) the map

(8.7.4) lim H(T(U,, 7, ¥ (I*))) — lim H*(U,, 7, ¥(I°))
U. U.

is an isomorphism. For this in turn it suffices to show that for every (p,q) with
q > 0 and j,r € Z we have

(8.7.5) lim HY(U, 7, ¥(I’)") = 0.
U.

To verify this it suffices by a standard limit argument to consider the case of the
strict henselization of X at a point. In this case condition (R) in holds so the
result follows from [7.24] O

8.8. By [7.26.10] we also have

(8.8.1) LU, % 0 WlevsI*)) = T(U%% o ¥(ew*))

We then have
RU(2%, V() = RI(2%,¥*(I*)) (by exactness of U")
= hocolimy; eHR(X)/RF(U,?fFQH Uley «I®)) (by
= hocolimy exrr(x) T (U’g po, Yev.I®)) (by [[26.7)

= hOCOlimUveHR(X)/F(U ?,et’\I}(eU-*I.)) (by '

= hocolimUVeHR(X)/RF(IiJ.,Ket, JLly.) (by and
= RI(Xg,jL).
Summarizing:
THEOREM 8.9. There is a canonical isomorphism
H (X%, L) ~ H (2%, V*(2))
functorial in L.

REMARK 8.10. In the above we have chosen the injective resolution . — I°.
A standard verification shows that the isomorphism in [8:9] is independent of this
choice.
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8.11. In fact this isomorphism is even compatible with cup products. Let .
be the sheaf on 272 associated (by ux.«) to a locally constant constructible sheaf
L of projective A—modules on X2 and let L* be the dual of L with corresponding
sheaf . Z* := ux,L*. Then it follows from the construction that there are canonical
maps

(8.11.1) L RU(L)— V(Z/p")

and

(8.11.2) JeL @ W(L*) — U(Z/p")

on 5{?‘) and X4 respectively, which induce cup products

(8.11.3) U: HY (2%, Z) x H* (232, v(L")) — H* (2%, Y*(Z/p")),
and

(8.11.4) U: H* (X%, L) x HI (X%, L") — HI (X%, Z/p")

and the isomorphisms obtained from [6.5and [8.9] are compatible with these pairings.

8.12. There is also a finer variant of the above construction. Let D = F U F
be a decomposition of D into two divisors, and let Ug(.¥) C ¥(.Z) denote the
subcomplex obtained by taking in [8.3] only the sum over divisors lying in F and
intersections of such divisors. Then by the same argument used to prove [8.9] one
gets a canonical isomorphism in the derived category

(8.12.1) RU(2%, V(L)) ~ RU((X — F)g, 5iL).
In what follows we denote the right side of this equation by RI'g,p(X%-, L) and by
Hj, (X%, L) the corresponding cohomology groups (though of course these groups
depend on the compactification X of X°).

These cohomology groups with partial compact support also satisfy Poincaré
duality:

ProprosITION 8.13. With notation as above, there is a canonical isomorphism
(8.13.1) RUg p(X%, L) — RHom(RI'f g (X%, L*), A(=d)[—-2d]).

ProOOF. Consider the commutative diagram

X-F . X

(8.13.2) jET TjE

X-D ., X_F
LEMMA 8.14. For any locally constant constructible sheaf H of A—modules on
(X — D)y there is a canonical isomorphism

(8.14.1) jERjp (H) — Rjpjp(H).

PRrROOF. Note first there there is a canonical map jgijp« — Jjr«jg!, induced
by adjunction from the natural isomorphism jjjr«jr =~ jr«. By the universal
property of derived functors we therefore obtain a morphism of functors

(8.14.2) JeIRjF« — Rjpsjm

This defines the morphism [8:14.1] To verify that it is an isomorphism for H locally
constant constructible, we may pass to the strict henselization of X+ at a geometric
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point. Let dg (resp. dr) denote the number of components of E (resp. F'). Then
the fundamental group Ag of X — F is isomorphic to i(l)dE and the fundamental
group A g of X—F is isomorphic to Z(l)dF7 and the fundamental group A of X —D is
isomorphic to Ag x Ap. By filtering H first by subsheaves of the form nH (n € Z),
and then further by irreducible subrepresentations the proof is then further reduced
to the case when H is of the form Hgr ® Hp for some representations Hg (resp.
Hyp) of Ag (resp. Ap). This reduces the proof the case when X = A® x Adr
for some integers dg and dp, X — E = G% x A% X — F = A% x G and H

is obtained from a sheaf Hg on GZ# tensored with a sheaf Hr pulled back from

G947 . In this case the result follows from the Kiinneth formula [24} II1, 1.6.4 and
1.7.1]. O

For a locally constant constructible sheaf H of projective A—-modules on (X —
D)3 we have

(8.14.3) Rjr.jp(H) @ RipejmH* ~ 5(H @ H*).
The trace map therefore induces a morphism
(8.14.4) RT (X7, Rjp.jm(H)) @ RT(Xg, Rjp.jr(H")) — A(—d)[—2d]

which defines the map To see that it is an isomorphism, one can either
proceed by a local group cohomology computation, or as follows using local duality.
Let f : X5z — Spec(K) momentarily denote the structure morphism, and let
wx,. = f'A ~ A(—d)[~2d] denote the dualizing complex [24] I]. Write Dy (—) for
the functor R#om(—,wx,) and Dg(—) for RHom(—, A).

By duality [9, Th. Finitude, 4.3] and above we then have

Rjp.jei(H) =~ jeRjr.(H)
~ DxRjp«Dx_gRjr«Dx_p(Dx_p(H))
~ DxRjp.jr(Dx—p(H)).
Since f is proper so that Rfi = D Rf.Dx is equal to Rf., we get
(8.14.5)
DgRfRjr.jei(H) =~ Rf.Rjp.jr(Dx-p(H)) ~ Rf.Rjp.jr (H")(—d)[—2d].

O

8.15. Next we define another complex ®(& ggj%) on Z2.
For A C {1,...,n} the V-scheme D, is smooth, and the closed subscheme

(8.15.1) U(DmDA) C Dy
igA

is a divisor with normal crossings in D 4. We can therefore apply the discussion in
section 6| to D4 with respect to the divisor [8.15.1| to get a topos .@Z’?. We write
' for the site defining 79 &

For an object (U, N) of . (the site defining 222), let N — Uz be the nor-
malization of Uz in IV, and let N: denote the maximal reduced subscheme of the
pullback of N to D4 xx N. Then NOA — DY & is finite and étale by and

therefore (U4, Ny) is an object of the site .74.
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Define ®(& %%)T to be the presheaf

(8.15.2) (UN) = @acqs,.np jai=L(Ua, N), O ),
and let ®*(0 gg%)r be the associated sheaf. We define a map
(8.15.3) d: 0 (Og) — @ (Og0)"

as follows. Say A = {iy,... 0,11 }andfor 1 <j <rdllet Aj = {ir,... 05 ips1}.
Let (U,N) € . be an object with U = Spec(R) affine, and let S denote the
coordinate ring of the normalization of U in N. If Iy C R (resp. 14, C R) denotes

the ideal of Dy (resp. Dy, ), then I'((Ua, N;), 5@2) is equal to the normalization of
(S/145)red, and I‘((UAj,N:j), 5@2_) is equal to the normalization of (S/14;S)rea
. ; .

(here 5@2 and 5@3“ are as in6.12)). Since D4 C DAj we have IAJ, C I4, and hence
J

there is a canonical map
(8.15.4) N N
0; : T((Ua,;, Ny,), Oz ) = (5/14;5T = (S/1aS) = T((Ua,N2), 09 )

Taking the alternating sums Z;:i for various choices of A and sheafifying we obtain

the map|[8.15.3| It follows immediately from the construction that d? = 0 so we get
a complex denoted @a(ﬁ%%).

Note that @“(ﬁg&%)o = ﬁgg% In particular, there is a canonical map #x —
(0 %%)0 and it follows immediately from the above computations that d(_#x) =
0. We therefore get a morphism of complexes
(8.15.5) Ix = ©(Os),

Similarly, for any integer r > 1 we get a complex ®%(& gg%/ p") by replacing
ﬁ@:,? in the above with ﬁ@z'?/p’", and the map |8.15.5|induces a morphism

(8.15.6) Ix[p" — QU (Oae/p").
PROPOSITION 8.16. For every integer r > 1, the induced morphism
Rux. fx[p" — Rvx,®*(Oq0 /p")
is an isomorphism in E(ﬁxv)-

PRrROOF. By a standard reduction it suffices to consider the case when X =
Spec(R) is the spectrum of a strictly henselian local ring, and to prove the corre-
sponding result for global cohomology groups. In this case by our assumptions each
D 4 also has the same form and we can also apply the purity theorem to Dy.
Let S = V[Ty,...,T,] and let Sy be as in For any integer r and 1 < i1 <
Ig < -+ < i, <dlet Silu.ir,oo denote (Soo/(T“, .. 7Tir))red = (S/(Ti17~ .. a,TiT))txw
Then by and the complex Rvx.®*(O 2o /p") is almost isomorphic to

(8.16.1) RI'(Aso, R/p" @5 (So0 = DiSi,00 = Diy<inSivia,o = = *)),
and as before

Rux. Zx/p" =~ RT'(Aw, R/(p") @5 J) (almost isomorphism).
It therefore suffices to show that the natural map

(8.16.2) I = (Seo — @iSic0 — BircinSivinoo — =)
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is a quasi-isomorphism (since this is a complex of p-torsion free modules this will
also imply that it is a quasi-isomorphism modulo p"). For this note that the complex
on the right side is equal to the tensor product of the complexes obtained from each

VI[T;] and Jéf ) is equal to the tensor product of the complexes obtained from the
ideal defining the origin in each V[T;]. It therefore suffices to consider the case
when d = 1 in which case the result is immediate. (I

8.17. More generally for a subset E C {1,...,n} there is a complex @%(ﬁgy%)
obtained by summing only over subsets A C E in[8.15.2] The same argument used
above shows that there is a canonical morphism

(8.17.1) I = Pp(Oa0),

which induces an almost isomorphism after dividing by p” and applying Rrx..
8.18. Fix A C {1,...,n}. The presheaf

(8.18.1) (U,N) = T(N%, Ogs)

can be described Galois—theoretically as follows. Let U — X be an étale morphism
with U = Spec(R) affine, and assume that U% satisfies the assumptions in
Define groups A, Hy, I4 etc. as in[7.7] Let R4 denote the coordinate ring of
D4. Let R4 denote the integral closure of R4 in the maximal subextension of the

chosen geometric generic point of DY % which is unramified over DY % Then R4

is a continuous representation of A4 and Ogq is the corresponding presheaf on .74

(defined as in . The restriction of the presheaf |8.18.1] to Uz Fo 1S then the

sheaf corresponding to the induced representation Ind \ (R4). Note in particular
that by the projection formula for any continuous A-representation M there is a
canonical isomorphism

(8.18.2) M @ Indgy, (Ra) — Indf;, (M|a, ® Ra).

This implies in particular that for any sheaf .Z in 5&%’ there is a canonical map
of complexes in 3@‘%’

(8.18.3) V(L) - £ (I)a(ﬁgg%),
and similarly for the complexes defining cohomology with partial compact support.

8.19. Fix now a decomposition D = E U F. Let L be a locally constant
constructible sheaf of flat Z/p"—modules on X% and set £ := ux.L. We then get
a morphism

(8.19.1) L@ Jp— L@ (00),

which induces an almost quasi-isomorphism after applying Rvx,.. Combining this
with [8.18.3] we obtain a morphism in V* — Mod

(8.19.2) RUp p(X%, L) ~ RU(2%,VE(Z)) — RU(2%, 2 ® Ik).
It follows from the construction that the resulting diagram

Rl p(X2, L) x RUp p(X%, L¥) —— RI(X%,Z/p")

(8.19.3) l l

RU(22, 4 ® fp)x RU(Z2, 4% ® Jr) —— RU(2Z, 7)



ON FALTINGS’ METHOD OF ALMOST ETALE EXTENSIONS 61

commutes.

This defines the map|6.16.1] To prove we prove the stronger statement that
8.19.2)is an isomorphism and in addition we will show that under this isomorphism
the usual trace map on étale cohomology agrees with the one defined in

8.20. Let (Y, Dy) be another smooth proper V—scheme with Dy a divisor with
simple normal crossings. Let Dy = Ey U Fy be a decomposition of the divisor
into two divisors with no common irreducible component, and let f : ¥ — X
be a morphism such that f~'(E) C Ey and f~'(F) C Fy. It follows from the
construction that then there is an induced morphism
(8.20.1) [P RN (2%, 2 ® Jg) — RU(%%, "4 ® I&y).

and this morphism is compatible with cup products and the trace maps.
Let dx (resp. dy) denote the relative dimension of X (resp. Y') over V. The
map [8.20.1] induces a morphism

RHom(RT(%2, f*% ©@ fE,),V/p"V(=dy)[-2dy])

|

RHOHI(RF(%?O,X & fE),V/pTV(—dx)[—de})(dX - dy)[Q(dX — dy)}
Using [6.17.1] this morphism corresponds to a morphism
fo i RU(22, f* 2" ® Iry) — RU(2%, L7 @ IF).

Similarly Poincaré duality for étale cohomology with partial compact supports
[8:13] defines a morphism

(8202) ft : RFEy,Fy (Y%, f*L) — RFE,F(X%, L)(dx — dy)[Q(dX — dy)]

THEOREM 8.21. Assume f is a closed immersion, and thatY meets D transver-
sally, and By = ENY and Fy = FNY. Then the diagram
(8.21.1)

RU(2, "2 ® fr,) —1— RU(22.Z2® fp)dx —dy)2(dx — dy))

o [ox

RTgy iy (Y2, [ L) ®V —L RDp p(X2, L) ® V(dx — dy)[2(dx — 2dy)]

commutes in V" — Mod, where the vertical arrows are the morphisms .

PROOF. Let us first consider the case when Y C X is a smooth divisor meeting
D transversally (the general case will then be deduced from this special case). Let
Y denote Y — (Y N D) and let Dy =Y N D = Ey U Fy be the decomposition of
the divisor Dy obtained from D = E'U F. Write d for the relative dimension of X
over V, and let X° denote X° — Y°. Let ,%%’ denote the topos associated to the

pair (X,Y U D). Let E=FEand F = FUY so that we obtain a decomposition
YUD = EUF. The topos %fo is the category of sheaves on the site . whose
objects are pairs (U, N) where U — X is étale and N — )?% X x U is finite étale
and surjective. There is a natural functor

(8.21.2) S .7, (U,N)— (UN xxo X°)
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which induces a morphism of topoi j : 32%’ — 3&%’ There is also a morphism
of topoi 7 : Z’%’ — %?O If % denotes the site in the definition of 6’%’ then the
morphism ¢ is obtained from the functor

(8213) yﬂyy, (U,N)H(U X x Y,N X x Y)

PROPOSITION 8.22. Let £ be as in|8.21. There is a canonical distinguished
triangle
(8.22.1) £® fr— Rj.(j* 4 ® F5) — i.(i* € ® I, )(-1)[-1] - L& F&[l]
PROOF. By the projection formula it suffices to consider the case when .Z =
Z/p" for some r. Let (U W) € % be an object. Then the localized topos
&Vf‘ﬂ j-1(u,w) is isomorphic to the topos of sheaves on the site whose objects are
pairs (U',W'), where U’ — U is étale and W' — W x xo X is a finite étale mor-

phism. Let W denote W x xo X°. Any finite étale surjective morphism W' — W
defines such a pair (namely (U, W’)) and hence we obtain a morphism of topoi

(8222) € %fo‘j_l(U,W) — Wpct.
If U admits an étale morphism
(8.22.3) 7m: U — Spec(V[X1,..., Xaq1]) x Spec(V]y])

for some integers d,l > 0, such that Y is the inverse image of {y = 0} and D is the
inverse image of {X;--- X4 = 0} (and say E is the inverse image of {X;--- X, =
0}) and W = Spec(R) for some R, then using the almost purity theorem we can
compute

(8.22.4) H (2] wwy, Se/v" )

as follows. Namely, let goo denote the ring

(8.22.5) Soo 1= VX7 XMPT 1,
and let

(8.22.6) S = VIX[/P7 L XMPT 4y

Then if 7@ C Se denotes the ideal (X1 Xs) we have as in the proof of [6.13
almost isomorphisms

H* (2%l wwy, /0" A5) =~ H Wre,ex J5/0" 75)
~ R®g H*(Aoo,jﬁ/prjé),
where ﬁoo denotes the Galois group of §oo over S. Let Ay denote the Galois group
of S over S so that there is a surjection Ay — Ay wNith kernel () isomorphic to

Zp(1). The kernel @ corresponds to the étale covers of W obtained by taking roots
of y. We then have the Hochschild-Serre spectral sequence

(8.22.7) EY = H' (Moo, H(Q, T /0" T ) = H' (Ao, T5/p"T5)-
Now for any cohomology class ¢ € H'(Aw, H(Q, J5/p"J ) with i > 0, there

exists a finite index subgroup AL, C A, corresponding to a covering W’/ —
W obtained by extracting some roots of the X;, such that ¢ maps to zero in
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HY(AL,H¥(Q,Jz/p"Jz)). It follows that the sheaf on Wy associated to the
presheaf sending a finite étale morphism W' — W to

H (2%l - wwn, S5/ 75
is almost isomorphic to the sheaf corresponding to the A, -representation
HY(Q,J5/(0") ®s R.
We conclude that the sheaf on . associated to the presheaf

(8.22.8) UW) = H(2El;- ww: L5/P" I 5)
is almost isomorphic to the sheaf associated to the presheaf whose restriction to
Wret for any object (U, W) as above is the sheaf corresponding to H*(Q, J z/(p"))®s
R.

Note that as a ()-module, jE is isomorphic to Jg ® V[yl/px]. Thus we have

(8.22.9) H(Q,T5/p"T5) ®s R~ H'(Q,V[y"'*"1/(p") ®viy Je ®s R.

This reduces us to the case when R = V[y]. We may further localize along
14+ y. So we consider the ring R = V[x*] with divisor defined by y := & — 1,
and even pass to the covering obtained by taking roots of x (which gives an étale
covering after inverting p). Let V;,, denote V[7'/™], and let

R, = Vm[/{il/pn]s}],

where the superscript ‘sh’ denotes strict henselization at the point defined by
(m'/™, kY/P" —1). Let Ro denote li_rr>1m R,,, which is a V-algebra. Also let S,
denote the normalization of the ring R,,[y'/?"], and let S,, = mm Spm. Finally
set Soo = h_H)ln Sp. Let Jpm C Spm (vesp. J, C Sp) be the ideal generated by
yl/p".

We then need to compute the cohomology groups H*(Z,(1), Soo/p"Sec). This
is a rather delicate computation which is explained in detail in [13] pp. 231-233].
The answer is the following (almost isomorphisms):

(i) HZ(Zp(l)a Soo /P So0) = Roo/P® Roos

(i) H'(Zp(1), Soc /P"Soc) = (Roo /yRoo) "™ ®(Z/p")(—1), where (Roo /yRoc )™
denotes the normalization of Ry /yReo-

(iii) H(Zp(1), Soo/p"Seo) = 0 for i > 1.

This implies that R'j,j* _#5/p" _## is annihilated by y and there is a canonical
almost epimorphism

(8.22.10) i( Jey /0" IBy) = R I5/0 5
That this morphism is in fact an almost isomorphism follows by reduction to the
case of Al via the same argument used above in which case it follows from (ii). O

Similarly on (X — F') there is a distinguished triangle of étale sheaves
(8.22.11) jmL — Rj.j*jmL — ivi*jpL(—1)[=1] — jmL[1],

where jp : X — D — X —Fand j: X —YUF — X — F are the inclusions.
Indeed using [8.14] it suffices to consider the higher direct images of j*L under
j: X—=-YUD — X — D. Furthermore, by the projection formula it suffices to
consider the case of L = Z/(p"). By working locally on X one further reduces to
computing R'j.Z/(p") for the inclusion of G,, — A! which follows from a group
cohomology computation as in [3.5
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et

PROPOSITION 8.23. The morphisms denoted momentarily by i’ and i’

(8.23.1) il RF(@%,Z’*X ® /E) — RF(%KO,X ® 7r)(1)[2]
and
(8.23.2) it RFEJ;(Y%,i*L) — RI‘Eyp(X%, L)(1)[2]

obtained from the boundaries in the long exact sequences obtained from[8-22-1] and
8.22.11 agree with the maps i, and i respectively.

PROOF. Note first of all that the diagrams

—Ui* ()

RI(#2,i" 2 ® J5) @ RI(2%, 2" ® JF) RIN%2, Jy)
ii*@d lz*
RO(22, 2 ® fp)(1)[2] ® RU(22, 2% ® Jr) —— RO(22, Ix)(1)[2],

and

—-U

RU(22, 02 ® J5) @ RU(22, 2" @ fi) — s RU#2, fy)

\Li; ®id \Li;

RU(2%, 2 @ fr)(1)[2]® RU(22, 2% © fr) —= RU(22, 7x)(1)[2]

commute. It follows that it suffices to consider the case when L = Z/(p"), and
E =D (so F = 0). Furthermore, by Poincaré duality it suffices to show that the
boundary maps

i V(@ it L gy) - HN 2L, L Ix),

K?
and
et g2 (Ve * L) — H2(X2, L)
are compatible with the trace maps.
This is well-known in the case of étale cohomology. Indeed by the construction
the induced map
(8.23.3) H (Y, Ri'Z/p") = H (Y, Z/p" (=1)[-2]) — HI (X%, Z/p")

given by the boundary of is equal to the map induced by the adjunction
Ri\Ri'Z/p" — 7Z/p". This combined with construction of the trace map in [9]
Cycle, 2.3] shows that the two trace maps in the étale theory coincide.

For the compatibility of i/, with the trace maps it suffices to study the sequence

(8.23.4) RdVX*/X — Rj*j*Rdl/X*jX — Rd_lVX*i*/y — 0.

obtained by applying Rvx. to the sequence [8.22.11 Now a local calculation as in
the proof of [f.7] shows that this sequence is almost isomorphic to the sequence

(8.23.5) 0% = 0% (og V) — Q4 0.
Here we have used the isomorphism between ngl and

(8.23.6) Coker(Q% — Q% (log Y)) ~i*Q% (log Y)
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obtained by choosing locally a local coordinate y for Y in X and defining the
isomorphism
(8.23.7) Q4 - i*Q%(log V), w s i*(@ A dlog(y)),

where @ € Q4! is a lifting of w. If u € % is a unit, then dlog(uy) is equal to
u~tdu + dlog(y) from which one sees that the map is independent of the
choices. We thus get a global isomorphism. It follows that 4/ is induced from the
boundary map

(8.23.8) H&Yy,Qf Y — HY(X, Q%)
obtained from the short exact sequence
(8.23.9) 0— Q% - Q%(log V) — i, Q5 — 0.

We leave to the reader the task of verifying that this map is equal under Serre
duality to the canonical isomorphism

(8.23.10) HY(X,0x) ~ H(Y, Oy)

thereby completing the proof. O
8.24. We obtain a diagram

(8.24.1) RFE,F(X%, L) a RF(&‘%’,% ® _7E)

Yo g% b D0 %
RU'g 5(X3, " L) ————— RI(22, "L ® /5)

Rl'g, (Y2

2 L)(~)[-1] == RU#2, 2 © #p,)(~1)[-1

all
Rl (Xg DY) — " RN(22. 2 © 7)1,
where the columns are the distinguished triangles obtained by applying the global
section functor to[8:22.1] and [8.22.11], and the horizontal arrows are the morphisms

8.191 To prove [8.21] in the present special case it suffices to show that
commutes.

8.25. First let us make some general observations about the construction of the
complexes U(—), U(—), and &(-).
~+
Let A denote the category whose objects are finite ordered sets (including
the empty set!) and whose morphisms are order preserving monomorphisms. Let

AT C AJF denote the full subcategory of nonempty ordered sets. For n > 0 let
[n] denote the ordered set {0,1,...,n} and by convention we define [—1] to be the
empty set.

<+ ~+
For a topos T let T2 denote the constant A -topos associated to T' (see for
; X+
example [T, Vbls} for the notion of a D-topos for a category D). So a sheaf F' € TA

~+
consists of a sheaf F,, for every [n] € A and for every inclusion [n] — [m] a
morphism F,, — F,,. In other words, the restriction of F' to A" is a strictly
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cosimplicial sheaf in 7" and so the category TA+ is equivalent to the category of
triples (F_1, F},0), where F_1 is in T, F; is a strictly cosimplicial sheaf in 7', and
o: F_y — F, is an augmentation (where F_; is viewed as a constant cosimplicial
sheaf). If S is a site defining T, then the topos 73" s isomorphic to the topos
associated to the site S&  whose objects are pairs (U, [n]), where U € S and
[n] € A+, and whose morphisms (U’,[n']) — (U, [n]) are pairs f : U — U and

~+
d : [n] < [n'], where f is a morphism in S and ¢ is a morphism in A . Such a
morphism is a covering if f is a covering in S and [n] = [n/].

8.26. If A is aring in T, then TA" is also ringed by the sheaf of rings which in
X+
degree n is equal to A. Let DT (T2 | A) denote the bounded below derived category

X+
of complexes of A-modules in T2 . There is a total complex functor

(8.26.1) / . DA A) — DH(T,A)

defined as follows. A A-module K € TA" defines a complex in T whose degree
r-term is K ([r — 1]) and whose transition morphism K ([r — 1]) — K([r]) is given
by the sum

(8.26.2) Yo (=1)'0; : K([r —1]) — K([r]),

where 9; : [r — 1] — [r] is the unique injective map whose image does not contain ¢
(if r = 0 we take the map induced by the unique map [—1] — [0]). This construction

is functorial in K and therefore if K*® is a complex of A—modules in TA" we obtain
a bicomplex by applying the above construction in each degree. We define [ K*® to
be the associated single complex. We also sometimes refer to this complex as the
normalized complex of K°.

8.27. A complex K*® in TAJr is equivalent to a complex K*; in T, a strictly
cosimplicial complex K$ in T, and an augmentation K*;, — K$. If Tot(KY)
denotes the usual total complex of the cosimplicial complex K¢, then the augmen-
tation K*; — K% induces a morphism of complexes K*; — Tot(K$) and [ K, is
the cone of this morphism of complexes. It follows that [ takes quasi-isomorphisms
to quasi-isomorphisms and hence passes to the derived category. Moreover this im-
plies that [ takes distinguished triangles to distinguished triangles. This defines
the triangulated functor

For a morphism f : T — T of topoi there is an induced morphism of topoi

T’é+ — Té+ which we usually denote by the same letter f. If 7/ and T are ringed
by A’ and A respectively, and f is a morphism of ringed topoi then the diagram

DHTAT Ny L pHTAT A
(8.27.1) fl l i

Rf.
_

DH(T, A) DH(T, A)

commutes.
We use this to prove that commutes as follows. To ease the notation,

we give the proof in the case when E = D so that ' = (). The general case is
obtained by exactly the same argument replacing X in the following by X — F.
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Let s : X? < X be the inclusion, and write also s for the inclusions Y° — Y,
X°— X, X%%Xf etc.

LEMMA 8.28. Let U — X be an étale morphism and let L be a sheaf of A—

modules on U;’( Fet - Set Yy := Ug Xx Y so that we have a cartesian diagram

(8.28.1) T T

Then the natural map in the derived category of A-modules in Y, = .
(8.28.2) 178 L — s,1°L
is an isomorphism.

Proor. Let j — Y, % be a geometric point. Base changing the diagram
to Spec(Oy,.5) we reduce the proof to the analogous statement for Spec(Oy.. ;).
In this case the result is immediate because UZ- and Y] are K (m,1)’s and the

map Yé’? — U% induces an isomorphism on fundamental groups. O

8.29. Let U. € HR(X)' be a hypercover of X, where HR(X)' is the category
defined in Let U denote U, 7 X x X and let YU Ve denote U Xx Y. We
then have a commutatlve dlagram of blmphClal top01

(8 29. 1) ﬁ K et ! U K et YU, LK et”
For a sheaf F. in U° "&.pe; Ve then obtain as in complexes W(j*F), V(F),

and U(i*F) on U, Fetr U Ferr and Yy, 7 respectively. It follows immediately

from the construction of these complexes that W(j*F) is canonically isomorphic to
J*U(F). Also the maps m 8.28.2| define a morphism

(8.29.2) i*U(F) — W(i*F)
which by is an isomorphism.
The diagram [8.29.1| extends to a diagram of ﬁJrftopoi

~;+ A 7+
(8.29.3) U LK et U K et YU, LK et”

Define @ +(F) to be the sheaf in U* . Whose restriction to U, % (for r>—1)

7

is U(F )TJr1 and whose transition maps are given by the morphisms Then
U(F) is equal to f W+ (F). Similarly we have sheaves \Il +(J*F) and \IIE+ (i*F)

+

on U2 Rt and Y* R et respectively. The isomorphism [8.29.2[is then induced by an

isomorphism ¢* \IfA (F) — @K’ (i*F).

LEMMA 8.30. Assume F' is an injective sheaf in U"K Then the natural map

Fet”

X+
of sheaves in U—
f U~,K,et

(8.30.1) Ux+(F) @ RjA — Rjj* Uz« (F)

is an isomorphism.
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PROOF. It suffices to verify that [8:30.1] induces an isomorphism on stalks at
a geometric point y — U, . Let W denote Spec(ﬁUm?,g), let Yy C W denote
the inverse image of Y, let W denote the inverse image of U , and define W3 etc.
as before. Let A denote the fundamental group of W°, and let A denote the
fundamental group of We°. The fundamental group of W (resp. W") is isomorphic
to Z(1)? (resp. Z(1)**+1) for some integer d, and the map from A (resp. A) to the
fundamental group of U? - (resp. (77‘: ?) is injective since we have by assumption

an étale morphism Tt follows from that the pullback of F' to W¢ is an
injective A-representation, so it suffices to prove the lemma for W.
Let M be the representation corresponding to £'. Then W+ (F) is a direct sum

of sheaves of the form ja.j%j.F for subsets A C {1,... ,m}. Let Iy C A (resp.

Iy C 3) denote the inertia group of D4. Then the right side of [8.30.1] computes
the direct sum of the groups

(8.30.2) H*(A)Tq, M),

OnNthe other hand, the map I, A — I, is an isomorphism, so the restriction of M
to I4 is an injective representation. Therefore [8.30.2]is isomorphic to

(8.30.3) H*(A, M).

From the Leray spectral sequence associated to the map A=A (whose kernel is

isomorphic to Z(1)) and the fact that M is an injective A-representation we find
that

(8.30.4) HO(A, M) ~ M», H'(A,M)~H(A,M® H'(Z(1),A)),

and all other cohomology groups are zero.
To compute the left side of [8:30.1] note that the distinguished triangle

(8.30.5) A — Rj A — i . A(-1)[-1] — A[1],
where 7 : Wy — W denotes the inclusion shows that we have
(8.30.6) HO(W, W5+ (F) @ RjA) = ©ac(1,...my M,
and
H/(W, U5+ (F)@" Rj.A) = H7HW, Uz (F) @i A(-1))

~ Hi_l(Wy,i*W;Jr(F))(—l).

for i > 0. Since Wy is strictly henselian local, we get that

(8.30.7) H (W, 1+ (F) ®" Rj.A) =0
for ¢ > 1, and that
(8.30.8) B
H' (W, U+ (F) @" Rj.A) = HO(Wy, iUz (F))(=1) = Gacq,..m} M2 (-1).

O

Nt
8.31. Assume now that F'is an injective sheaf in U % p,. In U.éf o e then
obtain a distinguished triangle

(8.31.1) @E

(F) = Rj 5+ (7 F) = i, ¥ x4 (" F) (—1)[-1] = T4 (F)[1]
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by tensoring the usual distinguished triangle
(8.31.2) A — Rj A — i, A(-D)[-1] — A[1]

with §;+ (F) and applying Applying the total complex functor we obtain a
distinguished triangle

(8.31.3) U(F) — Rj.VU(j*F) — i,V (i*F)(—1)[-1] — ¥(F)[1]

in U-,?,et'

X+
8.32. Let s,x+F denote the sheaf in Ué? ot whose degree —1-sheaf is s;F' and

EELE]

0 in all degrees > 0, and define s (j*F) and s,x+(i"F) similarly. The maps

1AT
(8.32.1) siF — U(F)?, sj*F — U(j*F)°, si*F — U(i*F)°
induce morphisms of sheaves

X+
These maps induce a diagram in the derived category of A—modules on U 4

(8.32.3) Dt
s+ (F) —— Rjusx+J"F —— s 3+ (("F)(-1)[-1] —— s5+(F)[1]
1

| ! l |

Ui+ (F) —— RVx+(j*F) —— iUz (i"F)(=1)[-1] —— Px+(F)[1].

LEMMA 8.33. The diagram commutes.

ProOOF. This follows from the construction. O

8.34. Similarly, we can consider the diagram of A+—t0poi
—~ X+ : X+ . X+
(8.34.1) g{?é I ggf"é ot gf"é )

Let G be a sheaf of A-modules in 272. The complexes ®¢(& L%f%) and U*(G) defined

in [8.15/and are then also obtained from §+—versions % (ﬁg[%) and UL+ (@).

Namely, let ©%+ “ %%) be the sheaf whose degree r—component (r > —1) is equal

to (ba(ﬁgy%)rﬁ and whose transition maps are defined as in[8.15.4l Note that the
sheaf @%+ (ﬁg{%) is actually a sheaf of rings. The sheaf \Il%+ (@) is the sheaf whose

degree r component is ¥*(G) ™! and again the transition maps are defined as in
(.20
Assume now further that every (U, N) € % (object of the site defining 27%)

the corresponding sheaf Gy, ny on Nrey is a locally constant constructible sheaf of
flat A-modules. Then using the same argument that proved [8:22] one sees that
there is a distinguished triangle
(8.34.2) .

G @ 0% (Oo) = R ("G B (0 7)) = ia(i"G ® B (Ga)) (-1)[-1]5

X+

in the almost derived category of sheaves in %?OA .
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~ X+
Let 7 A" denote the sheaf in %foé whose —1-component is _# (the ideal
defining the boundary) and whose components for r > 0 are zero, and similarly

At AT . oAt oA™ .
define /= and /7 in 277 and #= respectively. We then have maps

~x+

At a A a At a
(8:343) % = @%(Oap), J= =04 (O5), Sy — 25+ (Oa)
inducing the maps
(8.34.4) S = (Oy2), J — O (Og), Sy — ¥ (a)

defined in [B:15.5] by normalization. It follows from the construction of the distin-
guished triangles [8.22.1 and [8.34.2| that the diagram

(8.34.5) G 0% (Oag) Go g5

Rj. ("G ® 2%, (0 .)) Rj.("G® FA7)

("G @ 2% (Ga )~V —— (g o g2 (1)1

G &L, (O] Ge 752

commutes and becomes an isomorphism between the two distinguished triangles,
after applying Rv,.
Note also that if A =Z/p" — (I)%+(ﬁ<%%)/pr is the unique morphism of rings

X+
in ,%%)é (where A denotes the ring which in every degree is A), then there is a
canonical map

(8.34.6) \Il%+ (AN —=Z/p" ® @%+ (ﬁx%)

This defines for every sheafiG of A—modules a;norphism

(8.34.7) U(G)—-G® \I/%Jr A) -G <I>%+ (ﬁgg%)

It follows from the construction tha‘; this map inducgs by normalization.

8.35. Next we need the analogue of the sequence for the sheaves W (F')
in 22.

Let U — X be either an étale morphism such that the conditions of|[7.1]hold (i.e.
cach of the D as well as Uz := U x x )?% are K (m,1)’s) or the strict henselization
of X at a geometric point (in which case the conditions of as well as condition
(R) with respect to D UY hold). Let Yy C U be the inverse image of Y.

Let A denote the fundamental group of Uz- (with respect to a geometric generic
point), A the fundamental group of ﬁf, let Ay, denote the fundamental group of
Y[‘]”F and the choice of a specialization morphism defines a homomorphism Ay,, —
A (well-defined up to conjugation). If condition (R) with respect to D UY holds
then this map Ay,, — A is an inclusion.
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Consider the diagram of topoi

r7o J o i o
U?,et Uf,et YU,?,et
(8.35.1) ﬁl l” lw
10 ; o i o
Uf,Fet Uf,Fet YU,?,Fet :

LEMMA 8.36. Let F' be a sheaf of A-modules in UZ pot- Then there is a canon-

ical isomorphism
(8.36.1) RYj,j*F ~ i,i*F(—1).
If condition (R) holds then R*j.j*F =0 for all s > 1.

PROOF. Since 17% is a K(m, 1) we have

(8.36.2) R*j.j*F ~ R*(m 0 j),j* 1" F,

and since YI}JF is a K(m, 1) we have

(8.36.3) RYG,i'F ~ Ror, (i,i"n* F).

The purity triangle on U%’Ct

(8.36.4) m'F — Rj,.j*'n*F — i, " m* F(—=1)[-1]

induces an exact sequence

(8.36.5) R'1,m*F — RY(w o0 j).j*n*F — miyi*n*F(—1) — R*m,n*F.

Since Uz is a K(m,1) we have Rim,m*F = 0 for i > 0 which implies the first part
of the lemma, and in fact shows that for s > 1 we have
(8.36.6) R*j,j*F ~ R* i, i*F(—1).

If condition (R) holds then i, is given in terms of group cohomology by induction
via the inclusion Ay, — A which is an exact functor. Hence the higher cohomology
groups vanish in this case. ([l

_ COROLLARY 8.37. Let X denote the kernel of the surjective homomorphism
A — A. There is a canonical isomorphism of A-representations

(8.37.1) H'(S,A) >~ IndR, (A)(-1).
PROOF. For a A-representation M let M~ denote the corresponding sheaf on
Uf..- We then have
HY (S, A)

12

R'j.A

~ .A(-1)

~ Indy, (A)(-1).

0

8.38. Let [a C Hy C A and TA~C flé C A be the decomposition and inertia
groups of Dy CU and Dy :=D,NU CU.

The structure of the inertia groups is very simple. Write Uz = Spec(R), and
let R be the integral closure of R in the compositum of all finite extensions L of
Frac(R) (in the fixed geometric generic point) for which the normalization of R in
L is étale over U%. The decomposition groups H 4 is defined by the choice of a
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geometric point § — Spec(R) mapping to the generic point of D9. The inertia
group I4 is equal to the subgroup of A of elements which fix § and act trivially
on the residue field of O,

Spec
henselization of R at § and let R; denote the local ring of § in Spec(R ®r Or ).
If |A| = r, then Ry is isomorphic to S[[t1,...,t,]] for some ring S with D4 defined

(®),5- Let Ory denote the completion of the strict

by t1 = to = --- = t, = 0. The extension Ry is then by Abhyankar’s lemma
equal to the extensions obtained by taking roots of the variables ¢;. This defines
an isomorphism I4 ~ Z(1)". Applying the same analysis to U and Yy we obtain:

COROLLARY 8.39. The projection fA — I4 s an isomorphism. The projection
XN fIA — I;A/fA is injective and identifies X N f{A with the kernel of the map
ﬁA/fA — Hy/I4. In particular, if ¥4 denotes the kernel of the homomorphism
Ay — Ay (where A 4 denotes the fundamental group of DZ’? ete.), then we have
a commutative diagram

1 —— Xy —>3A—>AA — 1

(8.39.1) l l l

1 — EﬂﬁA e ﬁA/TA e HA/IA — 1,

where the rows are exact and the vertical maps are surjective.
If condition (R) holds, then the vertical maps in|8.539.1| are isomorphisms, and
there is a commutative diagram with exact rows

1 Iy HyN Ay, —)AYU,AHAA — 1
(8.39.2) H l l
1 Iy Hy D Ay — 1.

COROLLARY 8.40. Let H 4y denote the decomposition group of DaNYy C Yy,
and let Ay, a denote the fundamental group of DY NYS. The natural map of
A p—representations

Ha/l
(8.40.1) Indjj? | (A) ~ Indjp/1, (A) — I3y (A)
is an isomorphism if condition (R) holds.

COROLLARY 8.41. There is a canonical morphism
1 T Ap _

(8.41.1) HY(SN Ha, A) = IndR7 (A)(-1)
which is_an isomorphism if condition (R) holds. Furthermore, if (R) holds then
H3(XNHx,A) =0 forall s > 1.

PrOOF. Applying to

(8.41.2) EA = Ker(ﬁA — AA)
we obtain an isomorphism
(8.41.3) HY(X4,A) ~ Indﬁ@U)A(A)(—l).

From the map ¥4 — XN fIA we then obtain a morphism

(8.41.4) HY (SN HAA) — HY(S4,A) ~Ind32  (A)(=1).

Ay ,a
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That it is an isomorphism when (R) holds follows from and the fact that when

(R) holds the map ¥4 — X N Hy4 is an isomorphism. The last statement follows
from [R.36] O

8.42. Now let F' be an injective sheaf in U2 and consider the sheaf 14 (F)

K ,Fet
on U%Fet. Recall (see } that if F' corresponds to an injective A-representation

M then ¢4 (F') corresponds to the induced representation Indfu (M|g,). Consider
again the diagram

J o 4 o
— 5 U2 —— — .
UK,et YU,K,Fet

(8.42.1) U2 e,

The group H*(Ug peps ¥a (3 F)) is equal to

(8.42.2) H*(Hy, M).

The Leray spectral sequence corresponding to H 4 — H 4 gives a spectral sequence
(8.42.3) HP(Ha, HY(S N Hy, M) = HPT9(Hy, M),

which we can also write as

(8.42.4) HP(Hy,M @ HY(X N Ha, N)) = HPYI(Hy, M),

since M is a flat A-module by
In particular, for s = 1 we have H'(H, M) = 0 since M is injective so we get
an isomorphism

(8.42.5) HY(Ha, M)~ H(Hy,M ® H'(S N Hy, A)).
We then obtain a diagram

HY(Hy, M) —— HO(Ay, M4 ®Ind2§UA(A)(_1>)

I

(8.42.6) HO(Ha, M @ Tndt | (A)(—1))
H(Hay, M(-1)).
If condition (R) holds then all these maps are isomorphisms.

8.43. Let F be an injective sheaf in 3&%’ and consider the diagram

No;Jr J o;+ 7 o§+
(8.43.1) 3{? - 5&”? — ?,?/? .
Let
1t o~ Xt <+ <+ <+ <+ <+ X+ X+
(8.43.2) V% : &V?Oé — Xe% , 1/)% : %?Oé — Xﬁ , I/}% : Q/?Oé - Xg
be the projections.
LEMMA 8.44. We have canonical isomorphisms
At .
Vs \I/%Jr(F) if s=0,

X+

s ;+ a sk
RBve WE-UF) =0, e (" F)(-1) ifs=1,
0 ifs>1,
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and .
A a <k
R'vy, §+(z F)=0
fort>0.
~ <+
Proor. Fix|[r] € A+. The restriction of RSV%* e (*F) to the [r]-component

of X(% is the sheaf R°vg W% ( i*F'), where \I!a;+ (j*F), is the sheaf on @ asso-

ciated to the presheaf Whose restrlctlon to ﬁ% Fot is equal to

Dac(1,...m},|A=rVa(i" FU),

and .

vt 2% — Xet
is the natural morphism of topoi. By W the sheaf R“”V);*\IJ%Jr (j*F), is equal to the
sheaf associated to the presheaf which to any étale U — X, satisfying the conditions
in [7-1] assigns _

Sac{1,...m}|A|=rH*(Ha, My),

where H 4 is as in and My denotes the A-representation corresponding to Fy.

From this the case s = 0 follows immediately, and the vanishing for s > 1 follows
from B.41] by a standard limit argument

Similarly the sheaf Rtl/y e +(z F), is equal to the sheaf associated to the
presheaf which to U — X as above associates
Sacq1,..mpA=rH (Hay, My).
From this description, a limit argument again, and it follows that
At e
R'vy, \11“;+ (*F), =
for t > 0.

Furthermore the maps in and a limit argument using the fact that for
any geometric point Z — X condition (R) holds for Spec(@x z @y K) yield the
isomorphism

1 ;Jr a S ~ ;Jr a *
RUWA W (7 F) = o, Wy (P F) (~1),.
We leave to the reader the verification that these i isomorphisms are compatible with
the simplicial structure, as r varies. (Il

COROLLARY 8.45. Let F be a sheaf of A-modules in 5&%’ Then there is a

canonical distinguished triangle in X(%

(8. 45 1)

a £+ a 3 5+ a - % 5+ a
RUR, WY (F) — Rug, WS (°F) — R, W (i F)(~1)[-1] — Rv&, W%, (F)[1].
In partzcular, we obtain by normalization a distinguished triangle in Xeg

(8.45.2)
Rux . W*(F) — Rug W*(j* F) — Ruy U (i* F) (= 1)[~1] — Rux, U°(F)[1],

where

(8.45.3) vg: X — Xew vx: X — Xetw vy B¢ — Xog

are the projections.
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PRrROOF. In the case when F' is an injective sheaf of A-modules this follows from
844

To show the general case, it suffices to construct the triangle for a bounded
below complex F'® of injective sheaves in ﬁ?fi, instead of just a single injective

sheaf. To handle this case, choose a bicomplex J*® of injectives in %7?0 and a map
of bicomplexes j*F*® — J** such that for every j the map j*F’ — J7® is a quasi—
isomorphism. Let 75105, Wx+(J*®) be the truncation with respect to the second
index. We then obtain from [8.44] a quasi-isomorphism

(8.45.4) T, W (J°) = vy Uy (i F*)
defining the desired triangle [8:45.1] a

8.46. For any sheaf F' of A—modules in %?O we obtain a diagram

(8.46.1) RU(Z22, 9(F))

RD(22.F 0 0%, (02))

RD(Z2, (" F)) RU(Z2.5°F © ¥4, (0 7))

RI(#2, 0 (i* F)(~1)[-1] —— BU(#R. 7 F © 9%, (Oa)) (1) [ 1,

+1 +1

where the left triangle is obtained from [8.45.2] the right triangle is obtained from
8.34.2] and the horizontal arrows are the maps|8.34.7] It follows from the construc-
tion that this diagram commutes.

8.47. Let L be alocally constant constructible sheaf on X%, and let .Z := ux,L
denote the induced sheaf on 2°2 7 Choose an injective resolution L — I°. For a
hypercover U. € HR(X) such that each U, % also sat1sﬁes the conditions of [7
with respect to the divisor D UY, we then have by [8.31.1] a distinguished triang

(8.47.1) W(Ilue,) = BT g ) = 0T (I ve, (=11 = T )[1]

on U Rt where U.y denotes the base change U. x x Y and I'\U_o? denotes the

pushforward of I*® to UOK Fet”
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We obtain a diagram
(8.47.2) -
hocolimRF(U_R,\D(I'\U_o?)) — hocolimRF(U_"?,\IJ(I‘|U_O?))

hocolimRT(U, , ¥(I*|5, )) «—— hocolimRI(U°, ¥(I*|5, ))
’ K N LK

l l

hocolimRT (U, y 7, ¥(I*|ye___)) «——— hocolimRI'(U° VR (I.|U.Oy?))

YK

| !

hocolimRI'(U. %, w(Ie ‘Uff)) 1] — hocolimRF(U:’?, U(re |U.‘ff)) 1],

where the columns are the distinguished triangles obtained from [8.47.1| and [8.45.2]
and the horizontal arrows are the morphisms obtained from and the homotopy
colimits are taken over U. € HR(X)'.

PROPOSITION 8.48. The diagram [8.-]7.9 commutes.

PRrROOF. Let pt denote the punctual topos, and let T' denote the topos (pté)AJr
So a A-module in T consists of a A—-module F,, ,,, for every pair of objects [n] € A

xT . .- .
and [m] € A together with transition morphisms. We refer to F, ,,, as the (n,m)-
component of F.
For a simplicial scheme Z. there is a canonical morphism of topoi

(8.48.1) g: 75 T

A+ ~ ~
For a sheaf F € Z2  we write I'(F) for q.F and RT'(F) for Rq,F. Taking the total

complex (in both the A—direction and ;-tdirection) defines a triangulated functor
(8.48.2) Tot : D(T,A) — D(A).
The diagram [8.47.2 is obtained by applying Tot to a diagram in D(T A)

X+
Namely, we have complexes of sheaves W 3+ (I*) and \I/~+ (I*)inU° ; For And Uf? ot

respectively. The diagram 2| is then obtained by applymg Tot to the dlagram
(8.48.3)

hocolime(U

re\

it Ploey))  —— hocolime(Uf?,\I/5+(I'\Uﬁ?))
qu(r\@?)) — hocolime(ﬁf,’?,\I/;Jr(l'\ﬁf?))

l

A+ (loe, L)) —— hocolimRT(U°,, Vs (Ioe, )

N

hocolimRT(U. 7, W+ (I*|ye. ))[1] ~—— hocolimRT (U, ¥z + (I*|ve))[1],

hocolimRI' (U

&%\ &N\

>é< \

hocolime(U

&N\

where the homotopy colimits are taken over U. € HR(X)'.



ON FALTINGS’ METHOD OF ALMOST ETALE EXTENSIONS 77
Choose a bicomplex J** of injective objects in %fo and a morphism I°| Zo
g

J*® such that for every j the map

(8.48.4) I — Ji*

is a quasi-isomorphism. For a hypercover U. € HR(X)' and for any j > 0, the
complex in T'

(8.48.5) T(U% per Pz + (77°10)

has (n, m)-component a complex computing the cohomology RF(US B Fot? U ([7)m).

Also choose a cofinal projective system of étale hypercovers {U%} of X.
From B.36] we have:

LEMMA 8.49. There are canonical isomorphisms
(i) i, ROT(02% 1 (D g ™) = lim, (U5 L W()™),

n,K ,Fet’ ’ n,K ,Fet’
() i, D025 (P )2 iy T (P, 7)),
and

(#i) for any i > 1 we have

lim RiF(Ug,Of,Fct’ w(r ‘ﬁ”?)m) =0

Let ©(J7*)™ denote the kernel of the map
(8.49.1) T(JIH™ - w(JrHm

induced by the morphism .J7' — .J72. By the above we then have an exact sequence
(in the vertical direction) of complexes in T

(8.49.2) 0 0

0 0.

A very similar argument can be carried out with the complexes W(I*) and
U(J**) (we leave the details to the reader). Let

(8.49.3) O(J7)™ := Ker(U(J7H)™ — W (J2)™).
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We then also obtain an exact sequence of complexes in T’

(8.49.4) 0 0
lim P(Ufget,@j(r)) 0
hmaf(U " (J*0)) —— > lim L(U% ., ©(J*))
0 lim F(YaKet@é (1*I°))(-1)
0 0

The construction of[8 glves isomorphisms between the individual terms of [8.49.1]
and 849.4] and to prove [B.48 we have to check that in fact these maps give a
morphism of diagrams (for then the diagram is obtained by taking total
complexes).

To prove that we in fact get a morphism of diagrams from to it
suffices to show that for every j > 0, m > —1, and n > 0 the diagram

lim (U} O(H)™) —— lim T(¥e o Wxe (1) ™) (=1)

(8.49.5) | j
v

lim D(U29 L O(J7)") —— lim D(Y22 W (i*1°)™)(~1)

commutes (the other parts of the verification that we get a map of diagrams from
8.49.4) t0[8.49.1| are immediate). Equivalently we need to show that the diagram

hm Hl(U

oo TI™) —— lim TV T e (1)) (1)

n,K,et’

(8.49.6) | |

lim Hl(Uz“}{Fet,\IJ(Ij)m) — lim F(er‘;’{Ft,\I’i +(@*I*)™)(-1)

commutes, where the horizontal arrows are obtained from [8.49] and the vertical
arrows are given by [8.8.1] The sheaves W(I7)™ and W(I7)™ are by construction
direct sums of sheaves
(8.49.7) U™ = WA (F)™, T(I)™ =W ,4(1)™
and [8:49.6] is obtained by taking the direct sum of diagrams

lim | Hl(U Ket’\IIA(Ij)m) — lim I‘(Y \IIA§+(i*Ij)m)(—1)

n, K ,et’

(8.49.8) | |

lim Hl(Us‘OK Fat? U ([)m™) —s hmI‘(Yn‘)‘;( Fot? \IIA;+ (@*I1*)™)(-1).
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The proof of [8:48] is then completed by showing that [8:49.8] commutes, which is
a straightforward verification (which we leave to the reader). This completes the
proof of and hence also of in the case of a divisor. O

8.50. To treat the case of a higher codimension inclusion ¢ : ¥ — X we first
need some computations.
If £ is a line bundle on X we define its first Chern class ¢;(.¥) € H2(3&%’7 Hps)

as follows. Raising to the p°—th power induces an exact sequence
(8.50.1) 0 — pps — O%o0%0 — 0,
K K
and we define ¢1(.Z) to be the image of the class of .Z under the induced map
(8.50.2) H'(X, 0%) — H'(232.0%2) — HX( 28, ye).

By there is a canonical isomorphism H?(22, ppe) ~ H 2(X"Ket,ups) and it

follows from the definition that under this isomorphism ¢ (.%) is equal to the class
obtained from the Kummer sequence 0 — pps — Gy, — Gy, — 0.

CoMPUTATION 8.51. Let X = Py, and let D be the union of the standard
hyperplanes {x; = 0}. Let € be the Cech complex computing the coherent coho-
mology of Ox with respect to the standard covering. For any integer n, raising the
coordinates to the p™-th power defines a morphism

oy : Py — P7,
which induces a morphism
or € —F.
The natural action of pf, on P{, induces an action of A := Z,(1)* on lim 4",
where the limit is taken with respect to the maps o;. It follows from that we
then have an almost isomorphism
RU(2%, 092 /p°) =~ RUa_ (im¢” @y V/p).
Since the natural map
Y/ /oS : . Y/ /oS
V/p® = lim %" @y V/p
is a quasi-isomorphism, we conclude from (1)) that there is an almost isomor-
phism

RT(2%, 092 [p°) ~ (ANZLU-1) @V /p".

In the case when n = 1, let j : G,, — A! be the natural inclusion, and let
i : Spec(V') U Spec(V) < P! be the inclusions of 0 and oo. By there is then a
distinguished triangle in D(2%)
(8.51.1) O = RjuOso —iOg0 (~1)[-1] = O 1],
where D = Do [[ Do C X denotes the inclusion Spec(V)]]Spec(V) < P! of 0
and co. By the above computation we know that H*( 2%, Rj ﬁgg%) ~ A*V /p*(—1)
(almost isomorphism). Looking at the long exact sequence corresponding to [8.51.1
one sees that H%( 2%, @%%/ps) ~V/p*, H (2%, ﬁg{%/ps) =0, and

H*( 2%, 022 /p°) =V /p°(-1)

with generator the image under the boundary map of a generator of H 0(90?, Ogp..).
A straightforward verification shows that this generator is equal to —c1(0p1(1)).
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COMPUTATION 8.52. Let d > 1 be an integer, and let X = P¢. Denote by
Hy, ..., H, the standard hyperplanes (so H; is the locus of points where the i—th
coordinate is zero). For 0 < i < d let %foi denote the topos obtained by taking

D = HyU---U H;. We claim that then H*(%?Oi,ﬁx/ps) is isomorphic to the

exterior algebra A®(V /p*)!{(—1). This we prove by descending induction on i.

The case i = d was done in the preceding computation.

For the general case note that the distinguished triangle [B:22] induces a long
exact sequence
(8.52.1)

— H( 2%, O00) — H (2%, .1,

ﬁggf%) — HI7Y(P?1—{i hyperplanes})(—1) — .
Using this and also induction on d one obtains the general case.

Note in particular that for D = H, we find that H’(%”?O7 Ox/p®)=0fori>0
and for i = 0 we get V/p®. Using this we can also compute the cohomology of

projective space P? with D = (). We claim that in this case
(8.52.2) HY (25, O2o [1°) = &LV /p* (i) - €

where ¢ € H*( 2%, ﬁgg%/ps)(l) denotes the Chern class of &x(1). This is proven
by induction on d, the case d = 0 being trivial. For general d, let X° denote X — H
where H is a hyperplane so that by we have a long exact sequence
(8.52.3)

= HY( 25z, O [9°) — H'(2%2, O [1°) — H'™ (K, O [D°)(—1) — -+

By the above we have Hz(%fo, Ogo/p®) = 0 for i > 0, and by the above the
boundary map

(8.52.4) H™HHA, O [9°)(=1) — HH (2, O /D)

is equal to i,. Now we have i,(¢7) = ¢&7FL. Indeed we have already shown that
i, agrees with the étale pushforward ¢ for the inclusion of smooth divisors, so it
suffices to verify this formula in the étale theory and by the projection formula it
in turn suffices to show that i,(1) = & which is true for example by [9] Cycle, 2.9].

PROPOSITION 8.53. Let & be a vector bundle of rank r +1 on X and let 7 :
Y =P(&) — X be the corresponding projective bundle. Let D C'Y be the inverse
image of D, and for a decomposition D = EUF let D = EUF be the decomposition
obtained by taking inverse images of E and F'. Let O(1) denote the tautological line
bundle on'Y, and let £ € H*(%°, pye) denote the Chern class ¢1(0(1)). Then for
any integer s and sheaf L the cup product map
(8.53.1) @y U P H (2L, L fp)(—i) —» H (%2, m"L® J5)

i=0

is an almost isomorphism.

PROOF. It suffices to prove the proposition after making an étale localization
on X. We may therefore consider the analogous statement for X the spectrum of a
strictly henselian local ring. In this case Y is isomorphic to X x P". In this case the
result follows from the computation and the observation that if P denotes P¢
then H*(%°, fz) ~ Jg®v H* (P, O %), which follows from a similar argument
to the one used in [8.52 using [3.16) (]
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COROLLARY 8.54. With notation as in[8.53, the image of £ under the map
(8.54.1) H2A(@2, Gy [p°)(d) —"m HO(Z2, O [p*) = V5V
is equal to 1.

PROOF. Everything we have done is functorial with respect to morphisms f :
(X',D') — (X, D) such that f~1(D) C D’. After making a finite extension of
V, we may assume that there exists a section Spec(V) — X°. Base changing to
Spec(V) it therefore suffices to consider the case when X = Spec(V') and D is trivial
soY = P4, O

We can now finally prove [8.21|in general. Let i : Y < X be as in the theorem
and let X denote the blow-up of X along Y. Let D C X be the inverse image of
D, and let £ C X be the inverse image of Y so we have a cartesian square

(8.54.2) Wl lw
Let 7 + 1 denote the codimension of Y in X so that E is isomorphic to the

projective bundle associated to the rank r + 1-normal bundle .45/x on Y. Let
¢ e H*(E ?( o> Z/p*(r)) denote the r-th power of the first Chern class of the tau-

tological line bundle on E = Py (Ay/x). Since m.§ = 1 (this follows for example
from [24, VI1.2.2.6]), the composite morphism

T (m* (=) UE) : RUpy py (Yg oo [ ux L) = RUpy py (Yg o0 [Pk L)
is the identity. Similarly, the morphism
m (7" (<) U€) : R(PE, f*L® Fpy) — RO f'L® Fpy)

is the identity. 3
By [24, VII1.8.4.3], the two maps 7, (—), % (7*(—) U&)

RUy iy (Y o0 [*uX L) = R o (X% 7 us L) (r + 1)[2(r + 1)]

are equal. Since the transformations oy and ox commute with 1, by the case of a
smooth divisor already treated we get that m*ox (ix—) = i (7" (oy (—)) U&). Since
=1id on RI‘(.%”?"7 L ® f#g) we can apply m, to obtain

(8.54.3) ox (ix—) = Tuin (7" (o3 (—)) U E).
‘We then find that

ox(ix=) = mi(r*(oy (=) UE)
(8.54.4) = Lm(m(oy(=))UE)
= oy (—).
This completes the proof of O

8.55. The next step in the proof of is to prove some facts about the
behavior of cohomology under blowups of the boundary. So let Dy, Dy C D be two
smooth divisors meeting tranversally, and let 7 : X — X be the blow-up of their
intersection. Let D C X be the inverse image of D. The subscheme D C X is also
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a divisor with simple normal crossings. In fact, Dis equal to the union of the strict
transforms of the components of D together with the exceptional divisor N C X.

Now let D = E U F be a decomposition of the divisor D such that D; € E
and Dy € F, and let D= FE7 U Fy be the decomposition obtained by taking Fj
equal to the union of the strict transforms of the divisors in E together with N,
and let D = FE5 U F;, be the decomposition obtained by taking Fs to be the union
of the strict transforms of the components in £ (so N C F»). In 272 we then have
morphisms

(8.55.1) ™ I8 — IB, — B

PROPOSITION 8.56. Let L be a sheaf of flat A-modules in 3&%’ If . ,%/7?0 — Eb‘%’
is the induced morphism of topoi and vx : %fo — Xet the projection, then the maps

(8.56.1) Rvx.L® 7 — Rvx.Rm,m*"L® fpg, — Rvx,Rm,m"L® fg,.
are all almost isomorphisms. In particular the natural maps

(8.56.2) H*(2%L® fp)— H (221 L® Fg,)— H (227 L® I§,)
are all almost isomorphisms.

PROOF. We may work étale locally on X, and hence can assume that X =
Spec(V[X1, ..., X,, X,Y]) where D is defined by (X; - -- X, XY) and X is the blow-
up of the ideal (X,Y) with D; = (X) and Dy = (Y'). We can further assume that
E = D; and by the projection formula that L is the trivial sheaf.

Write R =V[Xy,...,X,, X, Y] and

(8.56.3) X = Proj(R[U,V]/XV =YU)
and let Uy C X be the open set
Spec(R[u]/X = Yu) ~ Spec(V[Xy,...,X,,Y,u])
and let Uy be the other open set
Us = Spec(R[v]/Xv =Y) ~ Spec(V[ X1, ..., X, X,v]).

Let R; denote the coordinate ring of U; and let Rqs denote the coordinate ring of
the intersection U3 N Us. Let Ry, Rioo and Ri2., be the rings obtained by taking
all the p"—th power roots of the variables (n > 1), and let J; oo C R; o be the ideal
defined by the roots of the variable X on U, and the variables Y and u on U; (the
inverse image of Dj). Also let J C R be the ideal defined by the roots of X.
The ideals J; o, define the same ideal in Ri2  which we denote simply by Ji2,0c-
Also define I; oo C R;  to be the unit ideal on U, and the ideal defined by the
p"—th roots of u on Uy (the strict transform of D;). The ideals I; define the same
ideal in Ry2,00 which we denote by I12, (the unit ideal).

Note that the automorphism groups of U? . (resp. Ut o, Spec(R«)°) over
U? (resp. U{,, Spec(R)°) are all isomorphic via the natural maps. Call this group
A. Then the cohomology of #g is given by H*(A, J ), the cohomology of Zg, is
given by the cohomology H*(A, Ji 00 ®J2,00 — J12,00), and the cohomology of 7,
is given by H*(A,I1 00 ® I2,00 — I12,00). Then the lemma follows from observing
that the natural maps

(8.56.4) Joo = (J1,00 @ J2,00 = J12,00)
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and
(8565) Joo — (Il,oo EB 12700 b 112700)
are quasi-isomorphism which is an immediate verification. O

8.57. The analogous result also holds for étale cohomology. Consider again the
commutative diagram

X-E 22, x
(8.57.1) jFT T”

X-D . X-F
Let L be a locally constant constructible sheaf on X — D. Set M = Rjg.jmL. On
X we can then also consider M, = Rjg,«jr7*L and My = Rjp,«jrm" L. We
then have maps

(8.57.2) M — My — M.
ProprosITION 8.58. The induced maps

(8.58.1) M — R, My «— Rm,. M

are isomorphisms.

PROOF. By the proper base change theorem [I], XI11.5.1] it suffices to show that
for any geometric point T — X with e : Nz = X xx T — X the fiber, the maps

(8.58.2) My — H*(Ny,e*My) — H*(Ng,e* M)

are isomorphisms. This is clear if z has image in the complement of Dy N Dy so
it suffices to consider the case when Z has image in D N Dy. In this case Nj is
isomorphic to P!, Mz = 0, and e*M> is also trivial. Thus the only issue is e*M;.

The pair (X, D) is étale locally isomorphic to X; x A? together with a divisor
D' C X; such that D; = X7 x Al x {0}, Dy = X; x {0} x A}, and D = D; U
Dy, U D’ x A?. Furthermore, étale locally on X the sheaf L is isomorphic to the
sheaf associated to a representation of Z(l)r (the Galois group of the extension of
X obtained by taking roots of the components of the divisor D). By considering
the distinguished triangles obtained from filtering L it suffices to consider the case
when L is a simple sheaf, and hence of the form L, for some character u of Z(l)d
(notation as in(3.5)). Furthermore, by the projection formula one reduces to the case
when L is obtained by pullback via the second projection X; x G2, — G2, from a
rank 1 sheaf on G2,. By the proper base change theorem this reduces the proof to
the case when X = P! x P! with divisor D = {0 x P}, P! x 0,00 x P}, P! x 0o} and
D = oo x P! and Dy = P! x oo.

With these assumptions, consider first the case of the constant sheaf A. The
exceptional fiber ¢ : N — X is equal to P! and we can compute the pullback
e*jr 1 Rjr «\ explicitly. Indeed let X’ denote X — F; and consider the diagram

X -NUF, —* X' -F —>., X
(8.58.3) T T

N —{0,00} _J, N — {oo}.
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Then e*jp,1Rjr «A is isomorphic to the extension by zero along N — oo <— N of
e*Rb, Ra,A. By the proper base change theorem we have e* Rb, Ra,A ~ Rjp.e*Ra,A.
By cohomological purity [1, XVI1.3.9] there is a distinguished triangle on X’ — F}

(8.58.4) oo = A= Ra, A — e A(-1)[-1] — -

which upon applying e* gives a distinguished triangle on N — {0, co}
(8.58.5) o= A= e"Ra A — A(-1)[-1] - ---.

Applying joor and Rjo. we obtain a distinguished triangle on N

(8.58.6) = Jool Rjox A — €*jp Rjp A = oot Rjos A(=1)[-1] — -~ -,

where jo and j., are the inclusions of the complements of the points 0,00 € P!
respectively. Thus it suffices to show that H*(A!, Rjo.A) is zero. For this consider
again the distinguished triangle on A! (where i : {0} < A! is the inclusion)

(8.58.7) A — Rjo« A — i*A(—l)[—l] — A[l}.

Consideration of the associated long exact sequence then gives the result.

For the case of a general sheaf L, we show that H*(Ng,e*M;) is zero by induc-
tion on i. For the base case we take i = —1 where the result is vacuous.

For the inductive step, fix i and assume that H’(Ngz,e*M;) = 0 for j < i
and any locally constant constructible sheaf L on X — D. We then show that
HY(Nz,e*M;) = 0. By the same argument used above it suffices to consider the
case when L has rank 1. Let N be an integer such that the pullback of L under the
map p : G2, — G2, given by multiplication by N on each factor is trivial. Then we
get an inclusion

L — p.A

giving a short exact sequence
0—L—pA—Q—0.
This short exact sequence induces a distinguished triangle
Rjp,«jrnm™ L — Rjp,«jrn T psA — Rjp,«jrm Q — Rjp,«jr 7" L[1]
and hence an exact sequence
H'" ' (Nz,e*Rjp,+jram* Q) — H'(Nz, ¢*Rjp,jrm* L) — H'(Nz, €* Rjg, «jrm* pu ).

Since H*='(Nz,e* Rjg,«jr1m*Q) = 0 by the induction hypothesis it therefore suf-
fices to consider L = p,A.

Let p : P! x P! — P! x P! also denote the map raising the coordinates to the
N-th power. Then there is a commutative diagram

G2, —— PlxP! " PlxP!

(8.58.8) p l lp lp

—_—

G2, —— P x P! —"— P! xPL

Using this one we are then reduced to the case of the constant sheaf A which was
already shown. O
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8.59. We apply all this to complete the proof of as follows. Let (X, D)
be as in Let Y be the blow-up of X x X along the intersections D; x D; of
the divisors D; x X and X x D;. Then the diagonal map X — X x X induces a
canonical morphism i : X — Y such that D meets the boundary divisor Dy of Y
(the inverse image of D x X U X x D) transversally. Let 7 : Y — X x X be the
projection. Let Dy = F; U F; be the decomposition obtained by taking F; equal
to the union of the strict transforms of the divisors X x D;, and let Dy = E5 U Fy
be the decomposition obtained by taking Es equal to the union of the exceptional
divisors with the strict transforms of the X x D;. Then cup product for étale
cohomology is given by the composite

RI(XY%, L) ® RUo(X%, L") RUp, b, (Y2, LK L")
RTp, (Y2, LR L)
RTo(X2, End(L)),

(8.59.1)

LR

where L X L* denotes the pullback to Y of the sheaf priL ® prjL* on X x X.
In other words, let dc; € HZ 1, (Y2, L* W L)(d) denote the class i.(1), where 1 €
HO(X%, End(L)) is the class corresponding to the identity map L — L. Then the
Poincaré duality pairing

RU(XZ, L) ® RU (X%, L*) — Z/p"(—d)[-2d]
is given by the composite

RI(X9%, L) ® RU (X%, L*) RUp, p, (Y2, LR L7)
RUp, p, (Y2, LK L*)
* RT(Y2Z/(p"))(d)[2d]

Z[p"(—d)[—2d].

[ENITAE

Similarly, the Poincaré duality pairing
RI(232.L® Op) © RU(Z2. L © #x) = V/()(~d)[~2d]

is given by the composite

12

RU(22,L® Oys) @ RU(22, L © Fx) RU(#2,LRL*® fp,)
RO(#2,LRL*® fp,)
RT(%2, Joo)(d)[2d]
V/p"(=d)[-2d],

lg ISR

where 6 € H2d(@?0, L*RL® _Zr,)(d)is the class i, (1). If 0 : RT'p, g, (Y3, Z/p") —
RI(#2, ZF,) is the transformation [8.19.2) we have by that o(det) = 6. Also
there is a similar description of the Poincaré duality pairings for cohomology with
partial compact support.
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Now since the trace map in either theory has the property that it sends the
cohomology class of a point in the interior to 1, the diagram

RUp p(X%, L) ®V/(p") x RUpp(X%, L*) @ V/(p') — > RT(X2® V/(p")

4 v/ (p”)(Td)Md}
RI(22,L® Fg) x RO(22,L* ® ) = RTO(2%, 7)

commutes (somewhat abusively we say that o is an “isometry”).
Let v : RI(2%, L ® fg) — Rl r(Xg, L) ® V /p" denote the adjoint of o.

LEMMA 8.60. The diagram
(8.60.1)

RU(Z2,L® f5)® RU(Z2, 1" 0 7y 0 hr@re, LR L o gp,)
. :
RUp p(X2, L)y, ® RUp (X%, L)y 22 R, (Y2, LRLY)g .
commutes.
PROOF. Let p; (resp. p2) denote the composite morphism
pri=(p1(=) @p3(=)) e (Y®7) (resp. pz =70 (pi(—) @p3(-))).
Let 7; denote the composite morphism
(RU(2%, L ® Jp) @ RU(2%, L* @ fr)) © (RUpp(Xg, L) ® RUp p(Xg, L))
RS EE)
RUp, 5, (Y2, LR L")y, . ® RUp, g, (Y2, L* K L)
lPoincaré duality
V /p"(—2d)[—4d).

By duality, to show that p; = po it suffices to show that 7 = 75. This follows from
the definition of -, which implies that both 71 and 75 are equal to the composite

(RD(22,L® #p) @ RT(22,L* @ JF)) ® (RTFp(X%, L") ® RUp, p(X%, L))
lid@id@a@a
RU(22,L® Jp)®@ RU(2L,L* ® fr)®@ RU(22,L* ® Jr)® RU(2L,L® Ik)
|@perdra 0.0
V/p"(—2d)[—4d),
where the last map is the map induced from the Poincaré duality pairings

RI(22,L® fg)® RU(Z2,L* ® fp) — V/p"(—d)[-2d],
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and

RU(22,L*® Jp)@RU(22,L® Jg)— V/p'(—d)[—2d).

8.61. It follows that the diagram
o o * ® o o *
P’{(—)®p§(—)i i(p’{(—)®p§(—))uf5et
RI(#2,LRL*® fg,) RU (Y2, Z/P" )y, (d)[2d]

R

ws(  BUp,p,(Y2,LRLY)y,

V/p"

RE(22. Far0)(d)[2d]
commutes, which implies that the diagram

o o * ® o o *
RT(22,L® Jg)® RU(ZL, L* fr) > RUp r(X%, L)y ) @ RUEB(X%, LYy

duality
duality

V/p"(=d)[-2d]

commutes (7 is an isometry).
Since «y o o is the identity, it follows that both ¢ and ~ are isomorphisms. This
completes the proof of

9. The topos 5??%0

9.1. Let (X, D) be as in and assume in addition that X is proper over
V. Let X denote the formal scheme over Spf(V) obtained by taking the p-adic
completion of X and define another site 7 as follows. The ob jects of 7 are pairs
(U, W) where U — X is an étale morphism of formal schemes with U affine, and
W — Spec(T'(U, Oy) ®y K)° is a finite étale morphism of schemes. Morphisms
U, W'y — (U,W) in .7 are commutative diagrams

W’%W

(9.1.1) J l

U’ LU,

where g is an X-morphism. A collection of morphisms {(U;, Wi) — (U, W)} is a
covering if the collections {U; — U} and {W; — W} are étale coverings in the
usual sense. We denote by 2%’ the associated topos. There is a sheaf of rings & =,

K

in ,%/”\fo given by
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where W denotes the normalization of Spec(I'(U, 0y;)) in W. More generally, for
any decomposition D = EUF of the boundary we have a sheaf of ideals #5 C 0 7=
which to any (U, W) associates the ideal of the fiber product (W X Spec(I(U, ﬁU))
E)red C W, where E C X denotes the p-adic completion of E.

9.2. There is a natural morphism of topoi

(9.2.1) P2 2L
induced from the morphism of sites . — 7 sending a pair (U, W), with U affine,
to the p-adic completion U with the morphism W xy Spec(I'(U, 05) @y K)° —
Spec(I'(U, Os) @y K)°. For any decomposition D = E U F there is a natural
morphism p*_#r — _#p inducing a morphism
(9.2.2) Fu — Rp. 7.
Note also that the map U — (U, Spec(I'(U, ﬁU)) ) induces a morphism of sites
Et(X) — 7 inducing a morphism of topoi v : % — Xct sitting in a commutative
diagram

/\0 p o

2L —— 22
(9.2.3) ufl l”x

X et ——————— Xet'
For any affine U = Spf(R) € Et(X) there is also a canonical morphism of topoi
(9.2.4) €U : 3&”?0 — Spec(R ® K) e
induced by the morphism of sites sending W — Spec(R ® K)° to (U,W) € 2

PROPOSITION 9.3. Let L be a locally constant sheaf of Z/(p")-modules on X}’( o

and let L (resp. ,2/;) denote the induced sheaf on 272 (resp. 3&%) Then the natural
map

(9.3.1) PRux.Z® fp— Rvg, L ® Jp
is an almost isomorphism and for every i the sheaves

Rvx. (¥4 ® fr) and Riyﬁ*,@\@ I
are almost isomorphic to coherent sheaves.

PROOF. We may work étale locally on X so can assume that X = Spec(R)
and that there is a formally étale morphism Spec(R) — Spec(V[X7, ..., Xy4]) as in
Let R denote the p—adic completion of X, R, the extension of R obtained
by taking all the p"—th roots of the variables X;, and let ﬁoo denote the p-adic
completion of Ry ®p R. Let Joo C Ry denote the ideal generated by the roots of
the element [, X;. Let Ay ~ Z,(1)? denote the Galois group of Ry over R,
which is also the Galois group of Eoo over R. Then by we may assume that L
is obtained from a representation of A., and then the morphism is identified
in 13(}%) with the morphism of complexes of quasi—coherent sheaves associated to
the morphism of complexes of R-modules

(9.3.2) RTA_(L® Js) ®r R — RTA_(L® Joo ®n_ Roo).
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The proposition therefore follows from O

COROLLARY 9.4. For any locally constant sheaf of Z/(p")-modules L in 27
the natural map

(9.4.1) H (2%, 2 ® fp)— H (220" L ® )
is an almost isomorphism.

Proor. Combine with Grothendieck’s comparison theorem [11} I11.5.1.2].
O

10. An aside on Galois cohomology

In order to compare étale cohomology to crystalline cohomology it is neces-
sary to compute global cohomology using group cohomology. This is a standard
application of simplicial techniques so we just sketch the necessary details here.

Let A denote the standard simplicial category of finite order sets with order
preserving morphisms.

10.1. Let us first recall the standard complex representing group cohomology.
Let X be a connected normal scheme and let 1 : Spec(2) — X be a geometric
point mapping to the generic point. Denote by A the fundamental group of X with
respect to the base point 7. Then the topos Xget is equivalent to the category of
(discrete) sets with continuous action of the group A. It follows that for an abelian
sheaf in Xpe; the cohomology groups H*(Xpet, L), or better the complex RT'(L),
can be computed as follows.

Write also L for the continuous A-representation corresponding to the sheaf
L. For an integer n let C*(A, L) denote the group

10.1.1 C™(A, L) := {continuous A—equivariant maps A"t! — L
( ; q p :

where A acts on A™t! via the diagonal action on the left. For any morphism
d : [n] — [m] there is an induced map

(10.1.2) A™ ! = Hom([m], A)SHom([n], A) = A

which induces a map 6* : C"(A,L) — C™(A,L). In this way [n] — C"(A, L)
becomes a cosimplicial abelian group and we define C*(A, L) to be the total complex
of this cosimplicial group. It is well-known that this complex C*(A, L) computes
the group cohomology of L (see for example [44], 2.2]).

If L® is a complex of A-modules, then we can apply the C*(A, —) to each L‘
to obtain a bicomplex. We denote by C*(A, L*®) the resulting total complex. Note
that there is a canonical map of complexes L® — C*(A, L®).

10.2. The advantage of this construction is that it is functorial. Let f: Y — X
be a morphism of connected normal schemes and € : Spec(2) — Y a lifting of n to
Y. If Ay (resp. Ax) denotes the fundamental group of Y (resp. X) with respect
to the given geometric points, then there is an induced morphism Ay — Ax of
topological groups. This morphism induces a map

(10.2.1) F7CM(Ax, L) — C*(Ay, L)

compatible with the cosimplicial structure. The resulting map of complexes f* :
C*(Ax,L) — C*(Ay, L) represents the pullback morphism on cohomology.
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10.3. More generally, let X = X; []--- ][] X, be a disjoint union of connected
normal schemes and assume that for each ¢ we are given a geometric generic point
n; : Spec(2) — X;. We then define C*(A, L) to be the product of the complexes
C*(Ax,,L). This is again functorial with respect to morphisms of pointed schemes.

A convenient way to deal with non—connected schemes is as follows. If X is a
disjoint union of normal schemes as above define a base point for X to be a disjoint
union of geometric points E = []/_, Spec(Q) with a morphism of schemes E — X
such that for each connected component X; of X there exists a unique point of F
mapping to the generic point of X;. Then we can define C*(A, L) using E and this
complex is functorial with respect to commutative diagrams

Ey — Y

(10.3.1) l l

Ex — X.

In particular, if U. is a simplicial scheme such that each U, is a disjoint union of
normal schemes and E. — U. is a morphism of simplicial schemes such that for
every n the morphism F, — U, is a base point, then we obtain a cosimplicial
complex C*(U., L).

If X = J[X; is a disjoint union of normal schemes as above and F — X
is a base point, we define a Galois module on X to be the data of a continuous
representation of each 1 (X;) (with respect to the base point given by F). For such
a module L we can then define C*(A, L)

10.4. The main example we will consider is the following. Let X/V be a smooth
proper geometrically connected V—scheme and D C X a divisor with relative normal
crossings. As usual we write X° for X — D and for any X-scheme U we write U°
for U xx X°. Fix a geometric point Spec(€2) — X mapping to the generic point
of X. Let U — X be a smooth hypercover by affine schemes such that for every
n the scheme U, is a disjoint union of open subschemes of X and such that each
Ur g isa K(m,1). Let mo(Uy) denote the set of connected components of U, %.
The set of connected components is functorial so we obtain a simplicial set mo(U.),
and since each connected component of U, is an open subset there is a canonical
base point Spec(€)™ V) — 7. Thus for a sheaf L on U’pe, We obtain a complex
C*(U.,L). We write GC(U., L) for the associated simple complex. If L is obtained
from a locally constant constructible sheaf on X% then since each UZ’? isa K(m, 1)

this complex computes H* (X2 . L).

)
et

10.5. With U. as in the previous paragraph, we will also need to consider the p—
adic completion U” of U.. The scheme U} is the spectrum of the p-adic completion
of the coordinate ring of U,,. Let 2 be the p—adic completion of the field 2. Then for

any connected component P of U/ there exists a unique morphism Spec(Q) — P
such that the diagram

Spec(Q) —— P

(10.5.1) l l

Spec()) —— X
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commutes. We therefore also obtain a base point E. — U. For a sheaf L on U\,
we can then define the complex GC(U”, L) using this base point.

In what follows, we usually omit the initial choice of base point from the dis-
cussion. The careful reader should make the straightforward verification that all
the results are independent of the choice of the geometric generic point of X.

REMARK 10.6. When dealing with algebraic spaces or Deligne-Mumford stacks,
one must take extra care in dealing with the choice of base point as one cannot work
Zariski topology and instead must work with the étale topology. The necessary
technicalities for dealing with this problem are discussed in [41] §4].

11. Fontaine’s big rings

11.1. Let R be a V-algebra which is an integral domain. Choose an alge-
braic closure Frac(R) —  and assume that Frobenius on R/pR is surjective and
that Spec(R/pR) is connected and nonempty. Then Fontaine’s theory gives rings
Agis(R) and Beyis(R) defined as follows. First set

(11.1.1) Sg:=lmR/pR

where the projective limit is taken with respect to the Frobenius morphism on R/pR
(Sg is the perfection of R/pR). Since Sk is perfect, the ring of Witt vectors W (Sg)
has a canonical lift of Frobenius. An element x € W (Sg) can be represented by
a vector (zg,x1,Z2,...) where each z; = (2;0,2;1,...) is an infinite vector with
x;; € R/pR and such that xf(jﬂ) = x;4;. There is a natural map

(11.1.2) 0:W(Sg) — R

defined by sending x as above to

(11.1.3) 0(z) = L (&, +phn,  + -+ P Em),
where Z;; € R is any lift of x;;. Here R denotes the p—adic completion of R.
The assumption that Frobenius on R/pR is surjective ensures that the map 6 is
surjective [49, A1.1].

For n > 0 we write W,,(Sg) for the ring of Witt vector of length n + 1.

We set J = Ker(#) and define Aqis(R) to be the p-adic completion of the
divided power envelope D (W (Sg)). We thus obtain a diagram

Spec(ﬁ) 2, Spec(Acris(R))
(11.1.4) l

Spec(R).

Let Fil'Acyis(R) denote the filtration on A..is(R) obtained as the p—adic comple-
tion of the filtration on D ;(W(Sg)) defined by the PD-ideals JU') ¢ D;(W(Sg)).
For an element o € FillAcriS(R) and an integer 7 > 1 we write al”l € Fil"As(R)
for the element obtained from the r-th divided power operation on J!.

Choose elements ¢, € R with ey = 1, € ., =€n, and €g # 1. Let € € Sg
denote the element obtained from the reductions of the ¢;, and let [¢] € W(Sg) be
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the Teichmuller lift of €. Set 7. := [] — 1 € W(Sg). Then 7. € Fil'Ac.is(R) so we
can define

(11.1.5) t=log([e)) = Y (1) ' (m — )lal™ € Ais(R).
Define .

(11.1.6) Bais(R) " = Acris(R) ® Q,

and

(1117) Bcris(R) = BcriS(R)+[%}'

In fact, by [49] A3.2] we have t*~! € pA,is(R) and therefore Beyis(R) = Acris(R)[1/].
The element t € As(R) lies in FillAcriS(R) and we obtain a filtration Filg__(r)
on Beis(R) by declaring that 1/t has degree —1.
More canonically, we can describe this localization as follows. The group Z,(1)
is by definition the group of sequences (()n>0, where ¢, is a p™—th root of 1 and
P 1 = Cn. The above construction then induces a homomorphism

(11.1.8) a: Zp(1) — Acis(R)*

whose image is contained in the elements mapping to 1 in R. Taking the logarithm
of this map we obtain a map

(11.1.9) B:Qp(1) — Beis(R)
whose image is the line spanned by ¢. This map induces for every ¢ an isomorphism
(11.1.10) B%" : Bais(R) (i) — Beris(R).

11.2. The ring Aqis(R) has a lift of Frobenius @4, (r) induced by the canon-
ical lift of Frobenius to W (Sg). This lifting of Frobenius induces a semi-linear
automorphism ¢g_, (r) of Bais(R) and preserves the filtration Filg__(r).

Also define a second filtration Il on Aqis(R) by

(11.2.1) I = {2 € Auis(R)|¢™ (2) € Fil" Awris(R) for all n > 0}.

LEMMA 11.3. Let S be a p-adically complete and separated ring flat over Z,.
Let € € S be an element whose image in S/pS is a reqular element. Then
(i) € is a regular element of S.
(ii) The sequence

(11.3.1) 0 Sty —=% S(u) =5 S Q

is exact where S{u) denotes the free PD-polynomial algebra on one variable.

Proor. For (i) suppose 8 € S is an element with 8 = 0. We show by
induction on n that 3 is in p™S for all n. This implies that § = 0 since Ny, >1p™S = 0.
So assume that 8 € p"S and write § = p"(3. Then £3' = 0 since S is flat over
Z, and p"EF = £ = 0. Since £ maps to a regular element in S/pS it follows that
B € pS and therefore 3 € p"t1S.

For (ii) note that the injectivity of multiplication by £ —u on S(u) follows from
(i): If f=;5;, asul? is an element with a;, # 0 then

(11.3.2) (€ —u)f = a;,Eul™) + Z biul!

1>1%0
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for some b; € S. Since £a;, # 0 by 1) it follows that (£ —w)f # 0.

For exactness in the middle of 11.3.1L suppose f = >, a;ull maps to zero in
S ® Q. We show by induction on the smallest integer n for which f can be written
as

(1133) f — aiou[io] + e + a[i0+nu[i0+’ﬂ]

that f is in the image of (£ —u). So consider f mapping to zero in S ® Q and write
f in the form [11.3.3] Since f maps to zero in S ® Q we have
é‘io i0+n
11.34 bty =0
( ) a020!+ + Qig4 (’Lo—ﬁ-n)'
in S ® Q, and since S is flat over Z, this implies that

(’io + TL)'

ZO!

(1135) aiofiﬁ 4+ ai0+n€i0+n =0
in S (note that the coefficients in this expression are integers). Since £ is a regular
element in S this implies that

Gornl, g

10:

(11.3.6)

for some 3 € S. Furthermore, since £ maps to a regular element in S/pS it follows
that 6 = %ﬁ’ for some ' € S and hence by the flatness of S over Z, we have

ai, = B for some 3’ € S. Subtracting (¢ — u)B'ul®! from f we are then reduced
to the case when f can be written in the form

(11.3.7) f=apulot 4. gy, quliotitn—l
which by induction on n completes the proof of (ii). O
11.4. Choose v, € R such that vy = —p and V,’;H = Vp, (note that this is

possible since R is a V-algebra). Let —p € Sg denote the element defined by
the reductions v, (mod p). Let [—p] € W(Sg) denote the Teichmuller lifting of
—p, and let § := [—p|] +p. By [49] A2.2] the element & generates the kernel of

0:W(Sg) — R and ¢ satisfies the assumptions of In particular the sequence

(11.4.1) 0 —— W(Sk)(u) —— W(Sk){u) —— W(Sp)®Q

is exact, where 7 is the map sending ul?! to £i/il.

As before let Dj(W(Sgr)) denote the divided power envelope of the surjec-
tion W(Sg) — R. By [49, A2.8] there exists a unique inclusion D, (W (Sg)) —
W (Sr)®Q whose composite with W (Sg) — D (W (Sg)) is the inclusion W(Sg) —
W(Sg) ® Q, and via this inclusion D;(W(Sg)) is identified with the image of 7.
It follows from this that D ;(W(Sg)) is p-torsion free, and that for every n there is
an exact sequence
(11.4.2)

E—u

0 —— W(Sr)/p"(u) —— W(Sgr)/p"(uv) —— D;(W(Sg))/p" —— 0.
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Also for all integers r < n we obtain a commutative diagram with exact rows
(11.4.3)

0 0
0 ——= W(Sg)/p"{u) — "= W(SR)/p"(u) — = D (W(Sg))/p" —0
0 ——= W(SR)/p"*" (u) "= W (Sg) [p"*" (u) —= D;(W(Sk))/p"™+" —0

0 ——= W(SR)/p {u) ——= W(Sp)/p" (u) ——= Dy(W(Sr))/p" —0

By the snake lemma and the fact that the first two columns are exact we conclude
that the sequence
(11.4.4)

0——= Dy (W(Sp))/p" =L Dy (W(Sr))/p™+" —= Dy (W(Sk))/p" — 0

is also exact. As n varies the short exact sequences form an exact sequence
of projective systems and passing to the limit we obtain an exact sequence

(1145) 0 —— Agis(R) —Z— Agie(R) —— D, (W(Sg))/p" — 0.

In particular, we can rewrite [11.4.2] as
(11.4.6)

0 —— W(Sr)/p"(u) == W(Sg)/p"(u) —— Acs(R)/p" —— 0.

LEMMA 11.5. For any integer n the natural map

(11.5.1) Wo(Sk) @w, (50) Aeris(V) = Aeris(R)/p" !

is an isomorphism.
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ProoFr. This follows from the exactness of [11.4.6] and consideration of the
commutative diagram

0

l

W(SR)/pn+1<U> et Wn(SR)n ®Wn(sv) Wn(SV)<u>

| Je-

(11.5.2) W (SR) /D" (1) " Wa(SR)n @w,(5) Wa(Sp) (1)

| |

Acris<R)/pn+1 A— Wn(SR) ®Wn(5'7) Acris(v)/pn-"_1

! l

0 0,
where the maps labelled a and b are clearly isomorphisms. O
LEMMA 11.6. For any integer n > 0 the map
(11.6.1) R" = gy, Aais(R"), fr f- ¢t
is an isomorphism. In particular, the natural map
(11.6.2) 8rpil, Acris (V) @pr RN — 8rpi, Acris(R™)
is an isomorphism.

PRrROOF. This is shown in [49], A2.11]. O

11.7. Since the image of £ in A¢5(V) is in the divided power ideal of A¢s(V),
the map

(11.7.1) W (S%)/(p) = Acis(V)/p
factors through W (Sy7)/(p, &P) since £P = plelPl = 0 in Agys (V)/p.
LEMMA 11.8. Let i € N be an integer. For any integer 1 < j < p the map
(11.8.1) x EF W (Sp) /(p,&7) — 1P (p, TP HI)
is an isomorphism, where J = Ker(0 : Acyis(V) — VA).

PROOF. The case j = 1 follows from [49, A2.9]. The general case follows by
induction and consideration of the diagrams
(11.8.2)

0——=W(Sy)/(p.€) <. W(Sy)/(p, &) ——= W(Sy)/(p, &) —0

5 | i

0 —— Jlrl/(p, Jlv+1l) L{][ip]/(p’ Jlptitily —— gl /(p glirtily —— 0,
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Here the top row is exact since { maps to a regular element in W(Sy7)/(p), and the
bottom row is exact since for j < p we have
o (ip)! )
g[wﬂ] §J £ ip
(ip + 5)!
and (ip)!/(ip + 7)! has p-adic valuation 0. O
LEMMA 11.9. The map of W(Sy)/(p, &P)-modules

(11.9.1) Di50W(S0)/ (0, &%) 27 Ana(V)/p

is an isomorphism. In particular, Aqis(V)/p is flat over W(Sy)/(p, &F).

PROOF. The map is clearly surjective. That it is injective follows from the
preceding lemma. (Il

11.10. In what follows we will need to consider “almost mathematics” over the
ring Beis(V). Let A C Q be the subring Z[1/p], and let At == ANQsp. Fix a
sequence (T, )m>o of elements of V with 70 = p and T, +1 = 7, for all m > 0.
We define 7, := 0 for m < 0. Then for any n € Z define A,» to be the element
(am)mzo € SV with
(11.10.1) A = Tmtn-

Note that )\’1’/ 0= Apnot.

LEMMA 11.11. For every m € Z the map
(11.11.1) X A1 pn : Sp — Sir
1s injective.

PROOF. Let F : S;7 — Sy be the Frobenius morphism (which is a bijection).
Then F(Ay/pn) = Ay/pn—1 so the diagram

A n
(11.11.2) Sy L S
F F
Ay pn
S s

commutes. It follows that multiplication by A;/,» is injective if and only if mul-
tiplication by either A;/pn-1 or Ay pn+1 is injective. It follows that it suffices to
consider the case n = 0. Now with the notation of [49, A2] we have —\; = —p,
and therefore the result in the case n = 0 follows from [49] A2.1]. O

11.12. For n € Z, let 6y /,n € W(Sy7) denote the Teichmuller lifting [Aq/,n] of
A1/pn- Since the Teichmuller lifting is multiplicative we have

(11121) 6f/pn = U(él/pn> == (51/pn—1,

where o : W(Sy) — W (Sy7) is the canonical lifting of Frobenius.
Since W (Sy) is p-torsion free and p-adically separated, it follows from (11.11
that

is injective.
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For o € Ay, we define §, € W(Sy) as follows. Write o = s/p™ for some
s € Z~g and n € Z, and define

(11.12.3) B = 03 -
Note that if s = p"s’ with (s’,p) = 1 then
(11124) i/p" == (6f/pn)s == f/pn—r,

which implies that this definition of 4, is independent of how we write « as a
fraction s/p™.

Similarly we can define A, € Sy for any a € A;. Note that since d;/,n (resp.
A1/pn) is not a zero divisor in W (Sy7) (resp. Sy7), the element &, (resp. ) is not
a zero divisor in W (Sy7) (resp. Sy7) either.

LEMMA 11.13. For every a, B € Ay we have Ao~ Ag = Aq48 and 0o -3 = dq43-

PrOOF. Since the Teichmuller lifting is multiplicative, it suffices to prove the
statement about the A’s. Write a = s/p™ and 5 = t/p™ (note that without loss of
generality we may assume that the denominators are the same). Then by definition
(11.13.1) Ao = Al jpms Ag = Alypms and Xasg = A7)0,

which implies the result. ([l

11.14. For o € A4 let m, C W(Sy7) denote the ideal generated by d,, and let
m := Ugen, My. We can then apply the almost theory of section for modules over

Since Ais(V) is an integral domain, for any o € A, the element 4, is also not
a zero divisor in Aqis(V) and Beis(V).

Thus we can also apply the almost theory of section [2| with Bes(V) and the

ideals Meyis o C Beris(V') generated by d,. In what follows, when we consider almost

mathematics of modules over the ring Beis (V') (resp. W (Sy7)) it will always be with
respect to the ideals Meys o (resp. my,).

Let Beyis (V) denote Beris(V)[05 Haca, -

11.15. The action of Gk on V induces an action of Gk on Si, W(Sy), and

Ais(V) by functoriality. Let x : Gg — Z,, denote the cyclotomic character. Then
it follows from the construction that G acts on t by

(11.15.1) gxt=x(g)t.

In particular, the action of Gx on Aqs(V) induces an action on Beis(V). Also the
choice of the elements 7, defines a homomorphism
(11.15.2) p:Gr — Zp(1l) = lim fipn.

If g € Gk then the image p(g) = (¢,) in Z,(1) is characterized by the equality

(11.15.3) 9(Tn) = CaTn-
One verifies immediately from the construction that for g € Gx we have
(11.15.4) g %61 = a(plg) - b1,

where « is the map [11.1.8] In particular, the G -action on Bes(V) induces an

action of G on Bes(V).
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11.16. We will apply the preceding discussion as follows. Let X/V be a smooth
proper scheme and D C X a divisor with normal crossings relative to V. For any
étale morphism Spec(R) — X for which there exists a morphism as in let
R” denote the p-adic completion of R, and let R denote the integral closure of
R” in the maximal subextension of the field of fractions of R which is unramified
over Spec(R") x x X%. We then apply the preceding discussion to RA, and denote

the resulting ring by Acis(R"). Note that there is a natural action of Gal(ﬁA /R™)
on S := Spa which induces an action of Gral(ﬁA J/R™) on Agis(R”") which in turn
induces an action pg_,; (rr) of Galois on Beis(R"). This action is continuous and
compatible with the filtration. Furthermore the induced action on the diagram
I1.T4 commutes with the lift of Frobenius.

If s : Spec(Q') — Spec(Q) is a morphism of geometric generic points of Spec(R),
then there is a natural isomorphism

(11.16.1) Ls 8" Beris(R") — Beris(R"),

where Beis(R")" denotes the Gal(ﬁl/\ /R")-module obtained by replacing € with
Y in the above construction.

11.17. There is a natural log structure My _ (rr) on Spec(Acis(R")) defined
as follows. Choose an étale map as in [2.16] and write ¢1,...,ts € R for the images
ofthe T; (i =1,...,s). For each ¢ and [, the extension R[X]/(Xpl —t;) is étale over
R[1/(pty---ts)]. It follows that for each ¢, we can choose a sequence 7; ,, of elements
in B" such that 7'5” =Tin—1 and 7,0 = t;. Let 7; € S denote the corresponding
element. We then get a map

(11.17.1) AN = W(S), e [7i],

where [7;] denotes the Teichmuller lift of 7;. This defines a log structure on W (S)
and hence in turn also a log structure on A.s(R"). Note that the log structure on
®" induced by this map A composed with 6 is simply the log structure induced by
pulling back Mp, via the map Spec(R) — Spec(R).

We show that the above log structure on As(R”) is independent of the choices
as follows. Consider a second map as in m giving elements ¢, ..., ¢, € R defining
the log structure, and let 7/, be a choice of roots of the t;. Then there exists a
unique sequence u; , € EA* such that uf’n = Ui n—1 and such that 7;, = UiynT{’n.
Letting u; denote the corresponding element of S, we see that [r;] = [u;] - [7{] in
Agis(R"), and hence we get a canonical isomorphism between the associated log
structures.

It follows from the above discussion that the enlargement has a natural

structure of a logarithmic enlargement
=N, =A
(Spec(R" /pR "), Mplg» ,zn) — (Spec(Acris(R")), Ma,. (rr))
(11.17.2) l
(Spec(R/p), MR p)-

Note also that the action of Gal(ﬁ/\ /R") extends naturally to an action on the log
scheme (Spec(Acis(R")), Ma,,..(r"))-
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11.18. The rings Aqs(R”) define a sheaf of rings s on 3??0 as follows. For
any object (U, N) € 7 with U = Spf(R") as in choose a geometric generic
point 7 : Spec(2) — N and set (U, N) equal to Acris(R/\)”l(N’") with the
induced filtration. Then this is up to canonical isomorphism independent of the

choice of geometric point and o, is defined to be the associated sheaf.
The filtrations Il and Fil, . define two filtrations #[1 and Fily,

11.19. We will also need to consider certain ideals to study cohomology with
(partial) compact support. Let D = E' U F be a decomposition of the boundary so
that we have ideals Jg € R and Jg C R. Since Jg N R = JE,00 (notation as in
the proof of the natural map

(11.19.1) JE,00 @roe R— JE

is by an almost isomorphism. Since the Frobenius morphism of R, /pRo clearly
induces a surjection on Jg oo /pJE oo this implies that the Frobenius morphism on
R/pR induces an almost surjection on Jg/pJp. Also Re/JE o is p-torsion free,
so the sequence

(11.19.2) 0— Jg/pJe — R/pR — R/(p,Jg) — 0

is almost exact. Passing to the inverse limit with respect to the Frobenius mor-
phisms we get by an almost exact sequence

on Heris-

cris

(11.19.3) 0— }:iLIll)jE/ij = SRR = SE/(p.7) 7 0

Define

(11.19.4) T = Ker(Wa(Sg) — WalSg),.7,))

and

(11.19.5) ZTE = Ker(Acris(E)/pn—i-l N Acris(ﬁ/jE)/pn+l).
LEMMA 11.20. For every n the sequence

(11.20.1) 0= Ju's — Wa(Sg) = WalSg)(p7,) — 0

is almost exact.

PROOF. The case n = 0 is[11.19.3] The general case follows by induction and
consideration of the commutative diagrams

(11.20.2)
0 0

0 —— J(')’E — Wo(Syp) —— WO(Sﬁ/(ij)) — 0

0 —— T,y s Want(Sp) —— Wt (Sgy(7,)
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COROLLARY 11.21. For every integer n the sequence
(11.21.1) 0 — J&"5 — Acis(R)/p" " = Aais(R/JE) /p" T — 0
is almost exact.

PROOF. The only issue is the almost surjectivity of the map Acis (R)/p"*! —
Awis(R/JE)/p" L. By this map can be identified with the map

(11.21.2) Acris(V) @w, (s5) Wa(SE) = Acis(V) @w,, (s5) Wa(S7/7,)
so the almost surjectivity follows from the almost exactness of [11.20.1 O

LEMMA 11.22. For every integer n the sequence

(11.22.1) 0 —— Jginf, X0, yinf Tatie —— 0
is almost exact.

ProoF. This follows from consideration of the commutative diagram [11.20.2
O

LEMMA 11.23. For every integer r > 1 the sequence
(11.23.1) 0 — Jih /€ Itk — S7/(€7) = Sgy7,/(€7) = 0
is almost exact.

PRrROOF. This follows from the almost exactness of [11.20.1] (with n = 0) and
the fact that ¢ is a regular element in S JTs O

LEMMA 11.24. For every integer n the sequence
(11.24.1) 0 = Aaris(V)@ 5 = Acris(V)@W(S5) = Acris (V)@ W, (S5/7,) — 0
is almost exact, where the tensor products are taken over W (Sy)

ProOOF. Note that for n = 0 the sequence [11.24.1| can be identified with the

sequence obtained by applying Acis(V)/(p) ®s./(er) (=) to the almost exact se-
quence

(11.24.2) 0 — Jo'5 /€0 I3 — Sp/(€) — Sg/7,/(€7) — 0.

Since Si/(£P) — Acris(V)/p is a flat morphism by this proves the case n = 0.
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The result for general n follows by induction on n and consideration of the
diagram (where all tensor products are taken over W(Sy7))
(11.24.3)

0 0

0

Acris (024 J(l)ng _— Acris ® WO(SE) E—— Acris ® WO(Sﬁ/jE) —0

xXp Xp Xp

Acris & JyllI}fE —_— Acris & Wn(SE) —_— ACI"iS ® Wn(SE/jE) —0

0—— Acris & J,{Ln_fLE - Acris oy Wn—l(Sﬁ) —_— ACriS ® W’ﬂfl(sﬁ/jE) —0

where we write Aqys for Agis(V), the top and bottom rows are exact by induction
and the middle and right columns are exact since they can by be identified
with the almost exact sequences (note that Agis(R) and Aqis(R/JE) are p-torsion
free)

% pn

(11'24'4) 00— Acris(ﬁ)/p - Acris (E)/pn—i-l - Acris(ﬁ)/pn —0

and
(11.24.5)

0 —> Acis(B/TE)/p > Aais(R/T £) /" — Acis(R/T p) /p"" — 0.

COROLLARY 11.25. For every integer n, the natural map
(11.25.1) e Ow,(50) Acris(V) /p" T — T

is an almost isomorphism.
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PRrROOF. Consider the commutative diagram with almost exact columns (where
the tensor products are taken over W, (Sy7))

(11.25.2) 0 0
ris

J’;LnfE ® AcriS(V)/pn+l I J’rCL,E

W, (SE) ® Acris (V) /pn+1

Acris (R) /anrl

W"(SE/jE) ® Acris(v)/pn+l — Acris(E/jl?)/pn—i_1

0 O;

where the right column is almost exact by [11.21] and the bottom two horizontal
arrows are isomorphisms by O

12. More computations of cohomology

We continue with the notation of [[1.16]

THEOREM 12.1. Let L be a smooth sheaf of Z/p™—modules on X2 let U — X
be an étale hypercover with each U, admitting a morphism as in and affine,
and let U. — X be the p-adic completion of U.. Then the transformation

(12.1.1) Aeris (V) @2, GC(U%, L) — GC(ﬁfj?, L &z, Auis(U))
is an almost isomorphism.

Proor. Consideration of the long exact sequences associated to the short exact
sequences

(12.1.2) 0 —— L/pL _r L/p"L —— L/p"L —— 0

reduces the proof to the case when n = 1.
Let S5 _ be the Galois representation which in degree n is given by applying
U

the construcfion in to the coordinate ring of U,,.

LEMMA 12.2. For any integer j > 1 the transformation
(12.2.1) (Sy/ (&) @F, GC(Uz, L) — GC(Ug, S5, /(€)@ L)
is an almost isomorphism.

Proor. For j = 1 this is and The general case follows by induction
on j and consideration of the short exact sequences

(1222) 0 — . (52/(6) — (So/(67)) —— (So/(€7)) — 0,
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and
(12.2.3)
x &7

0 —— (S5, /(€) =5 (S5, /(E*) —— (S5, /(€)) — 0.
([l

To deduce that [12.1.1]is an isomorphism, note that by the flatness of S¢-/(£7) —

Acris (V) /p " s the map

(12.2.4) Acis(V)/(p) ®s,,(er) GC (UL, Sg, /(€)@ L)

|

GC((AI%, Acris(V)/(p) ®sy/er Sz, /(€)@ L)

is an isomorphism. Since

(12.2.5) Auis(U)/p = Acis(V)/(p) Rsy/er S5, /(E7),
theorem follows from the fact that [12.2.1] and [12.2.4] are quasi-isomorphisms.

O

THEOREM 12.3. Let L = lim L,, be a smooth sheaf of Z,~modules on X2 (where
— K

L, is a smooth sheaf of Z/p™—modules), let U. — X be an étale hypercover with
each Uy, admitting a morphism as in |2.16.1| and affine, and let U. — X be the

p-adic completion of U.. Then the transformation
(12.3.1) Acis(V) @z, GO(U%, L) — GO(Ug, L @z, Acuis(U.))
is an almost quasi-isomorphism.
PROOF. The map of projective systems of complexes
(12.3.2) {Acris(V) @z, GO(U°%, Ln)}n — {GC(Ug, Ln ©2, Acris(U)) }n

is an almost quasi-isomorphism in each degree, and therefore the assumptions of
are satisfied for both projective systems in [12.3.2| (since the left projective
system clearly satisfies the assumptions of [2.23)). Therefore

(12.3.3)  HY(GCO(U%, L @z, Aaris(U.))) — lim H(GC(U, Ly, ®z, Acris(U.)))
is an almost isomorphism, and by the composite map

Acris(V) @z, H(GOU%, L)) = lm(Auis(V) ® Hi(GC(Ujf, L,)))
— lim H(GC(U%, Ln ®z, Acis(U.)))
is also an almost isomorphism. a

The preceding result also extends to the filtered context:

COROLLARY 12.4. With notation as in[I2.3, for any integer n > 0 the natural
map

(12.4.1) Fil} ) ®2, GO, L) = GO(Ug, Lz, Fil,_ 5))

is an almost quasi-isomorphism.
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PROOF. By induction on n. The case n = 0 is[I2.3] For the inductive step
consider the short exact sequences

a7 . —A n
(12.4.2) 0— Fﬂ;:ils(v) —Fil} =V gl o,
and
(12.4.3) 0— Fﬂzj;(m —Fil} 5~ G5 €M —o.

COROLLARY 12.5. With notation as in[I2.3, the natural map
(12.5.1) Bexis(V) @g, GO(U'%, L ® Q) — GC(U', L @z, Benis(U.))
is a filtered quasi—isomorphism.

12.6. We will also need variants of the above results for cohomology with partial
compact support along the boundary.

For simplicity we explain just the situation for cohomology with compact sup-
port along the entire boundary, leaving to the reader to make the necessary mod-
ifications to treat partial compact support. Also fix an ordering of the boundary
components D = Dy U ---U D,,. Write U,, := Spec(R,,) and let R, be the nor-
malization of R, in Uy xx X%. For A C {1,...,m} let Ry, 4 be as in We
can then apply the functor A.s(—) to get a Galois module over UZ? which we
denote by Acris(lAfn /J 4). This construction is functorial in [Afn so we obtain a sheaf

Awis(U./J 4) on I{J\%,Fet. Define a complex @(Acris(ﬁ.))‘ by setting

(12.6.1) @(Acris(ﬁ-))r = @Ac{l,..A,m},|A|=rAcriS(fj-/jA)

with transition maps defined as in Let J&Ms C Acis(0) /p" ! be the ideal
corresponding to D as in

There is a similar construction with W;.(S_) instead of Ags(—). Namely, for
[n] € Aand A C {1,...,m}, let W,.(Sg /7A) denote the truncated Witt ring of the

perfection of Ry, 4. Then we again obtain a complex ®(W,.(S; ))® with

(12.6.2) (W, (Sp)" = Dacqr,mpa=We(Sg 7,)-
Note also that there is a natural augmentation
(12.6.3) J— (W, (S5 )"

If r = 0 we write simply ®(S; )® for ®(Wo (S ))°.
LEMMA 12.7. For every integer j > 1 the map
(12.7.1) TR T = B(S5) /()"

is an almost quasi—isomorphism.

PRrROOF. We proceed by induction on j. o
For the case j = 1 note that Si /(§) = R./(p), and if J C R. denotes the ideal

of the boundary as in then Jit/¢Jit ~ J/pJ (by [11.23). The result in the
case j = 1 then follows from an argument similar to the one used in the proof of

3. 16}
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The inductive step is obtained by devissage and noting that for every integer j
we have exact sequences (the first being termwise exact)

(12.7.2) |
0 —— B(S5)/(©)* =L B(Sp )/ () —— B(S5)/(¢)* —— 0,
and
(12.7.3)
x &7

0 Jénf/fjénf J(i]nf/gj+1 J(i)nf J(i)nf/é-j J(i)nf 0.

O

PROPOSITION 12.8. The inclusion J& C Aeis(U.)/p" ! = ®(Aenis(U.))° /p"
induces an almost quasi-isomorphism

(12.8.1) TS — B (Ais(0.))*/p"

PROOF. By devissage one is reduced to the case n = 0. In this case |12.8.1]is
obtained from the morphism of complexes

(12.8.2) Jo" /€7 — @(S5 )/ (67)°

by making the flat base change Sy/(£P) — Acis(V)/(p) (and using the identifi-
cations provided by [11.25)). It therefore suffices to show that [12.8.2] is an almost
quasi-isomorphism which is [12.7] O

12.9. Let L be a smooth sheaf of Z/p"*!-modules on X%, and let U(L) be as
in As in[8.18.3] there is a natural map
(12.9.1) V(L)g = L®O(Ais(T)/p™H).
We then obtain a diagram

(129.2) GC(U.,L® J&™) — GC(U., L ® ®(Aeis(U.)/p"T)) « GOUZ, (L)),

where the first map is an almost quasi-isomorphism. Passing to the limit over all
hypercovers U. we get maps

(129.3)  H(GO(U., L Ji)) == H*(GC(U., L © ®(Aeis(U)/p"1))
H? (X%’ L) ® Acris(V) /p" .
THEOREM 12.10. All the maps in are almost isomorphisms.

PrOOF. By the usual devissage one is reduced to the case when n = 0. As in
the proof of by the flatness of St7/(£7) — Acis(V)/p it then suffices to show
that the map

(12.10.1) H? (X%, L) ® Si/€ — H*(GO(U., L ® ®(Sg )/€"))
is an almost isomorphism. Filtering again by powers of £ we are reduced to[6.16] O

As in[12.3] we then also obtain results for adic sheaves:
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THEOREM 12.11. Let L = lim L, be a smooth Z,-sheaf on X% Then there is
a natural almost isomorphism

(12.11.1) H*(GC(U.,L ® J™®)) ~ H (X%, L) ® Aais (V).
In particular there is an actual isomorphism

(12.11.2)  HY(GC(U,L@J" @, & Bens(0)) = Hi (X%, L) @ Beris(V).

cris

13. Crystalline cohomology and crystalline sheaves

13.1. Since we are interested in @Qp,—coeflicients and isocrystals we will work
throughout with the convergent topos as opposed to the crystalline topos. The
reference for the convergent topos in the non—logarithmic setting is [39] and in the
logarithmic setting the paper [46].

Let X/V be a smooth proper scheme, D C X a divisor with relative normal
crossings defining a log structure Mx on X, and let (Y, My) denote the closed
fiber of (X, Mx). Recall that the convergent topos ((Y, My)/V )eonv is the topos
associated to the site Conv((Y, My )/V') whose objects are strict closed immersions
(U, My) — (T, M), where U — X is an étale morphism, My is the pullback of
Mx, and (T, M) is a formal log scheme flat over Spf(V') with the m-adic topology.
The diagram

(U, My)—— (T, M)

|

(X’MX)

is called an enlargement. We often write simply (7', Mr) for such an enlargement.
A morphism (U', My/) — (T', M1+)) — (U, My) — (T, Mt)) is a commutative
diagram of log schemes

U, My+) —— (T", Mr)

(13.1.1) al lb
(U,My) —— (T, Mry),

where a is a X—morphism. Coverings are defined to be collections of morphisms
{(T;, Mr,) — (T, Mr)}; such that the map [[T; — T is an étale covering.

We write &y, a1,y /v for the structure sheaf (T, My) — T(T, Op) and Ay a1y ) /v
for the sheaf (T, Mr) — I'(T, O7) ® Q. For a sheaf .7 of J#(y as,)/y—modules and
an object (T, Mr) of Conv((Y, My)/V) we write % for the induced sheaf on T.
An isocrystal is a sheaf .F of Ky, )/v—modules such that for every (7', Mr) the
sheaf .Zp is coherent and such that for any morphism f : (T, My/) — (T, Mr) in
Conv((Y, My)/V') the induced morphism f*.#p — % is an isomorphism.

Let W denote the ring of Witt vectors of the residue field k of W. Then we can
also consider the convergent topos ((Y, My )/W )cony. There is a natural morphism
of topoi

(13.1.2) 7 (Y, My)/V)econy — (Y, My ) /W )cony-
For any isocrystal .Z in ((Y, My )/W)conv the induced morphism
(13.1.3) H*(((Y, My)/W)cony, ) = H* (Y, My ) /V)conv, 7°F)
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is an isomorphism (without log structures this is [40] 3.2], and the same argument
yields the case with log structures).
Note that Frobenius induces a morphism of topoi

(13.1.4) o (Y, My )/W)eony — (Y, My ) /W )cony-

We can therefore define an F—isocrystal to be a pair (&, pz) where Z is an
isocrystal in ((Y, My)/W) and ¢z : 0*.% — % is an isomorphism.

13.2. Let ()A(7 M ¢) denote the p-adic completion of (X, Mx) so that (Y, My ) —
(X, Mg) is an object of Conv((Y, My)/V). As usual, there is then a morphism of
sites
(13.2.1)
Et(X) — Conv((Y,My)/V), (T — X)— (T xx Y, My|rxyy) = (T, Mg|r))

inducing a morphism of topoi

(13.2.2) uxpy s (Y, My)/V )eony — Xet-

As in the classical case, the category of isocrystals is identified with the category
of coherent .#p-modules F with an integrable connection

(13.2.3) V:F—F®e, Q&’M}?)/V

satisfying a p-adic convergence condition. Write DR(F,V) for the associated
de Rham complex. By [46, 2.3.5] there is then a canonical quasi-isomorphism
Rux v.# ~ DR(F,V). Note also that since X/V is proper an isocrystal is in-
duced by a unique coherent Ox,-module with integrable connection satisfying a
convergence condition, and the de Rham complex DR(F, V) computes the de Rham
cohomology of this module with integrable connection on the generic fiber by [11]
I11.5.1.2].

13.3. Let D = FUF be a decomposition of the boundary of X. We can then de-
fine an isocrystal Jg as follows. First let M denote the sheaf on Conv((Y, My )/W)
which to any (U, My) — (T, Mr) associates I'(T, Mt) = T'(U, My). For any geo-
metric point £ — U the stalk M is canonically isomorphic to the free monoid
with generators indexed by the irreducible components of the inverse image of D
in Spec(Opy ;). In particular, there is a canonical submonoid Kg; C M; gen-
erated by the sum of the generators of Mj corresponding to those irreducible
components which are in F. One verifies immediately that there is a subsheaf
of monoids Kr C M whose stalks at each geometric point ¢ agrees with Kp ;.
Define J; C Oy a1y y/v to be the sheaf of ideals whose restriction to any (T, Mr)
is generated by the images of sections m € Mz mapping to Kg in M.

If U — Y is étale and admits a chart and if (U, My) — (Z,Mz) is an
embedding into a formally log smooth W-scheme, then a chart for (U, My ) extends
to a chart

(13.3.1) (Z,Mz) — Spf(W[Xq,...,X4]).

If E is defined by the inverse image of {X;--- X, = 0} then Jg z C Oz is simply
the ideal defined by the image of X; --- X . This implies that if f : (Z/,Mz/) —
(Z, Myz) is a morphism of log smooth objects of Conv((Y, My )/W) then the natural

map f*Jg z — Jg,z is an isomorphism. In particular, applying this to the com-
pletion of (Z, Myz) xv (Z, M) (this should be the “strictification” of the diagonal;
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see [29] 5.8] and [41], Appendix A]) we see that Jg z has a canonical integrable
connection defining an isocrystal Jg. Concretely, in local coordinates [13.3.1] this
just amounts to saying that the connection
(13.3.2) d:WI[Xy1,..., X4 — W[X1,..., Xq] @w (&;W - dlog X;)
sends the ideal (X --- X;) to (X1 -+ X5) Qw (&;W - dlog X;) which is immediate.
Let Jg denote the corresponding isocrystal on Conv((Y, My )/W). There is a nat-
ural surjection Jg — Jj which is an isomorphism on formally smooth objects of
Conv((Y, My)/W) (the kernel is “parasitic’). If E = D we also sometimes write
just Jx for Jg.

LEMMA 13.4. Let (U, My) — (T, Mr) be an object of Conv((Y, My )/W) with
T affine, and assume given a chart ¢ : N — My such that E is defined by the
image f of (1,...,1,0,...,0) (1’s in the first s places). Assume that for some
lifting ¢ : N* — My of the chart the image f of (1,...,1,0,...,0) in Or is a
non-zero dwisor. Then the map Jg(T) — J5(T) is an isomorphism.

PrOOF. This follows immediately from the preceding discussion. (I

COROLLARY 13.5. Let U = Spec(R) — X be an étale morphism admitting a
morphism as in [2.16.1. Then the natural map Jg(Acis(R")) — Ji(Acris(R")) is
an isomorphism.

13.6. Note that there is a natural map ¢*Jg — Jg, which is not usually an
isomorphism. Thus for any F-isocrystal (%, ¢ ) we can consider the cohomology
with compact support along F

(13.6.1) H* (Y, My )/W)conv, F @ JE)

which has a semi-linear Frobenius endomorphism. There is a canonical pairing

(13.6.2)  H*(((Y, My)/W)convsF @ Jg) @ H?* (Y, My ) /W )conv, F* @ Jr)

|

HZd(((Y’ MY)/W)conva JX)
compatible with Frobenius.
LEMMA 13.7. This pairing is a perfect pairing.

ProoF. It suffices to verify this after base changing to K. Thus we may
consider the topos ((Y, My)/V)conv instead of ((Y, My)/W)cony. In this case it
suffices to show the analogous result for de Rham cohomology of the generic fiber.
Write also Jg for the ideal in Ox, defining Ex. Then we wish to show that the
natural map
(13.7.1) RT'(DR(F ® Jg,V)) — RHom(RT'(DR(F* ® Jr,V)), le(K)
is an isomorphism or better the local version that
(13.7.2) DR(F ® Jp,V) — ZHom(DR(F* ® Jp,V), 0%, )

is an isomorphism which is immediate. [

LEMMA 13.8 ([46], 2.3.6]). Let .# be an isocrystal. Associated to the lifting
(X,Myg) is a canonical resolution F — R® such that each R" is acyclic for the
projection ux v.. This resolution is functorial in 7.
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PROOF. Let T denote the object of the convergent site of (Y, My) given by
(Y,My) — (X, Mg). There is then a diagram of topoi

(Y, My)/V)eon |7 —22— Reg
(13.8.1) jTl

((K MY)/V)conv-

As explained in [46] 2.3.6] (in loc. cit. our R7 is denoted wh(€)) the resolution is
then given by R7 := jp, (QS}Q{X’MX)/V ® j5F). O

REMARK 13.9. Note that since .# is an isocrystal, there is a canonical isomor-
phism j5.# ~ ¢4 F. Therefore if F comes is equipped with a filtration A® satisfying
Griffiths transversality (see|13.11.1 below), then each of the sheaves R’ is naturally
filtered by the sqbsheaves jT*(qb*TQz X.Mx) v @ 5 A") and R® is a filtered complex
(where jT*(qS;Q%X’MX)/V ® ¢4 A") lies in the (i + j)-th step of the filtration). Fur-

thermore, if (F, V) is the module with integrable connection corresponding to .#
then the natural map (F,V) — R®|¢ is a filtered quasi-isomorphism.

13.10. Let # — R*® be the resolution corresponding to our lifting (X, Mx)/V.
The sheaves R’ are not isocrystals, but still the value R¥(Z, Mz) of R’ on any
affine enlargment (U, My) — (Z, Mz), with (Z, Mz) formally smooth over V, has
a canonical integrable connection

(13.10.1) R'(Z, Mz) = R(Z, Mz) ® Q(z 01, v-

This follows from the construction of R? (see the proof of [46] 2.3.5] and without log
structures [39] 0.5.4]). Moreover, by the proof of the convergent Poincaré lemma
[46] 2.3.5 (2)], the complex R*(Z, M) is a resolution of .Z#(Z, Mz).

13.11. As in [14] there is a category M FyY (®) defined as follows. Fix a geo-
metric generic point n : Spec(2) — X, and let € denote the p-adic comple-
tion. If .Z is an isocrystal on (Y, My)/W, let (F,V ) denote the module with
logarithmic connection on (Xg, Mx, ) obtained by evaluating .# on the enlarge-
ment (Y, My) — (X", Mxn), where (X", Mx~) denotes the p-adic completion
of (X,Mx)/V. The category MFyY (®) is defined to be the category of triples
(Z,07,FilF), where (F,pz) is an F-isocrystal on (Y, My)/W and Filg is a
decreasing filtration on F satisfying Griffiths transversality

(13.11.1) Vr(Fily) € Fills " ® Qx iy, )/

13.12. If (Z,¢z,Filr) € MFY(®) and Spec(R) — X a disjoint union of
open subsets of X admitting morphisms as in [2.16.1} we can evaluate .# on the en-
largement to get a Acris(R") ® Q-module .7 ((Spec(Acis(R")), Ma,,..(r7)))-
Inverting ¢ € Agis(RY), we get a Beis(R")-module which we denote simply by
Z (Beris(R")). The F—isocrystal structure ¢ & induces a semi-linear automorphism
of the Beis(R")-module 7 (Beyis(R")).

The Beris(R”)-module F(Beris(R")) also has a natural filtration Filp g, (rr))
defined as follows. Since (X, Mx)/V is smooth, we can choose a morphism

(13.12.1) T (SpeC(AcriS(R/\)),MAC“S(R/\)) — (Spec(R), Mspec(r))
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such that the diagram
—=A
(Spec(R ), MR/\) _— (Spec(Acris(R’\)), MAcris(R/\))
(13.12.2) l l

id
(Spec(R), MSpec(R)) - (SpeC(R)a MSpec(R))

commutes. The choice of such an r gives an isomorphism
(13.12.3) 0t F(Beis(R")) ~ F(Spec(R)) @ g Beris(R"),

and we define Filp(g,,, (rr)) to be the tensor product filtration of Fil z(spec(r)) and

s

the filtration Filg_ g~y on Beris(R").

LEMMA 13.13. The filtration Filpp,_,.(rr)) 18 independent of the choice of .

is

PROOF. See [50] or [41] 5.8]. O

13.14. The module F'(Bys(R")) also comes equipped with a continuous action
of Gal(ﬁA /R") which commutes with the Frobenius automorphism induced by the
F-isocrystal structure as well as the filtration. As in m this Gal(ﬁ/\ JR™M)-
module F(Beyis(R")) is functorial for morphisms s : Spec(Q') — Spec(2) of geo-
metric generic points of Spec(R).

If U = Spec(R) — X is a disjoint union of open subsets of X admitting a
morphism as in and (F,p,Filg) € MFY(®), we write F(Beis(U")) (or
F(Beis(R"))) for the filtered Galois module with semi-linear automorphisms on
UR° = Spec(R") x x X% obtained from the construction on each connected
component.

13.15. If L is a smooth Q,—sheaf on X% and U — X is étale and admitting
a morphism the pullback of L to Up?° is a Galois module on UR° which we
denote by Lype. Define an association ¢ between (F) ¢r, Filr) € MFY(®) and a
smooth Q,—sheaf L on X% to be a collection of isomorphisms of Galois modules,
one for each étale U — X as in

. . A ~ . A
(13.15.1) w : F(Beris(U")) = Lypo @ Beyis (U™)

compatible with the semi—linear Frobenius automorphisms, and the filtrations. Fur-
thermore, we require that the isomorphisms ¢y be compatible with morphisms over
X. A smooth sheaf L on X is called crystalline if it is associated to some object
in MFY (®).

REMARK 13.16. Crystalline sheaves arise as follows. Let X and Y be smooth
proper V-schemes with normal crossing divisors D C X and F C Y, and let
f:Y — X be a morphism with f~!(D) C E. Assume that the induced morphism
of log schemes f : (Y, My) — (X, Mx) (log structures defined by F and D) is of
Cartier type [29], 4.8]. For example, if étale locally on X and Y we can describe
the morphism as

(13.16.1) VIX1, .o, Xty ]

|

V[Xla"'aXv";Yh'" 7Ypazl7' sy Rey Wy e vws]/(ti = Ziwi)le
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such that D is the divisor defined by t;---t; = 0 and F is the divisor defined
by z1...,2zswy---wg = 0. Then for any crystalline sheaf L on Y associated to
some object (F,pp,Filr) € MFy (®) and integer i the direct image R'f,L on
X% is crystalline and is associated to R'f,F (with the filtration and F-isocrystal
structure induced by that on F'). This is shown in [14] 6.3]. In particular we can
take L = Q, which is associated to the trivial F-isocrystal.

13.17. Let L be a crystalline sheaf associated to (F, ¢p,Filg). For any decom-
position D = E'U F we now define a transformation
(13.17.1)

a Bcris(V) ®K H*(((Y, MY)/V)conv7 F ® JE) i Ecris(v) ®@p HE,F(X%7et7L)

compatible with Galois action, filtrations, and Frobenius as well as cup-products.

For this choose an étale hypercover U. — X with each U,, admitting a morphism
[2:16.1] Let Z. — Y be the reduction of U..

For any étale morphism Z — Y, let hz denote the sheaf on Conv((Y, My)/V)
which to any (U, My) — (T, Mr) associates the set of morphisms U — Z over Y.
Then the localized topos ((Y, My )/V )eonv|h, is canonically equivalent to the topos
((Z,M2)/V)conv- Write Ais(U”) for the simplicial object of Conv((Y, My )/V)
defined by the enlargements A,is(U;)). Then there is a natural morphism of sheaves
Aeris(UN) — hyz which induces a morphism of topoi

(13.17.2) 7 ((Y, MY)/V)COHV‘ACI-;S(UAA) — (Y, My)/V)conv|n -

This morphism sits naturally in a commutative diagram of topoi
(Y, My)/V)eonvlnz, = ((Ys My)/V)conv| A (v)
(13.17.3) "U,Al l“Ams(Um
Z-,et _ Acris(U.A)et
Let mo(U. %) denote the simplicial set

(13.17.4) [n] — {the set of connected components of U, &}

o (U. %
We view m(U. %) as a simplicial topos with the discrete topology. Let Vec Ko W)
denote the category of sheaves of K—vector spaces in this topos. Concretely,

mo(U. %) . . .
Vec assigns in a functorial manner a K—vector space to each connected
component of each U, . Taking global section defines a functor
U —

(13.17.5) [y : (Hx/v—modules in ((Y, My )/V)conv|n,. ) — Vec;)( "K).
We can also consider the evaluation on the enlargements As(U,)') which gives a
functor

(13.17.6)  eva,,. (wr) : (Hxyy-—modules in ((Y, My)/V)conv|n, ) — Vec;?(U"?).

There is a natural transformation of functors I'gy — EVA 1 (UN)- Since the functor
eVA....(UA) 18 exact on quasi—coherent isocrystals this induces a natural morphism

(13177) RF.(F & JE) — evAcris(U/\)(F & JE)

in the derived category D(Vec}r(o(U"?)).
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We can also consider the topos ((Y, My )/W)conv|n, which sits in a diagram
(13.17.8)
((Yv MY)/W)COHV|hz. — ((Y, MY)/V)COHV|hz. — ((Yv MY)/V)COHV|ACHS(U,A)‘

If
(1317.9) T : (H{y.aty) w-modules in (Y, My )/W)eony |, ) — Veci

denotes the global section functor we then obtain a diagram

(13.17.10) RT(F ® Jp) — RTWo(F ® Jg) — eva_,, wn(F ® Jg).
It follows from the construction that the composite

(13.17.11) RT,(F ® Jg) — eva,..won(F ® Jg)

is compatible with the Frobenius actions. This map induces a morphism in the

category D(Vec;r(O . '?))

(13.17.12) RU,(F ® Jg) — (F & Jg)(Beis(UM)).

13.18. Next we need some facts about Galois representations. Let Repj®(A.)

denote the simplicial category whose fiber over [n] € A is the category of collections
(Li)iem(Un —)» where each L; is a continuous representation of the fundamental
group (with respect to the fixed generic base point) of the i—th connected component

of UZ-. The category Rep$®(A.) is easily seen to be an abelian tensor category with

cts

enough injectives. We denote by D(Rep%°(A.)) its derived category.
The functor evya,_, (y~) is naturally viewed as taking values in Rep%®(A.), and
the transformation of functors I's — evy_, (vn) in fact factors through the subfunc-

tor of invariants in eva_, (r)-

From this it follows that the morphism [13.17.12] induces a morphism in the

derived category D(Ve C"I‘})(UA,K))

(13.18.1) RTG(F® Jg) — GC((F @ Jg)(Beais(UM)))
compatible with Frobenius.

LEMMA 13.19. The induced morphism
(13.19.1) RIG(F ® Jg) — GC((F @ Jg)(Beis(UM)))

extends canonically to a morphism in the filtered derived category.

PROOF. The map can be represented on the level of filtered complexes as fol-
lows. Let F ® Jg — R® be the resolution given by By the complex
RT4(F ® Jg) can then be represented, as a filtered complex, by R*(U")V with the
filtration induced by the filtration on the R?. Then is given by the map in
the filtered derived category
(13.19.2)

R.(U-A)v - GC(R.(BcriS(U-A))) cee GC((F'e JE)(BcriS<U~A)>)-

O

13.20. Combining all of this with we obtain the transformation
By functoriality of the above construction and the fact that any two hypercovers
as in [I3.17] can be refined by a third, the map « is independent of the choices.
The main comparison theorem, whose proof occupies the next section, is then the
following:
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THEOREM 13.21. The transformation [153.17.1] is an isomorphism compatible
with Frobenius, Galois action, and strictly compatible with the filtrations. In addi-
tion [13.17.1) is compatible with Chern classes of vector bundles on X .

14. Proof of the comparison theorem

14.1. Let us begin by proving that the transformation « in[I3.17.1]is compatible
with Chern classes of vector bundles.

First consider the case of a line bundle .Z on Y. For the crystalline Chern class
it is now necessary to recall the definition of the crystalline topos (as opposed to the
convergent). For this let Cris((Y, My )/W') denote the site whose objects are strict
closed immersions ((U, My) < (T, Mr)), where U is an étale Y—scheme, together
with a divided power structure v on the ideal of U in T such that the ideal of U
in T is a nil-ideal. Morphisms and coverings are defined as in [29] 5.2], and the
associated topos is denoted ((Y, My )/W )eis. Let O(y,ary )oris denote the structure
sheaf sending (U, My) — (T, Mr) to I'(T, Or), and let Oy ar,) denote the sheaf
(U,My) — (T,Mr)) — T'(U, Oy). There is a natural surjection &y, jeris —
O(v,my) Whose kernel F' lis a PD-ideal. Looking at the units we get an exact
sequence

(14.1.1) 0—=14+F' = O anyeris = Olyary) — 0-

Since F! has divided powers there is also a logarithm map

(14.1.2) log: 1+ F' = Oy ayjeriss 1+t > (=17 (m — 1)t
m>1

Passing to cohomology we therefore get a map

HY(Y, 0%) H2(((Y, My)/W)eris, 1+ F1)
H2(((K MY)/W)cri57 ﬁ(Y,My)CI‘iS) ®Q
H2(((Y’ MY)/W)COHV7‘)£/(Y,M)/)/W)7

where the last isomorphism is by [46] 3.1.1]. This defines the crystalline Chern
class ¢§"(&).

To identify the image of ¢§*(.£) under «, assume that . is trivialized on each
U, (after further refinement we may assume this is the case). Let R,, denote the
coordinate ring of U, so we have an exact sequence of simplicial groups

) —
(14.1.3) 0590

12

(14.1.4) 0— 1+ Fa wr) — Aais(U)* — (R /pR)* — 0.

Choose trivializations of .Z on each U, so that the gluing data is given by an element
u € (Ry/pRY)*. By the method ofthis defines a class in H* (GC((EAA /pﬁ/\)*))
and hence by composing with the boundary map and the logarithm map we get
a(c§*(£)) from the composite

HY GC(R! /pR))") — H*GC(1+ Fawn))
(14.1.5) = HYGC(Aais(UM)))
- Hz(GC(BcriS(U-/\)))~

14.2. The image of the étale Chern class ¢$*(.%) in H?(GC (BeisU”))(1) under
the isomorphism is obtained as follows. Consider the sequence

(14.2.1) 0— Zy(1) = imR " — R 0,
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where the projective limit in the middle is given by the maps B~ — R sending
f to fP. Then ¢$*(%) is given by the map

HY(R'™) —  HY(GCER"))
(14.2.2) — H?(GO(Zy(1)))
- HQ(GC( crlS(R/\)))( ).

Here the first map is induced by the maps R,* — GC(EM*) obtained from the
natural inclusion of R)* into the Galois invariants in E*
A%

Let a : Zy(1) — 1+ F! be the map defined in [11.1.8 and let o : liLnR< —
Agis(R™) be the composite

imR® S = 1lim(R/pR])
(14.2.3) o W(S.)*
i Acris(R-/\)*v
where [—] : §* — W(S.)* denote the Teichmuller lifting. Then it follows from the
definitions that the diagram
(14.2.4)
0 —— Zy(1) R @EA* e R — 0

| d |

0 —— 1+ Fa wr) — Aais(UN) —— (R JpR")* —— 0
N)

cris(

commutes, and from this one obtains the following:

ProOPOSITION 14.3. The diagram
(14.3.1)

§ (=) " .
Hl(Xa ﬁX) —_— HQ(((Y7 MY)/V)COHV7 Ji/(Y,My)/V) @ Bcris(v)

iCTt(—) la
B

H2 (X%,et’ Qp(l)) ®Qp cris (V) H2( Ket’ Qp) ®Qp cris (V)

commutes, where the map 8 is obtained from the map[11.1.9

14.4. Tt is now an essentially formal consequence that « is also compatible
with higher Chern classes of vector bundles. For this let H* denote either étale
cohomology (with appropriate Tate twists) or crystalline cohomology and let ¢ :
HY(X,0%) — H?(X) denote the Chern class map. Then for a vector bundle & on
X the higher Chern classes ¢;(&) € H?(X) are defined as follows. Let Y = Px (&™)
denote the projective bundle associated to the dual of &. Let & € H?(Y) denote
the first Chern class of the tautological line bundle on Y. Then the cohomology
ring H*(Y) is a free H*(X)-module with basis 1,¢,...,£"~1. In particular, there
exists a unique relation

(14.4.1) () Mt (&) + e (6) =0

in H?"(Y') with ¢;(&) € H*(X). This defines the higher Chern classes of a vector
bundle. Since the transformation « is functorial with respect to the map ¥ — X
the following proposition follows from the case of a line bundle.
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PROPOSITION 14.5. For any vector bundle & on X, we have
(14.5.1) a(c'(8)) = B2(H(£)),
where € is defined as in|11.1.10,

14.6. By construction the transformation « is functorial with respect to mor-
phisms f : (Y, Dy) — (X, Dx), where X and Y are smooth V—schemes of dimension
dy and dx respectively, Dy C Y and Dx C X are divisors with normal crossings
relative to V, and f~1(Dx) C Dy. For such a morphism f the pullback functor
f* has an adjoint f, with respect to the pairings provided by Poincaré duality.
Precisely, for any decompositions Dx = F U F and Dy = Ey U Fy such that
fYE) C By we get as in maps
(14.6.1)

S H(((Y, My) [V )convs [*M @ Jp, ) — HX*X 25 H((X, Mx)/V)eonv, M @ Jg)

and
(14.6.2) s Hiy oy (Y2, f7L) — HEE (X2, D)(dx — dy).

PROPOSITION 14.7. Assume that f is a closed immersion of pure codimension
e. Then ao f&F = %o foq.

Proor. To ease notation write just
Hi. (X) for H((X, Mx)/V)conv, M @ Jg),

cris

(14.7.1) Hériso/) for Hi(((y, MY)/V)COHW "M ® JEy)v
H (X) for H}E)F(X%,L) ete.

Let Z denote the blow-up of X x P! along Y x {oo}. A calculation in local
coordinates shows that the strict transform W C Z of Y x P! maps isomorphically to
Y x P! s0 we obtain a lifting f : Y xP! < Z. For any point ¢ € P!, let Z; denote the
fiber of Z over ¢ and let f; : Y < Z, be the inclusion induced by f. Let .4 denote
the normal bundle of Y in X. A calculation shows that Z,, has two irreducible
components Z.  and Z, where Z/_ is the projective bundle Py (4™ & Oy) and
Z! is the blow-up of X along Y. Furthermore, the intersection Z/ N Z7 is the
projective bundle Py (A7) sitting in Py (A @ Oy ) by the embedding given by the
projection A ™* @ Oy — A* to the first factor. Finally the image of Y in Z is
contained in Z/ and does not meet Z, N Z7.

Let H*(Z) denote the cohomology of Z with partial compact support along the
strict transform D of D, and let H*(Z, Z,) denote the cohomology with compact
support along DUZw. If j : Z—(DUZy) — Z—D and i : Zoo—(DNZs) — Z—D
are the inclusions, then for any sheaf L on Z there is an exact sequence of étale
sheaves

(14.7.2) 0— jij*L — L — i,i*L — 0.
It follows that the sequence
(14.7.3) H:(Z, Z) —f H (Z) —— H (Zo)

is exact. We also have a pullback map j§ : H} (Z) — H(Zo).

LEMMA 14.8. The composite

(14.8.1) H:(Z,Zs) —2— H:(Z) —°— HZ(Z)

1S zero.
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PROOF. The scheme Z — (DU Zy,) is isomorphic to (X — D) x A and hence by
Kiinneth we have HY (Z, Zo.) ~ H:(X — D) @ H2(A') ~ HY ?(X — D)(1). With
this identification the map p is given by the pushforward map
(14.8.2) jow t H2(X = D)(1) — H3,(2).

Thus we wish to show that the map
(14.8.3) Jodox + HiT*(X = D)(1) — HE(X — D)

is zero. This follows from the self-intersection formula [24], VII.4.1] which shows
that this map is given by cup-product by the first Chern class of the conormal
bundle of Zj in Z which is trivial. [l

Note also that the map
(14.8.4) HL(ZY) — Hi(Z N Z2,)

is surjective since both are generated over HZ (Y') by the first Chern class of the
tautological line bundle. From the excision sequence we deduce that the map

(14.8.5) H(Zs) — HH(ZL,) & HE(Z3,)
is injective so we obtain an exact sequence
(14.8.6) H}(Z, Zo) —— Hi(Z) —— Hy(ZL,) ® Hi(ZL,).

In either theory, the composite
(148.7) me(v) —2i, gy xPY) — mr(2) 5 H* (7)) = HY(X)
is equal to f,. Combining this with [14.8] and it follows that it suffices to
show that for any element a € H:m(Y) the images of the classes a(f"(a)) and
fet(a(a)) in H(Z!,) and in HX (Z") are equal. In either theory the formation of
pushforwards commutes with pullbacks along smooth subvarieties transverse to the
boundary. In the case of a divisor transverse to the boundary, this follows from the
description of the pushforward as a boundary map and its crystalline analog
(which we leave to the reader). The general case is deduced from this using the
trick following in the proof of This reduces the proof of to the case
of Y < Z!_ (note that the case of Z/ is trivial since Y x P! N Z/_ is empty).

The proof is now reduced to the case of the inclusion f:Y — Py (A @ Oy).
For any class f € H*(Y) we have f.(8) = f.(f*p*8) = f.(1) Up*S, and hence it
suffices to consider the case of constant coefficients and f.(1). But in this case it
is well-known that f.(1) in either theory is given by ¢,(.4#*) (this can for instance
be verified in the rational Chow ring where it is standard). By this completes

the proof of O

~ COROLLARY 14.9. Let tr® : H**(((X, MX)/V)CW,M ® Jp) @K ch(V)
Beis(V) denote the crystalline trace map and tret : H2d(X" ,Qp) ®q, Beis (V) —

Beis(V)(d) the étale trace map. Then the diagram
HQd(((Xa MX)/V)conva M & JD) ®K Ecris(v) L BCrlS(V)
(14.9.1) al B@dT

tret ~

HZd(XO an) ®Qp cris (V) —— Buais (V) (d)
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commutes. In particular, the map
' H2d(((X7 MX)/V)convv M & JD) ®K Ecris(v) - Hfd(X%, Qp) ®Qp gcris(v)
is an tsomorphism.

ProoF. It suffices to show this after making an extension of V' when X° —
Spec(V') has a section. In this case the corollary follows from observing that the
trace map is characterized by the fact that it sends the class of a point in X° to
1. O

14.10. It follows that there exists a unique map
a' s H, p(X%, L) ®q, Baris(V) = H* (X, Mx)/V )eonvs M ® Jg) @k Bexis(V)
such that for any element
a€ H** (X, Mx)/V)conv, M @ Jr)
we have
(14.10.1) tr" (ot (b) U a) = B4 (tr° (b U a(a))).

Using the same argument used in and one shows that a! is also an isometry.
It follows that o and of are both isomorphisms. This completes the proof that

13.17.1}is an isomorphism.

14.11. Finally let us verify that the isomorphism « is strictly compatible with
the filtrations. For this it suffices to show that the morphism on the associated
graded is an inclusion, for then the inverse for a also preserves the filtrations.

Let D = E' U F be a decomposition of the boundary, and let F'®* denote the
filtration on H*(X/K, M ® Jg) induced by the filtration on M and let F* denote
the filtration on H*(X/K, M* ® Jr) induced by the dual filtration on M*. It then
suffices to show that the induced pairing

(14.11.1)  grypHYNX/K,M @ Jp) © gr 2" H* 4 H(X/K, M* © Jp) — HY(X, Q%)
is a perfect pairing for all k and s. To see that this suffices let G denote the filtration
on HE’F(X%, L) ®q, Beris(V) induced by the filtration on Beis(V), and to ease the
notation write
grif = grt HY(X /K, M ® Jg) ©x Beris(V),
g2 = @ HPR (XK, M® ® Jp) @k Beris(V),
and B
grgk = grEHEF(X%, L) ®q, Beris (V)
We then have a commutative diagram

(14.11.2) g’ x gzt —— B (V)

J{O{Xa

s,k —s,2d—k o I7
ng X ng Bcris (V)

and since both the top and bottom lines are perfect pairings it follows that the map
(14.11.3) gy HY(X/K, M ® Jp) ®k Beis(V) — gr&Hp p(X2, L) @, Bexis(V)

is an inclusion.
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The following therefore completes the proof of [[3:21]
LEMMA 14.12. The pairing|14.11.1| is perfect.

PRrROOF. For every integer i there is a natural inclusion
(14.12.1)
Fc{ce H*"*X/K,M*® Jp)lcUB =0 forall g € FITH*(X/K,M @ Jg)}.

To prove the lemma it suffices to show that these inclusions are isomorphisms. Let
F* ® Jg denote the complex

(14.12.2) Filly © Jp — Filly' © J5 © Qy, ary yx —

and let DR(M ® Jg)/F" denote the quotient of the de Rham complex of (M, V)
tensored with the ideal Jgr by the subcomplex F; ® Jg. The subspace F? of
H¥(X/K,M ® Jg) is defined to be the image of the natural map

(14.12.3) HY Xy, Fi® Jg) — H*(Xg, DRIM ® Jg)),
and F~' ¢ H**(X;, DR(M* ® Jg)) is the image of the natural map
(14.12.4) H2 R Xy F7' @ Jp) — H*F( X, DRIM* @ Jp)),

One shows as in that the natural pairing
(14.12.5)

H*¥( X5, F* @ Jg) x H¥* 5 (X, DRIM* ® Jp)/F~* @ Jp) — HY(Xr, 0% )

is a perfect pairing, and from this it follows that the image of [14.12.4]is via Poincaré
duality identified with the elements annihilating the image of [14.12.3 (]

15. From Be.is(V) to Bes(V)
In this section we explain how to lift the isomorphism|[13.17.1|to an isomorphism

over Beis(V). This will be done using some general observations about the rings

Bar, Beris(V), and Beis(V). Let us start by recalling the definitions of these rings.

15.1. Let V be a complete discrete valuation ring of mixed characteristic (0, p),
field of fractions K, and perfect residue field k. Let W be the ring of Witt vectors
of k, and let Ky C K be the field of fractions of W. Let K — K be an algebraic
closure, and let Sgr (resp. Acis(V), Beris(V), Ecris(V)) be the rings defined in
As in there is a surjection

A

(15.1.1) 0:W(Sy) — V',

where V" denotes the p-adic completion of V. If J denotes the kernel of # then
Aqis(V) is defined to be the p-adic completion of the divided power envelope
D;(W(Sy)).

Let t € Auis(V) be the element so that Bes(V) is equal to the local-
ization A.is(V)[1/t]. Also for a € Ay := Z[1/p] N Qg define 6, € Aeris(V) as in
so that Ecris(V) = Bcris(V)[l/éa]aeA+. Note that by construction (5f;pn =0

s0 we also have By (V) = Bais(V)[1/81].
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15.2. Let us also recall the rings B(J{R and its field of fractions Bggr. Let
(Bpn, Ju,[]) be the divided power ring which is the reduction of A.s(V) mod-
ulo p™ (for a cohomological interpretation of this ring see [49, A1.6 and paragraph
following A2.10]). Then we set

(15.2.1) Bjy == lim(Q ®lim B, /).

There is a natural map Aes(V) @ Q — Bjm and one can show (see for example
[16] 1.5.2]) that B is a complete discrete valuation ring and that the image of
t € Awis(V) in Bl is a uniformizer. The field Byr is defined to be the field of
fractions of BIR. There is a natural inclusion Bes(V) < Bgr, which induces an
inclusion ﬁcriS(V) < Bgr. Note that the action of G on As(V) induces an
action of G on BjR and Bgr and the inclusion ﬁcriS(V) — Bggr is compatible
with the G g-actions.

LEMMA 15.3. (i) The natural map
(15.3.1) Ky ~ Bcris(v)GK - gcriS(V)GK

is an isomorphism, where the first isomorphism is by [177, 5.1.2].
(ii) For any G -representation W the natural map

(15.3.2) K ®k, Beris(V) ®q, W — Bar ®q, W
1s injective.

PROOF. By [16, 1.5.7] we have K =~ BSX, 50 Beis (V)% is a subring of K
containing Ky. Also by [16] 4.2.4] the natural map

(15.3.3) K @k, Beris(V) — Bar

is injective. Since localization is an exact functor this implies that the natural map
(15.3.4) K @k, Beris(V) — Bar

is also injective, which implies that the map

(15.3.5) K @k Beris(V)9% — BYE = K

is an inclusion. This is only possible if ECris(V)GK = Ky and we obtain (i).
For (ii) note that it suffices to consider W = Q,, in which case we already

remarked the result (namely that [15.3.4]is injective). O
15.4. For any finite dimensional continuous G g-representation W set

(15.4.1) D— (W) := (W ®@gq, Bexis(V)) ¥,

(15.4.2) Daris(W) 1= (W ®q, Baris (V)9

(15.4.3) Dar(W) := (W ®q, Bar)“*.

There are natural inclusions

(15.4.4) Dexis(W) € D (W) C Dag(W).

Since Dgr (W) is a finite dimensional K-vector space of dimension < dimg, W [17,
1.4.2 Proposition| and the natural map

(15.4.5) K @k, D~ (W) — Dqr(W)

cris
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is injective (this follows from[15.3|(ii) by taking G x-invariants), the Ko-vector space
D (W) has dimension < dimg, (W). Moreover if

cris
(15.4.6) dimg, D (W) = dimg, W
then the map [15.4.5|is an isomorphism.
There is also a commutative diagram

(15.4.7) D~ (W) ®k, Bais(V) —— Dar(W) @ Bar

o |

W ®q, Beris(V) W ®q, Bar.

The map a is an inclusion as it is equal to the composite of the inclusion

(15.4.8) D~ (W) @k, Beris(V) — D~ (W)@, Bar = (D~ (W)®x, K) @ Bar

cris cris cris

and the inclusion
(15.4.9) (D (W) ®k, K) @k Bar — Dar(W) @k Bar

obtained from [15.4.5 The map b is an injection by [17, 3.6 Proposition]. It follows
that the natural map

(15.4.10) D~ (W) ®k, Beris(V) = W @q, Beris(V)

cris

is also an injection. We say that W is Ecris(V)-admissible if this map is an
isomorphism.

Similarly one obtains a notion of Be;s(V)-admissible (resp. Bgr-admissible)
representations. Following standard terminology we call a Be,is(V )-admissible (resp.
Bar-admissible) representation a crystalline (resp. de Rham) representation. Note

that we have the following implications:
(15.4.11) crystalline = Beys(V)-admissible = de Rham.

The main result of this section is the following:
THEOREM 15.5. Any Ecris (V)—admissible representation is crystalline.

PRrROOF. Let W be a EcriS(V)—admiSSible representation and let M, denote
D— (W) so we have a Gg-equivariant isomorphism

cris

(1551) w ®Qp Bcris(v) = MO ®Ko Bcris(v)'
Note that then the natural map
(15.5.2) My — W ®g, Beis(V) = W ®g, Bar

induces an isomorphism
(15.5.3) M = My ®k, K — (W ®g, Bar)“*.

Let 7 € V be a uniformizer and fix a sequence of elements s = {s;, },>0 of V'
such that sy = m, sb ; = s,. Denote by €(s) € W(Sy) the Teichmuller lifting
of the element of Sy defined by the reductions of the s,. Then one can show
(see for example [30, 2.2]) that the series log(e(s)m~!) converges to an element
ug € B(J{R. Let Byy C Bgr denote the subalgebra over Beis(V) generated by u.
Then as explained in [16] 3.1.5] the element u, is transcendental over Beys(V) so
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Byt is isomorphic to a polynomial algebra over Bs(V). Also the G g-action on
Byr restricts to a G g-action on Bgt.

LEMMA 15.6. We have
(1561) Bcris(v) = Ecris(v) N Bgt C Byr.-

Proor. Since localization is an exact functor, the subalgebra of Bqr generated
by Beis(V) and ug is isomorphic to a polynomial algebra Beris(V)[u] such that a
polynomial Y, a;u’ is in By, = Beyis(V)[u] if and only if all the coefficients a; are

in Beyis(V). This implies the lemma. O

From this we deduce as follows. By [3, 0.7] any de Rham representation is
potentially semistable which implies that there exists a finite extension K C K 'cC
K such that

(15.6.2) K' @, (W ®gq, Bst)“x" — (W ®g, Bar)“x’
is an isomorphism, where K{ denotes the field of fractions of the ring of Witt
vectors of the residue field of K’. Let By, denote Bg; OB (V) Beris(V). By a similar

NG !
reasoning as in we have B, = K{. It follows that we have a diagram of
injections of K{-vector spaces of dimension equal to dimg, W

(1563) (W ®Qp Bst)GK/C% (W ®Qp 1,\ést)GK/

(W ®Qp Ecris (V))GK,

It follows that all these maps are isomorphisms. Therefore the image of the map

(15.6.4) My — W ®q, Bst
is contained in

which by is equal to W ®q, Beris (V). Therefore My C Deyis(W) which implies
that

(15.6.6) dim s, Deyia(W) = dimgy, W.
Therefore W is crystalline [17], 1.4.2 Proposition)]. O

REMARK 15.7. It should be remarked that Berger’s theorem that de Rham
representations are potentially semistable was not available at the time of Tsuji’s
original proof of the comparison theorem.

15.8. Note that if W is a crystalline representation, then the natural map
Deris(W) — D (W) is an isomorphism and the isomorphism

(15.8.1) D= (W) ®k, Baris(V) = W ®q, Beris(V)
is induced by the isomorphism
(1582) DN(W) ®K0 Bcris (V) = Dcris(W) ®K0 Bcris(v) ~ W ®Qp Bcris(v)~

Cris
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COROLLARY 15.9. The map « in induces an isomorphism

(15-9~1) BcriS(V) ®KH*(((Y7 MY)/V)conwF@']E) - BcriS(V) ®Qp HE,F(Xj,eta L)

compatible with Galois actions, Frobenius, and filtrations.

Appendix A. Kiinneth formula in group cohomology

The results of this appendix are standard, but we were unable to locate a
suitable reference so we include them here.

A.1. Let R be a ring and let G and H be profinite groups. For a continuous
representation M (resp. N) of G (resp. H) over R, let M X N be the continuous
representation of G x H over R with underlying R-module M ®r N and action of
(9,h) € G x H given by

men— (g-m)® (h-n).

A.2. Let A denote the standard simplicial category with objects the finite
ordered sets [n] = {0,...,n} and morphisms the order preserving maps. Let G
denote the set of functions [n] — G and let

Hom& (G, M)
denote the set of continuous functions ¢ : Gl — M (where M has the discrete
topology) such that for every g € G and (go, ..., gn) € G we have
©(9905---,99n) = g ¢(go; - - - gn)-
For any morphism ¢ : [m] — [n] in A there is an induced morphism
Hom&* (GI™)) M) — Hom&* (G, M)
sending ¢ : G[™ — M to the function G — M sending

(905 -+ -5 9n) = ©(95(0)> - - - > G5 (m))-
In this way we get a cosimplicial R-module

Ag = HomCGtS(G[_] , M),

and as is well-known the corresponding total complex g@ computes RI'(G, M) (see
for example [44] T §2.2]).
Similarly, R['(H, N) and RT'(G x H, M X N) are computed by the total com-

plexes Ay and Agxp respectively of the cosimplicial R-modules
Ag = Hom$¥(HI N) and Agyp := Hom$ (G x H)Z) MR N).

A.3. Now in general (see for example [28] §1.1.2]) if A and B are cosimplicial
R-modules, then we obtain a co-bisimplicial R-module A ® B (i.e. functor A? —
Modg) by the formula

([n], [m]) — An @R B,

whose associated total complex A ® B is equal to A® R B.
Let A®” B denote the restriction of A® B to the diagonal A C A2, so A®” B
is the cosimplicial R-module

[n] — A, ® B,.
By the Eilenberg-Zilber theorem [28] 1.1.2.2] there is a natural quasi-isomorphism

—~—

zié_/B—m‘l(@AB.
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A.4. For any [n] € A there is a natural map
(A.4.1) Hom&(GM, M) @ Hom$y¥ (HM, N) — Hom&, (G x H)™, MK N),
sending
@1 — ((90,h0);-- - (9n: hn)) = (g0, - -5 gn) @ P(ho, - .- ).

A straightforward verification shows that this is compatible with the cosimplicial
structures and therefore defines a morphism of cosimplicial R-modules

Ag @™ Ay — Agxn.

This then defines a morphism

(A42) g@@AVHZ(A(;@AH)—)(AG ®A AH)HAVGXH.
A.5. Now assume that both M and N are flat R-modules and that RI'(G, M)

and RT(H,N) lie in D°(R) (the bounded derived category of complexes of R-
modules). Then Ag and Apy are also complexes of flat R-modules, so the map

defines a morphism in D(R)
(A.5.1) RT(G, M) @" RT'(H,N) — RI'(G x H,M X N).
THEOREM A.6 (Kiinneth formula). The map[A.5.1] is an isomorphism.

ProoF. It suffices to show that for any [n] € A, the map is an isomor-
phism.
For this note that the inclusion G — G[") sending

(gla"'agn) = (Lglw agn) € G[n]
defines an isomorphism
Hom&® (G, M) ~ Hom®*(G", M),
and similarly for H and G x H. It therefore suffices to show that the natural map
(A.6.1) Hom®®(G™, M) ® g Hom®*(H", N) — Hom®*((G x H)", M X N)
is an isomorphism. Since M (resp. N) is a continuous representation of G' (resp.
H) we have
M =UyMY, (resp. N = UVNV),
where U (resp. V') runs over open normal subgroups of G (resp. H). Since the
formation of tensor product commutes with direct limits, it follows that we also
have
MRN = lim MYRNY,
5
w,v)
We therefore have

Hom®*(G", M) ® Hom®*(H", N) = lim Hom**(G", M") @ Hom"*(H", N"),
u,v

and
Hom“®((G' x H)", M X N) = lim Hom“*((G' x H)", MY R N").
uv
It therefore suffices to prove that the map[AZ6.1]is an isomorphism in the case when
M = MY and N = NV for some open normal subgroups U C G and V C H.
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In this case, let (U;)ier (resp. (Vj)jes) be the set of open normal subgroups in
G (resp. H) contained in U (resp. V). We then have

Hom®™(G", M) = li_r)nHom((G/Ui)naM)v
HOHlCtS(HnaN) = h_n)lHOm((H/‘/])n’ N)’
J
and

Hom®*((G x H)", M K N) = lim Hom®*((G/U; x H/V;)", M ® N).
]
This reduces the proof to showing that the maps
Hom((G/U;)", M) ® Hom((H/V;)",N) — Hom®*((G/U; x H/V;)", M ® N)

are isomorphisms, which is immediate. (|

COROLLARY A.7. Suppose in addition to the hypotheses of[A.5 that the groups
HY(G,M) and H'(H,N) are projective R-modules for all i. Then the natural map
of graded R-modules

H*(G,M)®r H*(H,N) - H*(Gx H MXN)
is an isomorphism.

PROOF. Since RT'(G, M) and RT'(H, N) are bounded complexes of R-modules
with cohomology groups projective R-modules, we have isomorphisms in D(R)

RT(G, M) ~ H*(G,M), RT(H,N)~ H*(H,N),

where H*(G, M) and H*(H,N) are viewed as complexes with zero differentials.
From we conclude that

RT(G x H,M R N) ~ H*(G, M) ®p H*(H,N),

and in particular for every i the R-module H'(G x H,M X N) is a projective
R-module. Therefore we also have

RT(GxH MXN)~H"(Gx H MXN)
which implies the corollary. O
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