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Introduction

1.1 MAIN RESULTS

OME might consider the following theorems as the principle applications of the ma-
terial in this thesis.

Theorem (Theorem 5.6.1, cf. [Sus00, Theorem 4.2, Corollary 4.3]). Let X be an equidi-
mensional quasi-projective scheme over an algebraically closed field k. Let i > d = dimX
and suppose that m is coprime to the characteristic of k. Then

CHI (X, m: Z/m) = HXD (X, 7 /m(d — i))#

where H, is the étale cohomology with compact supports. If the scheme X is smooth then
this formula simplifies to CH'(X,n; Z/m) = Hy; "(X, Z/m(i)).

Theorem (Theorem 5.4.20, Theorem 5.4.21, cf. [FV00, Theorem 8.2, Theorem 8.3]).
Let k be a perfect field of exponential characteristic p, let U be a smooth scheme of pure
dimension n over k, and let X, Y be separated schemes of finite type over k. We denote by
A, (Y, X) the bivariant cycle cohomology of [FV00, Definition 4.3]. There are canonical
isomorphisms
A (Y x U, X) [;17] = Aai(Y,X x U) [;‘,]

We also have the following properties:

1. (Homotopy invariance) The pull-back homomorphism zegui(X,r) — Zegui(X X A', r41)

induces for any i € Z an isomorphism

Ari(Y.X)[3] = Araa(Y, X x A)[7].



1.1 Main results

2. (Suspension) Let
p:XxP'—X

it X—XxP
be the natural projection and closed embedding. Then the morphism
ix @P* : Zequi(Xa r+ 1) ©® Zequi(Xa 7') — Zequi(X X ]Pl, r+ 1)
induces an isomorphism

Arad X2 @AY, X121 5 Ao aX X x P[],

3. (Cosuspension) There are canonical isomorphisms:

AY X P X)[2] S A (VX)) @ A (Y, X)[2].

4. (Gysin) Let Z C U be a closed immersion of smooth schemes everywhere of codi-
mension ¢ in U. Then there is a canonical long exact sequence of abelian groups
of the form

o Arrei(Z,X) 2] = AU D[] = Any(U = Z,X)[2]

— Ar+c,i71(za X) [é] — ...

Theorem (cf. [VoeOOb, Corollary 3.5.5, 4.1.4, 4.1.6, Theorem 4.3.7]). Let k be a perfect
field of exponential characteristic p.

1. (Lemma 5.5.2, Lemma 5.5.6) The subcategory DMg,y,(k, Z]
tains the objects M(X)[;] = C,(cequi(X/k,0)) and M“(X)[P%]
for any separated scheme X of finite type over k.

]) € DM(k, Z[3]) con-
C,(zequi(X/k,0)) and

=

2. (Proposition 5.5.3) DMgm(k,Z[;]) is generated by M(X)[}l?] for X smooth and pro-
jective over k.

3. DMgy(k, Z[é]) has an internal hom.

1
- P

4. (Theorem 5.5.14) Denoting A* = homDMgm(k,Z[;])(A’Z[ ]) one has:

(a) For any object A in DMgm(k,Z[;]) the canonical morphism A — (A*)* is an
isomorphism.
(b) For any pair of objects A,B of DMgm(k,Z[}lj]) there are canonical morphisms
(A®B)* 2 A* ® B*

homDMgm(k,Z[j})(A7B) ~ A* ® B.



1.1 Main results

(c) For a smooth scheme X of pure dimension n over k one has canonical isomor-
phisms
MOXO)[2]* = M (X)[2] (=) 2]

M2 2 M(X)[2] ()2,

In [Wei80, 2.9] Weibel asks if K,(X) = o for n < —dim X for every noetherian scheme
X where K,, is the K-theory of Bass-Thomason-Trobaugh. This question was answered
in the affirmative in [CHSWO08] for schemes essentially of finite type over a field of
characteristic zero. Assuming strong resolution of singularities, it is also answered in
the affirmative in [GH10] for schemes essentially of finite type over a field of positive
characteristic. Both of these proofs compare K-theory with cyclic homology, and then
use a cdh descent argument. The main new ingredients in the following theorem are
the representability of homotopy invariant algebraic K-theory ([Wei89]) in the Morel-
Voevodsky stable homotopy category ([Cis13]) and a theorem of Gabber (a weak version
is mentioned further down in this introduction).

Theorem (Theorem 5.7.1). Let X be a quasi-separated quasi-excellent noetherian scheme
and p a prime that is nilpotent on X. Then Ky(X) ® Z[;] = o for n < —dimX.

The first three theorems above appear in [FV00], [Voe0Ob], and [Sus00] under the
assumption of resolution of singularities. The resolution of singularities assumption is
applied through the theorem [VoeOOb, Theorem 4.1.2] of Voevodsky. Our main technical
result is the following Z[;]—linear version of this theorem.

Theorem (Theorem 5.3.1, cf. [VoeOOb, Theorem 4.1.2]). Let k be a perfect field of
exponential characteristic p. Suppose that F is a presheaf with transfers on the category
Sch(k) of separated k-schemes of finite type such that Fean ® Z[3] = o. Then (C,(F)nis ®

Z[;l,])km(k) is quasi-isomorphic to zero as a complex of Nisnevich sheaves on Sm(k).

With this Z[;]—linear version version of [Voe0Ob, Theorem 4.1.2], Suslin’s proof of
Theorem 5.6.1 goes through unchanged. Similarly, Z[;] versions of the material in
[FV00] and [VoeOOb] that previously assumed resolution of singularities are now all
valid with minor changes to some arguments.

To apply resolution of singularities in his work on algebraic cycle cohomology theo-
ries, Voevodsky introduced the cdh topology. This is an enlargement of the Nisnevich
topology so that the proper birational morphisms coming from resolution of singularities
may be used as covers. We will use the following theorem of Gabber as a replacement
for resolution of singularities.

Theorem (Gabber [11109, 1.3] or [ILO12, Theorem 3, Theorem 3.2.1]). Let X be a
separated scheme of finite type over a perfect field k and ¢ a prime distinct from the
characteristic of k. There exists a smooth quasi-projective k scheme Y, and a k-morphism
f:Y— X such that

1. f is proper, surjective, and sends every generic point to a generic point, and



1.1 Main results

2. for each generic point & of X there is a unique point n of Y over it, and [k(n) : k(§)]
is finite of degree prime to L.

To apply this theorem of Gabber, we need to enlarge the Nisnevich topology further.
Hence, we search a topology which contains the Nisnevich topology and for which we can
use Gabber’s theorem to show that every scheme of finite type admits a smooth quasi-
projective covering. There are many possible choices, some making the proofs easier
than others. The following definition could be considered as the first new contribution
of this thesis.

Definition (Definition 3.2.6). Let ¢ be a prime and S a scheme. The ¢dh topology is the
Grothendieck topology on the category Sch(S) of schemes of finite type over S generated

by the cdh topology, and the pretopology for which the covers are singletons {Y i> X}
containing a finite flat surjective morphism of constant degree prime to ¢, such that f, Oy
is a globally free Ox-module.

We will call the latter pretopology the fpst’ pretopology.

We have defined the ¢dh topology in such a way that proofs may be reduced to a cdh
part, and an fps¢’ part. To structure the proofs dealing with fps¢’ part, we formalise a
notion of presheaf with traces. In our work the class P in the following definition will
always consist of finite flat surjective morphisms.

Definition (Definition 3.3.1). A presheaf with traces (F, S, A, Tr, P) is an additive func-
tor F: S? — A from a category of schemes S to an additive category A, together with
a class P of morphisms of S, and a morphism Trs : F(Y) — F(X) for every morphism
f € P. The morphisms Tr are required to satisfy the following axioms.

(Add) For morphisms f, : ¥; = X; and f, : Y, = X, in P we have
Tr-lefz = Trfl D Trfz.

(Fon) For morphisms W % Y I, X in P we have

TrfTry = Trg and Trig, = idF(X)-

(CdB) For every cartesian square in S

such that f, g € P we have
F(p) Ty = TryF(q).

10



1.2 Outline

(Deg) For every finite flat surjective morphism f: Y — X in P such that f, Oy is a globally
free Ox module we have

TrfF(f) = degf~ idF(X)-

It falls straight out of the definition that if (F, Sch(S),Z-mod, Tr, P) is a presheaf
with traces such and P contains each finite flat surjective morphism of degree prime to
¢, then F is an fpsl’ sheaf (Lemma 3.4.10). Hence, a cdh sheaf with traces of that form
is an £dh sheaf.

1.2 OUTLINE

We outline now the proof of Theorem 5.3.1. It suffices to show C,(F)nis ® Zyy quasi-
isomorphic to zero for each ¢ # p. As the ¢dh topology is finer than the cdh topology,
clearly we can assume that Fegp ® Z) = o. As Fygn ® Zy) is the image of F in the
derived category of £dh sheaves of Z,-modules, and C, (F)nis ® Z(y) is the image of F in
DM (k, Z(g)), our result will follow if we can find a factorisation

D(ShVNiS(SmCOV(k), Z(g))) — D(Shvmh(SmCor(k), Z(Z))) — DMeﬁ(k, Z(Z))'

We can describe the derived category of Nisnevich (resp. fdh) sheaves as the derived
category of presheaves with Nisnevich (resp. ¢dh) hypercovers inverted. To obtain such
a factorisation then, it suffices to show that every ¢dh hypercover in DM(k) is isomorphic
to the scheme it covers. The functor Sm — DM(k, Z(;)) factors through the category of
modules over the ring spectrum HZ) in SH(k) where HZ ) is the object of the Morel-
Voevodsky stable homotopy category SH(k) that represents motivic cohomology with
Zy) coefficients. So we have converted the problem into showing that each ¢dh hypercover
in this category of modules is isomorphic to the scheme it covers, or equivalently, that
every such object of SH(k) satisfies ¢dh-descent.

This descent problem is broken up into a cdh part, and a fps¢’ part. The cdh part is
taken care of by a theorem of Cisinski ([Cis13, 3.7]) which applies work of Ayoub ([Ayo07,
Corollary 1.7.18]) and Voevodsky ([VoelOb], [VoelOc]) to show that every object of SH(k)
satisfies cdh descent. For the fps¢’ part we define a suitable notion of what it means
for an object of SH(k) to have a structure of traces (Definition 4.3.1), and show that
certain objects in SH(k) have such a structure of traces (Corollary 5.2.4). To show that
cdh descent and a structure of traces implies £dh descent, we compare the cdh and /dh
descent spectral sequences and use the following theorem, which is a weak summary of
the results of Chapter 3.

Theorem (Theorem 3.8.2). Let k be a perfect field and ¢ a prime that is invertible in
k. Let F be a presheaf of Zy)-modules with traces on Sch(k), such that

1. F(X) = F(Xeq) is an isomorphism for every X € Sch(k),
2. F(X) — F(AY) is an isomorphism for every X € Sm(k), and

3. Flsmk) has a structure of transfers,

11



1.2 Outline

then for every n € Z>, and every X € Sch(S), the canonical morphism
Hegn (X, Fean) — Hyg, (X, Fran)

s an isomorphism.

We actually prove Theorem 3.8.2 with much weaker hypotheses (see Theorem 3.8.1).
The statement above is designed to be applied to the homotopy presheaves of an oriented
Zyy local object of SH(k).

To obtain a structure of traces on HZ ), which is the hard part, we proceed as follows.
We can define a structure of traces on KH, the object representing homotopy invariant al-
gebraic K-theory, fairly naturally (see [Wei89] for homotopy invariant algebraic K-theory
and [Cis13] for its representability in the Morel-Voevodsky stable homotopy category).
We then notice that HZ is the zero slice of KH due to work of Levine ([Lev08, Theorems
6.4.2 and 9.0.3]). Traces on HZ now follows from the following theorem, which is the
main goal of Chapter 4.

Theorem (Proposition 4.3.7). Suppose that k is a perfect field of exponential charac-
teristic p. If £ € SH(k) is a Z[;]—local object with a structure of traces, then the slices
sq€ have a canonical structure of traces.

We will now give an outline of this thesis.

In Chapter 2 we present a part of the Suslin-Voevodsky theory of relative cycles
[SV0OOb]. Instead of defining the presheaves of relative cycles c.g.i(X/S, 0) gradually via
the presheaves Cycl(X/S,0) as is the usual treatment, we present a definition of them
via a universal property. We then show that they exist using a reworking of the usual
construction that hopefully is more accessible for a novice to the theory.

One thing worth mentioning is that there is a small error in [SV00b] that we correct.
In particular, [SV0Ob, Corollary 3.2.4] is not true if S is not reduced at its generic
points. As a consequence, we lose the claim made in [SV00b, Corollary 3.3.11] that
cycl : ZPropHilb(X/S,0) — cequi(X/S,0) is a natural transformation. To see that the
naturality breaks, it suffices to consider the morphism S,,; — S for any S which is
not reduced at its generic points, and Z = X = S. Note that if we restrict to the
category of reduced noetherian schemes there is no problem, and so this does not affect
correspondences between normal schemes at all.

We end this chapter with a similar exposition of the category Cor(S) of correspon-
dences, but cite the original article for the hard technical work.

In Chapter 3 we present our definition of the ¢dh-topology and compare it to the cdh
topology. The main technical result of this chapter is Theorem 3.8.2 which has already
been mentioned. We outline briefly the steps involved in getting there. The comparison
of cohomologies is fairly straight-forward if we are working with presheaves with trans-
fers. We show that the cohomologies of cdh/¢dh sheaves with transfers can be calculated
as Ext’s in the category of presheaves with transfers, and then the result follows imme-
diately from the easy facts that every presheaf with transfers is a presheaf with traces
(Lemma 3.3.9), and every presheaf of Z() modules with traces is a sheaf for the topol-
ogy generated by finite flat surjective morphims of degree prime to ¢ (Lemma 3.4.10).

12



1.2 Outline

Hence, the categories of cdh sheaves of Z;) modules with transfers and ¢dh sheaves of
Zgy modules with transfers are equivalent (in fact, they are equal).

To get to transfers we show that under certain conditions a structure of traces on a
presheaf F induces a structure of traces on the cdh associated sheaf (Proposition 3.6.12),
and a nice enough cdh sheaf with traces has a canonical structure of transfers (Theo-
rem 3.7.1). The latter is straight-forward using Raynaud-Gruson’s platification theorem
(Theorem 2.2.16) to convert every correspondence into a sum of compositions of mor-
phisms of schemes and “transposes” of finite flat morphisms.

Pushing the structure of traces through the cdh sheafification is harder. For this we
introduce the notion of a Gersten presheaf (Definition 3.6.4) and a topology that we
call the completely decomposed discrete topology or cdd topology (Definition 3.5.1). A
Gersten presheaf is a presheaf which satisfies some analogue of Gertsen’s sequence for
algebraic K-theory. The most important property of the cdd topology is that the cdd
associated sheaf Fcyq of a presheaf F satisfies Fegq(X) = [[,cx F(x) where the product is
over the points of X of every codimension. The Gersten exact sequence implies that if
F is a presheaf of Z;) modules then we have a sequence of monomorphims F — Feg, —
Fpgn — Fogq. We show that a structure of traces on F passes to a structure of traces on
F.44 (Theorem 3.5.5), give a criterion for a section to be in the image of Fg, — F44, and
show that the trace morphisms of F.4; preserve this criterion. Hence, the structure of
traces on F.y induces a structure of traces on F.g, (Theorem 3.5.5). For an explanation
of why the cdd topology arises quite naturally for us see Remark 3.5.4.

In Chapter 4 we shift focus to the Morel-Voevodsky stable homotopy category. The
idea is that we can define trace morphisms in algebraic K-theory quite easily, and motivic
cohomology is a graded piece of algebraic K-theory, so we might be able to descend the
algebraic K-theory trace morphisms to motivic cohomology. In the context of SH, this
involves a study of the slice filtration. We begin the chapter by translating some work
of Pelaez on the functoriality of the slice filtration into Ayoub’s language of a stable
homotopy 2-functors (cf. Theorem 4.2.11 and Remark 4.2.13), which makes it easier
to study the functoriality of the slice filtration. The main theorem of Pelaez that we
use is Theorem 4.2.25 which gives criteria for a triangulated functor to preserve the
slices of an object. We show that the functors we are interested in satisfy his criteria
(Theorem 4.2.29, Proposition 4.2.36).

We then define what it means for an object £ € SH(S) to have a structure of traces
(Definition 4.3.1), and use the material we have developed to show that a structure
of traces on an object induces a canonical structure of traces on its slices. This is
Proposition 4.3.7 stated above. We also mention that a structure of traces on an object
induces a structure of traces on its homotopy presheaves (Lemma 4.3.4), that a structure
of traces on a ring spectrum induces a structure of traces on each of its free modules
(Proposition 4.3.11), and that structures of traces are preserved morphisms of 2-functors
which commute with the right adjoints (Lemma 4.3.6).

In Chapter 5 we apply all the previous material. We begin by showing that the object
KH representing algebraic K-theory in SH(k) has a structure of traces (Proposition 5.2.3),
and that the object HZ representing motivic cohomology has what we have called a weak
structure of smooth traces (Definition 4.2.27, Proposition 5.2.1). We show that cdh

13



1.3 Notation and conventions

descent plus a structure of traces implies ¢dh descent (Theorem 5.3.7). We have already
mentioned that every object in SH satisfies cdh descent ([Cisl3, 3.7]), and so end up
with the result that objects of the form HZ A M satisty {dh descent. It follows that
every HZ) module satisfies £dh descent. In particular, every smooth ¢dh hypercover in
the category of HZ ;) modules is isomorphic to the scheme that it covers. We apply this
in the way outlined above to obtain Theorem 5.3.1. We recall some parts of [Sus00] and
show how our Theorem 5.3.1 implies Theorem 5.6.1.

Finally, we discuss the conjecture of Weibel mentioned above about vanishing of
algebraic K-theory in sufficiently low degrees.

1.3 NOTATION AND CONVENTIONS

All schemes will be separated unless otherwise stated. Associated to a scheme S we
consider the following categories.

Sch(S) the category of schemes of finite type over S.

Sm(S) the full subcategory of Sch(S) whose objects are smooth S-schemes.
Reg(S) the full subcategory of Sch(S) whose objects are regular S-schemes.
QProj(S) the full subcategory of Sch(S) which are quasi-projective.

EssSch(S) the category of S-schemes that are inverse limits of left filtering systems
in Sch(S) in which the transition morphisms are all affine open immersions.

EssQProj(S) the category of S-schemes that are inverse limits of left filtering systems
in QProj(S) in which the transition morphisms are all affine open immersions.

14



Relative cycles

2.1 INTRODUCTION

HE goal of this chapter is to give a construction of the presheaves of relative cycles
T Cequi(X/S, 0) of Suslin-Voevodsky [SV00b]. The construction of ceq.i(X/S,r), ¢(X/S, ),
Zequi(X/S,r), and z(X/S,r), is analogous. The culmination of the first four sections is
Theorem 2.4.8 which suggests a definition of the presheaf c.,i(X/S,0) as the unique
presheaf F satisfying:

(Gen) E(T) is a subgroup of the free abelian group generated by the points z of X xg T
such that {z} — T is finite and dominates an irreducible component of T, where
{z} is the closure of z in X xg T.

(Red) Ifi: Tyeq — T is the canonical inclusion, then F(i) is the morphism induced by the
canonical identification of the points of X xg T with the points of X Xg Tyeq4.

(Pla) If > miz; € F(T), k is a field, and ¢ : Spec(k) — T is a k-point of T such that the
image of i is in the flat locus of IT1{z;} — T, then

F(I)Z = Z n,-m,-jw,-j

where the wj; are the (generic) points of k X1 {z;} and m;; = length OkXT@ e
i f,Wij

(Uni) Any other presheaf possessing the above three properties is a subpresheaf of F.

A definition of this form was clearly known to Suslin and Voevodsky (see for example
the beginning of Section 2 of [FV00]) and the reader familiar with their theory will fail
to be surprised by it.

15



2.1 Introduction

Such a definition has the advantage that it takes less than half a page to write down
and the pullbacks for any morphism f: T — S for the presheaves c.q.i(X/S, o) can be calcu-
lated using these axioms and the platification theorem (reproduced as Theorem 2.2.16).
In the original article [SV0Ob] the definition of c.q.i(X/S, o) appears on page 36 (actually
the 27th page of the article) and everything preceding it is more or less necessary to
arrive at that definition. There is also a criterion for a formal sum to belong to the
subgroup cqui(X/S,0) which can be stated using morphisms calculated from the axioms
above. Thus, if desiring to do so, a reader could potentially develop a working knowledge
of these presheaves without having to wade through the construction that proves they
exist.

The idea behind the c.q,i(X/S,0) is that these relative cycles should be finite sums
Z =) mz of points z of X that lie over generic points of S, and such that Q — S
is a finite morphism. The free abelian group generated by such points will play an
important réle and we denote it g (X/S,0). This is an adaptation of the notation
Cequi(X/S,0) where “equi” refers to the requirement that the morphisms Q — S are
equidimensional, and the o to the fact that they are of relative dimension zero. We have
added “nai” to indicate that these free abelian groups are what one might naively expect
to be the groups of relative cycles. The problem is that with the definitions of pullbacks
Coani(X/S,0) — clai(S' x5 X/8',0) that we want (associated to a morphism f: §" — S)
these groups don’t form presheaves (see Example 2.2.6). The solution is to keep the
pullbacks that we like for certain kinds of Z and f, and then jettison any cycles that
don’t respect the induced functoriality.

Our particular choices of pullbacks that appear in the above axioms determine all of
the other pullbacks uniquely (this is the content of Proposition 2.3.3), and so the groups
Cequi(X/S, 0) are then defined as the largest collection of subgroups of the free abelian
groups C?;Li(X/ S,0) that forms a presheaf with these chosen pullbacks. For a precise
definition, see Definition 2.4.1.

To prove that presheaves c.q.i(X/S, 0) satisfying the above axioms exist we construct
them. Our exposition of this construction is very strongly influenced by the original arti-
cle [SV00b], however we deviate mildly from the way in which Suslin-Voevodsky present
the material. Our goals were expositional: to introduce as little notation as possible,
and to try and avoid any definition whose motivation wasn’t immediately obvious on a
first reading. We also decided to avoid the use of fat points ([SV0Ob, Definition 3.1.1])
to see if this could be done, but the concept we replace them with — good factorisations
(Definition 2.2.15) — is more or less equivalent (cf. [SV0Ob, Proposition 3.1.5]) and
morally our proofs are the same as theirs.

We remark that there is a small fixable problem in [SV00b] due to nilpotents. In par-
ticular, [SV00b, Corollary 3.2.4] is not true if S is not reduced at its generic points.
As a consequence, we lose the claim made in [SVOOb, Corollary 3.3.11] that cycl :
ZPropHilb(X/S,0) — cequi(X/S, 0) is a natural transformation. To see that the naturality
breaks, it suffices to consider the morphism S,.; — S for any S which is not reduced at
its generic points, and Z = X = S. Note that if we restrict to the category of reduced
noetherian schemes there is no problem, and so this does not affect correspondences
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2.1 Introduction

between normal schemes at all.

We propose a way of fixing this by using a slightly different version of their cycl. If
f:X — S is a morphism of finite type and Z — X a closed subscheme that is flat over S,
they define the cycle associated to Z as > n;z; with z; the generic points of Z and n; =
length Oz ,,. We propose, however to take n; = length Of)xz ., This altered definition
does not affect the presheaves c.q,i(X/S,0) at all. The reader can check in [SVOOb,
Proposition 3.1.5] and [SV00b, Theorem 3.3.1] that c.qui(X/S,0) — cequi(Sred X X/Sred; 0)
is implicitly forced to be the isomorphism induced by the canonical identification of the
points of X with the points of S,.q xsX. Hence the c.q.i(X/S, 0) are completely determined
by their values on reduced schemes. It is easily checked that with out new choice of cycl,
the morphisms cycl : ZPropHilb(X/S,0) — cequi(X/S,0) are natural transformations of
presheaves (see Proposition 2.5.1).

Lastly, we mention that Ivorra [Ivo05] (published as [Ivoll]) has a produced an ex-
tremely readable version of Suslin-Voevodsky’s [SV0Ob] from which we learn’t a lot. It
is unclear how he treats the problem of nilpotents we mention above as his version [—]
of Suslin-Voevodsky’s cycl mentioned above is not defined. His application is to regular
schemes and so this poses no serious problem to him. There is also an extension of the
theory in development by Cisinski-Déglise. A preliminary version appears in [CD09].
The idea is that cycles (i.e., a scheme equipped with a formal sum of its points) should
be the objects of a category in their own right. This category is equipped with a relative
product. The Suslin-Voevodsky pullback, as well as the Suslin-Voevodsky product of
relative cycles, are recovered special cases of this relative product.

Index. As a guide to the reader for what is to come, and as a reference, we collect here
the notation we introduce. As we already mentioned we tried to keep this as minimal as
possible, and wherever we could to use notation that already existed in the literature.

" (X/S,0). Definition 2.2.1. This we introduce as we find it clearer than the

equi

C(X/S,0) in [Ivo05]. Suslin-Voevodsky don’t have a notation for these groups.

cycly/s. Definition 2.2.2. This is a version of the cyclx from [SV0Ob], but our version
is modified to adjust for nilpotents.

frai- Definition 2.2.5. This is the naive pullback that we might expect. In many
cases, it is indeed the correct pullback (i.e., it agrees with f¥).

(1,p) Definition 2.2.15. This is our analogue of the Suslin-Voevodsky fat points.

(1,p)*. Definition 2.2.15. This is our analogue of the pullback along a fat point of
Suslin-Voevodsky.

Cequi(X/$, 0). Definition 2.4.1. These are the subgroups of ¢#;(X/S, 0) that behave
well with respect to the pullback.

f?. Definition 2.4.5. The pullbacks of the presheaves cequi(X/S,0). This notation
is from [Ivo05] and replaces the clunky cycl(f) of [SV0Ob], which incidentally is in
conflict with their cycl which is mentioned above.

17



2.2 First definitions

2.2 FIRST DEFINITIONS

nai

In this section we define the free abelian groups ceqm-(X/ S,0) which contain the groups
Cequi(X/$, 0). We define a naive pullback f; ; for the groups cja;(X/S, 0), give an example
of why these pullbacks don’t equip these groups with the structure of a presheaf, and
prove some properties about them that we will need. We then give our version of the
Suslin-Voevodsky fat points, which we call good factorisations. We define the pullback
(1,p)* along a good factorisation and show that good factorisations always exist (up to
field extension). In certain cases the pullbacks f; . and (1, p)* agree with the pullbacks
1% of cequi(X/S,0) (see Lemma 2.4.6 for a precise statement) and so these definitions can
also be regarded as calculations.

We begin with the free abelian groups that will contain our relative cycle groups.

Definition 2.2.1. Suppose that f: X — S is a scheme of finite type over a noetherian
base scheme S. We define cZ‘gLi(X/ S,0) to be the free abelian group generated by the
points z € X such that {z} — § is finite, and dominates an irreducible component of S.

That is, z is in one of the generic fibres of X — S.

nai
equi

We will most often come across elements of ¢’#.(X/S, o) using the following definition.

The notation (—)() indicates points of codimension zero as usual.

Definition 2.2.2. With the notation as in Definition 2.2.1 suppose that Z is a closed
subscheme of X which is finite over S. We define

C)’CIX/S(Z): Z niz;

Z,'EZ(O) s.t.
f(Zi)ES(°>

where n; is the length of the local ring of the point z; in its fibre. That is, n; =
length Of,)xsz.-,- We will sometimes omit the subscript and just write cycl if the mor-
phism X — S is clear from the context.

Remark 2.2.3. This differs from the cyclx(Z) defined in [SV0OOb] as their coefficients
are n; = length Oz ,,. Our choice of definition for cycly/s is a proposed fix for the problem
mentioned in the introduction that they don’t actually get a morphism of presheaves
ZPropHilb(X/S,0) — cequi(X/S, 0) over all non-reduced schemes.

We also added the hypothesis that the sum only counts those points that lie over
generic points to assure that our cycle is in cj&,;(X/S,0), but this is just to avoid in-
troducing another notation for the free abelian group generated by all the points of
X.

Remark 2.2.4. From our definition it follows that, in the notation of the definition, we
have cycly/s(Z) = cycls, ,xsx/5,.4(Sred Xs Z) via the canonical identification c;’g,ii(X/S, o) =
c;‘;};i(sred X s X/Sred,0). This is not true of the Suslin-Voevodsky cycly.

We define now the obvious pull-back morphism for the ¢’ .(X/S, 0). When we restrict

equi
to relative cycles, these will end up being the actual pullbacks f* in certain settings so
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2.2 First definitions

this definition can also be seen as an explicit calculation of certain examples of f*Z. For
a precise description of some cases when f*Z = f: Z see Lemma 2.4.6.

Definition 2.2.5. Suppose that f: T — S is a morphism between noetherian schemes
and X — S a morphism of finite type. We define a morphism
Frai  Coqui(X/S,0) = claui(X x5 T/T, 0)

equi eqm

by
Fi miz) = mieyelxor/r(T x5 {zi})-

More explicitly, we have f; .Z = > nym;w;; where w;; are the generic points of {z;} xs T

that lie over generic points of T, and m;; are the lengths of their local rings length (’)tﬁ wsTart i
in their fibres over T (the point t; is the image of w;; in T).

Example 2.2.6. The pullback defined above does not equip the groups cgg,ii(X/ S,0)

with a structure of presheaf. Consider S = S, U S, to be the union of two affine lines

S, =AY, S, = A joined at a closed point s = §,NS,. Let n, be the generic point of S, so we

get an element 5 € ca.(S/S,0). Consider the inclusion 1, : s — S, II'S, of the point s into

S,, and the canonical morphism p : 8, IL'S, — S. Now we have (Pia)naifl = s € Chui(s/s, 0)
but i;k,naip:uiﬂ =o0c C?gﬁi(s/sa O)'

Remark 2.2.7. The example above suggests that the problem occurs when we have
multiple choices of branches, and this is indeed the case. Notably, if S is regular, then we
have equality cequi(X/S,0) = cii:(X/S,0) (see [SVOOb, Corollary 3.4.6]). Our definition

of a good factorisation (and the Suslin-Voevodsky idea of a fat point) can be thought of
as a choice of branch.

Example 2.2.8. If f: § — S is a birational morphism! then for some Z = Y nz; €
" (X/S,0), the naive pull-back is just fi.Z = > n;zl where z! is z; seen as a point of

equl nai
S’ X X via the canonical identification of the generic fibres of X — S and §' xg X — §'.

Before the following easy lemma, we recall the following definition from Cisinski-
Déglise [CD09]. An earlier version of [ILO12] calls these morphisms “horizontal”, and
the current version calls them “maximally dominant”.

Definition 2.2.9. A morphism of schemes f: Y — X is said to be pseudo-dominant if
every generic point of Y is sent to a generic point of X.

Lemma 2.2.10. Suppose that S, s, £ S, are morphisms between noetherian schemes,
suppose g is pseudo-dominant, and let X — S be a morphism of finite type. Then

gnaﬁaz (fg nai*

We recall that a birational morphism f: T — S is a morphism which sends every generic point of T
to a unique generic point of S, every generic point of S is in the image, and the field extensions induced
on generic points are all trivial. In particular S,.s — S is birational.
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2.2 First definitions

Remark 2.2.11. Example 2.2.6 shows that this is not true if we remove the hypothesis
that g is pseudo-dominant, even if we add the hypothesis that f is birational.

*

Proof. First note that if 1 is the inclusion of the generic points of a scheme, then i is

injective. Now due to the commutative square

il

/
s’es§°)s > S3

L

HsES§°>S 82
and this injectivity, it suffices to consider the two cases (i) when S, and S, are reduced
of dimension zero, and (ii) when g is the inclusion of a subset of the generic points of S,.

Consider the case (i). We can assume that S, and S, are actually integral of dimension
zero. Let z € X be a point over a generic point of S, such that {z} — S, is finite. Suppose
that w; are the generic points of S, x5, {z} and vj; are the generic points of S5 xg, {w;}
and set

m; = length OS;XSIQ,M

n;; = length OS;mW,vv’
l;; = length O

85 xs, {2}y

so that we have

fra =Y maw;
Snaifrai® = D mini
(R)raz = D _ Livs
Hence, it suffices to show that we have m;n; = £;;. This is precisely what Lemma A.1.3

says.
The case (ii) follows straight from the definition of (—)

nai*

O]

Lemma 2.2.12. Suppose that f: T — S is a morphism between noetherian schemes and
X — S a morphism of finite type. If f is dominant, then f: . is injective.

nai

Proof. Suppose that s; are the generic points of S and for each i choose a generic point
t; of T which is over it. We find the commutative square

ot ——T

|

HSi *)p S
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2.2 First definitions

and by the functoriality given in Lemma 2.2.10 it suffices to show that p; . and g . are
injective. In both these cases, the injectivity is clear from the definitions.

The following theorem is a cut down version of [SV0Ob, 3.2.2] with more or less
the same proof. There is a small mistake in the proof of [SV00b, 3.2.2]. Using their
notation, in their final case they claim 7’ is the only point over 7" which is not always
true — consider the case when 7/ and 5 are the same non-trivial finite separable field
extension of 7. We don’t reproduce their error.

Theorem 2.2.13. Suppose that T — S is a morphism of noetherian schemes and X — S
is a morphism of finite type. Let Y mn;Z; be a finite sum of closed subschemes of X that
are finite and flat over S. Then for ) nicyclTXsX/T(T XsZ;) to be zero in cg‘g};i(T xsX/T,0)
it is sufficient that ) nicycly s(Z;) is zero in cja.(X/S,0).

equi

Proof. Reduction to T integral dimension zero, and S local reduced. When T — § is
birational, the generic fibres of X — S and T xXg X — T are canonical isomorphic.
Via this identification, we have the equality »_ nicyclryox/r(T Xs Zi) = D micycly/s(Zi).
Therefore we have the stronger statement that ) ncycly/s(Z;) is zero if and only if
> nicyclyy SX/T(T X Z;) is zero. Hence, we can replace S by S,.4, and we can replace T
by the disjoint union of its generic points. To show _ micyclryox/r(T Xs Z;) is zero it
is enough to consider each generic point of T separately. So we assume that T is an
integral scheme of dimension zero. Without affecting any of the multiplicities, we can
replace S with any subscheme that contains the generic points of S, and the image s of
T. For example, the disjoint union of the localisation of S at s, and any generic points
not contained in this localisation. The generic points not involved in the localisation of
S at s do not affect > ncyclyy x/7(T Xs Z;) in any way, and so we can forget them. That
is, we assume S is a reduced local scheme and the image of T its closed point.

The case where S and T are both integral dimension zero. Without losing any informa-
tion we can assume that X = UZ;. Moreover, since it suffices to consider each connected
component of X one at a time, we can assume X has a unique point x. If y; are the points
of T xg X then Lemma A.1.3 says that

length Oz, . length Orx sxy, = length Ory sZiy, (2.1)
for each i,j. By definition we have
Z nicycly /s(Zi ( n; length OZi,x) x (2.2)

and

Z nicyclry ox/1(T Xs Zi) Z (Z n;length OszZi,y]) Y- (2.3)

i j i
Multiplying Equation (2.2) by length C’)szx,yj, using the substitution given by Equa-
tion (2.1), and comparing it with Equation (2.3), we see that in this case we actually
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have the stronger ), nicycly/s(Z;) is zero if and only if the sum ; nicyclyy x/7(T X5 Z;)
is zero.

Notice that the reduction above, together with the dimension zero case, answers our
question when T — S is pseudo-dominant. In particular, when T — S is flat.

The case when S is local henselian and T is the closed point of S. Now we return to the
case when S was a reduced local ring, and suppose that T is the inclusion of the closed
point s of S. Since we know the theorem is true for flat morphisms, we can replace S by
its henselisation. In this case since X = UZ; is finite over S, the scheme X is a disjoint
union of local schemes. It suffices to consider each connected component by itself, and
so we can assume that X is finite and local over S. This means that there is a unique
x € X over the closed point s € S, and that the Z; — S are of constant degree d;. In this
case, we must show that > n;length Osyx 7z« = 0. Since length Oy 7.« = d; - [k(x) : k(s)]
(Lemma A.1.1), it is enough to show that > nid; = o.

Consider a generic point n € S and the generic points of X that lie over it. By
Lemma A.1.1 and the fact that S is reduced we know that

di= ) [k(§) : k(n)]length Oz ¢

gez(®

and so to show Y nd; = o it is enough to show that

Z n; Z 1)] length Oz.¢=

i gezi(o

Interchanging the summands, we rewrite this sum as

Zn, Z n)|length O, ¢ = Z Z ni[k(£) : k(n)]length Oz, ¢

P ogezl gex( \ Z ot
= D [kE k()] Y nilength Oz
EEX(O) Z; s.t.

£cz;

and we see that it is enough to show that for each § we have > 7 . length Oz¢ = o.
§€Z;
But since S is reduced, this is equivalent to the statement ) micycly/s(Z;) = o. Hence,

the result is true in this case.

The case T integral dimension zero, and S local reduced. We have seen that the
theorem holds when T — S is a flat morphism so we can replace S by its henselisation
at the closed point. Now we factor the morphism as T — s — S where s is the closed
point of S and we have already considered these two cases. O

Corollary 2.2.14. Suppose that S, s, i) S, is a pair of composable morphisms of

noetherian schemes, X — S, is a morphism of finite type, and Z = >  niz; € ceqm(X/Sl, o).
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Let W =% mjw; = f, .Z. We suppose that the image of the generic points of S; (resp.

at

S,) is in the flat locus of Il{w;} — S, (resp. I{z;} = S,). Then

g:aif:uiz = (fg):aiz‘

Proof. We can assume that Z = z consists of a single point with coefficient one. Since
we are concerned only with phenomena that occur over generic points, we can replace
S, (resp. S;) with any open subset that contains the image of g (resp. f). Hence, we
can assume that II{w;} — S, (vesp. {z} — §,) is flat. We must show that cyc(S, xs,

{z}) = S meycl(S, xs, {w;}). By Theorem 2.2.13 this will follow if cyc(S, xs, {z}) =
> mjcycl({w;}). But this was the definition of the m;, w;. O

Finally we introduce a pullback that is closely related to the pullback along a fat
point discussed in [SVOOb]. We will see later on that (1, p)* = (pt1)® (see Lemma 2.4.6)
so again, this definition can be considered as a calculation.

Definition 2.2.15. Suppose that S is a noetherian scheme and X — S is a morphism if
finite type. Suppose that Z = > mz; € cjgi;(X/S,0). Let Spec(k) — S be a k point of S

with k a field. A good factorisation of Spec(k) — S with respect to Z is a factorisation of
the form

such that

1. p is proper and birational, and

2. considering the z; as points of §’ xg X via the canonical identification of the generic
fibres of §' xg X — § and X — S, the morphisms {z;} — §' are flat.

We define the pullback of Z along such a good factorisation as

(l’P)*Z = lﬁaip:aiz'

We will construct good factorisations using the following theorem. We use the state-
ment from [SV0Ob, Theorem 2.2.2].

Theorem 2.2.16 ([RG71]). Let p: X — S be a morphism of noetherian schemes and U
an open subscheme in S such that p is flat over U. Then there exists a closed subscheme
Z in S such that UNZ = @ and the proper transform of X with respect to the blow-up
BlzS — S with centre in Z is flat over S.

Lemma 2.2.17. Suppose that S is a noetherian scheme and X — S is a morphism if
finite type. Suppose that Z = Y niz; € cji,(X/S,0). Let Spec(k) — S be a k point of S.

Then there exists a finite extension L of k such that the induced L point Spec(L) — S
has a good factorisation with respect to Z.

Proof. The platification theorem (Theorem 2.2.16) gives the existence of a blow-up &' —
Sred Of Speq such that the strict transform of the morphism I1{z;} — S, is flat. The
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2.3 Presheaves of relative cycles

composition §' — S is proper and birational and satisfies the necessary flatness condition
for the z;. Since S — S is a morphism of finite type, for every point s € S there exists a
point s — &’ such that [k(s') : k(s)] is finite. Hence, there exists a finite extension L of k
such that the induced L point Spec(L) — S factors through §', i.e., we have found a good
factorisation. O

2.3 PRESHEAVES OF RELATIVE CYCLES

We now come to our precise description of the properties we wish our presheaves
Cequi(X/S,0) to have. There are various other choices that give the same presheaves
but we have chosen these.

Definition 2.3.1. Suppose that S is a noetherian scheme, X — S a morphism of finite
type and F a presheaf on the category of noetherian schemes over S. We will say that F
is a presheaf of relative cycles if the following conditions are satisfied:

(Gen) F(T) is a subgroup of ¢™ (X x5 T/T, o).

equi

(Red) If Z € F(T) and if i : Tyeqg — T is the canonical inclusion then

F(i)Z =1i,,Z

nai<’*

(Pla) If > niz; € F(T) and 1 : Spec(k) — T is a k-point of T (with k a field) such that the
image of i is in the flat locus of II{z;} — T, then

F)Z =i 2

nai<’*

The following lemma contains properties that we will use shortly.

Lemma 2.3.2. Suppose that F is a presheaf of relative cycles and f: T, — T, a morphism
of noetherian S schemes.

1. If f is dominant then E(f) is injective, and

2. if f is birational then F(f) = f;

nai*

Proof. For the first statement, it suffices to consider the cases (i) when f: T, — T, is the
inclusion of the generic points and (ii) when f: Spec(L) — Spec(k) is a field extension. In
the first case, f factors through (T,).4, and so the result follows from (Red) and (Pla).
The second follows from (Pla) and Lemma 2.2.12.

Now suppose that fis birational. We have a commutative square

HTi I (Tl)red

L

T, —T,
and so the result follows from the case when f is dominant, (Pla), and (Red). O
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2.3 Presheaves of relative cycles

The following proposition shows that our axioms completely determine the pullback
morphisms. It follows that the class of presheaves of relative cycles (associated to the
same X/S) is partially ordered by inclusion. In particular, it makes sense to speak of a
potential maximal element.

Proposition 2.3.3. Suppose that F, and F, are two presheaves of relative cycles (asso-
ciated to the same X/S), suppose that f : T, — T, is a morphism between noetherian S
schemes. Then for any formal sum Z € F,(T,) N F,(T,) that is in both presheaves, we
have F,(f)Z = F,(f)Z.

Proof. The morphism f induces a morphism f,; : (T,)red — (T1)rea and so due to the
axiom (Red) it suffices to consider the case when T, and T, are reduced. Let Z = ) n;z;.
Since T, is reduced, by the platification theorem (Theorem 2.2.16) there exists a blow-up
of T, with nowhere dense centre such that the proper transform of 11{z;} — T, is flat.
We construct the following commutative diagram

Ispec(k)) — > T,
T,

H‘L’,’ Tz

where the 7; are the generic points of T, and k;/k(t;) is field extension such that Spec(k;) —
T, lifts through the blow-up T, — T,. Since F;(T,) — F;(Ilr;) — F;(IISpec(k;)) is injective
for j = 1,2 it suffices to show that F, and F, agree IISpec(k;) — T, and T, — T,. The
latter is given to us by Lemma 2.3.2 and the former is (Pla) since the {z;} — T, are

flat. O

Lastly, we show that any presheaf of relative cycles satisfies two important properties
that we will use to define the pullbacks f*.

Proposition 2.3.4. Suppose that F is a presheaf of relative cycles, T is a noetherian S
scheme, Z =Y miz; € F(T) is a section. Then we have the following properties.

1. For any field k, any k point Spec(k) — T, and any pair of good factorisations (i, p,),
(2, p,) we have

(lhp])*z = (llﬂpz)*z

2. For any field k, any k-point Spec(k) — S with image s € S and induced morphism
q : Spec(k) — s, and any good factorisation (1, p) with respect to Z,

Spec(k) —— ¢
qi lp
s—8§
there exists a unique Z' € F(s) such that

0.2 = (Lp) Z.
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Proof. This is a direct consequence of functoriality, the axioms (Red), (Pla), (Gen), and
Lemma 2.3.2. O

2.4 THE GROUPS (.i(X/S,0) AND THE PULL-BACKS f*

We make the following definition with two motivations. The first is Proposition 2.3.4 :
if we wish the axioms to hold, then clearly we need these properties. The second is our
choice of definition of the pullbacks f¥ (see Definition 2.4.5 and Theorem 2.4.3). These
two properties are what we will use to define the pullbacks.

Definition 2.4.1. Suppose that S is a noetherian scheme and X — S a morphism of
finite type. We define c.q.i(X/S,0) to be the subgroup of ¢%,(X/S,0) of formal sums

equi

Z = > niz; which have the properties of Proposition 2.3.4. That is:

1. For every field k, every k-point Spec(k) — S of S, and every pair of good factorisa-
tions (1,p,), (1, p,) With respect to Z we have

(tl7p1)*Z = (Il?pz)*z'

2. For any field k, any k-point Spec(k) — S with image s € S and induced morphism
q : Spec(k) — s, and any good factorisation (i, p) with respect to Z,

Spec(k) ——= ¢

ql lp

s—>§

there exists a unique W € ¢ .(s xg X/s, 0) such that

equi
LWV = (L,p) 2.
The following proposition shows that the second condition can actually be made much
weaker.

Proposition 2.4.2. Suppose that S is a noetherian scheme and X — S a morphism of
finite type, and Z = > niz; € " .(X/S,0). The following conditions are equivalent.

equi

1. Condition (1) from Definition 2.4.1.

2. The same condition, except that for each s we only need to consider an algebraic
closure of k(s), and we only need to find onep:S — S.

More explicitly:

1. For every field k, every k-point Spec(k) — S of S, and every pair of good factorisa-
tions (u,p,), (12, p,) with respect to Z we have

(1,0,)°Z = (1,p,)" 2.
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2.4 The groups c.qi(X/S,0) and the pull-backs f*

2. For every point s € S, and algebraic closure Q of k(s) with induced Q point
Spec(Q) — S, there exists a good factorisation (Spec(Q) < S, 8" 25 S) of Spec(Q) — S
with respect to Z such for any other factorisation (' : Spec(Q) — S' we have

(,p) 2 =(/p)Z.
The commutative diagram for the second conditions is:

Spec(Q) —=y

|k
§s—>§

Proof. Clearly the first condition implies the second (c.f Lemma 2.2.17). So suppose
that the second condition is satisfied.

We wish to show that the first condition is true. Suppose that k" is a field, Spec(k’) — S
is a k' point with target s, and (¢, S, LS, (9,5, % 5) is a pair of good factorisations
of Spec(k') — S with respect to Z. By the definition of pullback with respect to a good
factorisation, if ¥ : Spec(L) — Spec(k’) is any field extension, then for j = 1,2 we have

‘P:ai(?’jv qj)*z = v/:aiq)j*,naiq:uiz = (q’j‘P):ai‘i:aiz = (9’;‘!’7 92

so since ¥ . is injective (Lemma 2.2.12) we see that (¢, v,p)*Z = (¢,¥,p)*Z if and only
if (p,,p)*Z = (¢,,p)*Z. So we can assume that k' = Q is an algebraic closure of k(s).

Since the morphisms q, : S, — S and g, : S, — S are proper and birational, there
exists a proper birational morphism g, : S, — S which factors through both g, and
g, and such that any factorisation Spec(Q) — S, — S is a good factorisation.? The
morphisms Spec(Q) — S; factor through 8] for j = 1,2. Let ¢} : Spec(Q) — S, be the
resulting morphisms.

Spec(Q) 0.
x\
h\ 7,
Uy el

NN

S, ——=8§

*Let U C S be a dense open subset over which (g,)s and (q, )4 are both isomorphisms, and let S] be

the closure of the pre-image of U in §; Xs S,. If the morphisms {z/} — S; are not flat (where Z = > niz;
and z; is z; seen as a point of S; Xs X) then the platification theorem (Theorem 2.2.16) gives a blow-up
of S} with nowhere dense centre such that the proper transforms {z,{}N — 8, are flat. We then replace
S; with S,
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Now for j = 1,2 we have

* * * 2.2.14 /% * *
(q]? (P]) zZ = (Pj,naiqj,naiz = (P}/'mairj,naiqj,naiz
2.2.10 ?);Tnai(qs):aiz (24)
= (a,,9))" 2

So we have reduced to showing that (¢;,4,)*Z = (¢},4,)* 2.
Now use the same argument to build the following diagram

Spec(Q) 9]
9/
\\ .
\ ! 3 /
\ Sy —= S,

NN
AN

S ——S

where j =1 or 2 and r;,r, are birational and proper. The same argument as in Equa-
tion 2.4 shows that (1,p)"Z = (/',h)*Z and (¢, q,)*Z = (¢, h)*Z. The second condition
now says that (¢}, h)*2Z = (/',h)*Z for i = 1,2 and hence, (1,p)*Z = (¢;,9,)"Z for j =1,2
and so (¢;,9,)"Z = (¢},49,)"Z. O

The following theorem gives our definition of the f* (see Definition 2.4.5). It is morally
equivalent to the definition given by Suslin-Voevodsky which is described before [SV00b,
Lemma 3.3.9].

Theorem 2.4.3 (cf. [SV0Ob, Theorem 3.3.1]). Suppose that S is a noetherian scheme,
X — S a morphism of finite type and Z € cequi(X/S,0). Let f: T — S be a morphism of
noetherian schemes. There exists a commutative diagram

[ISpec(Q;) =2y N
q=Hq,¢ p
Iz; ; T 7 S

where
1. t: lr; — T is the inclusion of the generic points of T,
2. Q; are algebraic closures of the k(t;),
3. (i,p) is a good factorisation of Spec(€Y) — S with respect to Z

More importantly, there also exists a unique cycle W € " (T xs X/T,0) such that

equi
(t9)5aV = (1,p)"2
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2.4 The groups c.qi(X/S,0) and the pull-backs f*

and this W is uniquely determined by f and Z.

Proof. Existence of the diagram. The diagram exists by Lemma 2.2.17.
Uniqueness. This is clear since (tq)},; is injective (Lemma 2.2.12).

Construction of W and membership in cig,(T xs X/T,0). By the second axiom in

Definition 2.4.1 there exists a unique cycle W = 3" mw}, € %4, ((Ir) xsX/(IIr;), 0) such

equi
that q* W' = (1,p)*Z. Since IIr; — T is birational, we can consider the w; as points wy

in T xg X that lie over generic points of T. If the morphisms {w;} — T are finite, then
sum W = mw; belongs to ™ (T x5 X/T,o) and satisfies (tq)5,;W = (1,p)*Z.

equi nai

It is enough to show that wy € U{z;} since then {wy} is a closed subscheme of T xg

(U{z;}) which is finite over T because each {z;} is finite over S.
By the definition of g}, and & ; there is a point wj € (IISpec(Q;)) xs X that maps to

i nai

*

wi. By the definition of ¢, this wj is a generic point of some (IISpec(Q;)) X {2} where
z; is the point z; thought of as a point of §' xgX. This means that w) is mapped inside

one of the {z]}. Clearly, z, is mapped to z; by p and so {z/} is contained in &' x5 {z}
and therefore the image of 1(w}) € §' xs{z;}. This means that pi(w;) € {z;} and so since
f(wi) = pi(w},) we are done.

Independence of choices. A second choice of g,1,p gives a commutative diagram

/

[ISpec(Qj) —— s

o [LSpec(ay) — s |y

N l/

\
Hr,-tTfs

where a is an isomorphism. The cycle W coming from the choice g, p satisfies the

criterion for the choice ¢',(”, p since

1\ * 2.2.14 % * .k * ok ok sk 2204 g % ]/ *
(tq )naiW - anai(tq)naiw - anai([’p) zZ= anai’naipnai - lnaipnai - (t 7p) Z.

Moreover, by our assumption that Z € cequi(X/S,0) we have (/,p")Z = (/",p)Z. So W
satisfies the criterion for the choice ¢q’,/,p’. So independence of the choices follows from
uniqueness. [

Proposition 2.4.4. The cycle W € csl,(T x5 X/T,0) described in Theorem 2.4.3 is in
fact in coqui(T x5 X/T, 0).

Proof. Continuing with the notations from Theorem 2.4.3, suppose that Q' is an al-

gebraically closed field, Spec(Q') — T is an Q' point of T and (/,T" £ T) is a good
factorisation of this Q' point. Since Q' is algebraically closed, the composition fp'//
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2.4 The groups c.qi(X/S,0) and the pull-backs f*

admits a lifting ¢ : Spec(Q’) — §'. The diagram is the following.

?

— —

Spec(Q') — T’ s

b

T——S§

f

N

We claim that
(L0 )W =@l peni 2. (2.5)
Since Z € cequi(X/S,0) if this equality holds then it follows from the definition of
Cequi(X/S, 0) that W € coqui(T x5 X/T, 0).
We claim that there exists a commutative diagram

wW——W
PN
Spec(Q) - T s

]

T——S

such that

1. Wis integral and the generic point of W hits a generic point of T', and the induced
field extension is finite, and

2. ¢ induces an isomorphism over a dense open subscheme of W, and
3. if we write ¢, by ppi (W) = > lix; then the {x;} are flat over W'.
Notice that with these hypotheses, Lemma 2.2.10 and Corollary 2.2.14 imply that

(de):ai = b:ai(::aid:ai and (aCd):ai = a:aiC:m’d:ai (26)
To find such a diagram, consider the composition T' xg S — T' — T. Choose a
generalisation 7 of /(Spec(Q')) € T'. Since this composition T' xg S — T' — T is finite
type and surjective, there is a point 7 € T’ xg S’ in the pre-image of 7 such that the
induced field extension is finite. We set W = {¢'}. This gives us a,b and a factorisation
of /' through W. Now we use the platification theorem (Theorem 2.2.16) to find a blow-
up ¢: W — W of W such that the strict transform of II{x;} — W is flat. Since W' — W
is surjective of finite type, every point of W has a point over it such that the induced
field extension is finite, hence the morphism d.
To prove the equality (2.5) we will show

bzaip::ziw - a:aip::aiz' (27)

30
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The equality (2.5) will then follow from (2.6).

Let w be the generic point of W and £ be an algebraic closure of k(w) with induced
morphism 60 : Spec(2£) — W. Since ¥ is also an algebraic closure of the field of functions
of a generic point of T the definition of W says that we have (b8),pl* W = (a0);.pi i 2.

It follows now from Corollary 2.2.14 that we have the equality 2.7. O

Definition 2.4.5. Suppose that S is a noetherian scheme, X — § a morphism of finite
type and Z € cqui(X/S,0). Let f: T — S be a morphism of noetherian schemes. We
define

fPZ =W € cequi(T xs X/ T, 0)

where W is the cycle given by Theorem 2.4.3 (cf. Proposition 2.4.4 as well). By the
uniqueness of W, there is an induced homomorphism of abelian groups

17t cequi(X/S,0) = coqui(T X5 X/ T, 0).

Lemma 2.4.6. Suppose that S is a noetherian scheme, X — S a morphism of finite type
and Z =) nzi € cequi(X/S,0). Let f: T — S be a morphism of noetherian schemes.

1. If the images of the generic points of T are in the flat locus of each {z;} — S then
f®Z Vlal

2. If f is pseudo-dominant, then

3. If k is a field, f: Spec(k) — S is a k point and (/,p) is a good factorisation with

respect to Z then
ff2=(/p)Z

Proof. We use the notation of Theorem 2.4.3.

1. By the the platification theorem (Theorem 2.2.16) we can find a proper birational
morphism § — § that is an isomorphism over the flat locus of {z;} — S. Conse-
quently, we have the following commutative diagram

[ISpec(€;) s/
q p
HT;’ ; T 7 S

‘We then have
 z 2.2.10 q* A 2214 q* .(pt/)* ZEe * Lﬁth

lnaipnai nai nalpnm nai nai mu nu

and so f;.Z satisfies the criterion defining f*Z.
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2.5 The category of correspondences

2. In this case ¢ (and of course q and t) are pseudo-dominant as well, and so it follows
from Lemma 2.2.10.

3. Our diagram is

Spec(Q) ——= ¢

| )

Spec(k) - S

and we have uf
« ef o« « 2.2.14 % % %
qnaif®z = lﬂuipnaiz = qnailil’mipnaiz
so the claim follows from the fact that g} . is injective (Lemma 2.2.12).

O]

Lemma 2.4.7. Suppose that S is a noetherian scheme, X — S a morphism of finite type

and Z = ) niz; € cequi(X/S,0). Let U ENUY i) S be a pair of composable morphisms of

noetherian schemes. Then
§fZ=fR)"Z

Proof. We use Lemma 2.4.6. It follows directly from the definition that the result is true
if g is of the form g : IISpec(Q);) — T where Q; are algebraic closures of the function fields
k(z;) at the generic points 7; of T. So it suffices now to consider the case where U is of the
form Spec(Q) (but not necessarily hitting a generic point of T). In this situation however,
the result follows immediately from the claim (2.5) in the proof of Proposition 2.4.4. [

Theorem 2.4.8. Suppose that S is a noetherian scheme and X — S a morphism of finite
type. Then the groups cequi(— Xs X/—,0) form a presheaf of relative cycles. Moreover,
every other presheaf of relative cycles associated to X/S is a subpresheaf of this presheaf.

Proof. We have cegui(T x5 X/T,0) C cji;(T x5 X/T,0) by definition. We have seen that
the cegui(— X5 X/—,0) with the morphisms (—)® are a presheaf (Lemma 2.4.7) and that
they satisfy the two properties asked of a presheaf of relative cycles (Lemma 2.4.6).
Moreover, if F is a presheaf of relative cycles (associated to a morphism of finite type
X — S) then we have also seen that the elements Z € F(T) satisfy the properties asked
of an element of c.q,i(T x5 X/T,0) (Proposition 2.3.4). Proposition 2.3.3 tells us that F

is a subpresheaf of cogui(— x5 X/—,0). d

Definition 2.4.9. Suppose X — S is a morphism of finite type with S a noetherian
scheme. We abusively use cequ,-(X/ S,0) to also denote the presheaf of relative cycles
Cequi(_ Xs X/_a 0)‘

2.5 THE CATEGORY OF CORRESPONDENCES

We discuss now the category Cor(S) of correspondences (cf. [SV0Ob], [CD09], [Ivo05],
[FV00, p.141]). As for relative presheaves, we define Cor(S) by means of a universal
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2.5 The category of correspondences

property. We give a short proof of its existence but for the hardest part — the con-
struction of the correspondence homomorphisms of [SV00b, Section 3.7], and the fact
that the induced composition in Cor(S) is associative — we cite the literature. We give
an explicit expression for various compositions of correspondences, and also show that
Cor(S) satisfies analogues of the axioms for a presheaf with traces that we will define
later.

We begin with an easy corollary of Theorem 2.2.13.

Proposition 2.5.1. Let S be a noetherian scheme, X — S a morphism of finite type,
and Z C X a closed subscheme such that Z — S is flat and finite. Then cyclx/s(Z) €
Cequi(X/S,0) and if f: T — S is an morphism of noetherian schemes then f*cyclys(Z) =
cyclywgx/T(T X5 Z).

Proof. Firstly, notice that in the case when f is birational, we have f*naicych/S(Z) =
cyclryx/r(T Xs Z).

Secondly, suppose that S is reduced, and that T is the spectrum of a field whose
image in S is in the flat locus of II{z;} — S where the z; are the generic points of Z.
Suppose further that Z; — S is flat where the Z; are the irreducible components of Z
with their reduced structure. We claim that 7 .cycl(Z) = cycl(T xs Z) in this case. Let
Z = Z— ) nZ; where n; = length Oz ,,. We have cycl(Z) = o and so cycl(k xg Z) = o
by Theorem 2.2.13. Consequently, by linearity, it suffices to consider the case when Z is
integral. But this case follows immediately from the definition of f, .

Now that we have these two facts, the statement that cyclx/s(Z) € coqui(X/S,0) is
a direct consequence of Definition 2.4.1(1) and Proposition 2.4.2(2). The statement
fPeyelx/s(Z) = oyelryx/7(T X5 Z) follows for the same reasons from the definition of f*

(see Theorem 2.4.3). O

Definition 2.5.2. Let f: Y — X be a morphism in Sch(S) and I'r C Y xg X the closed
subscheme that is its graph. We define

Al = cyelyxsx/v(Tf,,4) € csg,ii(Y x5 X/Y,0).

If £ is finite flat then we define

[l = oyelxsx/x(‘Ty) € ng:ii(X xsY/X,0)

where Ty C X xg Y is the closed subscheme corresponding to I'y C Y xg X. Explicitly, we
have [f] = Yz and ['f] = Y niz; where the z; are the generic points of Y (seen as points
of X xg Y or Y Xs X) and n; = length Of;)xyv,z-

Remark 2.5.3. Notice that [f] has no coefficients, even when Y and X are non-reduced,
whereas in ['f] we have taken care to include the multiplicities of the generic points of Y
in their fibres. We insist that this is necessary to make the theory work.

Lemma 2.5.4. For every morphism f : Y — X in Sch(S) the formal sum [f] lies in
cequi(Y Xs X/Y,0). If f is finite flat, then ['f] lies in cequi(X X5 Y/X,0).
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Proof. For ['f], we have already proven in Proposition 2.5.1 that formal sums of the form
cyclxxgy/x(Z) lie in coqui(X X5 Y/X, 0) for closed subschemes Z C X x5 Y that are flat and
finite over X.

For [f], it is clear from the definition that c.g.i(Y X5 X/Y,0) = cequi(Yred X5 X/Yreq, 0)
is an isomorphism and so it suffices to consider the case when Y is reduced. But then
(Tf)rea — Y is flat and finite (it is an isomorphism) and so [f] € cequi(Y x5 X/Y,0) for the
same reasons as [f]. O

Definition 2.5.5. Suppose that S is a noetherian scheme and W, Y, X are three S-schemes
of finite type. We define a bilinear morphism

— 0 = Cequi(Y Xs W/Y, 0) @ chn (X X5 Y/X, 0) = chans(X X5 W/X, 0)

equi

as follows. Let B € cequi(Y xs W/Y,0) and a = njz; € /% (X xgY/X,0). Let Z; = {z;} and

equi
let i; : Z; — Y be the canonical morphisms. Then we define

ﬂ oca= Z nimijd,-ngj (28)

where (78 = Y miwij € Cequi(Zi Xs W/Z;,0), the wlfj are the images of the wj in X xg W
under the canonical (finite) morphism Z; xs W — X xs W and d;j = [k(wy) : k(w};)].

The following theorem we cite from the literature.

Theorem 2.5.6 ([SV00b, Theorem 3.7.3|, [Ivo05, Section 2.1.1]). The morphism — o —
of Definition 2.5.5 satisfies the following properties.

1. If a € coqui(X X5 Y/X,0), B € cequi(Y xs W/Y,0) then poa € cequi(X x5 W/X, 0).

2. Suppose V,W,X,Y are four S-schemes of finite type and a € c.qui(V xs W/V,0),B €
Cequi(W X5 X/W,0),7 € cequi(X Xs Y/X,0). Then (yopB)oa=yo(foa).

Proposition 2.5.7. The morphism — o — of Definition 2.5.5 satisfies the following
properties.

1. Iff: X — Y is a morphism in Sch(S) and B € cequi(Y XsW/Y,0) for some W € Sch(S)

then
Bold=r"p
2. Suppose f: V — X is a finite flat surjective morphism in Sch(S) and B € cequi(V X
W/V,o0). Then
Bolfl=> nmdw] (2.9)
where B =) mjw;, the points x;j,vj, w]{ are the respective images of w; in X, V, and
X x5 W via the obvious morphisms, d; = [k(w;j) : k(w))], and n; = length Oy xxv,y;-

3. Suppose a = niz; € coqui(X XsY/X,0) and g: Y — W is a morphism in Sch(S). Then

gloa= Z nidiw
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where w; = (X X5 g)(zi) and d; = [k(z;) : k(w;)].

Proof. 1. This is straight-forward from our explicit description. Notice, that in our
case, in the definition of the composition the closed integral subschemes Z; are
canonically isomorphic to the irreducible components X; of X and the morphisms
Z; — X are the compositions X; — X — Y. Consequently, the morphisms Z; xgW —
X xg W are closed immersions and so the dj are all 1. The result follows from the
fact that cegui(X X5 Y/X, 0) — @cequi(Xi X5 Y/X;, 0) is the obvious morphism.

2. As everything happens generically, we can replace X by any dense open subscheme
without changing the result. Hence, shrinking X and using additivity, we are
permitted to assume that V and X each have a unique irreducible component. In
this case the a of Definition 2.5.5 is ['f| = nv where n = length Oxxxvyy and x,v
are the generic points of X and V respectively. In the notation of the definition
there is a unique Z; and the morphism Z; — Y is isomorphic to the canonical
morphism Vyeg — V. Since cegui(V X W/V,0) — @cequi(Vyed Xs W/Vyeq, 0) is the
obvious morphism, the ;B of the definition is ) mjw; now considered as an element
of Cequi(Vyea Xs W/Vyeq, 0). Finally, the dj of the definition, of which we have only
one, is d = [k(v) : k(x)]. So the poa = > mmydywj of Equation 2.8 is, in our
case, y  nmjdw; (note that we have no need of indices on n and d because we have
assumed V and X are irreducible).

3. First consider the case that Y is reduced. By definition [g] is cycly, qw/y(Tg, ,) but
since Y is reduced this is just cycly, g y(Tg). Moreover, T is canonically isomorphic
to Y. Let 1;: Z; — Y and B be as in the definition of — o — (so B = cyclyy sw/v(Ty))-
By Proposition 2.5.1 we see that (' = cyclzwsw/z(T(z—w)). The result is now
clear from the explicit formula in the definition of — o —.

Now we remove the assumption that Y is reduced. Notice that as a doesn’t ac-
tually depend on the ambient scheme X xg Y, it also defines an element a’ of
Cequi(X X5 Yyed/X, 0). Moreover, using the case when Y was reduced we can write
a = [ij od where i: Y,y — Y is the canonical morphism. So now using the fact
that — o — is associative, it suffices to prove that [g] o [i] = [gi]. This follows from
the first part as [gi] = i®[g] = i%,;[g] since i is birational.

nai

O

Proposition 2.5.8. The morphism — o — of Definition 2.5.5 satisfies the following
properties.

1. Functoriality. For finite flat surjective morphisms w2 Yi> X we have

[l o [g] = ['fgl-
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2. Base-change. For every cartesian square

YxxW—>w (2.10)

d l"

Y——X

such that f is finite flat surjective we have
[fl o [p] = [g] o ['g]-

3. Degree. For every finite flat surjective morphism f:Y — X of constant degree d
we have

fo[fl=d- lids]-

4. Triangles. Consider a commutative triangle of schemes with f, g finite flat surjective

and X integral.
L Y
NS
X

(a) Suppose that the scheme Y' is the disjoint union of the integral components
Y. of Y, and h is the canonical morphism Y =11Y; — Y. Then

[ => " mih]o['g]

where h;,g; are the restrictions to Y; and m; = length Oy, with y; the generic
point of Y.

Y

(b) Forgetting the hypotheses of (a), suppose now that all schemes are integral.
Then

d

Se8E (11 _ [1]o [4g].

Proof. Functoriality. Let & be the generic points of X, let 1; be the generic points
of Y (over §;) and let wy be the generic points of W (over 7). By definition [fg] is
> i length O w0, &5 Using (2.9) we calculate ['g][*f] as

Z length 011,-,- wy W 1ength O v oy [k(wijre) - k(qij)]’g’i.
ijk

So we must show that for each i we have

Z length On,-,-XYW,wijk length O,y yv,u; (k(wijee) : k(qij)] = Z length Ogs w0y
jk jk
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This is done in Lemma A.1.3.
Base change formula. This follows directly from Proposition 2.5.1. Let V=Y xx W.
We have

Ale] = p* (1) = p® (yelxxsv/x(Y)) = cyelwngyyw(V) = Z niv; € Cequi(W X5 Y/W,0)

where v; are the generic points of V and n; = length O,y v, We also have lq] =
Y Vi € cequi(V X5 Y/V,0) and using the formula (2.9) we find that [q][’g] = > nw; €
Cequi(W Xs Y/W,0) as V=W xx Y = W xg Y is a closed immersion.

Degree formula. Suppose §; are the generic points of X and i the generic points of Y
with 7, over §. Still using (2.9) we calculate Al as 2_jjlength OgiXXY’qij [k(n;) = k(§)]E:-
For each §;, the degree of §;, xx Y — §; is d, and this is equal to Zj length OE,-XXY%,' [k(r]ij) :
k(§;)], hence the degree formula.

Triangles. Both equalities follow directly from Proposition 2.5.7. O

Theorem 2.5.9. For each noetherian separated scheme S there exists a unique category
Cor(S) with the following properties.

(Ob) There is a one-to-one correspondence between the objects of Cor(S) and the objects
of Sch(S). If X € Sch(S) we denote the corresponding object in Cor(S) by [X].

(Mor) Consider X,Y € Sch(S). Then homc,,s)([X],[Y]) is a subgroup of the free abelian

group generated by the points z of X xgY such that the canonical morphism Q - X
is finite and dominates an irreducible component of X.

(Gra) Letf:Y — X be a morphism in Sch(S). Then [f| € homc,,s)([X], [Y]). Furthermore,
if f is finite and flat then ['f] € homc,,(s)([Y], [X])-

(Comla) If f: Xpea — X is the canonical inclusion then the morphism home,,s)([X], [Y]) —
homc,,(s) ([Xred], [Y]) induced by composition with [f] is the obvious one coming from
the canonical identification of the points of X XgY and the points of X,eq Xs Y.

(Com1b) If a = Y niz; € home,,s)([X], [Y]), k is a field, and 1 : k — X is a k-point of X such
that the image is in the flat locus of Il{z;} — X then ao [i] = ) nymyw;; where the

wij are the generic points of k Xy {z;} and m;; = length kaym,wij.

(Com2) Suppose that we have f: V — X a finite flat surjective morphism in Sch(S) and that
ac homCor(S)([W? [Y]) Then

ao[ffl = Z nim,'diy;

where a = Y nyy,, the points x;,v;,y, are the respective images of y, in X, V, and
X X Y via the obvious morphisms, d; = [k(y;) : k(y})], and m; = length Oy x v,

(Uni) Any other category satisfying the above azioms is a subcategory of Cor(S).
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Moreover, the composition in this unique category Cor(S) is the one given in Defini-
tion 2.5.5.

Remark 2.5.10. In light of Definition 2.3.1 and Theorem 2.4.8 we could have replaced
the axioms (Mor), (Gra), (Comla), (Comlb), (Uni) with the two axioms (Mor’) and
(Com1’). This would have given the following list.

(Ob) There is a one-to-one correspondence between the objects of Cor(S) and the objects
of Sch(S). If X € Sch(S) we denote the corresponding object in Cor(S) by [X].

(Mor’) Consider X,Y € Sch(S). Then homc,,s)([X], [Y]) = cequi(X X5 Y/X, 0).

(Coml’) If f: X — Y is a morphism in Sch(S) and a € homc,,s) ([Y], [W]) for some W € Sch(S)
then a o [f] = f*a.

(Com2) Suppose that we have f: V — X a finite flat surjective morphism in Sch(S) and that
ac homCor(S)([VL [Y]) Then

ao [ﬂ = Z nim,-d,-y;

where a = ) n;y,, the points x;,v;,y; are the respective images of y, in X, V, and
X x Y via the obvious morphisms, d; = [k(y;) : k(y})], and m; = length Oy xxv ;-

We chose the statement in the theorem because there is no explicit reference to presheaves
of relative cycles.

Proof. We begin with uniqueness. Since the objects and the morphisms are completely
described, it suffices to show that the composition is determined (Com1’) and (Com2).
Let a € homcys)([X],[Y]) and B € homc,s)([Y],[W]) and suppose that o and o are
two different compositions. Since pullback along a birational morphism is injective
(Lemma 2.3.2 for example), to show that foa = o’ a it suffices to show that f*(Boa) =
f2(B o' a) for some birational f : X’ — X. Let a = mz. The platification theorem
(Theorem 2.2.16) provides a birational morphism f : X’ — X such that the proper
transforms of the {z;} — X are flat over X'. Let f®a = > n;z} and let g, : {z} — Y and
hi : {zl} — X’ be the canonical morphisms. Then we have

f'(Boa)=poacf=polg]o[h]

and similarly for o’. Due to (Com1’) and (Com2) the cycles o g,]o['h;] and Bo’[g;] o’ [*hi]
are equal. Therefore foa = poa.

Now for existence. The majority of the difficulty of the proof of existence is contained
in Theorem 2.5.6. Since we are admitting this, it remains to show that the composition
has identities, and satisfies (Com1’) and (Com2). These all follow from Proposition 2.5.7.

O

Definition 2.5.11. The category Cor(S) of Theorem 2.5.9 is call the category of corre-
spondences. The category of smooth correspondences SmCor(S) is the full subcategory of
Cor(S) whose objects are smooth schemes over S.
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Comparison of cdh and £dh sheafification and
cohomology

3.1 INTRODUCTION

N this chapter we introduce the ¢dh-topology (Definition 3.2.6) where ¢ denotes a
I prime. We compare the cdh and ¢dh sheafifications and cohomologies. The idea of the
cdh topology is to enlarge the Nisnevich topology enough so that the morphisms coming
from resolution of singularities may be used as covers. Similarly, the idea of the fdh
topology is that it should be an enlargement of the Nisnevich topology so that morphisms
given by a theorem of Gabber on alterations (Theorem 3.2.12 or Theorem 3.2.11) may
be used as covers.

In Section 3.2 we begin the chapter by introducing our definition of the ¢dh topology.
Our definition (Definition 3.2.6) — equivalent to many others! — is inspired directly by
the techniques that we will use to study it. Namely, it is generated in some sense by the
cdh topology, and a topology we refer to as the fpsf/topology (fini-plat-surjectif-premier-
a-f). In shorthand we could write “cdh +fpst’= ¢dh”. In this section we also convert
Gabber’s Theorem into the form that we will apply it in: every nice scheme admits an
¢dh cover with regular source (Corollary 3.2.13).

The literature abounds with techniques to work with the cdh topology, and so we are
left with the study of the fpsf’ topology. Our main tool here is the concept of a presheaf
with traces which we introduce in Definition 3.3.1. A presheaf with traces is a presheaf
which in addition to being a contravariant functor, also has a covariant functoriality for

"'While our definition is equivalent to many other possible definitions, it is different from the topology
of ¢'-alterations appearing in [[LO12] and [I1109]. This is because they work with a category of reduced
finitely horizontal schemes (i.e., every generic point is sent to a generic point of the base, and the induced
field extension is finite) while we work with a more general category. Ours is a “global” version of theirs
which is “local” where “local” and “global” are in the sense of resolution of singularities.
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3.1 Introduction

morphisms that are finite flat and surjective, and furthermore satisfies a change-of-base
and degree formula. It falls straight out of our definition that every presheaf of Z
modules with traces is an acyclic fps¢’ sheaf (Lemma 3.4.10).

In Section 3.4 we show that if we have a cdh sheaf of Z)-modules with transfers,
then the cdh and ¢dh cohomologies agree. We do this using the technique of [VoeOOb,
3.1.8], that is, we claim that these cohomologies can be calculated using Ext’s in the
categories of sheaves with transfers (Proposition 3.4.15, Proposition 3.4.16). This comes
down to proving an acyclicity result, which we do in a more general context (Proposi-
tion 3.4.7). Accepting that we can use Ext’s to calculate the cohomologies, since every
presheaf with transfers is a presheaf with traces (Lemma 3.3.9), and hence an fps¢’ sheaf
(Lemma 3.4.10), the categories of cdh and ¢dh sheaves with transfers are equivalent
(Corollary 3.4.12) and so we deduce that the cohomologies agree.

In Section 3.5 we introduce a topology which will help us study the cdh and /dh
associated sheaves of a presheaf with traces. The idea is to embed F.g and Fgg, into a
larger presheaf, and then descend properties of this larger presheaf to F g, and Fgpg,. The
larger presheaf that we use is the sheafification F 44 for a Grothendieck topology that
we call the completely decomposed discrete topology or cdd topology (Definition 3.5.1).
The most important property of the cdd topology is that the cdd associated sheaf F 44
of a presheaf F satisfies Fcq(X) = [[,cx F(X) where the product is over the points of X of
every codimension. For an explanation of why the cdd topology arises quite naturally
for us see Remark 3.5.4. In this section we prove that if F has a structure of traces, then
there is a canonical induced structure of traces on F.y (Theorem 3.5.5) and moreover,
this structure satisfies some particularly important properties (3.5.7).

In Section 3.6 we introduce the concept of a Gersten presheaf (Definition 3.6.4) which
is a presheaf satisfying an analogue of the first part of the Gersten sequence in K-theory.
We prove that if F is a presheaf of Z)-modules with traces that satisfies the very first
part of the Gersten sequence, then the cdh and ¢dh associated sheaves are isomorphic
(Corollary 3.6.3). We deduce this in a convoluted way (see the diagram in the proof)
from Fyg, being a subsheaf of Fz3. We also use the Gersten property to find a criteria
for a section of F.44 to belong to the image of Fyy, (and hence the image of F.g, since
Fen = Fyg) and show that the trace morphisms of F.4y preserve this property. This
implies that F., has a structure of traces (Proposition 3.6.12).

In Section 3.7 we prove Theorem 3.7.1 which says that every cdh sheaf with traces
that satisfies two additional properties has a canonical structure of transfers. We use the
principle that every correspondence can be decomposed (locally for the cdh topology)
into a formal sum of compositions of “traces”, and morphisms of schemes (Lemma 3.7.4).

For the convenience of the reader let us make a small index here.

(Definition 3.2.1) The fps¢’ and ¢dh topologies.

(Definition 3.3.1) Presheaf with traces, properties (Fon), (CdB), and (Deg).
(Definition 3.3.4) Properties (Tril), (Tri2), (Tril)<,, (Tri2)<,.

( )

Definition 3.4.4) A refinable topology.
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3.2 The {dh topology

(Definition 3.5.1) The discrete topology.
(Definition 3.6.4) Gersten presheaf.
(Definition 3.7.2) Correspondences of the form (FN).

Throughout this chapter we will state at the beginning of each section what class of
schemes the results of that section hold for. In general, everything is true for the
category of separated schemes essentially of finite type over a base scheme S which
is a quasi-excellent separated noetherian scheme. By essentially of finite type, we
mean an inverse limit of a left filtering system of schemes of finite type, for which
each of the transition morphisms is an affine open immersion.

3.2 THE ¢dh TOPOLOGY

In this section we present the definition of the ¢dh topology that we will use (Defi-
nition 3.2.6). We state Gabber’s theorem in some original versions (Theorem 3.2.11,
Theorem 3.2.12) and the version that we will use (Corollary 3.2.13).

Recall that if {U; — X}ier is a finite family of morphisms, a refinement is a finite family
of morphisms {V; — X}je; such that for each j € J there is an i; € I and a factorisation
V; — U; — X. The reader not familiar with the cdh topology can find it in [SV00a].

Definition 3.2.1. Let ¢ € Z be a prime.

1. We will call an fps?’ cover (fini-plat-surjectif-premier-a-¢) a singleton set {f: U — X}
containing a morphism f that is finite flat surjective and globally free of degree
prime to £. That is, f, Oy is a free Ox-module of rank prime to /.

2. An ldh cover is a finite family of morphisms of finite type {U; — X} such that
there exists a refinement of the form {V; — V; — X} where {V; — X} is a cdh
cover and {V; — V;} are fpst’ covers.

Remark 3.2.2. Note that we can assume the Vj, V]’ are affine as the Zariski topology is
coarser than the cdh topology.

For a pretopology 7, we observe the usual abuse of terminology and refer to a mor-
phism Y — X as a 7 cover if {Y — X} is a 7 cover. The standard reference for the
Nisnevich topology is [Nis89] where it is referred to as the cd topology.

Lemma 3.2.3. Suppose that Y — Y is a Nisnevich cover and Y — X a flat finite
surjective morphism of constant degree (not necessarily globally free). Then there exists
a Nisnevich cover X' — X such that Y xx X' — Y refines Y — Y, and Y xx X' — X' is an
fpst’ cover.

Remark 3.2.4. This lemma is false if we replace the Nisnevich topology by the proper
cdh topology. For example let Y to be a non-normal curve, ¥ — X any flat finite
morphism to a normal curve X, and Y — Y the normalisation. Clearly Y — Y doesn’t
split, but every proper cdh cover of X is refinable by the trivial cover (this is true of
any regular excellent scheme of dimension one). This failing is an obstacle to passing a
structure of traces for a presheaf to its cdh sheafification (cf. Proposition 3.3.3).
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3.2 The {dh topology

Proof. If X is henselian, then Y is also henselian and Y — Y splits. So we can take
X' = X. If not then for every point x € X we consider the pullback along the henselisation
"x — X. The result now follows from the limit arguments in [Gro66, Section 8] and the
description of the henselisation as a suitable limit of étale neighbourhoods. O

The following proposition shows that the ¢dh covers as we have defined them form a
pretopology in the sense of [SGAT2a, 11.1.3].

Proposition 3.2.5. Let X be a noetherian scheme and suppose that Y — X is an fpst’
morphism and {U; — Y}icr is a cdh cover. Then there exists a cdh cover {V; — X}igj
and a set of fpst’ morphisms V; — V; such that {V; — X}jey refines {U; — Y — X}ier.

Proof. 1t suffices to consider the case when the cardinality of I is one (replace {U; — Y}ier
by {IL;c;U; — Y}). Recall that every cdh cover U — Y admits a refinement of the form
U” — U — Y where U’ — U’ is a Nisnevich cover and U’ — Y is a proper morphism
which is a cdh cover ([MVWO06, 12.28] or [SV00a, 5.9]). We have already treated the
Nisnevich case in Lemma 3.2.3 so it suffices to treat the proper cdh case.

We prove by noetherian induction that if we have U — Y — X with U — Y proper
cdh and Y — X fpsf’ then there exists V/ — V — X such that V — X is proper cdh,
V' — Vis fps¢’ and the composition V' — X factors through the composition U — Y.
Suppose that this statement is true for all proper closed subschemes of X. Indeed, by the
inductive hypothesis, it suffices to prove that in the situation just mentioned we have
the morphisms and properties just mentioned but with V — X proper and birational
instead of proper cdh.

We can assume that X is reduced, and even integral since the inclusion of the ir-
reducible components is a proper birational morphism. Since U — Y is completely
decomposed (i.e., the pullback along each y € Y admits a section), by replacing U with
an appropriate disjoint union of closed irreducible subschemes of U we can assume that
Uped — Yreq an isomorphism over a dense open subscheme of Y. If 5, are the generic points
of Y and m; the lengths of their local rings, then the degree of Y — X is > m;[k(n,) : k(£)]
where £ is the generic point of X. Since ¢ doesn’t divide ) m;[k(y,) : k(§)], there is some
i for which ¢ doesn’t divide [k(n;) : k(£)]. By the platification theorem [RG71] there
exists a blowup of X’ — X with nowhere dense centre such that the strict transform of
m — X is flat, and hence finite flat surjective of degree prime to £. That is, we can
assume Y is reduced and even integral.

To recap, we have reduced to the case where U is reduced, U — Y is an isomorphism
over a dense open subscheme of Y, and Y and X are integral. In particular, the compo-
sition U — X is generically an fps¢’ cover. Using again the platification theorem, this
time applied to the composition U — Y — X, we can find a blowup of X with nowhere
dense centre such that the strict transform of U — Y — X is flat. Since it is generically
an fps¢’ cover, flatness implies that it is actually an fpsf’ cover. So we are done. O

Definition 3.2.6. The ¢dh pretopology on a category of schemes is the pretopology for
which the covers are ¢dh covers.
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3.2 The {dh topology

Remark 3.2.7. Our choice of definition of an ¢dh topology is motivated by the following
two ideas. Firstly, the theorem of Gabber (Theorem 3.2.11) should provide the existence
of regular ¢dh covers (or smooth depending on the context). Secondly, we want to make
use of the vast literature available on the cdh topology. That is, we want to be able
to reduce statements about the ¢dh topology, to statements about the cdh topology
and statements about the fpsf’ topology. This way we only need to deal with the fps¢’
topology. This we usually do using a structure of traces — c¢f. Lemma 3.4.10.

The name ¢dh is an acronym for ¢-decomposed h-topology (see [Voe96, Definition
3.1.2] fo the h-topology). For any set of primes L one can define an L-decomposed
morphism as a morphism Y — X such that for every point x € X there exists a point
y € Y over x such that no element of L divides [k(y) : k(x)]. We recover the notion of a
completely decomposed morphism as a P-decomposed morphism where P is the set of
all primes. The cdh topology on a category of noetherian schemes is generated by the
Nisnevich topology and covers which are proper and completely decomposed. Similarly,
if we consider the pretopology generated by Nisnevich covers and proper {¢}-decomposed
morphisms, we obtain a pretopology which gives the same sheaves as our ¢dh topology.
Hence, in some sense, the £dh topology is a legitimate generalisation of the cdh topology.

While we are discussing etymology, we mention the following counterexample. The
naive reader may suspect that the cdh topology is equivalent to the topology obtained
from the pretopology whose covers are h covers that are completely decomposed. This
is false. Let k be a field, Y = Spec(k[x,x"]) II Spec(k[x:]) and X = Spec(k[x]) and let
Y — X be the obvious morphism. This morphism is flat (and is therefore an h cover),
and is completely decomposed. However, the corresponding morphism of representable
presheaves on Sch(k) is not surjective for the cdh topology. If it were surjective, then
there would exist a morphism U — Y in Sch(k) such that the composition U — X is a
cdh cover (the section idx of hom(—, X)4, over X would lift to hom(—,Y).4). Since k[«]]
is a complete discrete valuation ring, every cdh cover of Spec(k[[x]]) admits a section.
In particular, the canonical morphism Spec(k[[x]]) — X factors through U — X, and
pulling back Y — X along Spec(k[[x]]) — X, this implies that Spec(k((x)))II Spec(k[[x:]]) —
Spec(k[[x]]) admits a section, which is impossible.

Remark 3.2.8. Our /dh pretopology differs from the topology of ¢ alterations of
[ILO12] (see the beginning of Section II1.3) principally because the underlying cate-
gories are different — they use the category denoted alt/S ([ILO12, Definition 1.2.2]).
Their category alt/S consists of reduced schemes f: T — § that are of finite type, sur-
jective, and psuedo-dominant (Definition 2.2.9) over S, and such that for every generic
point t of T the extension k(t)/k(f(t)) is finite. Their topology of ¢ alterations satisfies
the following property ([ILO12, Theorem 3.2.1]). If X is irreducible and quasi-excellent,
then every covering family for the topology of #'-alterations has a refinement of the form
{Vi = Y — X} such that Y is integral, Y — X is proper surjective of generic degree
prime to ¢, and {V; — Y} is a Nisnevich cover. Our pretopology is in some way a
“global” version of their “local” pretopology where global and local are in the resolution
of singularities sense.

Remark 3.2.9. As with the cdh pretopology, we do not get an f¢dh pretopology on
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3.2 The {dh topology

the category of smooth schemes Sm(S) over some base S as there are not enough fibre
products. As with the cdh pretopology we do however get an induced topology.

Definition 3.2.10. The ¢dh topology on Sm(S) is the topology for which the covering
sieves of a scheme X are sieves R C hy that contain a sieve of the form im(hiy, — hx)
for some ¢dh cover {U; — X}.

We now reproduce two versions of a theorem of Gabber. We follow them with a
corollary which converts them into a form that we will use. For a statement and an
outline of the proof of Gabber’s Theorem of see [I1109], or [Gab05]. There is also a book
in preparation [ILO12].

Theorem 3.2.11 ([ILO12, Theorem 2, Theorem 3.2.1]). Let X be a noetherian quasi-
excellent scheme, let £ be a prime number invertible on X. There exists a finite family of
morphisms {U; — X}ier with each U; regular, and a refinement of the form {V; - Y —
X}iey such that

1. {V; = Y} is a Nisnevich cover,
2. Y is locally integral,
3. Y — X is proper and surjective, and

4. for each generic point § of X there is a unique point n of Y over it, and [k(n) : k()]
is finite of degree prime to L.

Theorem 3.2.12 (Gabber [I1109, 1.3] or [ILO12, Theorem 3, Theorem 3.2.1]). Let X be
a separated scheme of finite type over a perfect field k and ¢ a prime distinct from the
characteristic of k. There exists a smooth quasi-projective k scheme Y, and a k-morphism
f:Y— X such that

1. f is proper, surjective, pseudo-dominant (Definition 2.2.9), and

2. for each generic point & of X there is a unique point n of Y over it, and [k(n) : k(£)]
is finite of degree prime to L.

Corollary 3.2.13. Let X be a scheme and £ a prime number invertible on X. If X is
noetherian and quasi-excellent then there exists an €dh cover {U; — X} of X such that
each U; is reqular. If X happens to be separated of finite type over a perfect field k, then
there exists such a cover with each U; smooth and quasi-projective over k.

Proof. The proof in both cases is the same so we give it only once. Let X be noetherian
and quasi-excellent. We proceed by noetherian induction. Suppose that the result is
true for all proper closed subschemes of X. We can assume that X is integral since
the set of inclusions of irreducible components is a cdh cover. Let {U; — X}ie; and
{V; = Y — X}j; be as in the statement of Theorem 3.2.11 (or in the second case, just
the Y — X from Theorem 3.2.12). We must show that the latter has a refinement which
is a composition of fps¢’ and cdh covers. By the platification theorem (Theorem 2.2.16)
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3.3 Presheaves with traces

there exists a blowup with nowhere dense centre X’ — X such that the proper transform
Y — X' of Y — X s finite flat surjective morphism of constant degree (but not necessarily
globally free). Let {VI — Y’} be the pullback of the Nisnevich cover {V; — Y}.

X" Vv \Y4
fps(’i iNiS lNis
X! Y Y
1& ifps (¢,deg)=1 lprop. surj. gen. fin. (¢,deg)=1
is
/
X blowup X

By Lemma 3.2.3 there exists a finite set of morphisms of the form {X]" — X! — X'}
such that {X] — X'} is a Nisnevich cover and each X;” — X! is an fps¢’ cover, and
furthermore, {X" — X;' — X'} is a refinement of {V; — Y — X'}. If Z € X is a closed
subscheme such that X’ — X is an isomorphism outside of Z, then {Z — X, X/’ — X' — X}
is a cdh cover. By the inductive hypothesis, there exists an ¢dh cover {Z — Z}kex of Z
with each Z; regular (or in the second case, quasi-projective and smooth over k). Hence,
{Z,, = X}rex U {U; — X}ier is a finite family of morphisms with regular (resp. smooth
quasi-projective) sources, such that there exists a refinement which is a composition of
a cdh cover and fps¢’ covers as in the definition of an ¢dh cover. t

3.3 PRESHEAVES WITH TRACES

In this section we present our definitions of a presheaf with traces (Definition 3.3.1), and
a presheaf with transfers (Definition 3.3.7). We mention that a presheaf with transfers
is a presheaf with traces (Lemma 3.3.9).

3.3.1 PRESHEAVES WITH TRACES

Definition 3.3.1. A presheaf with traces (F,S, A, Tr, P) is an additive functor F : S —
A from a category of schemes S to an additive category A, together with a class P of
morphisms of S, and a morphism Trs : F(Y) — F(X) for every morphism f € P. The
morphisms Tr are required to satisfy the following axioms.

(Add) For morphisms f, : ¥, = X, and f, : ¥, = X, in P we have

Trfluf2 = Trfl D Trf;‘

(Fon) For morphisms W % ¥ I, X in P we have

TrfTrg = Tr and Trigy = idp(x)-
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3.3 Presheaves with traces

(CdB) For every cartesian square in S

such that f, g € P we have
F(p) Ty = TryF(q).

(Deg) For every finite flat surjective morphism f: Y — X in P such that f, Oy is a globally
free Ox module we have

TI'fF(f) = degf ldF(X)

Sometimes we will just denote a presheaf with traces by F if the rest of the data is
already established. In this thesis P will always be the class of finite flat surjective
morphisms in S. We will denote this class by S%®s.

A morphism of presheaves with traces (F,S, A, Tr,P) — (G, S, A, Tr, P) is a morphism
of the underlying presheaves F — G such that for every f € P the square

F(Y) S G(Y)

Trfl i Trf

F(X) —_— G(X)

is commutative.
Example 3.3.2. Here are some examples of presheaves with traces.

1. Suppose S is any category of schemes, A is any additive category and F is any
constant additive sheaf. Then since every finite flat surjective morphism Zariski
locally satisfies the hypotheses of (Deg), there is a unique structure Tr such that
(F,S, A, Tr,S™°) is a presheaf with traces. This is because if f: ¥ — X is a
morphism satisfying the hypotheses of (Deg) between connected schemes then F(f)
is an isomorphism, and so (Deg) requires that Tr; = degf-F(f)~*. The other axioms
are straight-forward.

2. The presheaves Ok and Ox (represented by the group schemes G,, and A') have
canonical structures of traces induced by the determinant and trace of matrices.
More explicitly if Spec B — Spec A is a morphism of affine schemes and there
is an isomorphism of A algebras B & @% A then there is an induced morphism
B — My4(A) of B into the ring of d by d matrices with coefficients in A (induced by
right or left multiplication of B on itself). Then the determinant and trace define
group homomorphisms (B*,x) — (A*,*) and (B,+) — (A,+). It can be checked
that these morphisms are independent of the chosen isomorphism B = @ A and
glue to give a structure of traces on non-affine schemes.
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3. The example described above is a special case of a more general phenomena. On
the category of quasi-projective normal schemes, any presheaf represented by an
algebraic group has transfers, and hence a structure of traces (any presheaf with
transfers has a structure of traces; this is mentioned further down the list).

4. We might like to say that fps¢’ sheaves have traces using a similar tactic to [SV96,
Section 5] to define traces using pseudo-Galois covers. However, when passing to
a normal extension, we lose control of the degree and cannot ensure it stays prime
to £. The converse is true: a presheaf of Z) modules with traces is an fps¢’ sheaf
(Lemma 3.4.10).

5. Algebraic K-theory and homotopy invariant algebraic K-theory have structures of
traces due to the constructions being functorial with respect to biWaldhausan
categories (cf. the proof of Proposition 5.2.3).

6. We will see that any presheaf with transfers (Definition 3.3.7) has a canonical
structure of presheaf with traces (Lemma 3.3.9).

7. If Fis a presheaf with traces, its Nisnevich and étale sheafifications have a canonical
structure of traces (Proposition 3.3.3, Lemma 3.2.3). We will also see conditions on
Funder which the discrete sheafification (Definition 3.5.1) has a canonical structure
of traces, the associated cdh separated presheaf has a canonical structure of traces
(Proposition 3.5.6), and the associated cdh and ¢dh sheaves have a structure of
traces (Proposition 3.6.12, Corollary 3.6.3). The latter is one of the main results
of this paper.

8. Let S be a noetherian scheme, Sch(S) the category of S-schemes of finite type, .4 an
additive category with small colimits, EssSch(S) the category of schemes essentially
of finite type. We remind the reader that when we say essentially, we are talking
about limits of left filtering systems in which the transition morphisms are affine
open immersions. It is a standard application of the results in [Gro66, Section §]
that if F: Sch(S) — A is a presheaf with traces then F gives rise canonically to a
presheaf with traces on EssSch(S).

We eventually want to find a criteria for when a structure of traces on a presheaf
induces a structure of traces on the cdh sheafification (this is achieved in Proposi-
tion 3.6.12). The following proposition, applicable in the case T = Nisnevich, is a first
step in this direction.

Proposition 3.3.3. Let (F, S, A, Tr, P) be a presheaf with traces and suppose that A is an
abelian category and the class P is closed under fibre products. That is, if f: Y > X & P
then so is W xx f for any W — X in §. Now suppose that © is a pretopology on S such
that

for every morphism f: Y — X € P and every t cover V— Y there exists a v cover
U — X such that Y xx U — Y is a refinement of V—Y.
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3.3 Presheaves with traces

Then there is a unique class of morphisms Tr* such that (F;,S, A, Tr*, P) is a presheaf
with traces and such that the canonical morphism F — F. is a morphism of presheaves
with traces.

Proof. Let f: Y — X be a morphism in P, U — X a 7 cover of X, and s € ker(F(YxxU) —
F((YxxU) xy(YxxU)). We claim that there is a unique element t € F;(X) such that the
restriction to F.(U) agrees with the image of Tr u)s. Indeed, if follows immediately
from (CdB) and the isomorphism (Y xx U) Xy (Y xx U) 2 Y xx (U xx U) that Tr(,y)s
is a cocycle and so it descends to a unique element of F;(X).

Now for every element s of F.(Y) there exists a T cover V — Y so that s|y is in the
image of F — F,. By our hypothesis, we can assume V is of the form Y xx U — Y for
some 7 cover U — X. By what we have just shown, we have a corresponding element in
F;(X) that is independent of the choice of U. Hence a morphism Tr} : F(Y) — F(X).

The axioms (Fon) and (Deg) follow immediately from the way we have defined the
morphisms Tr*. It is also immediate from the definition that these are compatible with
F — F,, and are the only possible such choice. For (CdB) it is enough to draw the
appropriate cube and do the diagram chase. O

We have cause to discuss two further properties that might be satisfied by a presheaf
with traces. In the case of a cdh sheaf, these two properties bridge the gap between a
structure of traces and a structure of transfers (cf. Lemma 3.3.9, Theorem 3.7.1). They
deal with commutative triangles:

Y (3.2)

L Y
D7

X
Definition 3.3.4. Suppose that we have a commutative triangle (3.2) as above and
(F,S, A, Tr, P) a presheaf with traces. We define the following two properties.

(Tril)<4 Suppose that in the commutative triangle (3.2) the scheme X is integral of dimen-
sion < d, the scheme Y’ is the disjoint union of the integral components Y. of Y,
and h is the canonical morphism Y’ = IIY; — Y, and the morphisms f, g, are in P
where h;, g, are the restrictions of h,g to Y;. Then

Trp= Y miTrg F(h)
where m; = length Oy, with 5, the generic point of Y;.

(Tri2)<4 Forgetting the hypotheses of (Tril)<4, suppose that in the commutative triangle
(3.2) the morphisms f and g are in P, and all the schemes X,Y,Y are integral of
dimension < d. Then

de
dot T = TrgE(h).

We will use just (Tril) and (Tri2) if we require these axioms without restriction
on the dimension.
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Remark 3.3.5. 1. We will almost always only ask for (Tril)<,. This is because
we will end up using presheaves that are separated for the cdd topology (Defini-
tion 3.5.1) and for such presheaves (Tri2)<, is true for all n and (Tril)<, for all
n is implied by (Tril)<, (Proposition 3.5.7). We will soon give a criteria under
which (Tril)<, is satisfied (Lemma 3.3.6).

2. We will see below that if F is a presheaf with transfers then F is a presheaf with
traces that satisfies (Tril) and (Tri2) (Lemma 3.3.9). We will prove that conversely
if F is a cdh sheaf with traces that satisfies (Tril) and (Tri2) then F has a canonical
structure of presheaf with transfers (Theorem 3.7.1).

3. The morphisms on algebraic K-theory described in Example 3.3.2 do not satisfy
(Tril) before we sheafify it. This is for a similar reason to the fact that algebraic
K-theory does not have transfers [Voe0OOa, Section 3.4]. For example, let X be a
projective line and choose a closed point x. Let Y be two disjoint copies of X,
and suppose that Y has two irreducible components, each isomorphic to X, and
the intersection of these two irreducible components is the chosen point x. The
morphisms f, g, h are the obvious ones. Both f and g are finite flat and surjective,
and h is the inclusion of the integral components. However the class of f Ox in
K,(X) is different from that of g, Oy. This is the only example we know of a presheaf
with traces that doesn’t satisfy (Tril). If we were to require (Deg) to hold for all
finite flat surjective morphisms of constant degree (and not just globally free ones)
we would lose this counter-example.

Lemma 3.3.6. Suppose (F,S, A, Tr,S®) is a presheaf with traces.
1. (Tri2)<, is always satisfied.
2. Suppose for every finite morphism of schemes of dimension zero Y — X, if X € S

then Y € S. The axiom (Tril)<, is satisfied if F(Y) — F(Y,eq) is an isomorphism
for every Y, and for every field k the exponential characteristic of k is invertible in

F(Spec(k)) .

Proof. 1. We have TrgF(h) (

o) TrfTr,F(h) (D) degh - Trf = 3Z§chTrf-

2. Consider a triangle (3.2) of schemes of dimension zero with the hypotheses of
(Tril)<,. We can and do assume that Y is connected, and so our schemes are of
the form Y = Spec(A), X = Spec(k), and Y’ = Spec(L) where k is a field, A is a finite
local k-algebra, and L is the residue field of A.

Suppose for the moment that L/k is purely inseparable. Since p = char(k) is
invertible in F(k) and [L : k] is a power of p, the axiom (Deg) implies that F(k) —
F(L) is injective. Consider the pull-back along Spec(L) — Spec(k) and the resulting
diagram

Spec(L @ L) Spec(A ®i L)
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By Lemma A.1.1 applied to the original triangle and (CdB) applied to the pullback
squares along Spec(L) — Spec(k) it suffices to prove that Try = g:gjgf TrF(h) due to
the injectivity of F(k) — F(L).

Since purely inseparable extensions are universal monomorphisms [Gro60, 3.5] the
schemes in this diagram all have a unique point. Moreover, g now admits a section
s and since L = (A ®¢ L)yed = (L ®k L)req the morphism F(f) (resp. F(g)) is an
isomorphism (by hypothesis) with inverse F(hs) (resp. F(s)). We have

Trr = TrF(f)F(hs) (Dee) degf- F(hs) = degf- F(s)E(h)

2 desl 1 p(g)F(s)F(h) = S50 TrF(h).
Now we remove the assumption that L/k is purely inseparable. Let k C K C L
be a maximal separable subextension so that K/k is separable and L/K is purely
inseparable. Let B be the preimage of K under the canonical A — L. By Cohen’s
Structure Theorem for complete local rings [Mat70, 28.J], the morphism B — K
admits a section which is a k-morphism. Consequently, we have a commutative

diagram
Spec(L) Spec(A)
N
Spec(K)
AN
Spec(k)

and the result follows from the purely inseparable case.

3.3.2 PRESHEAVES WITH TRANSFERS

Definition 3.3.7. Suppose S is a noetherian scheme. A presheaf with transfers is an
additive presheaf on Cor(S) (Definition 2.5.11). The category of presheaves with transfers
is denoted PreShv(Cor(S)), and if A is a ring, then the category of presheaves of A-modules
with transfers is denoted PreShv(Cor(S), A).

If 7 is a Grothendieck topology on Sch(S) then a t sheaf with transfers is a presheaf
with transfers whose restriction to Sch(S) is a = sheaf. We have corresponding categories
Shv.(Cor(S)) and Shv.(Cor(S), A).

If S is a class of schemes in Sch(S) with corresponding full subcategory C in Cor(S), we
make the analogous definitions of a presheaf with transfers on S, presheaf of A-modules
on S, 7 sheaf with transfers on S, 7 sheaf of A-modules on S, with corresponding
categories PreShv(C), PreShv(C, A), Shv.(C), and Shv.(C, A).

Definition 3.3.8. For any object [X] € Cor(S) we denote the corresponding representable
presheaf with transfers by L(X). The cdh (resp. Nisnevich) sheafification of L(X) has a
canonical structures of transfers (Theorem 3.4.13, resp. [Voe0Ob, Lemma 3.1.6]) and we
denote this sheafification by Legn(X) (resp. Lyis(X)).
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Lemma 3.3.9. Fvery presheaf with transfers is a presheaf with traces that satisfies
(Tri1) and (Tri2).

Proof. A direct consequence of Proposition 2.5.8. 0

Remark 3.3.10. Notice that since the presheaf with traces induced by a presheaf with
transfers necessarily satisfies (Tril) and (Tri2), any presheaf with traces whose structure
is extendible to a structure of transfers necessarily satisfies these two properties.

3.4 COMPARISON OF CDH AND ¢dh COHOMOLOGY

The goal of this subsection is Theorem 3.4.17 which says that the ¢dh and cdh cohomol-
ogy of a cdh sheaf with transfers agree (Theorem 3.4.17). We pass by an equivalence
of the categories of cdh sheaves of Z,) modules with transfers and ¢dh sheaves of Zy)
modules with transfers (Corollary 3.4.12).

3.4.1 CECH COHOMOLOGY AND REFINABLE TOPOLOGIES

Most of the subsection is devoted to building a proof for Proposition 3.4.7 which will
be used to compare the cdh and ¢dh cohomology via Proposition 3.4.16. In the Propo-
sition 3.4.8 (which is independent from the rest of the subsection) we note some easily
proved facts that we will need later.

In this subsection we work with an essentially small category C which we will
assume to be equipped with fibre products.

Our interest in Cech cohomology stems from the following well know lemma.

Lemma 3.4.1 ([SGA72b, V.4.3] or [Mil80, IT1.2.11]). A presheaf F on C is acyclic for
a topology 7 if and only if its Cech cohomology groups vanish.

The following is another well-known lemma.

Lemma 3.4.2 ([SGAT72b, Exp. V 2.3.5], [Mil80, IT1.2.1], or [Art62, 1.4.3]). Let V/X, U/X
be two X-objects in C. Suppose that F is a presheaf on C. Then any two X morphisms V =
U induce the same morphism H"(U/X,F) — H"(V/X,F). Consequently, any X-morphism
V — U that admits an X-section V < U induces isomorphisms H*(U/X, F) = H"(V/X,F).

Proof. Suppose that f,,f, : V= U are the morphisms. We construct a simplicial ho-
motopy? between cosko(f,) and cosko(f,) in C. This induces a homotopy between the
associated morphisms of chain complexes (see [SGAT2b, Exp Vbis 3.0.2.3]). For each
¢ : [n] = [1] we define V¥* — U”*" to be the map whose ith component is f, . It is
easily checked that this is a homotopy Al1] X cosks(f,) — cosko(f,) between simplicial ob-
jects. Hence the associated morphisms of chain complexes are homotopic, and therefore
induce the same morphisms on cohomology.

2Gee [SGAT2b, Exp Vbis 3.0.2] for the definition of a simplicial homotopy that we use.
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3.4 Comparison of cdh and ¢dh cohomology

For the second statement, let f: V — U and s : U — V be X-morphisms such that
fs = idy. By functoriality, H*(f/X, F) is a left inverse to H"(s/X, F) for every n > o, and
so it suffices to show that H"(s/X, F) is a left inverse to H"(f/X, F) for every n > o. That
is, we wish to see that H"(sf/X, F) is the identity for every n > o. Applying the previous
result to the two morphisms sf,idy : V=2 V shows this. ]

Lemma 3.4.3. Let V5 U i) X be a pair of composable morphisms. Then there exists
a bisimplicial object W, such that the pth column is cosko(V*XPF) — U*x(p+1)) gngd
the qth row is cosko(VXU(‘H'l) — X). Notably, for any presheaf F we get a first quadrant
spectral sequence

Ef’q — -Hq(VXX(P+1)/UXX(P+1)7F) — I:IP+‘1(‘/'/)(7 F)

Proof. We define the following objects.

de,
W(P*l) (4=1) :fVXXP X eee X VREP — PRUD Lo VRUY
’ (Uxxp)  (U*xp) X X B
q times p times

The object W(,_,) 4, is also the limit of a diagram that has p x q copies of V with p
copies of U, and an X, and the (i,j)th V has a morphism towards the ith U and every
U and V has a morphism towards X (the morphisms being either g, f or fg). Presented
this way, there are obvious face Wy 4 — Wy g, Wy g — Wp 41, and degeneracy Wy, —
Wp—1,9 Wp.q —+ Wpq—, morphisms coming from the projections and diagonals (in the pth
and gth directions) and these are compatible in the sense that we get a bisimplicial
object.

We consider the double complex associated to the bicosimplicial abelian group ob-
tained by applying F to the W, ,. There are two associated spectral sequences, one
from the filtration of the total complex by rows and one from the filtration of the total
complex by columns. We start with the filtration for which the E, differentials are in
the p direction. The E, terms are H?(V*v(4t) /X F) and the E, differentials are induced
by the differentials in the q direction. Now every face morphism 0; of cosk,(V/U) has a
section, namely the degeneracy o;. So by Lemma 3.4.2 the morphisms induced by these
face morphisms HF (0;) : HP (cosko (V*U1™* — X)) — HP(cosko(V*V1 — X)) are all the same
isomorphism. Hence, the differentials d = Y"1 (—1)'HF(9;) are zero if q is odd and an
isomorphism if g is even. Consequently, on the E, sheet everything is zero except the
bottom row E;'? 22 HP(cosk,(V*U* — X)) and so we see that the cohomology of the total
complex is HP(cosk,(V*U* — X)) = HP(V/X, F). Considering the other filtration gives the
E, terms in the statement of the result. O

Definition 3.4.4. Let 7 be a Grothendieck pretopology and p, o two classes of T covers.
We say that 7 is LN refinable if every 7 cover admits a refinement of the form {Vj; A
U; = X} such that {V;; — U;} € p and {U; — X} € 0.
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3.4 Comparison of cdh and ¢dh cohomology

Remark 3.4.5. Suppose that 7 is a Grothendieck pretopology such that for every cover
{W; = X}ic1 the morphism IT;c;W; — X exists in the category that we are working with.

Then to show that 7 is ©-% refinable it is enough to consider r covers that contain a
single morphism, since {W; — X}y is refinable if and only if {II;e;W; — X} is.

Example 3.4.6. 1. In Lemma 3.2.3 we have seen that the pretopology generated by
SE/ .
Nis and fpst’ is PN Lofinable.

El
2. By definition the ¢dh pretopology is ﬁg “ refinable. Since Zariski covers are cdh
covers, we can even restrict to the class of fps¢’ covers of affine schemes.

3. The cdh pretopology is Iﬂfﬂ refinable where cdp is the class of cdh covers {U; — X}
such that each morphism U; — X is proper [MVWO06, 12.28] or [SV00a, 5.9] (the
proof they give works over any noetherian base scheme).

4. In “Homology of schemes I” [Voe96] Voevodsky shows that over noetherian ex-
cellent schemes the h pretopology is 24P refinable (and therefore LY refinable)
where ps is the class of proper, surjective morphisms. He also shows that the qfh

pretopology is git) refinable where fs is the class of finite surjective morphisms.
These facts are the basis for the comparison results in [SV96, Section 10], and
explicitly recognising this makes the proofs clearer.

5. The eh pretopology of [Gei06] is W L efinable (it is the same proof as for the cdh
pretopology mentioned above).

Proposition 3.4.7. Suppose that 7 is a Grothendieck pretopology, that p, o are Grothendieck
subpretopologies of T, and that T is LA refinable. Let F be a presheaf on C such that

o n>o

H"(U/X,F) = { F(X) n—o

for every p cover U— X. Then if F is o acyclic, it is also T acyclic.

Proof. Because vanishing of Cech cohomology in degrees n > o is equivalent to a presheaf
being acyclic (Lemma 3.4.1), it is sufficient to show that H%(X,F) = H*(X,F). To cal-

culate the r Cech cohomology we can restrict to covers of the form V NN i) X with
fa o cover and g a p cover. By our hypothesis, HI(V**? /UX*F F) = o for ¢ > o and
He(V*xP JU*xP F) = F(U**P). Hence the spectral sequence of Lemma 3.4.3 collapses to
give the isomorphism H"(U/X,F) = H*(V/X,F). Passing to the limit over covers of the
form V — U — X gives the result. O

The final proposition of this subsection is independent of the rest of this subsection.
It collects some elementary properties of refinable pretopologies that we will need later.

Proposition 3.4.8. Suppose that T is a Grothendieck pretopology, that p, o are Grothendieck
subpretopologies of t, and that T is LKA refinable.
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1. If F is p separated then E, is p separated (and hence t separated).
2. If F is a p sheaf then H%(—,F) = H3(—,F).

3. If F is a p sheaf that is o separated then F, = F.. In particular, if F is a p sheaf
and a o sheaf, then it is also a T sheaf.

Proof. 1. We have to show that F, — (F,), is a monomorphism. That is, for every
section s € F,(X) sent to zero in (F,),(X), we want to show that s is zero. For
every section s € F,(X) there is a o cover U — X such that s|y is in the image of
F — F,, and so it is enough to consider elements in the image of F — F,. It is clear
enough that an element s € F(X) is sent to zero in (F,), if and only if there exists
a p cover U — X and a o cover V — U such that s|y = o. But F is p separated, and
S0 s|y = o. Since U — X is a ¢ cover, this implies that s is zero in F,(X).

2. By our hypothesis, the Cech cohomology can be calculated using covers of the

form {V; LN U; i) X} such that f; € o and g; € p. For simplicity we assume that each
family has a single element. We have the following morphism of exact sequences

o —— H°(V/X, F) E(V) F(VxxV)
o F(U) E(V) E(VxyV)

and the morphism a can be inserted into the following morphism of short exact

S o —— H°(U/X, F) F(U) F(U xx U)
N
o —— H°(V/X,F) E(V) E(V xxV)

Since F is p separated, all vertical morphisms are monomorphims, and conse-
quently, the diagram is commutative, and a lifts to give an inverse to f. Taking
the limit over covers of this form gives the result.

3. This follows immediately from the previous part since for separated presheaves,

the zeroth Cech cohomology calculates the sheafification.
O

Remark 3.4.9. In the third part, we suspect that the assumption that F is ¢ is separated
is necessary if we want the result in this level of generality. If this necessity were not
the case, this chapter would be considerably shorter.

3.4.2 COMPARISON OF CDH AND ¢dh COHOMOLOGY

In this subsection as in Chapter 2 we work with Sch(S) the category of separated schemes

of finite type over a separated noetherian base scheme S. Lemma 3.4.10 is true in any
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category of schemes in which the U xx - -+ xx U exist.

Lemma 3.4.10. Suppose that F is a presheaf of Z ) modules with traces. Then for any
fpst’ morphism U — X of degree d the sequence

o — F(X) = F(U) - F(U xxU) — ...

is ezxact. In particular, F is an fpsl’ sheaf, F is fpst’ acyclic, and if F happened to be a
cdh sheaf of Zg) modules with traces, then it is a sheaf for the {dh pretopology.

Remark 3.4.11. The analogous result is true for any fps¢’ hypercover using (almost) the
same proof. This is due to the fact that in any v hypercover Uy — X the face morphisms
d; : U, — U,_, are t-covers as well as the canonical morphisms U+, — U, Xy, , Uy
induced by the identity djd; = d;_,d; for o <i<j<n+1.

In particular, this implies the Zy)-linear fps¢’ version of Theorem 3.4.13(1). The Z -
linear fps?’ version of Theorem 3.4.13(2) is trivial because every presheaf with transfers
is a presheaf with traces, and therefore if we are working Z,)-linearly, an fps?’ sheaf.

We also point out that if we are only interested in the o — F(X) — F(U) — F(U xx U)
part of this sequence, then the proof takes one line (cf. the last equation of the proof).

Proof. We will show that the sequence is exact. It then follows that F is fps¢’ acyclic
(Lemma 3.4.1), and that if F is also a cdh sheaf of Z(;) modules, then it is an ¢dh sheaf
(Proposition 3.4.8(3)).

If di : U — U*x("1) jg the projection that loses the kth coordinate, then the
squares

UXx(n+1) di U><xn
T
I]>< xn UXx(n—l)

i—1

are cartesian for all j < i. It follows from (CdB) that we have F(d;—,)Try = TrqF(d;) for
j <i. We claim that Try, is a chain homotopy between zero and d times the identity (in
degree zero we take Tr,). We have

n-+1 n-+1

Trg, Y (—1)'F(di) = Trg,F(d,) + Z(—l)"y(di_l)ndo —d-id— Z(—l)fp(d,.)ndo

i—o
in degrees n =1,2,3,.... In degree zero we have
Try, (F(do) — E(d,)) = d - id — Try,F(d,) = d - id — F(f) Try.
Since d - id is an isomorphism, the complex is acyclic. O

Corollary 3.4.12. The canonical functor Shvegy(Cor(S), Zs)) — Shvean(Cor(S), Z(y)) is
an equivalence.

Proof. Follows immediately from Lemma 3.3.9 and Lemma 3.4.10. O
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We recall the following theorem from [CDO09].
Theorem 3.4.13 ([CD09]).

1. [CD09, Definition 9.3.2], [CD09, Corollary 9.3.16], [CD09, Proposition 9.4.8]. For
any cdh hypercover Uy — X the associated sequence of cdh sheaves with transfers
s exact
e Lcdh(uz) — Lean (Z/fl) — Lean (Z/{o) — Lcdh(X) — 0

2. [CD09, Lemma 9.3.7] The inclusion Shvgn(Cor(S)) — PShv(Cor(S)) admits a left
adjoint a : PShv(Cor(S)) — Shvean(Cor(S)) such that the diagram

PShv(Cor(S)) —2> Shvegn(Cor(S))

Oubl iOub

PShv(Sch(S)) o Shvean(Sch(S))
—Jcdh

commutes where Oub are the forgetful functors, i.e., precomposition with the graph
functor Sch(S) — Cor(S).

Lemma 3.4.14. The category Shvean(Cor(S)) is a Grothendieck abelian category and
hence has enough injectives.

Proof. Every category of presheaves on an essentially small category is a Grothendieck
abelian category. Moreover, if o7 is a Grothendieck abelian category and R : # — o7 is
a fully faithful functor with a left adjoint then Z is Grothendieck abelian. Grothendieck
abelian categories have enough injectives. O

Proposition 3.4.15 ([Voe00b, 3.1.8]). Let X € Sch(S) and F a cdh sheaf with transfers.
Then for any n there is a canonical isomorphism

Extgy, . (Cor(s)) (Lean(X), F) = Heg, (X, F).

Proof. We follow the proof of [Voe00b, 3.1.8]. Let F — I* be an injective resolution of
F in Shv.gy(Cor(S)). The I" are not necessarily injective in Shvg,(Sch(S)) but if they are
acyclic then we can use them to calculate the cohomology groups on the right. It is
enough to show that their Cech cohomology vanishes in positive degrees (Lemma 3.4.1).
This follows immediately from the adjunction and the exact sequence in Theorem 3.4.13
and Yoneda. O

Proposition 3.4.16. Let X € Sch(S) and F a sheaf of Zyy modules for the £dh pretopology
equipped with a structure of transfers. Then for any n there is a canonical isomorphism

B, (Cor(s) 2 ) (Ltan(X), F) = Higy (X, F).

Proof. As in the Proposition 3.4.15 we need to show that if I is an injective object
of Shvggn(Cor(S)) then it is ¢dh acyclic. After the equivalence (Corollary 3.4.12) and
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Proposition 3.4.15 it is cdh acyclic. It has transfers so the higher Cech cohomology of
every fps¢’ cover is zero (Lemma 3.4.10). Hence (Proposition 3.4.7) it is ¢dh acyclic. [

Theorem 3.4.17. Let F be a cdh sheaf of Zy) modules with transfers. Then the canonical
morphism H'y, (—, F) — Hj,, (=, F) is an isomorphism. Moreover, these functors have a
canonical structure of presheaves with transfers.

Proof. The first statement is a direct consequence of Proposition 3.4.15, Proposition 3.4.16,
and Corollary 3.4.12. For the second, recall the isomorphism

Extgy, . (cor(s)) (Ledn(X), F) = Hiy, (X, F)

and note that Ext”

o dh(cOr(s))(Lcdh(_>7F) is functorial with respect to transfers. O

3.5 THE COMPLETELY DECOMPOSED DISCRETE TOPOLOGY

The goal of this section is to prove a criterion for a structure of traces on F to pass
to a structure of traces on the associated cdh separated presheaf im(F — F.g,) (see
Proposition 3.5.6). To obtain this criterion, we introduce the completely decomposed
discrete topology (Definition 3.5.1), which we will abbreviate to cdd topology. We
show first that a structure of traces on F passes to the sheafification F.4; for this cdd
topology (Theorem 3.5.5). In a further subsection we also show that for a presheaf
that is separated for the cdd topology, the properties (Tril) and (Tri2) are implied by
(Tril)<, (Proposition 3.5.7).

Definition 3.5.1. The completely decomposed discrete pretopology or cdd pretopology
has as covers families of morphisms (not necessarily of finite type) {U; — X} such that
for each point x € X there exists an i and a point u € U; over x such that [k(u) : k(x)] = 1.

Remark 3.5.2. The name is motivated by two ideas. Firstly that in the “discrete”
pretopology every jointly surjective family of morphisms should be a cover. Secondly,
adding the adjective “completely decomposed” to a pretopology should add the require-
ment that every cover of the spectrum of a field should have a section.

We collect here some easy properties of the cdd pretopology. We assume that we are
using a category of schemes such that for every scheme X and every point x € X the
morphism x — X is also in our category.

Lemma 3.5.3. 1. For every scheme X, every cover for the cdd pretopology admits a
refinement by the cover {x — X}ex.

2. IfF is a presheaf and F.44 the associated cdd sheaf, there is a canonical isomorphism
of presheaves Feqq(X) = [ cx F(x).

3. A presheaf is separated for the cdd topology if and only if for every scheme X the
morphism F(X) — [[,ex F(x) is injective.
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3.5 The completely decomposed discrete topology

4. A presheaf is a cdd sheaf if and only if for every scheme X the morphism F(X) —
[I.cx F(x) is an isomorphism.

5. If F is fpst' separated on schemes of dimension zero, then F.4y is (dh separated.

Remark 3.5.4. The cdd pretopology arises quite naturally for us in the following way.
The two main classes of presheaves with traces that we are interested in studying -
homotopy invariant Nisnevich sheaves with transfers, and the Nisnevich sheafification
of algebraic K-theory - both satisfy a Gersten exact sequence for regular schemes (in the
appropriate categories of schemes). Notably, for any such connected regular scheme X
with generic point n we have F(X) C F(n). We do not hope to have this property for
non-regular schemes, but if F is separated for some topology 7, and a non-regular scheme
X admits a regular t-cover X’ — X, then we will have F(X) C F(X') C [[ F(n,) where the
n, are the generic points of X'. In case we assume resolution of singularities and use
7 = cdh, this line of reasoning leads to F(X) C []..xF(x). That is, F(X) C Fa(X). A
similar phenomena occurs if we have traces, are Z-linear, and use the {dh-pretopology.

3.5.1 TRACES ON F 4y

In this subsection we show that a structure of traces on a presheaf F passes to a canonical
structure of traces on the associated cdd sheaf F44 (Theorem 3.5.5).

In this subsection we work with a category of schemes that is closed under fibre
products, and such that for every scheme X in the category, and every point x of X, the
morphism x — X is also in the category.

Theorem 3.5.5. Suppose that F is a presheaf with traces that satisfies (Tril)<,. Then
there is a unique structure of traces on Fegq such that F — F.g is a morphism of
presheaves with traces. This structure also satisfies (Tril)<,.

Proof. We will use the canonical isomorphisms F.4q(X) = [],.x F(x) to take J] .y F(x)
as the definition of F.44(X). Let f: Y — X be a finite flat surjective morphism. We define
a morphism

T [[FO) — [ E). (s,) = (t)

yey x€X

where

te = Z length O, xryTrg (sy)

yExXXY

and we have used f], , for the induced morphisms y — x. We claim that these morphisms
satisfy (Deg), (CdB), are functorial, and are compatible with the morphism F — F4.

The degree formula. The axiom (Deg) is straightforward and needs only to be checked
in the case where X has a unique reduced point x. In this case X = Spec(k) and Y = Spec(A)
where k is a field and A is a finite k-algebra we have A = EBI-(’)Y% where the sum is over
the points y, of Y. We can express degf as

degf = Z dimy Oy, (A1) Z length Oy, dimy k(y;) = Z length Oy, degfl, /.

;€Y ;€Y ;€Y
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3.5 The completely decomposed discrete topology

where f], . is still the induced morphism y — x. We then have

Trf*Feaa(f) = Z length Oy, Tr(g,, ) F(fly/x)
yi€Y

= Z length Oy, deg(fl,/x) - ids

yi€Y
= degf - id,.

The change of base formula. Now consider a cartesian square (2.10). If W is a point
of X, say W = x € X, then we have (CdB) by our definition of Tr}dd and Trgdd. To check
that two sections in F.44(W) agree it is sufficient to check them on each point w € W
and so to prove (CdB) in general, it suffices to consider the case when W is an integral
scheme of dimension zero. In this case, W — X factors through the inclusion of a reduced
point of X, and so we reduce to the case where W and X are both integral dimension zero
schemes. Write W =w and X = x. By additivity we can assume that Y is connected.

Suppose for the moment that Y is integral and write Y = y. Let z; be the points of
y Xz w. To have (CdB) with these assumptions we must show that

F(p)Trs = Z length OyXxW,ziT”glzi/wF(‘I‘z,-/y)'

Zi€y X oW

This follows from (CdB), (Fon), and applying (Tril)<, to the triangles obtained from
Zi 7Y XgW — w.

Now we return to the case where Y is not necessarily reduced but has a unique point
y. We can use (Tril)<, on the triangle y — Y — «, and (CdB) on the cartesian square

having lower row y — «, and so it suffices to show that T rédd = length Oy,yTrfldchdd(t)

where ( and h are the morphisms h : y X, w S Y Xew 2w Consulting our definition of
the Tr¥  we see that we must show that for each point z € Y x, w we have

length Oy, . = length Oy, length Oy 4y -

This follows from Lemma A.1.3.

Functoriality. We need to show that if W Ly i) x are finite flat surjective morphisms,
and x is a integral dimension zero scheme, then

Z length Oy, = Zlength Oy, Z length Oy, w0

weWw yeY wEYyXyW

Clearly it suffices to consider the case when Y and W are connected. The result follows
now from Lemma A.1.2.

Compatibility with F — Feq. By (CdB) it suffices to consider morphisms Y — x where
x is a integral scheme of dimension zero. We can also assume that Y is connected by
additivity. Clearly F — F.44 is compatible with traces when Y is also reduced. We have
assumed that F satisfies (Tril) on dimension zero schemes and we have already noticed
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3.5 The completely decomposed discrete topology

that the trace morphisms we have defined on F.44 satisfy (Tril), so we are done. ]

Proposition 3.5.6. Suppose that F is a presheaf with traces that satisfies (Tril)<, and
suppose that Fegp, — Fegq is a monomorphism. Then im(F — F.g) has a unique structure
of traces such that F — im(F — F.g3) is a morphism of presheaves with traces.

Proof. The kernel K of the epimorphism of presheaves F(X) — im(F — F.g)(X) is K(X) =
{s € F(X) such that s|y = o for some cdh cover X' — X}. It is enough to show that
the trace morphisms of F preserve K. After Theorem 3.5.5, for any finite flat surjective
morphism f: Y — X we have a commutative diagram

K(Y) F(Y) Feaa(Y)

| l

F(X) — im(F — Fegn)(X) — Fean(X) — Foaa(X)
and so the result follows from the injectivity of F.g,(X) — Fega(X). O

3.5.2 FOR CDD SEPARATED PRESHEAVES (TRI)<, IMPLIES (TRI)<,

In this section we show the following proposition. As in the proof of Theorem 3.5.5 we
end up chasing multiplicities around and this is done in Lemma A.1.4.

In this subsection we continue to work with a category of schemes that is closed under
fibre products, and such that for every scheme X in the category, and every point x of
X, the morphism x — X is also in the category.

Proposition 3.5.7. Suppose that F is a presheaf with traces such that F — F.4q is a
monomorphism of presheaves. If F satisfies (Tril)<, then it also satisfies (Tril)<, for
all n. Moreover, for such a presheaf (Tri2)<y is always satisfied for all n.

Proof. Recall that (Tri2)<, is always satisfied (Lemma 3.3.6). We will show that (Tril)<,
implies (Tril)<, (resp. (Tri2)<, implies (Tri2)<,) under the assumption that the mor-
phism F — F.44 is a monomorphism. Since F — F.44 is a monomorphism, it is sufficient to
show that for every (not necessarily closed) point  : x — X of X and every triangle (3.2)
satisfying the hypotheses of (Tril) (vesp. (Tri2)) we have F(1)F(f) = F(:) > mTrg F(hy)
(resp. ‘;Z%;F(z)Trf = F(1)TrF(h)) . By (CdB) it is enough to show that we have

Tr(fxxx) = kaTr(gkxxx)F(hk Xx x) (resp. lcileeif‘Tr(fXXx) = Tr(gxxx)F(h Xx x)) for every

point & € X. Furthermore, since everything is of dimension zero now, by additivity it
suffices to consider the restrictions of these morphisms to each point y € Y over x. Let
¥y € Y be the points of the kth connected component of Y’ that lie over y, let W be
the connected component of Y xx x containing y and Wy, the connected component of
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3.5 The completely decomposed discrete topology

Y’ xx x containing y,, so we have the following commutative diagrams.
’7/

. 5

u %

Yi y
t’i l‘
w CYxx«x

The calculation for (Tril) is

Y/XX;XJ:_D

(Tri1) <,
0 == length Oy yx,y Tro.F(1)

® length (’)yXXx,yTr(pm/F(ml)

= length OyXXx’yTry,/F(/)F(n)

(+£)
= Z my Z length Oy sy, Tr, F({')F(n)
k 0

:S kaZTrY

where in the step (*) we have used the hypothesis of (Tril) that Y’ is the disjoint union of
the integral components of Y (so ' is an isomorphism), and step (**) is the Lemma A.1.4.
Notice that the hypotheses of Lemma A.1.4 include the two cases of (Tril) and (Tri2)
(see Remark A.1.5). The calculation for (Tri2) is similar (there is no k because Y is
connected in the hypotheses of (Tri2)).

Tr,

Tri1) <,
d-Tr, ( :)S dlength Oy yxy Tro F(1)

'S length Oy gy, [£(7)) : k()] TroiF(1)
l
Trn.

Z length Oy yZThpm’F(’T 1)
0

= Z length Oy yu y, Tr, F(/'n)
¢

Tri1) <,
== ZTrYF(’?)
L

Again, in the step (**) we have used Lemma A.1.4. O
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3.6 Gersten presheaves

3.6 (GERSTEN PRESHEAVES

We have two goals in this section. The first is to find a condition on a presheaf of Z )
modules with traces which will imply that Fgg, — Fo4q is injective. We are interested
in this because if Fyg, — F.44 is injective for such a presheaf F then F., — Fygp, is an
isomorphism. Our second goal is to promote the structure of traces of F to a structure
of traces on Fg,.

3.6.1 COMPARISON OF THE CDH AND fdh SHEAFIFICATIONS

In this subsection we continue to work with a category of schemes that is closed under
fibre products, and such that for every scheme X in the category, and every point x of
X, the morphism x — X is also in the category. We add the hypothesis that the cdh and
£dh pretopologies are defined on our category, and that every ¢dh cover is refinable by a
regular £dh cover.

Lemma 3.6.1. Suppose that F is a presheaf of Z, modules with traces that satisfies
(Tril )<, and for every regular scheme X the morphism F(X) — [ [ cxw F(x) is injective.
Then the canonical morphism Fpg, — Fegq 1S a monomorphism.

Remark 3.6.2. The canonical morphism Fpg — F.44 is the one obtained from the
observation that F.44 is an £dh sheaf. This is so because the cdd topology is finer than
the cdh topology, and F44 has a structure of traces (Theorem 3.5.5, Lemma 3.4.10).

Proof. The injectivity is straightforward: for any scheme X and section s € ker(Fgg,(X) —
F.44(X)), there exists an ¢dh cover X’ — X such that s|x is in the image of F(X') —
Fugn(X'). By hypothesis on our category of schemes (in practice this we be true via
Corollary 3.2.13) we can assume that X’ is regular. In this case, by hypothesis, the
morphism F(X') = [],cxe F(x) is injective and so s|y = o, hence s = o. O

Corollary 3.6.3. Suppose that F is a presheaf of Zy modules with traces and for every
regular scheme X the morphism F(X) — [].cx) F(x) is injective. Then Fegy, — Feap is an
isomorphism.

Proof. The presheaf F is fpst’ separated due to the structure of traces (Lemma 3.4.10)
and so after Proposition 3.4.8(1) F.g, is fpsl’ separated as well. That is, F.gn — Fogp is
a monomorphism of presheaves. We have just seen (Lemma 3.6.1) that Fpg, — F.gq is
injective, and hence F.g, — F.4q4 is injective. It now follows from Proposition 3.5.6 that
its associated cdh separated presheaf im(F — F.g,) has a structure of traces compatible
with that of F. Hence, im(F — F.g,) is an fpsf’ sheaf (Lemma 3.4.10) and therefore Fg
is as well (Proposition 3.4.8(3)). That is, the canonical morphism F., — Fggy, is an
isomorphism.

(i) has traces  (v) has traces

F——im(F — F.g) ch;ti

(vi) iso (iii) monic
, Fean Feqq

(iv) monic
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3.6 Gersten presheaves

The above diagram gives a summary of the argument: (i) implies (ii); then (ii) + (iii)
implies (iv) which implies (v) which implies (vi). O

3.6.2 GERSTEN PRESHEAVES

In this subsection we introduce the notion of a Gersten presheaf (Definition 3.6.4). This
is a property satisfied by homotopy invariant Nisnevich sheaves with transfers F on the
category Sm(k) of separated smooth schemes of finite type with k a perfect field [Voe0Oa,
4.37]. Tt conjecturally satisfied by the Zariski sheafification of algebraic K-theory for all
regular schemes [Qui73, 5.10].

In the previous section exactness of o — F(X) — @,y F(x) allowed us to prove
that Fpg, — Fcgq is a monomorphism. Having exactness of F(X) — @, y@F(x) —
@xEX(,>F_1(x) will allow us to recognise the image of Fpg, — F.qq4 and enable us to pass a
structure of traces on F to a structure of traces on F., (Proposition 3.6.12).

The following definition is inspired by Gersten’s conjecture in K-theory [Qui73, 5.10].
Recall that for a scheme X we denote the set of points of codimension n by X™.

Definition 3.6.4. Let F be a presheaf on a category of schemes such that for every
scheme X, and every point x € X of codimension < 1 the morphism x — X is also in the
category. We will call F a Gersten presheaf if it is equipped with

1. an abelian group F_,(x) for every scheme of dimension zero,

2. a morphism 0, ) : F(xo) — F-,(x,) for every pair (x,,) € x©) x x0) with
x € {xo},

such that for each regular scheme X the following sequence is exact

o FX) = [ Fewo) "= ] Foalw).

Xo EX(°) X, EX(I)

If 7 is a Grothendieck topology then a T Gersten sheaf is just a Gersten presheaf that
is also a 7 sheaf.

Remark 3.6.5. The notation F_,(x) is very suggestive but at the moment we haven’t
asked for anything more than these be a class of groups. We don’t ask that they are
functorial, or that they are related to F in any way other than via the J(, 4,)-

Example 3.6.6. 1. Homotopy invariant Nisnevich sheaves with transfers are Ger-
sten presheaves with traces on the category of separated schemes essentially of
finite type over a perfect field [Voe0Oa, 4.37].

2. Gersten’s conjecture ([Qui73, 5.10] or [Ger73]) implies that the Zariski sheafifica-
tion of algebraic K-theory is a Gersten presheaf for all regular schemes. This is
known to be true in certain cases, including the case of equicharacteristic schemes
[Pan03].
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3.6 Gersten presheaves

Lemma 3.6.7. Consider a triangle (3.2) such that X is reqular and let F be a Gersten
presheaf. Then (Tri2) is satisfied. If moreover (Tril)<, is satisfied then (Tril)<y is
satisfied too, for all n.

Proof. The pullback along the generic point of X is injective, and so we reduce to the
dimension zero case, which is Lemma 3.3.6. O

3.6.3 NISNEVICH GERSTEN SHEAVES WITH TRACES ON REGULAR CURVES

In this subsection we show that for Nisnevich Gersten sheaves of Z) modules with
traces, regular schemes of dimension < 1 behave like points for the ¢dh topology, in the
sense that F — Fygy, is an isomorphism on such schemes (Proposition 3.6.11). We use
this in the proof of Proposition 3.6.12 to recognise the image of Fyg; — F44.

In this subsection we denote by Sch(S) the category of separated schemes essentially
of finite type over a noetherian quasi-excellent base S.

We begin with three lemmata.

Lemma 3.6.8. If X is an integral noetherian scheme then every fpst’ cover has a

refinement of the form E>i> where f is a blowup with nowhere dense centre and g is fpst’
with an integral source.

Proof. Let f: U— X be an fpsf’ cover with X integral. If X is zero dimensional then it is
Spec(k) with k a field and U = Spec(A) with A a finite k algebra. In particular, if m; are
the primes of A then degf = > [A/m; : k] length A,,,. Since ¢ doesn’t divide degf, there is
some i for which it doesn’t divide [A/m; : k] length A,,, and hence doesn’t divide [A/m; : k].
We take Spec(A/m;) as our refinement.

If X is of dimension greater than zero, then by the platification theorem (Theo-
rem 2.2.16) there is a blowup with nowhere dense centre X — X such that the integral
components of the proper transform (which is the pull-back in this case due to f being
flat) are flat over X. By the dimension zero case, there is one of them for which the
generic point is fps¢’ over the generic point of X, and so this integral component gives
us the desired refinement. O

Lemma 3.6.9. Suppose X is a reqular noetherian quasi-excellent scheme of dimension
one and U — X is a morphism which is a composition of Nisnevich and fpst’ covers.
Then there exists a refinement of the form V, — Vo, — X such that V, — X is Nisnevich,
V, = V, is fpsl’, the schemes V, and V, are regular, and each integral component of V,
has a unique integral component of V, over it.

Proof. Tt suffices to consider separately the cases where U — X is either fps¢’ or Nisnevich.
In the Nisnevich case U is already regular ([SGA03, 1.9.2]) so only the fpst’ case remains.

By Lemma 3.6.8 we can assume that U is integral.® Since X is quasi-excellent, the
normalisation U — U is a finite morphism [Mat70, Theorem 78]. Since X is regular of
dimension one, flatness is equivalent to every generic point being sent to a generic point

3Since X is regular of dimension one, every local ring is either a field or a discrete valuation ring i.e.,
a principal ideal domain, and hence, every blowup is trivial.
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and so U — X is finite, flat, surjective, and of degree prime to ¢ (the latter because it is
true generically, and the morphism is finite and flat). O

Lemma 3.6.10. Let F be a Gersten presheaf of Zy modules with traces on Sch(S) that
satisfies (Tril)<o, let Y — X be a finite flat surjective morphism of constant degree prime

to £ between reqular integral schemes of dimension one. Let Y/>_<\X/Y be the normalisation
of Y xx Y. Then the sequence

o — F(X) = F(Y) — F(Y xx Y)

is exact, where the last morphism is the difference of the morphisms induced by the two
projections.

Proof. We already know that F(X) — F(Y) is injective, so it remains to show exactness
at Y. Let Y; be the integral components of Y xx Y and Y; their normalisations. Let
p,p, - YXxY — Y be the projections, let n : YxxY — Y xx Y be the canonical

morphism, n; : ¥; = Y xx Y and PPy - Y; — Y be the induced morphisms, and let m; be
the multiplicities of the generic point of Y; in ¥ xx Y. By Lemma 3.6.7 we have (Tril)
and (Tri2) for triangles with base Y. Moreover, since Y is regular of dimension one, and
Y; are integral, the morphisms Y; — Y are flat (hence, finite flat surjective).

Y xx Y = I1Y;

Y xXxY 2 Y

Zpil

Then if s € ker(F(Y) = F(Y xx Y)) we have
AFOT(s) E 3T, Flp,)s
2 5™ 2 (T, F(ng) E(p, )s
= Z 3miTr, F(p,,)s
LN 1miTry, Fp,)s
— Z 3miTr, F(n;)F(p,)s

(Trix)
=" 3Tr, F(p,)s

(Deg)
="5

So s is in the image of F(X) — F(Y). O
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Proposition 3.6.11. Suppose F is a Nisnevich Gersten sheaf of Z gy modules with traces
on Sch(S) that satisfies (Tril)<o, and X is a regular noetherian scheme of dimension < 1.
Then F(X) — Fygn(X) is an isomorphism.

Proof. We claim that for X regular of dimension < 1 every proper cdh cover X' — X
splits. Indeed, choose a lifting n' € X’ of the generic point 5 of X, consider its closure
7’ and normalise this. The resulting refinement (')~ — X is a birational proper mor-
phism between regular schemes noetherian of dimension < 1. Consequently, it is an

isomorphism.

Hence, every ¢dh cover is refinable by a cover of the form V NN i) X where fis a

Nisnevich cover and g is an fpsf’ cover (see Example 3.4.6(3) for the cdh part). Since
F is separated with respect to these classes of covers, the morphism F(X) — Fgg,(X) is
injective.

For each s € Fyg,(X) there exists a cover for which the restriction of s is in the image of
F — Fyy, and we can assume that it has the form mentioned above. We can even assume
that V and U are regular schemes of dimension one, and that each integral component
of U has a unique integral component of V over it (Lemma 3.6.9). Suppose that t € F(V)
is a lifting of s|y. The section s|y is in the kernel of Fyg,(V) — ngh(V/;]/V), but we have
just seen that F(V/X\U/V) — ngh(V/x\U/V) is injective, and so t lifts to a section ¢ € F(U)
(Lemma 3.6.10), which clearly, is a lift of s|y € Fggp(U). The same argument lifts ¢ to a
section of F(X): the section s|y is in the kernel of Fyg,(U) — Fyg,(U x x U) and the scheme
U xx U are regular of dimension one, and so since F — Fyg;, is injective on such schemes,
¢ is in the kernel of F(U) — F(U xx U); since F is a Nisnevich sheaf, we find a section
' € F(X) sent to s. O

3.6.4 TRACES ON F.g,

In this subsection we continue to denote by Sch(S) the category of separated schemes
essentially of finite type over a noetherian quasi-excellent base S.

Proposition 3.6.12. Suppose that F is a Nisnevich Gersten sheaf of Zyy modules with
traces on Sch(S) such that (Tril)<, is satisfied. Then there is a unique structure of
traces on F g, such that F — F.g, is a morphism of presheaves with traces. This structure
satisfies (Tril) and (Tri2).

Moreover, if X is regular, then the canonical morphism F(X) — F.gn(X) is an isomor-
phism.

Proof. Recall that with these hypotheses the canonical morphism F.j, — Fyg, is an iso-
morphism (Corollary 3.6.3), and the canonical morphism Fyg, — F,44 is @ monomorphism
(Lemma 3.6.1). The plan is to find a criterion for a section in F44(X) to be in the image
of Fygn — Fc4q, and show that the trace morphisms of F 4y (Theorem 3.5.5) preserve this
criterion. Our criterion also shows that F(X) = F.4,(X) for X regular. This proves the
proposition.

For each scheme X let rs F(X) be the set of sections s € F44(X) such that
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for every morphism i : T — X from a semi-local regular scheme of dimension one
there exists a section sy € F(T) such that s agrees with st in F44(T).

F(T)

|

Feqa(X) — Feqa(T)

We make and prove the following claims.

For every scheme X, the image of Fygn(X) is contained in rs F(X) and the groups rs F(X)
form a subpresheaf of F.4q. The first statement follows directly from the square on the
left.

FQ‘[X) - Fédh(T) 3'211 F(T) Pcdl(x)\F(f—')
Feaa(X) Feaa(T) Feqa(Y) —> Faa(T)

For the second, suppose that Y — X is a morphism and T is a regular scheme of dimension
one and T — Y a morphism. Then the commutativity of the diagram on the right implies
the second statement.

For X regular, rsF(X) is precisely the image of F(X) (and hence Fyg(X) as well) in
F,44(X)). Consider now a section (sy) € rsF(X) (where s, € F(x)) that we want to lift.
For every point of codimension one x € X, the localisation Ox, is a discrete valuation
ring. Let soy, be the section of F(Spec(Ox,)) obtained via the criterion of rs F(X) and
let n be the generic point of Ox,. By the exact sequence

o — F(Spec(Ox.x)) — F(n) " F_, (x)

since s, lifts we have 0, s = o. This is true for every pair (n,%) € x©) x X and so by
the exact sequence
o= FX)— [] Fo) = [] Fl)

xGX(") xEX(l)

the section (s),cx( lifts to a section s € F(X) such that s|;, = s, for each generic point.
We claim that s|, = s, for all points of X and we prove it by induction on the codimension.

Suppose that it is true for points of codimension less than n and let x be a point
of codimension n. Then as a result of the regularity of the local ring Ox, there exists
a discrete valuation ring R and a morphism Spec(R) — X such that the image of the
closed point is x and the image of the open point is a point y of codimension n — 1 (in
fact due to the existence of a regular sequence in Ox, we can choose R such that the
morphism induces an isomorphism on residue fields). By the criterion of rs F there is
a section sg € F(Spec(R)) whose restrictions to y and x agree with s, and s,. Hence,
the restriction of s|g,.cr) to y agrees with sg[,. But F(Spec(R)) — F(y) is injective by
the Gersten sequence, and so s|gp(r) = sr- But this implies that s|, = sg|. and by
construction this is s,.
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3.6 Gersten presheaves

At this point we have shown F(X) & F.4,(X) for regular X, since F(X) — rsF(X) is
injective by the Gersten sequence.

For X any scheme, rsF(X) is precisely the image of Fegn(X) in F44(X)). Let X be a
scheme and X’ — X an fdh cover with X’ regular, and X" — X’ xx X' an £dh cover with
X" regular (Corollary 3.2.13). We have the following diagram.

Fyan(X) rs F(X)

] |

ker(Fpan(X') — Fugn(X")) — ker(rs F(X') — rs F(X"))

We have seen that Fyg — rsF is an isomorphism on regular schemes and so the lower
horizontal morphism in the square is an isomorphism. So for any section s in rs F(X)
there exists a section t in Fyg,(X) which agrees with s in rs F(X). Now rs F is a subpresheaf
of F.44 and F,44 is ¢dh separated (Remark 3.6.2) and hence rs F is ¢dh separated so t agrees
with s in rs F(X).

The trace morphisms on F.4q preserve the subgroups rs F(X). It suffices to show that
for f: Y — X a finite flat surjective morphism of schemes and s € rs F(Y) C F.44(Y) the
image Tr(s) € Feqa(X) is in the subgroup rs F(X) C Fc4q(X). Let T be a regular integral
semi-local scheme of dimension one and T — X a morphism. We must find a section in
F(T) that agrees with Tr(s) in F4q(T).

Let T/><\X/Y be the normalisation of T xx Y, let T; — T Xx Y be the inclusions of the
integral components of T xx Y. Since T is regular and integral of dimension one, the
induced morphisms T; — T are finite flat surjective. Let T; be their normalisations and

:T; — T xx Y and fi T; — T the canonical morphisms. Since F,yy satisfies (Tril) and
(Tr12) (Proposition 3.5.7) we have

Trrxyf = Z m Tty Foga(n;).

Now consider the following diagram.

F(T xx Y)

AN

N\ Peaa(T xx Y) < Feaa(T xx Y) <— Feaa(Y)

AN

F(T) N

.

Feaa(T)

Feaa(X)

Since s € rsF(Y), we can find a section () € @F(T;) = F(T/X\X/Y) that agrees with s
in Fogq(T xx Y). Write (s;) € @Feqq(Ti) = Feqa(T xx Y) for the image of s in this group.
Due to (Tril) and (Tri2) for F.44 the image of s in F.44(T) is equal to the image of (m;s;)
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3.7 From traces to transfers

in Foq(T). Hence, > m;Try(t;) € F(T) is a section which agrees with the image of s in
chd(T) : O

3.7 FROM TRACES TO TRANSFERS

3.7.1 STATEMENT AND STRATEGY

In this section Sch(S) denotes the category of separated schemes of finite type over a
separated noetherian base S§. This section is independent from the rest of the chapter;
we only use properties of the category Cor(S) (and Theorem 3.4.13 which just cites a
result from [CD09]).

In this section we prove the following theorem.

Theorem 3.7.1. Consider the functor Shv.y(Cor(S)) — PreShvTra(Sch(S)) that takes a
cdh sheaf with transfers to its corresponding presheaf with traces (Lemma 3.3.9). This

functor is fully faithful, and its essential image is the full subcategory of cdh sheaves
with traces which satisfy (Tril) and (Tri2).

The idea is that up to cdh refinement, each correspondence* a € homc,,(s) ([X], [Y]) is
of the following form.

Definition 3.7.2. We say that a correspondence a € homc,,(s)([X], [Y]) is of the form
(FN) if

(FN) there exists integers n;, and closed integral subschemes Z; of X x Y, such that the
morphisms g; : Z; — X induced by the first projection are flat and finite, and

a=> nlf]olgl
where f; : Z; — Y are the morphisms induced by the second projection.

In this section the brackets [—| and the composition sign o will quickly become tire-
some and so we omit them. So for example, if p : X — Y is a morphism of schemes and
a € homc,,(s)([Y],[W]) a correspondence, instead of a o [p] € homc,,s)([X], [W]) we will
write ap € homg,,(s) (X, W). We will also use the notation a : Xe— Y to indicate that
a € homg,,(s) (X, Y).

The strategy is the following.

1. The definition:

(a) (Definition 3.7.3) If a : Xe— Y is of the form (FN) then we define F(a) :
E(Y) — E(X) as Y niTrg F(f,).
(b) (Lemma 3.7.6) In general, for a correspondence a : Xe— Y we define F(a) :

F(Y) — F(X) as the unique morphism such that: for every cdh coverp : X’ — X
such that ap is of the form (FN) we have F(p)F(a) = F(ap).

4A correspondence is by definition a morphism in the category Cor(S). That is, an element of cegui(X X
Y/X, o) for some schemes X,Y € Sch(S) (cf. Definition 2.5.11).
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3.7 From traces to transfers

2. We then need to show (Proposition 3.7.13): If X oy oﬂ—> Z is a pair of composable
correspondences then F(a)F(B) = F(Ba).

3. To do this, by the definition we need to put B, a and Ba in the form (FN). Once
we have the appropriate commutative diagram in the category of correspondences
(Diagram 3.3), we show F(a)F(B) = F(Ba) using the properties:

(a) (Lemma 3.7.7) For a : Xe— Y a correspondence and f: X' — X any morphism
of schemes, we have F(f)F(a) = F(af).

(b) (Lemma 3.7.8) For a : Xe— Y a correspondence of the form (FN) and g: Y —
Y’ a morphism of schemes, we have F(a)F(g) = F(ga).

(c) (Lemma 3.7.11) If X oy oﬂ—> Z is a pair of composable correspondences
such that a, B, Ba, and I'ga (see Definition 3.7.9) are of the form (FN) then

F(a)F(B) = F(pa).

4. (Lemma 3.7.14) Showing fully faithfulness is a straightforward reduction to corre-
spondences of the form (FN).

3.7.2 PROOF

Definition 3.7.3. Suppose that F is a presheaf with traces and a : Xe— Y is a corre-
spondence of the form (FN). We define F(a) as ) nTrg F(f,).

Lemma 3.7.4. For every correspondence a : Xe— Y there exists a cdh covering p :
X' — X such that ap is of the form (FN). Moreover, if a; : Xe— Y; is a finite family of
correspondences, we can find a cdh cover p : X' — X such that each a;p is of the form

(FN).

Proof. Suppose that a; = ) njz;j. By the platification theorem (Theorem 2.2.16) there
exists a blowup with nowhere dense centre X, — X,.4 such that the proper transform
of H@ — X,.q is flat over X’ where @ is the closure of z; in X xXgY;. Let p be the
composition p : X, — X,eq — X. Hence (Lemma 2.4.6) each a;p is of the form (FN). We
let iy : Wy, — X be a closed subscheme such that W, II X, — X is a cdh cover and then
repeat with a;i,. Eventually we end up with a reduced W, of dimension zero and every
correspondence with source a reduced scheme of dimension zero is of the form (FN). So
by induction on the dimension we are done. O

Lemma 3.7.5. Let F be a presheaf with traces that satisfies (Tril). Let a : Xe— Y be a
correspondence of the form (FN) and p : X' — X a morphism such that ap is also of the
form (FN). Then F(p)F(a) = F(ap).

Proof. Let a = ) miz;. Since a is of the form (FN) we have ap = ) nymjw;; where w;;
are the generic points of X' xx {z;} and my; the lengths of their local rings. We have
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3.7 From traces to transfers

diagrams such as

/!

___ oy 5
{W,’j} }> X/ Xx {Zi} P {Zi} Y
\ lgf lgi
8ij
/
X ) X

where g,, ¢/, i]{ are flat. We then have

F(p)F(a) = F(p) > nTrg F(f))
= Z niF(p)Tl’giF(ﬂ')

(CdB)

=" T, F(p))E(f)

(Tri1 Z n; (Z miijg{j’F(P:{;{)> F(p")E(f,)

= Z n,-mi,-Trg'{}{F(fiP/PZ)

= F(ap)

L]

Lemma 3.7.6. Suppose that F is a cdh sheaf with traces that satisfies (Tril) and
a : Xe— Y a correspondence. There exists a unique morphism F(a) : F(Y) — F(X)
such that: for every cdh cover f : X' — X such that af is of the form (FN) we have

F(f)F(a) = F(af).

Proof. There always exists such an f (Lemma 3.7.4). Chose one. Let p,q : X" = X xx
X — X be the two projections. We have afp = afg and we chose another cdh cover
g: W — X" such that afpg (and hence afqg as well) is of the form (FN). Lemma 3.7.5
tells us then that F(pg)F(af) = F(afpg) = F(afpg) = F(qg)F(af) and hence F(g)F(p)F(af) =
F(g)F(q)F(af). Since F is a cdh sheaf and g is a cdh cover, it follows that F(p)F(af) =
F(q)F(af). Again, F is a cdh sheaf and so this implies that the morphism F(af) : F(Y) —

F(X') factors uniquely as F(Y) — F(X) i F(X'). So we have found our F(a) : F(Y) — F(X)

and it remains to show that it is independent of the choice of f.
Every two covers such as f that put a in the form (FN) are dominated by a third

one (Lemma 3.7.4) and so to show the independence it suffices to consider the case of

two covers f,,f, with a factorisation f, : X LN X, 5 X, We will write F(a);, and F(a)s

momentarily for the two morphisms F(Y) — F(X) induced by f, and f, respectively. We
have

F(f)F(a), = F(h)F(f,)F(a);, = F(h)F(af,) *Z” F(af,h) = F(af)

and hence uniqueness of the factorisation in the definition of F(a); implies that F(a); =
F(a)f . O
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3.7 From traces to transfers

Lemma 3.7.7. The morphism defined in Lemma 3.7.6 associated to a correspondence
a : Xe— Y satisfies: for any morphism of schemes f: X' — X we have F(af) = F(f)F(a).

Proof. Choose a cdh cover p : U — X such that ap is of the form (FN). We consider the
cartesian square

04 4)1,' X

b

UT>X

and find a cdh cover g : U” — U’ such that afp’q is of the form (FN). Note that the cdh
cover p'q puts af in the form (FN). We have the following commutative diagram

F(Y)

F(“)J/ F(ap)

F(X) ——>F(U)

F(p)
F(f)l lFU,) F(fq)
/ !/ A
FX) o F(U) = F(U')

It follows that
F(p'q)F()F(a) = F(q)F(p')F()F(a) = F(q)F(f)F(p)F(a) = F(q)F(f )F(ap)
= F(fq)F(ap) *="F apf q) = F(afp’ q)

Since by definition F(af) is the unique morphism that satisfies F(p'q)F(af) = F(afp’q) it
follows that F(f)F(a) = F(af). O

Lemma 3.7.8. If F satisfies (Tri2) as well, the morphisms F(a) from Lemma 3.7.6
satisfy: if a : Xe— Y is of the form (FN) and f: Y — W is a morphism of schemes we
have F(a)E(f) = F(fa).

Proof. By the definition of F(fa), we must show that F(fap) = F(p)F(a)F(f) where p :
X' — X is a covering such that fap is of the form (FN).
Let a = ) niz;. Since the {z;} — X are flat, ap is the correspondence ) nym;w;; where

the wy; are the generic points of {z;} xx X' and m;; the lengths of their local rings. Let
f : X XY — X x W be the morphism induced by f and dj = w,, : k(f wl] so the
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3.7 From traces to transfers

correspondence fap is > n;m;d;f wi;. We have diagrams
p p j j g

/

pr

{fw,'j} *ij>X/ X W w
b fT ]f

hj —— i oy i
| {Wij} *; {Zi} XxX/ F {Zi} i Y

[
/ .
ri lql \th

Sij X/ > X

p

and
F(p)F(a)F(f) = Z n,-F(p)Trti(gi)F(f)
S Ty Flp, Flg) F(f)

(Trir)

= ZnimijTrri,'F<hij)F(pi)F<gi)F(f)

= Z nimijTrr,-jF(ﬂj)F(hgj)F(pr)

) ™ oy Ty, () E(pr)

= F(fap).

O

We will use the following definition to apply Lemma 3.7.4 in the proof of Proposi-
tion 3.7.13.

Definition 3.7.9. Suppose that a : Xe— Y is a correspondence of the form (FN) and
a = Y mz;. The canonical morphism § : X X Y — X X X X Y is a closed immersion and
since the {z;} — X are flat, > n;8(z;) defines a correspondence Xe— X x Y. We will
denote this correspondence by

r,= Z n;8(z;) : Xe— X X Y.

Remark 3.7.10. The reader familiar with Voevodsky and Suslin’s theory of relative
cycles will recognise I'; as the external product of [id] and a. We actually don’t need
the condition that a is of the form (FN) but in our application of this definition we will
have it.

Lemma 3.7.11. LetF be a cdh sheaf with traces that satisfies (1ril) and (Tri2). Suppose

that X = Y oB—> Z are a pair of composable correspondences and suppose further that
a, B, Ba, and Tga (see Definition 3.7.9) are all of the form (FN).
Then F(a)F(B) = F(Ba).
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3.7 From traces to transfers

Proof. It is enough to consider the case where p = w and a = z are formal sums consisting
of a single point with multiplicity one. Our diagram is

{vi} — {2} xy {w} — {w}

where v; are the generic points of {z} Xy {w} and the v/ their images in X x Z. Lets say
that ¢; = length((’)gxyxmwi) and d; = [k(v;) : k(v})]. Since a and B are ofithe fori(FN)
we have Ba = ) (;dy} and T'ga = > {v; so by hypothesis the schemes {v;} and {v/} are
flat over X. It now suffices to apply (CdB), functoriality, and (Tril) and (Tri2) to see
that F(a)F(B) = F(Ba). O

The following proposition is the cdh analogue of [VoeOOb, 3.1.5] (which incidentally
follows from [VoeOOb, 3.1.3] via the same argument we use here).

Proposition 3.7.12. Let a : Xe— Y be a correspondence and p : Y — Y a cdh cover.
Then there exists a correspondence a' : X'e— Y and a cdh cover p' : X' — X such that
the square

x — sy

commutes in Cor(S).

Proof. This follows from Theorem 3.4.13(1).
More explicitely, we have the following three elementary facts which hold for any
Grothendieck pretopology 7.

1. A morphism of = sheaves G — F is surjective as a morphism of 7 sheaves if and only
if: for every object X and every section s € F(X) there exists a cover X’ — X and a
section t € G(X') such that the images of t and s agree in F(X’) via the morphisms
in the obvious commutative square.

2. For any presheaf F, object X, and section s € F.(X) there exists a T cover U — X
such that s|y is in the image of F(U) — F.(U).

3. For any presheaf F and object X, two sections s,t € F(X) are sent to the same
section of F (X) if and only if there exists a 7 cover U — X such that the two
restrictions s|y, t|y are equal in F(U).
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3.7 From traces to transfers

The result Theorem 3.4.13(1) implies that L.gn(Y') — Legn(Y) is a surjective morphism
of cdh sheaves. The correspondence a : Xe— Y gives a section in L(Y)(X) and hence in
Lean(Y)(X). By the first fact mentioned above, we find a cdh cover W — X and an element
t € Legn(Y')(W) such that the images of t and a agree in L.g,(Y)(W). By the second fact
mentioned above, we find a cdh cover V. — W and a section u € L(Y’)(V) whose image in
Lean(Y')(V) agrees with the restriction of t. Finally, by the third fact, there is a cdh cover
X' — V such that the restriction aly of a in L(Y)(X') agrees with the restriction L(p)u|x
of the image L(p)u of u. That is, we have found a section a’ = u|y € L(Y')(X’) whose
image L(p)(a’) in L(Y)(X') agrees with the restriction a|xy € L(Y)(X') where X' — X is a
cdh cover. This is equivalent to the desired commutative square. ]

Proposition 3.7.13. Let F be a cdh sheaf with traces that satisfies (Tril) and (Tri2).
Then there exists a unique structure of presheaf with transfers on F such that for the cor-
respondences a of the form (FN) the morphism F(a) is that described in Definition 3.7.3.

Proof. Let X o Y .B_> Z be a pair of composable correspondences. To prove that
F(a)F(B) = F(Ba) we need to show that if g : U — X is a cdh cover such that fagq is of
the form (FN), then F(q)F(a)F(B) = F(Baq).

Suppose that p: Y — Y is a cdh cover such that Bp is of the form (FN), and suppose
that

X -y
R
X—=Y

is a commutative square as in Proposition 3.7.12. By composing with a further cdh cover
X" — X" we can assume (Lemma 3.7.4) that a’, fpa’ and I'gpa’ are of the form (FN). The
commutative diagram is the following.

X' a >y (3.3)

X

XT>Y*>Z

We now have
F(p')F(a)F(B) *Z" F(ap')F(B)
= F(pa')F(P)
*Z* F(o)F(p)F(B)
*Z7 F(a')F(Bp)
=" F(Bpd')
= F(Bap").
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3.8 Summary

Lemma 3.7.14. The functor that associates a presheaf with traces to a cdh sheaf with
transfers Shvean(Cor(S)) — PreShwTra(Sch(S)) is fully faithful.

Proof. Suppose that F and G are two cdh sheaves with transfers and ¢ : F — G is
a morphism of presheaves with traces. For a correspondence a : Xe— Y of the form
(FN) it is clear that we have p4F(a) = G(a)¢y. If a is not of the form (FN) then there
exists a cdh cover p : X’ — X such that ap is of the form (FN) (Lemma 3.7.4). Now
the commutativity of the outside rectangle, the rightmost square, and the injectivity of
G(X) — G(X') implies the commutativity of the leftmost square in the following diagram

F(y) =% px) 224 oy

Py i‘Px i(PX/

G(Y) 4 G0 = G(X)

3.8 SUMMARY

In this last section we collect the main results of this chapter. Depending on the context
we will want them in various different forms. In this last section

S is a quasi-excellent separated noetherian scheme,

Sch(S) is the category of separated S-schemes of finite type,
Sm(S) is the full subcategory of smooth schemes in Sch(S),
Reg(S) is the full subcategory of regular schemes in Sch(S), and

EssSch(S) is the category of schemes which are inverse limits of left filtering systems
in Sch(S) for which each of the transition morphisms are affine open immersions.

We remind the reader that if j*° : PreShv(Sch(S)) — PreShv(EssSch(S)) is the left Kan
extension along j : Sch(S)?®? — EssSch(S)% then for any presheaf with traces F, the argu-
ments in [Gro66, Section 8] give a canonical structure of presheaf with traces on j*F
such that F — (j*°F) o j is a morphism of presheaves with traces.

The following theorem is the most general collection of the results in this chapter.

Theorem 3.8.1. Let £ be a prime invertible on S. Suppose that F is a Nisnevich Gersten
sheaf of Z sy modules with traces on EssSch(S) that satisfies (Tril)<,. Then

1. the canonical morphism F.g, — Fpg, is an isomorphism and on regular schemes X
in EssSch(S) we have F(X) = Fgp(X) = Fan(X),

2. for everyn € Zx>, and X € Sch(S) the canonical morphism Hy, (X, Fean) — Hj g, (X, Fyan)
is an isomorphism, and
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3.8 Summary

3. each of the presheaves Flpeg(s); Feanlscu(sy, and Hpy,(—, Fean)|scu(s) has a canonical
structure of presheaf with transfers.

Proof. The first statement is just Corollary 3.6.3 and the second part of Proposi-
tion 3.6.12. Now the first part of Proposition 3.6.12 says that F.g has a structure
of traces satisfying (Tril) and (Tri2) and so we can apply Theorem 3.7.1 to get a struc-
ture of transfers. Now that we have a structure of transfers, Theorem 3.4.17 says that
the cohomologies agree. Finally, the structure of transfers on F.g = Fy4, has already
been mentioned. The structure of transfers on F|g.ys) comes from the isomorphism
Flreg(s) = Frdn|reg(s) and the structure of transfers on the cohomology is part of Theo-
rem 3.4.17. ]

The following theorem is designed to be applied to the homotopy presheaves of an
oriented object in the Morel-Voevodsky stable homotopy category SH(k).

Theorem 3.8.2. Let k be a perfect field and ¢ a prime that is invertible in k. Let F be
a presheaf of Zg)-modules with traces on Sch(k), such that

1. F(X) — F(Xyeq) is an isomorphism for every X € Sch(k),
2. F(X) — F(A%) is an isomorphism for every X € Sm(k), and
3. Flsmk) has a structure of transfers,

then for every n € Z>, and every X € Sch(S), the canonical morphism
Hiyp (X, Fean) — Hygp, (X, Fean)
is an isomorphism.

Proof. After [VoeOOb, Theorem 3.1.12], Proposition 3.3.3, and [Gro67, Theorem 18.1.2]
we can assume that F is a Nisnevich sheaf. This implies in particular, that it is a
Gersten sheaf after we extend it to EssSch(k) ([VoeOOa, 4.37]). So Fean = Fygn (Corol-
lary 3.6.3). Then, as before, F.4 has a structure of traces satisfying (Tril) and (Tri2)
(Proposition 3.6.12) and so we can apply Theorem 3.7.1 to get a structure of transfers.
Theorem 3.4.17 then tells us that the cohomologies agree. ]

Remark 3.8.3. We can avoid Theorem 3.7.1 in the proof of Theorem 3.8.2 by con-
sidering directly the left Kan extension of F|g,) along SmCor(k)® — Cor(k)?. We will
see this in the proof of Proposition 3.8.4. In fact, if we use this technique, then we
only need the o — F(X) — [[,cx@ F(x) part of the Gersten sequence. So in fact, we
could replace the assumption that F is homotopy invariant, with the assumption that
Fnis(X) = [].ext F(x) is injective. However, we can’t avoid the assumption that F has
traces on Sch(k) because we need this to get Fegn = Fygp.

Finally we have the following proposition which is useful for working with Voevodsky
motives.
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3.8 Summary

Proposition 3.8.4. Suppose that k is a perfect field and £ a prime invertible in k. Let
F be a homotopy invariant presheaf with transfers of Zy modules on Sm(k). Then the
canonical morphism Fyi; — Fpg, s an isomorphism.

In particular, every homotopy invariant Nisnevich sheaf of Z g modules with transfers

is an Cdh sheaf.

Remark 3.8.5. Note that Voevodsky’s work tells us that Fy; is a homotopy invariant
presheaf with transfers [Voe0Ob, Theorem 3.1.12].

Proof. We can assume that F is a Nisnevich sheaf after [VoeOOb, Theorem 3.1.12]. This
implies in particular that F is a Gersten presheaf ([Voe00a, 4.37]). Let i : SmCor(k) —
Cor(k) be the canonical morphism and consider i*F the left Kan extension of F along i.
Then since F = (i*F) o i, the presheaf i*F is still a Gersten presheaf. Moreover, it is by
definition a presheaf with transfers and therefore a presheaf with traces that satisfies
(Tril)<, (Lemma 3.3.9). We then apply Corollary 3.6.3 and Proposition 3.6.12. O
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Traces and the slice filtration

4.1 INTRODUCTION

ECALL Theorem 3.8.2 from the last chapter that we want to apply to homotopy
R presheaves of oriented objects in the Morel-Voevodsky stable homotopy category
SH(k). The piece that we don’t have is a structure of traces on these presheaves for
non-smooth schemes. The goal of this chapter is to address this. In particular, we want
to have a structure of non-smooth traces on the homotopy presheaves of HZ,) where
HZ is the object that represents motivic cohomology with Z-coeflicients and ¢ is
invertible in the perfect base field k. We do this via the slice filtration.

The goal of Section 4.2 is to develop the necessary material to have the isomorphisms
sof J'E = f,f"soE that we will use to transfer a structure of traces on KH — the object that
represents algebraic K-theory — to a structure of traces on HZ. We begin by recalling
the definition of the slice filtration on the Morel-Voevodsky stable homotopy category.
We do this in the context of Ayoub’s stable homotopy 2-functors as this language makes
it much easier to discuss how the slice filtration interacts with the functors f,, f*, and f,.
We state and prove a theorem of Pelaez using Ayoub’s language which gives a criterion
for a functor to behave well with respect to the slice filtration (Theorem 4.2.25). This
is no more than a translation; the theorem and proof belong to Pelaez. We then apply
this theorem to various functors in Lemma 4.2.26. Some of these functors do not appear
[Pel12], notably the functors associated to closed immersions.

We then introduce the notion of an object with a weak structure of smooth traces
(Definition 4.2.27). This is essentially a structure of traces on smooth schemes, where the
only axiom we ask for is (Deg). This is to apply the resolution of singularities argument
in [Pell12] using the theorem of Gabber on alterations, which we do in Theorem 4.2.29.
Finally, we want to apply the theorem of Pelaez (Theorem 4.2.25) to the functors f, and
f* where f is a finite flat surjective morphism between non-smooth schemes. The case
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when fis étale is already taken care of but the radicial case is trickier. It turns out to be
easier if we consider instead the composition f,f*. We attain this in Proposition 4.2.36
after some lemmas.

In Section 4.3 we define what it means for an object E € SH(S) to have a structure of
traces. We show that a structure of traces on an object E induces a structure of traces
in the sense of Definition 3.3.1 on each of its homotopy presheaves (Lemma 4.3.4). We
show that if we work Z[;}—linearly, a structure of traces on an object induces a canonical
structure of traces on the connective covers f4E and the slices s3E (Proposition 4.3.7).

4.2 ON THE FUNCTORIALITY OF THE SLICE FILTRATION

4.2.1 PRELIMINARIES

The material developed in the [Pell12] holds in greater generality than it is presented in
that article. We develop it in the setting of Ayoub’s stable homotopy 2-functors [Ayo07].
This makes the proofs involving the functoriality cleaner. We don’t recall all the axioms
of a stable homotopy 2-functor but we will recall the properties that we need, as we
need them.

As such we will consider 2-functors H* : Sch(S) — TriCat to the 2-category of triangu-
lated categories. For each scheme X € Sch(S) we set H(X) = H*(X) and for a morphism
f we set f* = H*(f). We recall briefly that included in the definition of a 2-functor are
2-isomorphisms ¢*(f,g) : (gf)* = f'g* for every two composable morphisms f,g and these
satisfy an appropriate coherency condition.

Definition 4.2.1. We define a sliceable 2-functor to be a quadruple (S,H*, =, G) such
that S is a separated noetherian scheme,

H* : Sch(S) — TriCat

is a contravariant 2-functor to the 2-category of triangulated categories, ¥ : H* — H* is
an autoequivalence, and G is a set of compact objects in H*(S). We require that:

1. If f: Y — X € Sch(S) happens to be smooth then f* has a left adjoint
fy tH(Y) = HX).

2. Each of the triangulated categories H(X) admits all small sums, and each of the
functors f* preserves compact objects and small sums.

3. For every a : X — S in Sch(S) the category H(X) is generated by the set of compact
objects {="f,f"a"A 1 n € Z, Y24 x smooth, A € G} .

Definition 4.2.2. Let (S,H*,=,G) be a sliceable 2-functor. For any scheme X % S €
Sch(S) we define
H(x)
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4.2 On the functoriality of the slice filtration

as the smallest full triangulated subcategory of H(X) containing all small sums and the
set of objects

{Zfufa"An € L>o, v x smooth, A € G}.

More generally, we define 29H(X)¥ as the smallest full triangulated subcategory of H(X)
containing all small sums and the set of objects

{Zfuffa"A:n > g, Y% x smooth, A € G}.

If X is clear from the context we will write H¥ and S9H%. We obtain in this way
a sequence of compactly generated triangulated subcategories, each containing small

sums:
e STTHX)E - SIHX) Y — STPHX)S —

Remark 4.2.3. The question of how the subcategories £1H(X)4 behave with respect
to the morphisms f, and f*, as well as various other functors is the main topic of this
chapter.

We don’t need the hypothesis (3) for any of the definitions but we will use it often
and so we include it for expositional reasons.

Remark 4.2.4. In practice, H will be the Morel-Voevodsky stable homotopy category
SH, the base scheme S will be noetherian and § will be the category of schemes of finite
type over S. The autoequivalence will be (P*,00) A — smash with the projective line
pointed at infinity and the set G will consist of a single object, 15 the unit in H(S) for
the smash product.

If H = SH is the Morel-Voevodsky stable homotopy category and 15 € SH(S) is the
unit for the smash product then for any smooth S-scheme f: X — S there is a canonical
isomorphism f,f"15 = £°°(X} ) functorial in X. In this case Definition 4.2.2 is Voevodsky’s
original definition of the slice filtration.

It is straightforward from properties of adjunctions that ¥ preserves compact objects
and if f: Y — X is a smooth morphism then f. 4 preserves compact objects. In particular,

if A € H(S) is a compact object, Y i> X a smooth morphism in S, and X - S the
structural morphism of X, then X"f,f*a*A is also compact for all n € Z.
We have the following theorem of Neeman.

Theorem 4.2.5 ([Nee96, Theorem 4.1]). Suppose that T is a compactly generated
triangulated category, 7' any other triangulated category, and F — 7' a triangulated
functor that preserves coproducts. Then F — 7' has a right adjoint.

Since each 29H(X)¥ contains small sums and is generated by compact objects, by
Theorem 4.2.5 the inclusion i, : IH(X)¥% — H(X) admits a right adjoint ry : H(X) —
IH(X)4.

Definition 4.2.6. Let (S,H*, X, G) be a sliceable 2-functor. For any scheme X € Sch(S)
we define the endofunctor
fy 1 HX) = H(X)
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4.2 On the functoriality of the slice filtration

as the composition f, = igrg where ry is the right adjoint to the inclusion i, : TIH(X) S —
H(X). The counit of the adjunction (ig,rg) gives us a natural transformation f, — id.

Evidently, for any object E € H(X), the object f,E is in the subcategory FIH(X)4 and
the morphism f, E — E is determined up to unique isomorphism by the property that it
induces an isomorphism hom(F,f,E) — hom(F, E) for any object F € TIH (X)L,

Due to our definitions, for any q' < q the adjunction (ig,ry) factors through the
adjunction (ig,ry)

SIH(X) = 2THX)Y = H(X)
and so since ryiy is the identity (again due to our definitions) the morphism Ty = 1
is invertible. So we obtain a canonical morphism f, — f,,. In fact, for each g, these form
a functor Z>, — End(H(X)) from the category associated to the totally ordered set Zx,
to the category of endomorphisms of H(X) which sends n € Z>, to f,_,. This functor
is equipped with a morphism of diagrams towards the constant diagram with value the
identity endofunctor. The following lemmata are straightforward.

Lemma 4.2.7. Let (S,H*,%,G) be a sliceable 2-functor. Let X € Sch(S). For any q € Z,
and any E € H(X) the canonical morphism

hocolimy <4 f E — E
is an tsomorphism.

Proof. To show that this morphism is an isomorphism it suffices to show it is an isomor-

phism after evaluating on hom(G, —) for each G in {E"f,f'aA : n € Z,Y Iy x smooth,
A € G} By assumption, each G is contained in some ¥?H(X)% and so by the universal
property of the morphism pr’ — E' mentioned above, it suffices to show that this is an
isomorphism after applying hom(G, ];—) for a suitable p. The functor fp preserves small

sums' and therefore it preserves homotopy colimits. So we have reduced to showing
that
hom(G, hocolimy < f,f, E) — hom(G, £,E)

is an isomorphism which is clear since qu/ = J; for all q’ sufficiently small. O

Lemma 4.2.8. Let (S,H*,=,G) be a sliceable 2-functor. Let X € Sch(S). There exists
for each q a unique endofunctor sg together with morphisms fg 7 sa = qul[1] such that
for any object E € H(X) the triangle

foi B = fE = sqE — £, E[1]

is distinguished. For any object F € S"H(X)¥ with r > q the group hom(F,s4E) is zero.

The functor i, preserves small sums because it is a left adjoint, and r, preserves small sums because
its left adjoint sends each object in a set of compact generating objects to a compact object.
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Proof. Using the usual triangulated category techniques,? it suffices to show that for
any pair of objects E,F there are no non-zero morphisms from fq +El] to any cone of

forsF = fF. Now f E[1] € ZIPHX)¥ (and also 2IH(X)¥) and so by the universal
property of fy —idand f ., — id the two vertical morphisms in the triangle

hom(f, ;,E[1]. fy1.F) hom(f, 1, E[1], f,F)

\/

hom(f,, ,E[1], F)

are isomorphisms. Hence, the third one is an isomorphism as well which implies that
there are no non-zero morphisms from f, . Ef1] to any cone of f, | \[E — fE. O

Lemma 4.2.9. Let (S,H*,2,G) be a sliceable 2-functor. Let X € Sch(S). There exists
Jor each q a unique endofunctor s<q4 together with morphisms id — s<4 —>fq [1] such that
for any object E € H(X) the triangle

f,E = E = s<4E — f,E[1]

is distinguished. For any object F € 'H(X)4 with r > q the group hom(F, s<qE) is zero.
Proof. The same proof as for Lemma 4.2.8 works. O

Definition 4.2.10. Let (S,H*, =, G) be a sliceable 2-functor. We define

H(X)*(9)

as the full triangulated subcategory of H(X) whose objects E satisfy hom(F,E) = o for
all F € IH(X)¥. If X is clear from the context we will write H-(q).

We finish this preliminary subsection with some properties of stable homotopy 2-
functors that we will use in developing and applying Theorem 4.2.25 of Pelaez. The
following theorem should really just be a reference to [Ayo07, Chapter 1] which contains
all the properties we need. However, the material there is for a 2-functor on the category
of quasi-projective schemes. As such, we give some indication of the easy generalisation
of the properties we want to the category of all schemes of finite type.

Theorem 4.2.11. Let (S,H*, 2, G) be a sliceable 2-functor that satisfies:

%j.e., for every object E we chose a cone 0ffq+1E quE and for every morphism we chose a morphism
between the cones and then to show that this defines a functor we show that the morphisms we have
chosen are unique.
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(1) (Smooth base change) For every cartesian square

Yxx W—sw (4.1)

d ip

Y——X

in Sch(S) with f smooth the comparison exchange 2-morphism fp, — q.g* is
invertible.3

(II) (Zariski separated) For every Zariski cover {j; : Uy — X} in Sch(S) the family of
functors {j*} is conservative.

(III) (Stability) We have £ = pys« where s is the zero section of the canonical projection
p: Ay — X for each X € Sch(S)

If the restriction of H* to the category QProj(S) of quasi-projective S-schemes is a stable
homotopy 2-functor ([Ayo07, Definition 1.4.1]). Then H* has the following properties.

1. Adjoints.

(a) (Right adjoint) For every morphism f:Y — X in Sch(S) the I-functor f* has
a right adjoint
f. : H(Y) = H(X).

(b) For every projective morphism f:Y — X in Sch(S) the 1-functor f, has a right
adjoint
f T HX) = H(Y).

(¢) If f is a finite étale morphism in Sch(S) then f, is canonically isomorphic to
i

(d) If i : Z — X is a nilpotent immersion in Sch(S) then i*, and hence iy, is an
equivalence of categories.

2. Tate twists. The auto-equivalences T form an auto-equivalence of H*. That is, for
any morphism f: Y — X in Sch(S) we have 2-isomorphisms ¢ : Ef* = ', and so
by adjunction a 2-isomorphism v : f,.= = =f,, and if f is smooth a 2-isomorphism
X:fpZ = Zfy.

3. Localisation. Suppose that j: U — X is an open immersion in Sch(S) and i:Z — X
a complementary closed immersion. There exist unique 2-morphisms ¢,V such
that

juft = idpe) = i
and
i — iy — " i 1]

3The right adjoints p,, q, to the functors p*,q* exist for any sliceable 2-functor. See the proof below.
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are distinguished triangles where the other morphisms are the units and counits of
the adjunctions.

4. Base change.

(a) For every cartesian square (4.1) in Sch(S) the exchange 2-morphism f'p, —
q.8" s invertible if f is proper.

b) If f is smooth then the exchange 2-morphism * 5 p*f,, is invertible.
844 P Jy

(¢) Iffis smooth and p a closed immersion then the exchange 2-morphism f,q, =
p.8y is invertible.

5. Mayer-Vietoris. Suppose that {ji; : U — X,ji, : V. — X} is an open Zariski cover
and juyny : UNV — X the intersection. Then there exists a distinguished triangle

jumv#jikmv - jU#f[k] 69J'V#]'?/ —id — jUﬁV#j*UﬁV[l]'

6. Homotopy invariance. For any scheme X € Sch(S) if p : Ay — X is the canonical
projection then the unit of the adjunction id — p p* is an isomorphism. Equiva-
lently, pyp* — id is an isomorphism.

Remark 4.2.12. In the case H* = SH, if we denote by T € SH(S) the Tate object (i.e.,
either the projective line pointed at infinity or the homotopy cokernel of Z*°((Ay—o)) —
2%°(A§, )) then there is a canonical isomorphism between the endomorphism ¥ defined
in this theorem and the endomorphism T A —.

Remark 4.2.13. To aid the reader who is familiar with the theory but unable to recall
the precise definition of a stable homotopy 2-functor, we recall that [Ayo07, Definition
1.4.1] asks that on the category of quasi-projective S-schemes we have: H(@) = o, smooth
left adjoints (Definition 4.2.1(1)), right adjoints (1a), smooth base change (I), stability
(III) in the form “each pys, is an equivalence”, homotopy invariance (6), and finally,
for a closed immersion i with open compliment j the pair (i*,j*) is conservative, and
i*i, = id.

Proof. 1. (a) Since each H(X) is compactly generated by a theorem of Neeman
[Nee96, Theorem 4.1] it suffices to show that f* preserves small sums. This is
one of our assumptions.

(b) If the morphism f is a projective morphism in QProj(S) then this is [Ayo07,
Proposition 1.6.46, Theorem 1.7.17]. Suppose that f is projective but not
in QProj(S). By what we have just mentioned it suffices to show that f,
preserves small sums. That is, the canonical morphism ). f,E; — f, > . E; is
an isomorphism. There exists a Zariski cover {j, : U; — X} of X such that
each U; is in QProj(S). Then smooth base change and the quasi-projective
case gives the result.

(c) Notice that under our hypotheses, the restriction of H* to QProj(X) is a stable
homotopy 2-functor for any X € Sch(S). Hence, by replacing S with X we
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()

can assume that fis in QProj(S). This case is [Ayo07, Section 1.5.3, Theorem
1.7.17].

Again, we can assume that X = S. In this case it follows from localisation
and the identity i*i, = id (see Remark 4.2.13).

2. This is assumed in the definition of a sliceable 2-functor.

3. Localisation in the quasi-projective case is [Ayo07, Lemma 1.4.6]. Assuming X = S
puts us in the quasi-projective case.

4.

(a)

(b)
()

For the case when f is projective and the square is in QProj(S) this is [Ayo07,
Corollary 1.7.18]. The generalisation follows from Chow’s Lemma and is
detailed in [CD09, Proposition 2.3.11].

This follows by adjunction directly from the smooth base change we have
assumed.

The morphism is defined in the usual way using smooth base change f. g, —
p.p'fyq" = p.849"q" — p.gy- 1f our square is in QProj(S) then this is [Ayo07,
Corollary 1.4.18]. Replacing S with X it is also true for any square for which
fis a quasi-projective morphism. In the general case, let {U; — X}i—, . . be
a finite Zariski cover of Y such that each U; — X is quasi-projective. Notice
that this implies that for each non-empty subset I C {1,...,n} the scheme
U; = NiU; is also quasi-projective over X. For each such I the cartesian
square
U XxW—=YXxW

L

Uj——Y

satisfies the property we want, and so the natural transformation f,q, — p,g,
evaluated on any object E in the image of (Uy xx W — Y Xx W)y is an
isomorphism. We will show by induction on the size of a subset J C {1,...,n}
the natural transformation f,q, — p,g, is an isomorphism when evaluated on
any object E in the image of (UjgjU; xx W — YxxW)4. Let 9y UigUixxW —
Y xx W denote the morphism. If J is empty, the object is necessarily zero,
and so we clearly get an isomorphism. If not, then there exists two subsets of
smaller size J' and J” such that ]/ UJ” = J and by the Mayer-Vietoris triangle

(P]/ﬁ]"#¢]'|"‘|]” — @I/#¢]/ ©® (P]//#(PI// — (P]#(P] — (P]’ﬂ]”#(P]/ﬂ]” [1}

and the inductive assumption, we are done. This proves that the natural
transformation f,q, — p,g, is an isomorphism as P,y = Wrxw

5. Mayer-Vietoris is an immediate consequence of Zariski separatedness.

6. Replacing S with X we can assume that X is quasi-projective (over X). In this case
it is one of the axioms of a stable homotopy 2-functor.
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O]

Definition 4.2.14. If S, H*, ¥ and G are as in Theorem 4.2.11 we will refer to H* as
a stable homotopy 2-functor. We take S and G to be implicit in the definition of such a
stable homotopy 2-functor. Of course ¥ is defined in Theorem 4.2.11(III).

Remark 4.2.15. This is a mild abuse of the terminology as Ayoub’s stable homotopy
2-functors are defined on the category of quasi-projective schemes over S and we have
further asked for H* to be what he calls “compactly generated by the base” [Ayo07,
Definition 2.1.155].

Suppose that Y, X are two schemes and @ : H(X) — H(Y) is a functor. We will say that
® preserves TIHY (resp. HY(q)) if for every object E € ZIH(X)¥ (resp. E € H(X)(q))
the object ®E is in ZIH(Y)¥ (resp. H(Y)1(q)).

Lemma 4.2.16. Let H* be a stable homotopy 2-functor. Let a : X — S be a scheme
in Sch(S) and {U; — X}i=,,.. N a Zariski cover. Then for every q the category SaH (X))
is the smallest full triangulated subcategory of H(X) containing all sums and the objects
Z”f#f*u*A where n > q, A € G, and f: W — X is a smooth morphism from an affine
scheme W whose image is contained in some Uj.

Proof. Let T be the smallest full triangulated subcategory of H(X) containing the objects
of the form described in the statement. Suppose that f: W — X is a smooth morphism
with source an affine scheme whose image is contained in some U;. We claim that for
every open subscheme j : W — W of W and n > q, the object ="(fj)«(fj)*a*1s is in T.
Indeed, this is obviously true if W’ is also affine. Now every open subscheme of W can
be covered by finitely many basic open affine subschemes (i.e., affine subschemes of the
form Spec(Af) where W = Spec(A)). We work by induction on the smallest number r of
such subschemes it takes to cover W'. If r = 1 there is nothing to show since in this case
W is affine. Suppose it is true for i < r and W' can be covered by r basic affine open
subschemes of W. Then in particular, there is a cover of the form {W” ¢ W, W"” c W'}
where W is a basic affine open and both W and W’ N W can be covered by r — 1
basic affine opens (since the intersection of two basic affine opens is abasic affine open).
It then follows from Mayer-Vietoris (Theorem 4.2.11(5)) that the object ="(fj) 4 (fi)*a*1s
corresponding to W is in T.

We use the same argument twice more.

Let f: W — X be a smooth morphism whose image is contained in some U;. We claim
that for every open subscheme j: W — W of W and n > g, the object ="(fj) 4 (fj)*a*1s is
in T. We have just seen that this is true if W is contained in an affine open subscheme
of W. We use the same argument as above with “basic open affine” replaced by “an
open subscheme that is contained in an open affine of W”.

Let f: W — X be any smooth morphism. We claim that for every open subscheme
j: W — Wof Wand n > g, the object Z"(fj) 4 (fj)*a*1s is in T. Indeed, every such W' can
be covered by a finite number of open subschemes whose images are contained in some
U;. We use the same induction argument again.

We have shown that T contains the generators for £IH(X)¥. Since it is a triangulated
subcategory with small sums, this is enough to conclude. O
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Lemma 4.2.17. Let H* be a stable homotopy 2-functor. The following functors preserve
the following categories.

1. For any morphism f: Y — X in Sch(S)

(a) f* preserves TIHY | and
(b) f. preserves H(q).

2. For a smooth morphism f:Y — X in Sch(S)

(a) fy preserves SIHH | and
(b) f* preserves H(q).

3. Fori:Z — X a closed immersion between quasi-projective S schemes, i.i* and i
both preserve SIHY,

4. Fori:Z — X a nilpotent immersion between quasi-projective S schemes, both i*
and i, preserve both TIHY and H-(q).

9. For f:Y — X a finite étale morphism between quasi-projective S schemes, each of
f#yf,f* preserve both TIHY and HL(q),

Proof. In the first two (b) follows from (a) by adjunction. Suppose that a : X — S

is the structural morphism of X and p : W — X a smooth morphism. For every r
4.2.11 4.2.11(I)

there are canonical isomorphisms f'2'pp*a*1s = Z'fpyp'atis = Zplp"fatig =
2'plup™(af)*1s where p’ = Y xx p. Hence, f* sends generators of TIH(X)4 to TIH(Y).
Since f* is triangulated and preserves homotopy colimits (because it is a left adjoint),
this is enough to conclude that f* preserves $4H%. The same argument works for fau

Suppose that p : W — Yis a smooth morphism. We have isomorphisms f, ='p , p*(af)"15 =
4.2.11(2
fuZpup’fatss 2 fupupfat1is = X (fp) 4 (fp)"a"ss.

Consider the case of a closed immersion. The functor i.i* is straight-forward. Let j :
X —Z — X be the complementary open immersion. We have a localisation distinguished
triangle j,j* — id — ii* — j,j"[1] (Theorem 4.2.11(3)) and since j is smooth, since j,
and j* both preserve IH¥ it follows that i,i* also preserves TIHY,

Now we consider the functor i,. Let T be the full subcategory of Z9H(Z)¥ consisting
of objects E such that i,E € ZIH(X)¥#. The triangulated category TIH(X)¥ has small
sums and i, commutes with small sums (as it is a left adjoint (Theorem 4.2.11(1b)))
and so T is a triangulated category with small sums. We will show that T contains a
generating family for 29H(Z)¥, which then implies it contains all of Z9H(Z)%. Suppose
{U; = X}i=,,.. n is a Zariski cover of X by affine schemes. We consider the generating
family of IH(Z)¥ described in Lemma 4.2.16 associated to the cover {U;NZ — Z}.
Suppose 2"f#fK a*1g is a member of this generating family where a : Z — S is the structural
morphism, n > q and f : W — Z is a smooth morphism from an affine scheme W
whose image is contained in some U; N Z. Recall a theorem of Arabia [Ara01] that says
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that in general if Z — X’ is a closed immersion of affine schemes and W — Z' is a
smooth morphism then there exists a smooth morphism V' — X’ and a Z'-isomorphism
Z' xx V. =2 W. In our case, this gives us a smooth morphism g : V — X and a
Z-isomorphism W = Z xx V. Let 4 : X — S be the structural morphism of X so
that a = d4/i. By the appropriate parts of Theorem 4.2.11 we find an isomorphism
Z”f#f*aﬁs = Z"f#f*i*a’*ls = i*Z”g#g*a’*ls. That is, our object is in the image of i* :
TIH(X)¥ — £IH(Z)¥. Now we have i (Bfuf a'1s) = i ("2 g,g"a"15). So E"f,fra"1s is
in T because i,i* preserves SIH%. So i, preserves TIH.

Suppose i : Z — X is a nilpotent immersion. It remains only to see that i* preserves
H-(g). Since i is a nilpotent immersion, the functors i* and i, are equivalences of
categories, each inverse to the other. In particular, i* is now a right adjoint of i,. We
have seen i, preserves Z7H¥ and so it follows by adjunction that i* preserves H(q).

Lastly, in the finite étale case, we have already seen above that f. o and f* preserve
9HY and f* and f, preserve H(g). But fy 1s isomorphic to f, (Theorem 4.2.11(1c))

and so f, also preserves H(q) and f, also preserves aH. O

4.2.2 AFTER PELAEZ

In this subsection we continue with S, H* and G as in Theorem 4.2.11. Recall that for
any object E € H(Y) we have f.E € 2IH(Y)4 (by definition) and s,E € H(Y)*(q + 1).

Definition 4.2.18. For the rest of this section, we will have ® : H(Y) — H(X) a
triangulated functor, E € H(Y) an object, and q € Z an integer. We will be considering
whether the following conditions hold.

(Pel0)q ®hocolimy<g f,E = hocolim,<4 Of,E.
(Pell)y Of,E € ZIH(X)%.
(Pel2); ®s,E € H(X)(q+1).

Remark 4.2.19. If the object E is not clear from the context we will write (Peli)q(E)
with i = 0,1, or 2. In particular note that (Pell),(E) implies (Pell)y(f,E) for all r < g.
We will also use the notation (Peli); for I C Z to indicate that (Peli), is true for all g € I
and (Peli) for (Peli)z.

We collect here some functors that are known to satisfy some of these conditions.

Lemma 4.2.20. Let H* be a stable homotopy 2-functor. Then the following functors
satisfy the following conditions for all objects.
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Functor (Pel0) (Pell) (Pel2)

f Yes Yes -

f. Yes X Yes
fy with f smooth Yes Yes X

f with f smooth Yes Yes Yes

i* with i a nilpotent immersion Yes Yes Yes

ix with i a closed immersion Yes Yes Yes
ixi* with i a closed immersion Yes Yes —

fu-f'f. with f finite and étale Yes Yes Yes

113

x 7 indicates “not in general” (there are certainly examples where the property is sat-
isfied, for example f=1id), and “—” indicates “unknown’.

Remark 4.2.21. Theorem 4.2.29 gives conditions under which f* preserves (Pel2). This
is a version of a theorem of Pelaez. His theorem has fewer restrictions but assumes
resolution of singularities. Given what we know about i, this applies then to i,i* as well.

While our counter-examples for f, and f,, show that they don’t preserve the slice

filtration, they suggest that they “shift” it in a suitable sense, at least in certain cases
(cf. [Pelll, Theorem 4.4]).

Proof. The columns (Pell) and (Pel2) follow directly from Lemma 4.2.17. The column
(Pel0), apart from f,, follows from the functors in question being left adjoints (cf. The-
orem 4.2.11). For (Pel0) for f,, we note that f* preserves a set of compact generators
(due to them being compatible with £ and smooth base change) and therefore its right
adjoint preserves small sums.

For a counter example to f, satisfying (Pel2) suppose that s;E # o and consider the
canonical projection of the affine line p : Ay — S. Let s be the zero section. If p #
satisfies (Pel2), then p s, =¥ would satisfy (Pel2) as well. Now s;E" € TIHH N HL (g +1)
for every object E' and so ¥s,E € Z9TH®. But if (Pel2) is satisfied then we also have
PRI Hl(q +1). Hence, the identity morphism of ¥s;E is zero, and therefore s;E is
zero. So in this case, p, does not satisfy (Pel2).

A similar phenomena gives a counter example to f, satisfying (Pell). Suppose that
sqE # o. Let p : Py — S be the projection, s the section at infinity, and j : A* — P*
the complimentary affine line. If j : Ay — P} is the open immersion then we have the
localisation distinguished triangle

S8 = id = jj° = ses'1).
Evaluating this triangle on p* and applying p, gives
spt— p.p" —id — s'p[]

where we have used homotopy invariance to obtain the id. So if p, satisfies (Pell) then
so does p,p* and s'p*. This latter is the right adjoint to p 4« which is isomorphic to
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4.2 On the functoriality of the slice filtration

ays, where a : Ay — S is the projection.4 Hence, Pysc = ¥ and s!p* =31 Sox!

would satisfy (Pell) in this case. But then we would have 27's;E € >9HY. However,
ssE € HE (g +1) and so 27's,E € H*(q) leading to s,E = o as before. Hence, p, does not
satisfy (Pell). O

Definition 4.2.22. Let (S,H*, X, G) be a sliceable 2-functor. Let @ : H(Y) — H(X) be a
functor, E € H(Y) an object, and g € Z an integer. We consider the canonical morphisms

(qu <—fq<1>fq —>fqd).

If Of E + £, ®f,E is an isomorphism (for example if (Pell)y(E) is satisfied) we denote the
resulting canonical morphism by

aq(E) : Of E — f,OF
or ag or a if E and q are clear from the context.

Lemma 4.2.23. Let (S,H*,2,G) be a sliceable 2-functor. Let ® : H(Y) — H(X) be a
functor, E € H(Y) an object, and q € Z an integer. If the two morphisms

OfE+ f,0f,E  and  Of E< f, O F

are isomorphisms (for example if (Pell)y(E) and (Pell)s1,(E) are satisfied) then there
18 a unique morphism
ﬂq(E) : Os4E — s, OE

such that the following diagram is commutative.

O(f, 4 ,E) —> O(f,E) —= D(s,E) — O(f,.,E)

\Laﬁl iaq lpq J/a‘ﬁ—l[l]

fr i ®(E) — f,0(E) — = 5,0(E) — =, O (E)

The morphisms ay(E) and p,(E) are functorial in @ in two senses:

1. If n: ® = Y s a natural transformation between functors the appropriate a’s are
defined then the square

O(f,E) ——f, ®(E)

d |

Y(fE) ——f Y (E)

commutes (and similarly for s if the p’s are defined).

“To see this use base change Theorem 4.2.11(4c) on A — P < § with the latter the embedding at
Z€ero.
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4.2 On the functoriality of the slice filtration

2. If ® : H(Y) = H(X) and ¥ : H(W) — H(Y) are triangulated functors such that the
appropriate a’s are defined then the triangle

a

N
\I’(D(qu) — ‘I’qu)(E) T>fq‘I’CD(E)

commutes (as well as the analogous statement for sz).

Proof. There certainly exists such a morphism ®s;E — s;@E since the two triangles
of, 1,.E = Of E = OssE — Of,  El1] and f, , OF — f,OF — s,OF — f,, OE[1] are distin-
guished. Uniqueness comes from the fact that hom(®f, , E[1],s;®E) = o. This latter is
a consequence of the facts that ®f,, E[1] = f . Of . E[1] is in $4M1H(Y)4 and s,®E is in
H(Y) (g +1).

The functoriality for the a’s is clear from the appropriate functoriality of the fq’s. The
functoriality for the p’s is again a consequence of the fact that there are no non-zero
morphisms from T9T*HY to HL (g 4 1). O

Lemma 4.2.24 (Pelaez). Let (S,H*,2,G) be a sliceable 2-functor. Let ® : H(Y) — H(X)
a functor, E € H(Y) an object, and q € Z an integer. Suppose that (Pell)si,, (Pell),
and (Pel2), are satisfied. Then the two morphisms

ag:(f,E) : O(fy 1 fyE) = fy1,(O(F,E))

By(f4E) = (sqfyE) — sq(P(f,E))

are isomorphisms in H(X).

Proof (Pelaez). We have the commutative diagram associated to fa

D (fy 1 f4E) — O(ff,E) —— O(sof E) — O(f, 1./ E)

J{“Hl l"‘q lﬁq laqﬂ [1]

fq+1(D(qu) qu(D(qu) E— Sq(D(qu) E— q+1(l)(qu)

The property (Pell) implies that aq(f,E) is an isomorphism. Using the octahedral ax-
iom we have a commutative diagram where all the rows and columns are distinguished
triangles

O(f, 1 foE) — O(f f E) —— O(sqf E) —— O(f,,,f,E)1]

b

fo @) — f,0(,E) — = s;0(f,E) — = f,,,O(f,E)

N |

A 0 Al ———— Al
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4.2 On the functoriality of the slice filtration

and it now suffices to show that A = o. We note that A is in Z9H*H(X)¥ since both
fo: @(fE) and O(f, f.E) = O(f,,E) are.

On the other hand, ®(s;E) = ®(sof,E) is in H(X)*(gq +1) by hypothesis and sq@(f,E)
is in H(X)1(q + 1) (as s; always is) so Af1] is also in H(X)*(q +1). Since H(X)*(q+1) is
a triangulated subcategory, A is also in H(X)*(q +1).

Now there are no nonzero morphisms from TI7H(X)% to H(X)*(q + 1) and so the
identity of A is zero, hence A is isomorphic to zero. O

Theorem 4.2.25 (Pelaez). Let (S,H*,2,G) be a sliceable 2-functor. Let ® : H(Y) —
H(X) be a functor, E € H(Y) an object, and q € Z an integer. Suppose that (Pel0),,
(Pell)<qt,, and (Pel2)<q are satisfied. Then the morphisms

a,(E) : O(f,E) — f,®(E)
B,(E) : ®(s,E) — s, D(E)
are isomorphisms for all r < q.

Proof (Pelaez). The hypotheses are stable by lowering q and so it suffices to prove that
aq(E) and B, (E) are isomorphisms. The same proof works for both, and we will give the
proof for p but the reader can check that the proof remains valid with g replaced with
a everywhere (and s, replaced with f. where appropriate).

For any fixed integer N we have E =2 hocolimpgNj;E and so since @ and s; commute with
homotopy colimits p,(E) = hocolim,<np,(f,E) hence it suffices to show that each B,(f,E)
is an isomorphism for all p < N for some N. We chose N = q. This way, Lemma 4.2.24
implies that _(f,E) is an isomorphism. We now proceed by induction.

Suppose that B q (f.E) is an isomorphism for some r < q. We must show that g (f._E)
is an isomorphism. We have a commutative diagram

E
o(s,fB) 2 s apE

cDSqu \L%‘DP

o (S’lfr—1E)ﬁm)Sq (Dfrf1E

where p : f, — f,_ is the canonical natural transformation. The inductive hypothesis says
that the upper morphism is an isomorphism, and we have that s;f, = s; and sf,_, = s,
hence sgp is an isomorphism by construction of the slice filtration. Hence, it suffices to
show that the morphism on the right is an isomorphism.

We have another commutative square

sqOf, E —— s, Of f,_E

sq(bpl iar

$q®f, _.[E —— s,f,Of, | E
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4.2 On the functoriality of the slice filtration

with the horizontal morphisms isomorphisms. The right morphism is an isomorphism
by Lemma 4.2.24 above and the third hypothesis. Hence, the morphism on the left is
an isomorphism as desired. ]

4.2.3 APPLICATIONS OF PELAEZ’S THEOREM

Corollary 4.2.26. Let H* be a stable homotopy 2-functor. Suppose f: Y — X is
a morphism in Sch(S), and E € H(X) and F € H(Y) are any objects. The canonical
morphisms

a-(E) : f (FE) = £ (E)
B,(E) : f(sE) = s,f (E)

are isomorphisms for all r if f is smooth, or if f is a nilpotent immersion. Similarly, the
canonical morphisms

ar(E) : f,(f,F) = ff.(F)
B,(E) : fu(sF) = s:f . (F)

are isomorphisms for all r if f is a closed immersion, or if f is a finite étale morphism.
Proof. This follows from Theorem 4.2.25 and Lemma 4.2.20. O
We now discuss some consequences of Gabber’s theorem (Theorem 3.2.12).

Definition 4.2.27. We will say that an object E € H(S) has a weak structure of smooth

traces if for every Y Jx % s Sch(S) with f a finite flat surjective morphism between
smooth S-schemes X, Y such that f, Oy is a globally free Ox-module, we are given a
morphism Try : f,f*a*E — a*E in H(X) such that the composition with a*E — f,f*a*E is
degf - idy .

Definition 4.2.28. Suppose that A C Q is a subring of the rational numbers. We will
say that an object E in an additive category is A-local if hom(E, E) is a A-module. It is
equivalent to ask that for every integer n that is invertible in A the endomorphism #-idg
is an isomorphism.

There is some material on A-local objects in Section A.2.

Theorem 4.2.29. Let H* be a stable homotopy 2-functor, suppose S is the spectrum
of a perfect field k of exponential characteristic p, let E € H(k) be a Z[é]-local object
(Definition 4.2.28), and q € Z an integer. If s,E has a weak structure of smooth traces
(Definition 4.2.27) for every r < q then for any separated k-scheme of finite type a : X —
Spec k the morphisms

ﬂq ta"sqE — sqa”E
ag: a f,E— f,a'E

are isomorphisms in H(X).
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4.2 On the functoriality of the slice filtration

Proof. As discussed in Section A.2, it suffices that the statement is true when E is a Z )
local object, for every prime ¢ different from p.

Note that a* satisfies (Pel0) and (Pell) for all objects (Lemma 4.2.20) so by Theo-
rem 4.2.25 it suffices to verify that a* satisfies (Pel2)<,. That is, we wish to see that
a*s,E € H(X)*(r 4+ 1) for all r < q. The hypotheses of the theorem are stable under
lowering q and so it suffices to consider the case r = q. The proof is by Noetherian
induction.

For the morphisms i : X, — X we have seen that i* and i, are inverse equivalences
of categories that both preserve H'(q + 1) and so we can assume that X is reduced.
Let p : X' — X be a proper morphism furnished by Gabber’s Theorem (3.2.12) with X’
connected, quasi-projective and smooth, and j : U — X an non-empty open subset such
that X’ xx U — U is a finite flat surjective morphism of constant degree prime to ¢. Let
Z be a closed compliment to U. Our diagram is the following:

ZxxX > x <L X xxU

SR

V4 - X ; U

1

By the inductive hypothesis and the localisation distinguished triangle j #j* — id —
isi* — juj*[1] it suffices to show that j,j*a*s;E € H(X)*(q +1) (Lemma 4.2.20). The
weak structure of smooth traces on s;E and the fact that we are working Z)-locally,
implies that j, (j"a*s;E) — j(heh*)(j"a*s4E) is a monomorphism. Since H(X)t (g +1) is
idempotent complete, it now suffices to show that j,h.h%j*a*s;E is in H(X)* (g +1).
The base change properties in Theorem 4.2.11 give isomorphisms h,h*j* & h,j*p* =
j*p.p" and so it now suffices to show that (jj*)(p.p*a"s;E) € H(X)"(q +1). Since (ap) :
X' — Spec(k) is smooth p*a*s;E € H(X)*(q + 1) (Corollary 4.2.26) and we have seen
that p, preserves H(q + 1) (Lemma 4.2.20) so p,p*a*s;E € H(X)*(q +1). Using again
the localisation distinguished triangle j,j* — id — i.i* — j,j*[1], it suffices to show
that (i.i*)(p,p*a*s;E) € H(X)1(q +1). But now by base change (Theorem 4.2.11) we
have an isomorphism i, (i*p,)p*a*s,E = i,(p,i*)p*a*s;E and by the inductive hypothesis
*p*a*s;E € H(X)1(q+1) and so since i.p, preserves H-(q+1) (Lemma 4.2.20) the proof
is complete. ]

The remainder of this section is devoted to the proof of Proposition 4.2.36, and it
is much more enjoyable if read in reverse. That is, in the order Proposition 4.2.36,
Proposition 4.2.35, Lemma 4.2.34, Lemma 4.2.32, and then Lemma 4.2.31.

Definition 4.2.30. If H* is a 2-functor on Sch(S) and E € H(S) an object, for each
scheme a : X — S in Sch(S) we denote by Ex the object a*E. Note that for any morphism
f:Y— X there is a canonical isomorphism f*Ex = Ey.

Lemma 4.2.31. Let H* be a stable homotopy 2-functor, f: Y — X a radicial finite flat
surjective morphism of degree d between smooth S-schemes, and E € H(S) a Z[}]-local

95



4.2 On the functoriality of the slice filtration

object with a weak structure of smooth traces. Then

EX —>f*f*EX
is an isomorphism in H(X).

Proof. First we make a general observation. Suppose A is an additive category, ® an
additive endomorphism, # : id — ® a natural transformation of additive endofunctors
(i.e., Naep) = Ma @ ng), A an object of A, and suppose that A is a direct summand of
DA via the morphism A — ®A. In this situation, if PA — ODA is an isomorphism, then
A — ®A is an isomorphism. In effect, writing v : A @ B = ®A we have a commutative
square

v

ADB

= DA
ﬂA@ﬂB\L Ei”(@A)

DA G (DB:T>CD®A

We will apply this to our situation with ® = f,f* and A = Ex. Due to the invertibility
of d and the trace morphism, the morphism Ex — f,f"Ex is a monomorphism, and every
monomorphism in a triangulated category splits. So Ex is a direct summand of f,f*Ex.
To prove the lemma, it suffices then to see that f,f'Ex — f.f'f.f"Ex is an isomorphism.
We make the cartesian square

Y =Y

pl lf
Y—X
f

By projective base change (Theorem 4.2.11(4a)) we have an isomorphism f, (f'f,)f* =
f.p.q"f" and since the square is commutative an isomorphism f,p, q*f* = f.p.p*f". Now
p : Y — Y admits a section which is a closed immersion (since all our schemes are
separated) and surjective (since p is radicial). Consequently, p* is an equivalence of
categories (Theorem 4.2.11(1d)), and it follows that id — p, p* is an isomorphism. So
we have reduced to showing the commutativity of the following square

W ——=fr0’f

”(&f*)l EJ/“

L —=fp g

where a is the comparison p*f* = ¢*f*. The commutativity of this square follows from the
commutativity of the following diagram since the lower row is precisely the morphism
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4.2 On the functoriality of the slice filtration

which projective base change (Theorem 4.2.11(4a)) states is an isomorphism

ff fp 0 ——f.p.9f"

id
”(&f*)i N(frpar™F*) \L N(fepsa®™r) l \

ij*(fxfk) Hff(f*p*p*fk) a f*f*(f*p*q*f*fzgﬁ *p*q*fk

We have used 7 for the units of adjunction and ¢ for the counit. The commutativity of
the squares is just the naturality of the transformations 5, and the commutativity of the
triangle is from the definition of adjunction: (f.ex) o 1 4 = idf 4. O

Lemma 4.2.32. Let H* be a sliceable 2-functor, X € Sch(S), E € H(X), and q € Z.
Suppose we have an endofunctor ® : H(X) — H(X) that preserves colimits and is equipped
with a natural transformation id — ® such that the morphisms

E — QE, and syE — ®s,E
are isomorphisms for all r < q. Then the morphism
f,E — Of E
is an isomorphism as well.

Proof. We have a morphism of distinguished triangles

qu E s<qE qu[l]

]

OfE— > QF — > DsyE — > Of E[1]

from which we see that qu — (quE is an isomorphism if and only if sc(E — ®s4E is
an isomorphism. We will prove the latter. Recall that there is a canonical isomorphism
E = hocolim,4f E. Since all the functors in question commute with colimits, it suffices
to prove that

scof E—= s f.E

is an isomorphism for all r < g. We do this by induction.
In the case r = g — 1 we find the following commutative square

$g—E —— ®s; ,E

| |

5<11qu1E ﬁ ®s<qfq71E
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4.2 On the functoriality of the slice filtration

where the vertical morphisms are isomorphisms® and the upper morphism is an isomor-
phism by assumption. So assume that our inductive hypothesis is true for r + 1. We
have the following morphism of distinguished triangles

s<qf, 1 B s<qf,E S<gSrE —— s<f,. E[1]

’7y+1l ”H\L l i’lr+1 (1]

(DS<qfr+1E —_— CDS<,1frE e q)5<quE e (Ds<qfr+1E[1]

and due to the inductive hypothesis and the fact that the natural transformation s.gs, =
sy is an isomorphism, the result is proven. O

Remark 4.2.33. If Y — X is the morphism given in Theorem 3.2.12, notice that there
exists a non-empty open subscheme U C X such that the induced morphism f: Yxx U —
U satisfies:

*) the morphism is a composition —— where r is a radicial finite flat surjective
red
morphism and e is an étale finite surjective morphism, and both are morphisms
between smooth k-schemes.

For the following results we use the following hypotheses:

(**) Let H* be a stable homotopy 2-functor, S the spectrum of a k a perfect field

of exponential characteristic p, and q € Z. Suppose that E € H(k) is a Z[;]—
local object such that s,E and E have a weak structure of smooth traces for every
r<gq+1. Let f: Y — X be a finite flat surjective morphism in Sch(k) and a : X — k

the structural morphism.

Lemma 4.2.34. Assume the hypotheses (**). If f satisfies the condition (*) of Re-
mark 4.2.33. Then

ff(f,Ex) € ZHX)Y

Proof. Let i : Y,eqg — Y and i : X,.,q — X be the canonical closed immersions and
Yyed — W = X,eq the factorisation.

Yied — w — Xred

] I

Y 7 X

The canonical natural transformation id — i,i* is a natural isomorphism (Theorem 4.2.11(1d))
and so the canonical morphism f,f* (f,Ex) — fLii*f (f;Ex) is an isomorphism. So it suffices

to show that f,i,i*f* (f;Ex) € ¥9H(X)%. The morphism fi also factors as ier. Now both i*
and e* commute with f, (Corollary 4.2.26) and i, and e, preserve 24 He (Lemma 4.2.17),

®One can see this by considering the distinguished triangle Sg—ify, = s<dfy, P s<afy, sqﬂfqﬂh].
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4.2 On the functoriality of the slice filtration

so it suffices to show that r.r*(f,Ew) € »IH(W)%. By additivity, it suffices to consider
the case when W and Y,.; are connected. That is, we assume that r : Y,.g — Wis a
radicial finite flat surjective morphism between connected smooth k-schemes in Sch(k).

We claim that quW — ryr” quW is actually an isomorphism. By Lemma 4.2.32 to prove
this claim it suffices to show that Ey — r.r*Ew and s.Ey — r.r*s,Ey are isomorphisms
for all r < q (to see that r.r* preserves colimits, notice that it has a right adjoint rot
by Theorem 4.2.11(1b)). To show that these are isomorphisms, by Lemma 4.2.31 it
suffices to show that E € H(k) is Z[3]-local where d = deg(Y,.q — W). By assumption

E is Z[Pﬂ—local and so it suffices to show that d is a power of p. Using the assumption
that Y, and W are connected, we have d = [k(Y,.q) : k(W)] and since this is radicial, its

degree must be a power of p, and we are done. O

Proposition 4.2.35. Assume the hypotheses (**). For all r < q

£ (FEx) € THX)Y.

Proof. 1t suffices to consider the case q = r because the hypotheses are stable under
lowering g. We use induction on the dimension of X. Suppose that f: Y — X is a finite
flat surjective morphism. Since f satisfies the property (*) of Remark 4.2.33 generically,
there exists a dense open U of X such that U xx f satisfies the property (*). We form
the following cartesian squares

Z ——=Y~—U

vk

Z?X%U

Consider the exact triangle jjj* — id — i,i* — jjj'[1] evaluated on the object f,f* (f;Ex):

jij (FF (FyBx)) = £ (fEx) — is* (£ (R Ex)) — jif' (R (FEx0)) .

By projective base change (Theorem 4.2.11(4a)) this triangle is isomorphic to the triangle
(18,87 ) (fEx) = f.f (fBx) = (i f 1) (fEx) — (8.8 (fEx)1]-

We will show that (jg,8%")(f,Ex) and (i*}*}*i*)(quX) are in 29H(X)¥ and the result will
follow since £IH(X)¥ is triangulated.

By Theorem 4.2.29 we have an isomorphism i*quX = fqi*EX, by definition fqi*EX =
f;Ez, and so by induction f.f (f,Ez) >~ f fi (f,Ex) € Y9H(2)¥. Lastly, by Lemma 4.2.17
i, preserves TIHY and so (i*}fi*)(quX) € TIH(X).

For the other corner of the triangle, by Theorem 4.2.29 we have an isomorphism
j'fEx = f,j"Ex, by definition fj*Ex = fEy, and so by Lemma 4.2.34 g ¢'f Ey =
8.87" (f;Ex) € IH(U)¥. Lastly, by Lemma 4.2.17 j, preserves £1H and so jig,g"j* (f;Ex) €
TH (X)), O
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Proposition 4.2.36. Assume the hypotheses (**). The functor f.f* on H(X) satisfies
(Pel0)y, (Pell)<gy,, and (Pel2)<q4 for Ex. Consequently, the morphisms

ar(E) : f.f (f,Ex) — ff.f Ex
B.(E) : f.f (s:Ex) — sf.f"Ex

are isomorphisms for all r < q.

Proof. Proposition 4.2.35 says precisely that (Pell)<gy, is satisfied. Both f, and f* are
right adjoints (Theorem 4.2.11) and so (Pel0) is satisfied. Consider s,Ex for some r < gq.
By Theorem 4.2.29 there is a canonical isomorphism f*s,Ex = s,f"Ex and so since f,
preserves SH* it follows that (Pel2) <, is satisfied. For the stated isomorphisms we need
only to recall Theorem 4.2.25. O

Remark 4.2.37. We note some consequences of Proposition 4.2.36. We keep the nota-
tion used in the statement. Combining this proposition with Theorem 4.2.29 we have
canonical induced isomorphisms B : f,s,f Ex — s,f.f Ex that fit into diagrams

T T T
SJfEX T)f*stX —>ffquX

Consequently, these p satisfy the same functoriality as those mentioned in Lemma 4.2.23.
The same applies to isomorphisms B : f,s,(af)*E = s,f,(af)*E and the analogous a with f..

4.3 TRACES IN THE CONTEXT OF A STABLE HOMOTOPY 2-FUNCTOR

In this section we develop a notion of an object E of H(S) having a structure of traces.
We show that this induces a structure of traces on the slices s;E (and the same proof
shows that there is an induced structure of traces on the connective covers fE.

4.3.1 DEFINITION

We make the following definition.

Definition 4.3.1. Let H, be a covariant 2-functor assigning to every object X € Sch(S)
an additive category H(X), and each morphism f: Y — X in Sch(S) an additive functor
f. : H(Y) = H(X). Let E_ be a section of H,. That is, for each scheme X we are given
an object Ex € H(X), for each morphism f: ¥ — X of schemes we have a morphism
¢f : Ex — f,Ey and these morphisms satisfy a suitable coherency condition.

A structure of traces on the section E_ is the data of a morphism Tr : f Ey — Ex in
H(X) for each finite flat surjective morphism f: Y — X in Sch(S) and these morphisms
are required to satisfy the following axioms.

(Fon) If we have W % ¥ I X in Sch(S) with f and g finite flat surjective then Trg, =
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4.3 Traces in the context of a stable homotopy 2-functor

Trfo f,Trg. That is, the following diagram commutes.

f.8.Ew —— (fg)Ew (4.2)

f* TI‘g i l Trfg

f*EY T—rf> EX

where the isomorphism is the connection isomorphism f, g, 5 (fg)+-

(CdB) Suppose that (3.1) is a cartesian square in Sch(S) with f finite flat surjective. Then
¢p 0 Tty = p, Trg o f cg. That is, the following diagram commutes

W T,
p*g*EYXXWP*g>p*EW (43)
f*q*EYXXW v

f*CqT

f*EY T EX

where the isomorphism is built out of the connection morphisms of the 2-functor
H,.

(Deg) If we have Y J X in Sch(S) with f a finite flat surjective morphism of constant
degree d then the composition of Trs : f,Ey — Ex with the connection morphism
¢f: Ex — f,Ey is d times the identity. That is, we have

Trfo =d - idg,.

Lemma 4.3.2. Continuing with the assumptions and notation of of Definition 4.5.1
suppose that for every morphism p : W — X in Sch(S) the functor p, has a left adjoint
p*  H(X) = H(W). Then (CdB) is equivalent to:

(CdB') The following diagram commutes

Trg
8.Evxxw — Ew (4.4)

8.5, T

8.9 Ey <

|

* E *
r'f. e Ex
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4.3 Traces in the context of a stable homotopy 2-functor

where the ¢ are the adjoints to the ¢ and the unlabelled morphism is the canonical
comparison morphism built from adjunctions p*f, — p*f,4,.9" = p*p.2.9" — 89"

Proof. This is an exercise in adjunctions that is left to the reader. O

Definition 4.3.3. In the notation and assumptions of Lemma 4.3.2, suppose we are
given an object E € H(S) over the base scheme. A structure of traces on E is a structure
of traces on the canonical section that associates to a : X — S the object a*E, and to a
morphism f: Y — X the unit of the adjunction ¢ : a*E — f,f*a*E = f, (af)*E. That is, for

every Y l> X % S with f finite flat surjective, we have a morphism
Trs: f, (af)'E — a"E
and these morphisms satisfy the appropriate axioms.

The following two lemmata are clear from the definitions.

Lemma 4.3.4. In the notation of of Definition 4.3.1, let E_ be a section of H.. The
presheaf F : Sch(S) — H(S) that sends an S-scheme a : X — S to the object a.Ex and a
morphism f: Y — X to the morphism a.Ex — af,Ey = (af)«Ey has a canonical structure
of presheaf with traces in the sense of Definition 3.3.1.

Remark 4.3.5. An immediate consequence of this lemma is that for every object E' €
H(S), the presheaf of abelian groups sending an S-scheme a : X — S to the abelian
group homyg) (E',a.Ex) also have a structure of presheaf with traces. In particular,
if H is the Morel-Voevodsky stable homotopy category and E € SH(S) is an object
with traces, then for each p,q € Z the presheaf on Sch(S) that takes a : X — S to
homgyy(s) (2~ %s[2q — pl, a.a”E) has a canonical structure of traces. Due to the adjunction
(aga*,a.a*) when a is smooth, the restriction of this presheaf to Sm(S) agrees with the
cohomology sheaf EF'4(—) of E defined in [Voe98, Section 6.

Lemma 4.3.6. Suppose that H, and HZ are two 2-functors as in Definition 4.3.1 and
¢ : Hi — HZ is a morphism between them. Let E_ be a section of H,. If E_ has a
structure of traces, then there is a canonical induced structure of traces on the canonical
section E_ of H.

4.3.2 TRACES ON SLICES

Proposition 4.3.7. Let H* be a stable homotopy 2-functor, suppose S is the spectrum
of a perfect field k, and p its exponential characteristic. Suppose that E € H(k) is a
Z[;]-local object with a structure of traces, and such that s,E has a weak structure of
smooth traces for allr < q+1. Then f.E and sqE both have canonical structures of traces.

Proof. The proof for qu and s4E is the same. We give the proof for s;E.

Consider morphisms of schemes Y i> X % k with f finite flat surjective. After Propo-

sition 4.2.36 and Theorem 4.2.29 we have canonical isomorphisms f, (af)*s4E = sof, (af)“E
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4.3 Traces in the context of a stable homotopy 2-functor

and a*sgE = sga*E which are functorial in an appropriate way (see Lemma 4.2.23 for the
details). These give rise to candidate trace morphisms

T
f.(af)"sqE = sof f*a”E =g sqa"E = a*ssE

induced by the trace morphisms Trs of E. We will label these new morphisms Tr}q. The
diagrams that we wish to prove commute are the following.

Functoriality:
f.8.(afg)"sqE — (fg)«(afg)"ssE
£ l iTt}S
f.(af)*s4E ™ a*sqE

Base-change (Lemma 4.3.2):

5q

Tr,
g.(apg)*ssE —— (ap)*sqE

|

8.q"(af)"ssE

|

r*f.(af) *SquF) p*a‘ssE
I
f

Degree:
* * Tr;q *
a*sqE —— f, (af)*sE —— a"s,E

deide

Each of these diagrams arises in the following way. We begin with a 2-category I of a
special form: there exists some positive integer n and a 2-functor I — {o,...,n} sending
each object of I to a unique object of the totally ordered set {o,...,n} considered as
a 2-category with no non-identity 2-morphisms. We identify the objects of I with the
objects of {o,...,n}. Then we have a 2-diagram F : I — Cat such that there exists a
(not necessarily unique) scheme X; for each object i of I such that F(i) = H(X;). We have
an object E' € H(X,) and consequently, an induced diagram Fg in H(X,,) indexed by the
1-category homj(o, n).

For example, in the case of (Deg), E' = s;E, and we could take S,X,Y,X to be the
sequence Xo, . .., X, of schemes. The 1-functors involved are the a*,f",f,, (af)*, d - idyx),
and their various compositions such as fa*, f,f*a*, f, (af)*,etc. The two functors are made
from the various connection isomorphisms such as (af)* = f'a* and their horizontal and
vertical compositions. What we would like is that the g of Lemma 4.2.23 induce an
isomorphism of diagrams between the diagram F, g just described, and the diagram s,Fg
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4.3 Traces in the context of a stable homotopy 2-functor

obtained in the same way, but starting with E and and applying s, at the end. The
functoriality described in Lemma 4.2.23 says precisely that this is true. O

4.3.3 TRACES ON PRODUCTS

Now we continue with a covariant 2-functor H, as Definition 4.3.1 but we further assume
that it factors through the 2-category of additive monoidal categories with lax functors.
That is, each of the categories H(X) is equipped with a product ® and for every morphism
f:Y — X of S-schemes we have a binatural transformation f,(—) ® f,(=) — f.(— ® —)
which are not required to be isomorphisms (and in practice they won’t be). These
binatural transformations are required to be compatible with the isomorphisms (gf). =
f.g, in the obvious way.

Given such a structure, the category of sections of H, has an obvious product structure
where the product of two sections E_, F_ associates to a scheme X the object Ex ® Fx
and to a morphism f: Y — X the composition Ex ® Fx — f,Ey ® f,Fy — f,(Ey ® Fy).

Example 4.3.8. If H a unitary monoidal stable homotopy 2-functor in the sense of
[Ayo07, Definition 2.3.1] then all the above assumptions are satisfied. The functors f,
are lax monoidal due to the f* being strong monoidal (i.e., the f'(— ® —) — f* — ®f —
are isomorphisms). In particular, this applies to the Morel-Voevodsky stable homotopy
category SH as well as the stable homotopy 2-functor obtained from a ring spectrum in
SH(S) by taking the homotopy category of its category of modules.

Definition 4.3.9. With the assumptions and notation just established, we will say that
a section E_ is cartesian if for every section F_ and every projective morphism f: ¥ — X
the morphism Ex ® f,Fy — f,(Ey ® Fy) is an isomorphism.

Example 4.3.10. In the example of a unitary monoidal stable homotopy 2-functor
mentioned above, if we have a section E_ which is cartesian in the sense that the con-
nection morphisms f*Ex — Ey are isomorphisms, then E_ is cartesian in the sense of
Definition 4.3.9 (see [Ayo07, Theorem 2.3.40, Theorem 1.7.17]).

Proposition 4.3.11. Let H, be a covariant 2-functor of additive monoidal categories
with lazx functors as described above. Suppose that E_ and F_ are two sections. If E_ is
cartesian (Definition 4.3.9) and F— has a structure of traces, then there is a canonical
structure of traces on the product (E® F)_.

Proof. Suppose f: Y — X is a finite flat surjective S-morphism. To define trace mor-
phisms f,(Ey ® Fy) — Ex ® Fx we use the isomorphism f, (Ey ® Fy) < Ex ® f,Fy coming
from the assumption that E_ is cartesian, composed with the traces on F_. We will
denote these morphisms by Trj@.

Fach of the axioms are satisfied as a result of the functoriality and compatibility
conditions that we have asked for. Here are the diagrams.
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4.3 Traces in the context of a stable homotopy 2-functor

Functoriality:
f.8.(Ew ® Fw) (fg)«(Ew ® Fw)
f.(Ey ® g, Fw) <—— Ex ® f,g,Fw = Ex ® (fg)+Fw
f.(Ey ® Fy) < Ex ® f,Fy Ex ® Fx

Base-change:

1.8, (Evxxw ® Fyxyw) < p, (By © g,Fy) ——> p, (Ey @ Fy)

|

Ex ®@p, g, Fyxxyw — Ex @ p, Fysxw

[, (Eyxxw @ Fyxyw) <—— Ex ® f,q, Frxxw

T T

f(By®@Fy)<——  EBEx®fFy— > Ex®Fy

Degree:

Ex®Trf
Ex® f.Fy —— s By ® Fy

Ex®c
/ J{ = TTr}@

Ex ® Fx — f,Ey ® f,Fy ——f,(Ey ® Fy)
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Motivic applications

5.1 INTRODUCTION

N this chapter we use the previous material to give a proof of Theorem 5.3.1 which is
I our main technical result. We then demonstrate how this theorem may be applied to
obtain Z[] linear versions of results that previously assumed resolution of singularties.

In Section 5.2 we show that the object HZ representing motivic cohomology in the
Morel-Voevodsky stable homotopy category has a weak structure of smooth trace (Def-
inition 4.2.27, Proposition 5.2.1) and that the object representing algebraic K-theory
has a structure of traces (Definition 4.3.1, Proposition 5.2.3). Applying the material of
the previous chapter and a theorem of Levine ([Lev08, Theorems 6.4.2 and 9.0.3]), this
implies that HZ[2] has a structure of traces (Corollary 5.2.4).

In Section 5.3 we prove Theorem 5.3.1. The main technical results that we use are
Corollary 5.2.4, Theorem 3.8.2, and a result of Cisinski applying a theorem of Ayoub
that says that every object in the Morel-Voevodsky stable homotopy category satisfies
cdh descent.

In Section 5.4 and Section 5.5 we show how Theorem 5.3.1 implies Z[j]—linear versions
of all the results in [FV00] and [Voe0Ob] without having to use resolution of singularities.
We show in Section 5.6 how this works for [Sus00].

In Section 5.7 we use the £dh topology and the theorem of Gabber to give a partial
answer to a conjecture of Weibel about vanishing of algebraic K-theory (Theorem 5.7.1).

5.2 SOME OBJECTS OF SH(k) WITH TRACES

In this section we show that the object representing motivic cohomology in SH(S) has a
weak structure of smooth traces, and the object representing algebraic K-theory has a
structure of traces.
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5.2 Some objects of SH(k) with traces

Proposition 5.2.1. Suppose S is a noetherian scheme. The object HZ € SH(S) that
represents motivic cohomology ([Voe98, Section 6.1]) has a weak structure of smooth
traces (Definition 4.2.27).

Remark 5.2.2. We can construct by hand a structure of traces on the section HZ_
which assigns to each scheme X € Sch(S) the object HZx representing motivic cohomology
defined by Voevodsky. This is a consequence of the component terms of each spectrum
HZx being presheaves with transfers on Sch(S). However, for our purposes we need a
structure of traces on the section (—)*HZ; determined by the object HZ; € SH(k), and
for non-smooth schemes a : X — S it is an open conjecture ([Voe02, Conjecture 17])
whether a*HZg is isomorphic to HZx.

Proof. Let Comp(Shvyis(SmCor(S))) denote the category of unbounded chain complexes
in the abelian category Shvy;s(SmCor(S)), and denote by D(Comp(Shvyis(SmCor(S)))) its
associated derived category (obtained by localising at quasi-isomorphisms). The cate-
gory DM¥(S) is by definition the localisation of D(Comp(Shvyis(SmCor(S)))) at the class
of morphisms Ly;(A) — Lnis(X) for all X € Sm(S) (recall the notation from Defini-
tion 3.3.8).

First we claim that every object of Comp(Shvyis(SmCor(S))) has a weak structure of
smooth traces as a section of Comp(Shvnis(SmCor(—))). Consider Shvy;s(SmCor(—)) as a
2-functor on Sch(S). For any smooth scheme a : X — § the functor a* is just restriction
(—)lsmcor(x) : Shvnis(SmCor(S)) — Shvnis(SmCor(X)) and for any morphism f: X — S the
functor f, is composition with X xg— : SmCor(S) — SmCor(X). Let a : X — S be a smooth
morphism and f: Y — X a finite flat surjective morphism with af smooth as well. Note
that since f is finite, f, : PreShv(Y) — PreShv(X) is exact and preserves Nisnevich sheaves.
We can explicitely describe the functors f, (af)* and a* on Comp(Shvyis(SmCor(S))) by
evaluating them on a sheaf F € Shvy;(SmCor(S)), and describing the two resulting sheaves
f.(af)*F and a*F in Shvy;s(SmCor(X)) by evaluating them on an object U € SmCor(X).
We have (f,(af)*F)(U) = F(Y xx U) and ((af)*F)(U) = F(U), and the correspondence
[l : [X] — [Y] in SmCor(S) (Definition 2.5.2) gives us a morphism between these two
groups. Since (CdB) is satisfied in SmCor(S) (Proposition 2.5.8) these morphisms are
functorial in the appropriate way and we obtain a canonical natural transformation
f.(af)y* — a*. Moreover, since (Deg) is satisfied in SmCor(S) (Proposition 2.5.8), the
composition a* — f, (af)* — a* is d times the identity when f is of constant degree d.
Hence, the claim.

Let L denote the cokernel of the morphism L(s) : Lyis(S) — Lnis(Ps) given by the
section s : § — P§ at infinity. To obtain the category DM(S) we formally adjoint a
tensor inverse to IL. That is, we consider the category Sp; (Comp(Shvnis(SmCor(S)))) of LL-
spectra in Comp(Shvyis(SmCor(S))). Such a spectrum is a sequence (K, K, ... ) of objects
of Comp(Shvy;s(SmCor(S))) together with connection morphisms K, — hom(L, K,,). Let
p : P5 — S be the canonical projection. We will use the same notation p for bases other
than S as well. Let Qg = ker(p,p*(—) — (—)) where the morphism is induced by the unit
of the adjunction id — s.s* and the identity ps = id. There is a canonical isomorphism
Qs = hom(L, —).
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5.2 Some objects of SH(k) with traces

To show that the trace morphisms we defined above pass to L-spectra, we must show
that the following square is commutative.

f* (af) *Kﬂ - QXf* (af) >kI(ﬂ'f'l

| |

a'K, — Qxa* Ky,

We can see this immediately by evaluating on an object U € Sm(X) as we obtain the
following square.

I(n(Y Xx U) —>ker<Kn+1(Y Xx U Xx ]P)AIX) — Kn+1(Y Xx U))

|

K,(U) ——————ker <Kn+1(U xx P%) — Kn_,_I(U)>

For a morphism f and a smooth morphism a the functors a* and f, preserve A'-local
objects as they have left adjoints which preserve representables. When f is finite they
are also both exact. Consequently, we have shown that every object of DM(S) has a
weak structure of smooth traces.

Finally, we observe that HZs € SH(S) is by definition the image of the object repre-
sented by S in DM(S) and that for smooth morphisms a : X — S we have a*HZg = HZy.
It now follows from Lemma 4.3.6 that HZg (and indeed, any object in the image of
DM(S) — SH(S)) has a weak structure of smooth traces. O

We now turn our attention to algebraic K-theory. See [Wei89] for homotopy invariant
algebraic K-theory and [Cis13] for its representability in the Morel-Voevodsky stable
homotopy category. We recall one construction of the object KH in SH(S) that represents
homotopy invariant algebraic K-theory. For a category C we denote by Spe(C) the
category of presheaves of S'-spectra on C. When C = Sm(X) for some scheme X € Sch(S)
we denote by Spp. (Spg (Sm(X))) the category of P'-spectra in Spg (Sm(X)) where P* is
pointed at infinity. By definition, SH(S) is the homotopy category of Spp.Spe (Sm(X)),
where Spg, (Sm(X)) is given the model category structure that is the Bousfield localisation
with respect to A invariance and Nisnevich descent. The notation f*, f, will be overused,
sometimes referring to inverse image and direct image of Ox-modules, and sometimes
referring to inverse image and direct image of presheaves of §'-spectra, or P*-spectra. It
should be clear from the context which is intended.

We will end up discussing four different incarnations of K-theory: a presheaf of S'-
spectra on Sch(S), a section of the 2-functor Spg(Sm(—)), a section of the 2-functor
Spp:Spg: (Sm(—)), and a section of the 2-functor SH(—).

1. K, a presheaf of S'-spectra on Sch(S). Following [TT90, 3.1] (cf. [TT90, Definition
1.5.3] and [TT90, Lemma 3.5] as well) we denote by K(X) the S'-spectra associated
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5.2 Some objects of SH(k) with traces

to the biWaldhausen category of perfect complexes on the scheme X € Sch(S).
In order to end up with an actual presheaf of S'-spectra (instead of just a a lax
functor), when we say perfect complex, we mean a presheaf on Sch(X) (as opposed
to the small Zariski site of X) with the appropriate structure and properties (see
[FS02, Section C4]).

2. K_, a section of the 2-functor Sps(Sm(—)). For a scheme X € Sch(S) we define
Kx = Klgux) as the restriction of K to smooth schemes over X for X € Sch(S).
For a morphism of S-schemes f: Y — X, we have a corresponding adjunction of
presheaves of S'-spectra

[ Spa(Sm(X)) = Spg(Sm(Y)) : f,

with the right adjoint given by f,E(—) = E(Y xx —). Hence, there is a canonical
morphism Ky — f Ky. The Kx together with these canonical morphisms give a
section K_ of the 2-functor Spg (Sm(X)).

3. Ky, a section of the 2-functor Spp.Spe(Sm(—)). For each scheme X € Sch(S) define

F(X) = hofib(K(P%) Kep) K(X)) where co : X — P% is the closed embedding at

infinity. These F(X) form a presheaf of S'-spectra. As with K, define Fx = F|g,x)
as the restriction of F to smooth schemes over X for X € Sch(S).

On P}, choose a global section of O(1) whose fibre at infinity is invertible. There is
a corresponding morphism O — O(1) which can be regarded as a perfect complex
concentrated in (cohomological) degrees o and 1. Its pullback to Spec(Z) along oo is
acyclic. We will denote this complex by u. Inverse image gives us a corresponding
complex on Py for every scheme X which we will denote by ux. Let p : Py — X
be the canonical projection. We consider the map ux ® p*— : Perf(X) — Perf(P%).
Notice that as we are using big vector bundles ([FS02, Section C4]) this is natural
in X. Notice also that this is exact as p is flat and ux is a complex of vector
bundles. Denote the corresponding map of K-theory spectra by b : K(X) — K(P%),
also natural in X. The composition co*(ux ® p*) is (co*ux) ® —, tensor with an
acyclic complex of vector bundles. Hence, b gives rise to a map B : K(X) — F(X) =

hofib(K(P%) ) K(X)), natural in X. That is, we have a map of presheaves of
S'-spectra
B:K—F.

It follows from our definitions and the fact that p : Py — X is smooth that there
is a canonical isomorphism Fx = hom(P%,Kx) in Ho(Sps(Sm(X))) where P is
pointed at infinity. Via this canonical morphism, the morphisms B give rise to a
P'-spectrum (Kx, Kx,Kx, . ..) in Spg (Sm(X)) which we call Ky.

4. KH, the object representing homotopy invariant K-theory in SH(X). Finally, the
localisation KHx of each Ky in Spp,Spg (Sm(X)) with respect to Nisnevich descent
and A'-homotopy (that is, a fibrant replacement for the localised model category
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5.2 Some objects of SH(k) with traces

structure) gives the object in SH(X) representing homotopy algebraic K-theory (see
[Cis13]).

Proposition 5.2.3. The object KH € SH(S) that represents homotopy invariant alge-
braic K-theory has a structure of traces (Definition 4.3.1).

Proof. Each of the four incarnations of algebraic K-theory mentioned above will have
traces in their own sense, and each one induces the traces on the next. For the “trace”
morphisms that we will associate with K (resp. K_, K_,KH) we will use Trff< (resp.
Trj}sl, Tr}Pl, Trf).

We begin with traces on K and the properties we need. The construction of K is
functorial in complicial biWaldhausen categories. Notably, for each finite flat surjective
morphism f : Y — X we obtain a corresponding exact functor f, : Perf(Y) — Perf(X)
between the corresponding biWaldhausen categories of perfect complexes. Hence, there
are morphisms Trff : K(Y) — K(X). Due to the functoriality and the standard properties
of Ox-modules we have the following properties. For a morphism f: Y — X, we denote
by K(f) : K(X) — K(Y) the morphism of spectra induced by inverse image f* : Perf(X) —
Perf(Y) (discussed in [TT90, 3.14]).

f

Functoriality. (cf. [TT90, 1.5.4]) If W 2 ¥ £ X are finite flat surjective then we have
a homotopy TrffTrg i Trg.

Base-change. (cf. [TT90, 3.18]) If we have a cartesian square (2.10), then there is a
homotopy K(p)TrJIf = Trf;K(q).

Degree. (cf. [TT90, 1.7.3.2]) If f : Y — X is finite flat surjective and there is an
isomorphism f, Oy = (’)3”( then there is a homotopy of maps of S'-spectra TrffK(f) =
d - K(idx).

Suppose that f: Y — X is a finite flat surjective morphism. To ease the notation we
use f for the induced morphism P}, — P% as well, and p for both projections Py — X and

P} — Y. Recall that above we have defined F(X) = hofib(K(IP%) K(—O>O ) (X)).

After the base-change property, the morphisms TrX induce a morphism Trjf :F(Y) —
F(X). We claim that the following square on the left is commutative up to homotopy.
This follows from the commutativity of the square in the middle up to homotopy, which is
a consequence of the commutativity of the square on the right up to natural isomorphism.

This latter commutativity is a consequence of the projection formula f, (uy ® p*—) =
f(frux @ p"—) = ux ® f,p"(—), and base change p*f, = f,p".

K(Y) 2> F(Y) K(Y) % K(P) Perf(Y)" S Perf(P,)
ek i Tif Trf Trf fe l if f
K(X) —p~ F(X) K(X) — K(P) Perf(X) > Perf(Py)

That is, B : K — F (defined above) is a “morphism of presheaves of S'-spectra with
traces” (although we haven’t formally defined what that means).

Now we pass to the sections K_ of the 2-functor Ho(Spg (Sm(—))). We will use the
above properties to show that K_ has a structure of traces as a section. Recall that for
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5.2 Some objects of SH(k) with traces

f:Y — X a morphism of S-schemes, we have a corresponding adjunction of presheaves
of S'-spectra

£+ Spg(Sm(X)) = Spg.(Sm(¥)) : ..

Due to the base-change mentioned above, if fis finite flat surjective we have a morphism
of presheaves of S'-spectra Trﬁl : f, Ky — Kx induced by the morphisms Tr¥.
Functoriality, Base-change, and Degree. These follow immediately from the corre-
sponding properties of the Tr* and the description of f, as f,E(—) = E(Y xx —).
Periodicity. Via the canonical isomorphism Fx = hom(P%, Kx) in Ho(Spg (Sm(X))), the
traces TrJf that we have defined in F_ correspond to the morphisms hom(P%,f,Ky) —
hom(P%, Kx) induced by the traces Tr}< of K_. Hence commutative diagrams

f.B

Trfl llm(PS(,Trff)
I<X hom(]P’fX, Kx)

l;/

where the p' : Kx — hom(PP%, Kx) are the morphisms corresponding to the g : Kx — Fx.
Recall that for any morphism f: ¥ — X of schemes there is an adjunction

I SppSpg (Sm(X)) = Spp.Spg (Sm(Y)) - f,

with the right adjoint given by f,(Eo, E,,...) = (f.Eo,f,E:,...) and the new structural
morphisms are the compositions f,E, — f, hom(P}, E,+,) = hom(PY, f,Eu+,). It follows
from our remarks on periodicity that when f is finite flat surjective we have induced
trace morphisms Tr}[m : f Ky = Kx.

Functoriality, Base-change, Degree. These follow immediately from the corresponding
properties of the TrS" and the description of f, that we have given. Hence, the section
K_ has a structure of traces.

Now we consider KHx. The category SH(X) can be presented as the localisation of
the homotopy category Ho(Spp.(Sm(X))) with respect to A'-localisation and Nisnevich
descent. Inverse image preserves Nisnevich hypercovers, and the projections A}, — U so
the class of morphisms that we are localising with respect to is preserved. Consequently,
direct image preserves local objects. That is, the localisation functors Ho(Spp (Sm(X))) —
SH(X) satisfy the properties required to apply Lemma 4.3.6 to the section K_ of the 2-
functor Ho(Spp. (Sm(—))). O

Corollary 5.2.4. Suppose k is a perfect field of exponential characteristic p. Then for
any object M of SH(k), the object HZ[;]k AM has a structure of traces.

Proof. We have seen that KH has a structure of traces (Proposition 5.2.3) and after work
of Levine we know that the zero slice of KH is HZ ([Lev08, Theorems 6.4.2 and 9.0.3]).
Hence, HZ has a structure of traces (Proposition 4.3.7). So applying Proposition 4.3.11

shows that HZ[;]k A M has a structure of traces. O
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5.3 Resolution of singularities for relative cycles

5.3 RESOLUTION OF SINGULARITIES FOR RELATIVE CYCLES
In this section our goal is to prove the following theorem.

Theorem 5.3.1. Let k be a perfect field of exponential characteristic p. Suppose that F
is a presheaf with transfers on Sch(k) such that ch;,®Z[1§] =o. Then Q*(F|sm(k))Nis®Z[§]
s quasi-isomorphic to zero.

Recall that the 2-functor X — SH(X) factors through a 2-functor X — .#(X) where

1. for each X € Sch(S) the category .#(X) is a stable model category (hence enriched
in symmetric S'-spectra [Dug06]) which is combinatorial® and cellular,

2. for each f: Y — X in Sch(S) the functor f* : .4 (X) — #(Y) is a left Quillen functor,

3. for each smooth f: Y — X in Sch(S) the functor f* is has a left adjoint f, which is
a left Quillen functor.

4. for each cartesian square (2.10) with f smooth, the corresponding natural trans-
formations g, q" — p*f, are isomorphisms.

In other words, .# is a stable Sm-fibred combinatorial model category ([CD09, Defini-
tions 1.1.2, 1.1.9, 1.3.2, 1.3.20]). Moreover, SH is obtained by passing to the homotopy
categories of .#. That is, SH is the homotopy Sm-fibred category associated with .#
([CD09, 1.3.23]). These statements follow directly from the construction of SH given in
[Ayo07].

As each . (S) is enriched in symmetric S'-spectra [Dug06], for any pair of objects
E,F € #(S) we can associate a presheaf of S'-spectra that sends a scheme a : X — S to

the S'-spectrum

(F,€)(X) d:efhom(}_, a.a*&).

In the following theorem, “descent” is in the sense of [CD09, Definition 3.2.5]. In the
case where .# is the stable Sm-fibred model category that associates to each scheme
X € Sch(S) the corresponding category of presheaves of S'-spectra Spg(Sm(—)), this
definition of agrees with that of Jardine-Thomason (see [Mit97] for a civilised discussion
of this notion of descent).

Theorem 5.3.2 ([CD09, Corollary 3.2.18]). Suppose that 4 is a stable Sm-fibred com-
binatorial model category over Sch(S) and € € A (S). Let v be a Grothendieck topology
and G a set of generators for Ho(.#(S)). Then & satisfies t-descent if and only if for
every F € G the presheaf of S*-spectra (F,E) satisfies t-descent.

Remark 5.3.3. The statement in [CD09] is for all F, not just a set of generators,
but a glance at the proof of [CD09, Corollary 3.2.17] shows that it suffices to consider
generators.

!Combinatorial categories were introduced by Jeff Smith. The definition can be found in [Dug01,
Section 2].
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5.3 Resolution of singularities for relative cycles

Now for any S the triangulated category SH(S) is compactly generated by objects of
the form X7, f1s for f: Y — S a smooth morphism and q > o. If F in Theorem 5.3.2
is of this form and a : X — S is also smooth, then we have the following canonical
isomorphisms

7 (F, €)(X) = hom(ss[n], MUJ(Z_qls),a*a*E))
= hom(fyuf (27 91s[n]), a.a*&)
= hom(aga'fuf (2 %sln]), &)
~ hom(2 712X x5 Y4 [n]), &)

This group is denoted by £*47™9(X xgY) in [Voe98, Section 6] and m,_4(£)(X x5 Y), in
[Mor04].

Definition 5.3.4. We introduce the notation
Y def — *
ETY(X) = hom(X 7 ,f 15, a.a7E).

The following corollary is a summary of what we have just discussed.

Corollary 5.3.5. Let S be a noetherian scheme and suppose that T is a Grothendieck
topology in Sch(S). Then an object £ € SH(S) satisfies T-descent if and only if for every
q > o and every smooth S-scheme Y — S the presheaf of S*-spectra E%Y satisfies T-descent.

Due to the isomorphisms mentioned above, after work of Déglise, if £ is oriented
then the Nisnevich sheaf associated to the presheaf 7,£%Y on Sm(S) has a structure of
Nisnevich sheaf with transfers ([Dégll]).

Proposition 5.3.6 ([Dégll]). Let k be a perfect field and £ € SH(k) an oriented object
(in the sense of Morel [Vez01, Definition 2.1]). Then for any n,q € Z and smooth Y — k,
the Nisnevich sheaf (n,£%Y)nis associated to the presheaf of homotopy groups m,E%Y has
a structure of transfers on Sm(k).

Proof. The presheaves 7,£%Y(—) and 7,£%5(Y xg —) are canonically isomorphic. The
functor Yx;— : Sm(k) — Sm(k) lifts to a functor Yxz— : SmCor(k) — SmCor(k) compatible
with the inclusion Sm(k) — SmCor(k) and so it suffices to show that the Nisnevich sheaf
associated to the presheaf 7, £2%%(¥) () has transfers on Sm(k).

First we claim that if £ is orientable, then it is weakly orientable ([Dégll, Definition
4.2.3]). Recall that the Hopf map 5 : £°(G,,,1) — 1 is defined as the map in SH(k)
induced by A* — {o} — P* after applying £ [Dégll, 1.2.6]. As € is oriented, the pro-
jective bundle formula holds ([Vez01, Proposition 2.4(ii)] attributes this to Morel) and
so for any smooth scheme W and any linear embedding P* — P> the induced morphism

homgyy () (Z°Z(P* x W), £) — homgyy ) (X (P* x W) 4, &)
is split surjective for all i € Z. After the homotopy exact sequence [Mor04, 6.2.1]
oo 1 z oo 1 o0 2 o 1
E¥(A' = {o})+ = Z®(P')y = T®(P*) 4 — Z¥(A" — {o})4[1
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this implies that the morphism homsy) ((2n) A T'EXW,, E) is zero for all i € Z and
smooth W. Equivalently, the morphism

homgp () (Z ' Z°W,., hom(y, £))

is zero for all i € Z and smooth W where hom is the internal hom in the monoidal category
SH(k). Asthe = '=°W, form a compact generating family for the triangulated category
SH(k) this implies that the morphism hom(#, £) is zero. That is, £ is weakly orientable
[Dégll, Definition 4.2.3, Lemma 4.2.2(ii’)].

An equivalent condition for £ to be weakly orientable is that the associated homotopy
modules z,, (€). ([Dégll, 1.1.2, Definition 1.2.2, 1.2.3]) are orientable ([Dégl1, Definition
1.2.7]) for each m ([Dégll, Lemma 4.2.2(i)]). One of the main results of [Dégll] is
that orientable homotopy modules are precisely those homotopy modules which admit
a structure of transfers on Sm(k) ([Dégll, Corollary 4.1.5(2)(i), Corollary 4.1.5(ii)]).
By definition, the Nisnevich sheaves =z, (€); on Sm(k) are the sheaves associated to the
presheaves homgy) (£7/(—)+[i + m],&) on Sm(k). That is, the presheaves i m &SPk,
Hence, the Nisnevich sheaf associated to the presheaf m,£2%¢(*) (=) has transfers on
Sm(k) for each n,q € Z. O

We can deduce now the following theorem.

Theorem 5.3.7. Suppose k is a perfect field and £ a prime that is invertible in k. Let
& be an oriented Z ) -local object (Definition 4.2.28) of SH(k) with a structure of traces
(Definition 4.53.1). Then any direct factor of € satisfies {dh-descent. In particular, any
module in SH(k) over the ring spectrum HZyy satisfies {dh-descent.

Proof. It is immediate from the definition ([CD09, Definition 3.2.5]) that any direct
factor of an object satisfying descent also satisfies descent. Let £ € SH(k) be a Z -
local object with a structure of traces. After Corollary 5.3.5 it suffices to show that
E%Y satisfies ¢dh-descent for every q > o and every smooth ¥ — k. Let Y 5 & =
Hyagn(—, £2Y) be the Godement-Thomason construction [Tho85, 1.33]. The morphism
of associated fdh sheaves (m,E%Y)pan — (7,E)ean is an isomorphism for all n. If we can
show that 7,£%Y — 7,£ is an isomorphism of presheaves for every n then £9¥ — £’ is
a weak equivalence of presheaves of S'-spectra, so £97 satisfies £dh descent, and we are
done.

We know that & and hence £%Y (Theorem 5.3.2) satisfies cdh descent, since every
object of SH(k) satisfies cdh descent ([Cis13, 3.7]). This gives us a cdh descent spectral
sequence for £9Y

By = Hig (X, (r- ")) — 7o £77(X)

together with a morphism towards the ¢dh descent spectral sequence for &’
E' = Hyg, (X, (7 )ean) == 7-s—£'(X).

The first spectral sequence converges since the cdh topology has finite cohomological
dimension [SV00a, Theorem 12.5]. As we know that (7,€)sgn — (7,E")ean is an isomor-
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phism for all n, it suffices to show that

H g, (X, (70" can) — Hygp,(X, (2 —£9)an) (5.1)

is an isomorphism for all s,¢. This will imply that the morphism of spectral sequences
is an isomorphism, and therefore give the convergence of the second spectral sequence,
and an isomorphism 7, £%Y(X) = 7,£(X) for all n.

That the morphism (5.1) is an isomorphism will follow from Theorem 3.8.2. To
apply this theorem, we must show that 7,£%Y is a homotopy invariant presheaf of Lgy-
modules with traces such that 7, £%Y| sm(k) has a structure of presheaf with transfers, and
T EPY(U) = 71,E9Y(U,eq) is an isomorphism for all U € Sch(k). Recall that for a: U — k
in Sch(k) we have a canonical isomorphism

1, £V (U) = homgy) (27 4 f 15[n], a.a"E).

This presheaf is homotopy invariant and doesn’t see nilpotents because the same is true
of the functor Sch(k) — End(SH(k)) defined by (a : U — k) — a.a®. It is a presheaf of
Zg-modules by our hypothesis that £ is Zy)-local. It has traces as a result of £ having a
structure of traces (Lemma 4.3.4). Finally, the hypothesis that £ is oriented implies that
TwEPY |sm(x) is a presheaf with transfers after a theorem of Déglise (Proposition 5.3.6).
For the last assertion in the statement, it suffices to notice that any HZ ) module M
is canonically a direct factor of HZ, ® M, and the latter has a structure of traces after
Corollary 5.2.4. m

Corollary 5.3.8. Let k be a perfect field and £ a prime that is invertible in k. Suppose
that X — X is a smooth {dh-hypercover in Sm(k) of a smooth scheme a : X — k in Sm(k).
Then the corresponding morphism M(X) — M(X) is an isomorphism in DM%(k, Zy)).

Proof. By Voevodsky’s Cancellation Theorem [Voel0Oa] it suffices to show that this mor-
phism is an isomorphism in DM(k, Z(g)). There is a canonical adjunction

Z :SH(k) 2 DM(k, Z(y)) : U

with Z symmetric monoidal such that for any simplicial smooth scheme gq: )Y — k we
have Z(q,q"1) = M(Y). Moreover, for any object E € DM(k, Z(y)), the spectrum U(E) has
a structure of HZ)-module. Let p : X — k and a : X — k be the structural morphisms.
Due to the last assertion of Theorem 5.3.7, it is sufficient to prove that, for any object
& of SH(k) which satisfies ¢dh descent, the map

hom(aga™1, &) — hom(pyp™1, €)
is bijective. By adjunction it is equivalent to show that the map
hom(1, axa*E) — hom(1,p,p*E)

is a bijection, and this holds since & satisfies ¢dh descent. 0
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5.3 Resolution of singularities for relative cycles

We are now in a position to prove Theorem 5.3.1.

Proof of Theorem 5.5.1. It is enough to show that C,(F)nis ® Zp) quasi-isomorphic to
zero for each prime £ # p. Note that our assumptions imply that Feg, ® Zy) = o for each
L #p.

Corollary 5.3.8 is precisely the condition [CD09, Proposition 5.2.10](i), and [CDO09,
Proposition 5.2.10](ii’) applied to F is the condition that C, (F)nis ® Z(;) = o since this is
the image of F in DM%(k, Z(;)) under the canonical morphism

D(PreShv(SmCor(k), Zs))) — DM (k, Zy)).

Hence, after [CD09, Proposition 5.2.10], the former implies the latter.
We can be a bit more verbose. For T = Nis, /dh we have canonical equivalences

D(PreShv(SmCor(k), Z(y)))/ L = D(Shv.(SmCor(k), Z(y)))

where %, is the class of cones of morphisms of the form L(X) — L(X) with X — X a
t-hypercovering. In the light of these equivalences, Corollary 5.3.8 implies that we have
a commutative triangle

D(Shvyis(SmCor(k), Zyy)) D(Shvgan(SmCor(k), Z(py))  (5.2)

\/

DM (k, Zy)

As before, C, (F)nis®Z ) is the image of F®Z ) in the lower category, and Fygy ®Z(y) is its
image in the upper right category. It follows that if Fpg, ®Z ) is zero, then C, (F)nis®Zy)
is zero. O

We have the following easy consequence of our main theorem.

Corollary 5.3.9. Let k be a perfect field of exponential characteristic p and ¢ a prime
difference from p. Then there are canonical functors

D(Shvedh(SmCor(k), Z(Z))) — DMeff(k, Z(g))

D(Shvean(Cor(k), Z[3])) — DMT (k, Z[2])
which identify the targets as the localisations of the sources with respect to morphisms

of the form L;(AY) — L.(X) (where t = cdh or ¢dh as applicable) and X € Sm(k).

Proof. The existance of the first functor has already been seen in the proof of The-
orem 5.3.1 and considering the categories in question as localisations of the category
D(PreShv(SmCor(k), Zy)) as discussed in that proof leads to the universal property which
identifies DMk, Z(yy) as the appropriate localisation. For the second functor consider
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5.4 Bivariant cycle cohomology - After Friedlander, Voevodsky

the following commutative diagram of functors:

D(Shvyis(Cor(k), Z(r))) — D(Shvnis(SmCor(k), Zg)))

|

D(Shvean(Cor(k), Zy)))

(1)l

D(Shvggn(Cor(k), Z))) = D(Shvggn(SmCor(k), Zyy))

As a consequence of the theorem of Gabber giving smooth ¢dh covers (Corollary 3.2.13)
the functor (2) is an equivalence. Since cdh sheaves with transfers are already (dh
sheaves (Corollary 3.4.12) the functor (1) is an equality. Hence the desired functor, at
least with Z, coefficients exists by the existence of the first functor in the statement,
and moreover, it is identified with the localisation with respect to morphisms of the form
Lean(AY) — Legn(X). Now we have commutative squares

D(Shvcdh(COr(k), Z[;])) D(Shvcdh(Cor(k), Z(g)))

| |

D(Shvegn(Cor(k), Z[3])) / (Lean(Ak) — Lean(X)) ——— DM (k, Z[}])
and the result follows from Section A.2. O
Definition 5.3.10. For X € Sch(k) we will denote by M(X) [P%] (resp. MC(X)[;']) the image
Of Cequi(X/k, 0) (resp. zegui(X/k,0)) in DM (k, Z[;]) under the functor

D(Shvean(Cor(k), Z[2])) — DM (k, Z[3]).

Proposition 5.3.11 (cf. [Voe00Ob, Theorem 4.1.10]). Let k be a perfect field of expo-
nential characteristic p. Suppose that X is a scheme of finite type and F a presheaf with
transfers on Sch(k). Then there is a canonical isomorphism

homDMe_ff(kZ[;D(M(X) [;]79* (F|Sm(k))[fl;]) = idh(X7 C, (F)th)[é]

Proof. Use the description of DMeff(k,Z[;]) as a localisation of D(Shvcdh(Cor(k),Z[é]))
together with the analogue of [Voe0OOb, Proposition 3.1.9]. O

5.4 BIVARIANT CYCLE COHOMOLOGY - AFTER FRIEDLANDER, VOEVODSKY

In this section we collect some results of [FV00| for which Theorem 5.3.1 allows us to
remove the resolution of singularities assumption.
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5.4.1 BIVARIANT CYCLE COHOMOLOGY

Recall the following definition.

Definition 5.4.1 ([FV00, Definition 4.3]). Let X, Y be schemes of finite type over a field
k and r > o be an integer. The bivariant cycle cohomology groups of Y with coefficients
in cycles on X are the groups

Ari(Y, X) = H gy (Y, (C. (Zegui (X, 7)) can)
The notation 4, ;(X) is also used for the groups A, ;(Spec(k), X).

Theorem 5.4.2 (cf. [FV00, Theorem 5.5]). Let k be a perfect field of exponential
characteristic p, let ¢ be a prime different from p, and suppose F is a presheaf with
transfers on Sch(k).

1. For any smooth scheme U and n > o there are canonical isomorphisms
H, (U, o (F)ean)[2] 2 Hy (U, C, (Flgie ) zar) 2],
ean(U; Co(F)ean) ® Zig) = Mgy (U, C, (F)ean) @ Zy).-

2. For any separated scheme of finite type X over k, and any n > o the projection
X x A* = X induces isomorphisms

Hean (X, C. (Fean)[] = Higy, (X X AL, C(F)ean) []-

Proof. Due to the fact that we can calculate hypercohomology as hom groups in derived
categories of sheaves with transfers, Corollary 5.3.9 gives us

Hg, (U, €, (F)ean) (2] = Hiy (U, C. (Flomge i) [2):

That the Nisnevich and Zariski hypercohomology are the same follow from the hyper-
cohomology spectral sequence and [FV00, Theorem 5.1(2)]. The second equality also
follows from the hypercohomology spectral sequence and Theorem 3.4.17. The third
equality also follows from Corollary 5.3.9 and calculating hypercohomology using hom’s
in the derived categories of sheaves with transfers. O

Proposition 5.4.3 (cf. [FV00, Proposition 5.9]). Let k be a perfect field of exponential
characteristic p and let X, Y € Sch(k). Then for all r,i the homomorphisms

AV X2 An(Y x AL X[
induced by the projection are isomorphisms.

Proof. This is a special case of Theorem 5.4.2 with F = zgg.i(X, r). O

Theorem 5.4.4 (cf. [FV00, Theorem 5.11)). Let k be a perfect field of exponential
characteristic p and let X € Sch(k). Let Y C X be a closed subscheme of X, and let U,, U,
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be Zariski open subsets with X = U, UU,. Then there are canonical exact triangles (in
the derived category of complexes of sheaves on Sm(k)z.) of the form
C (Zeqm(Y r))Zar[ ] — C (Zeqm(X 7))Zar[f,]
— Q*(Zequi(X_ Y, "))Zar[ ]—C (Zequt(Y "))Zar[p” 1]

and

Q*(zequi(xv "))Zar[;] - C, (Zequi(Un "))Zur[j] ®C (Zeqm(Uz r))za {ﬁ]
—C, (Zequi(Ul nu.,, ”))Zur[[,] —C, (zeqm( ))Zar{p][l]-

Proof. We have a the sequence
o — Zequi(Y7 7') — Zequi (X, 7') — Zequi (X — Y’ r)

where the right-most morphism becomes surjective after taking the associated cdh
sheaves ([SV00b, Theorem 4.2.9], [SV00b, Theorem 4.3.1]). Hence, by Theorem 5.3.1
after applying Q*(—)[Iﬂ we get a short exact sequence of complexes of Nisnevich sheaves
on Sm(S). That this is also a short exact sequence of complexes of Zariski sheaves is
[FV00, Lemma 4.1] and [FV00, Theorem 5.1].

The proof for the second sequence is the same using [SV0Ob, Corollary 4.3.2] instead
of [SV0O0b, Theorem 4.3.1]. O

Corollary 5.4.5 (cf. [FVO00, Corollary 5.12]). With the notation and assumptions of
Theorem 5.4.4 for any scheme U € Sch(k) there are long exact sequences

A (ULY) [P%] — A, ;(U, X) [1}'] — A (U X—-Y) [1}'] — A, (U, Y) [1}'] —
and

An(UX)[2] = AU, U]

84U, U)[5] = An(U, U, N0, [7]
= A (U, X)[] —
Proof. Use Theorem 5.4.4 Corollary 5.3.9, and the fact that we can calculate hyperco-
homology in the derived category of sheaves with transfers. O

Theorem 5.4.6 (cf. [FV00, Theorem 5.13]). Let k be a perfect field of exponential
characteristic p and let X € Sch(k). Let Z C X be a closed immersion and X — X
a proper morphism in Sch(k) such that X' — X is an isomorphism outside of Z. Let
Z' = Z xx X. Then there is a canonical exact triangle (in the derived category of
complexes of sheaves on Sm(k)zar)

C.(zequi(Z',1)) zarl5] = Co(Zequi(Z, 7)) zar[5) ® Co(2egqui(X's 7)) zar [}
»

]

ég*(zequi(X’r))Z 2] = C (Zeqm( ) ))Zar[l]”
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Proof. Exactly the same as for Theorem 5.4.4 using [SV00b, Proposition 4.3.3] instead
of [SV00b, Theorem 4.3.1]. O

Corollary 5.4.7 (cf. [FVO00, Corollary 5.14]). With the notation and assumptions of
Theorem 5.4.6, for any scheme U € Sch(k) there is a canonical long exact sequence of
the form

AU, Z) 3] = AU, 2)[3] @ Ari(U X [5] = Ari(U, X)[7]
— A i (U, Z’)[é] — ...

Proof. As for Corollary 5.4.5. O

5.4.2 DuALITY

We now turn to the section on Duality.

Remark 5.4.8. We recall that all the material in the subsection “The moving lemma”
[FV00, Section 6] apply to varieties over an arbitrary field k. This is pointed out in the
first paragraph of that section. This is also true of [FV00, Theorem 7.1]. The assumption
that the base field admits resolution of singularities is said to resume between [FV00,
Theorem 7.1] and [FV00, Lemma 7.2], but the latter doesn’t use it (if we take the
smoothness of U as an assumption). It is needed for [FV00, Proposition 7.3] and the
material which follows it.

Definition 5.4.9 (cf. [FV00, after Proposition 2.1]). For X, U € Sch(S) and r > o the
presheaf z.q,;(U, X, r) on Sch(S) is defined as

Zeqm'(U,X, 1’)(—) = Zeqm‘(X/S, r)(— Xs U)

That is, it is the composition of z.4,i(X,r) with the endomorphism — XU of the category
Cor(S).

Recall that the correspondence homomorphisms [SV0Ob, Section 3.7] induce a mor-
phism of presheaves [SV00b, Corollary 3.7.5]

Cor(—, =) : Zequi(U, X, 1) @ 2equi(U/S, n) = Zequi(X x5 U/S, n).

If U € Sch(k) is flat and equidimensional over S of dimension n, then U determines an
element cycly/s(U) in zequi(U/S,n). That is, a global section of the presheaf z.q,;(U/S, n).
Evaluating Cor(—, —) on this section defines a morphism of presheaves

D : 2oui(U, X, 1) = Zequi(X X5 U, 7+ n).

Lemma 5.4.10. The morphism D is always injective. Furthermore, it is covariantly
functorial in X for proper morphisms via the proper push-forward, contravariantly func-
torial in X for flat equidimensional morphisms (r obviously increases by the relative
dimension of the morphism), and contravariantly functorial in U with respect to flat
equidimensional morphisms (with the appropriate change in n)
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Proof. For the injectivity we recall the definition of Cor(—,—). Given a cycle g =
Y 1izi € Zequi(U/S,n)(S) with ; : Z; — U the canonical closed immersions, and a cycle
a € zequi(X/S,r)(U) we obtain cycles 1;’a € zqui(X/S,r)(z;) for each i. These are formal
sums of points of z; X X, which we can also consider as formal sums of points of U xgX.
The definition of Cor(a, B) is Cor(a,f) = > nil’a considered as a formal sum of points in
U xs X. Now if B is of the form cycly/s(U) then the morphism Ilz; — U is birational and
so @i is injective. Since we are dealing with free abelian groups, ®n;i is also injective,
and finally, for each i, the points in the formal sum «’a considered as points in U xg X
lie over the generic point z; of U. Hence, each of the formal sums «’a contains distinct
points. So D is injective when evaluated on S. To see that it is injective on every scheme
f:V— Sin Sch(S) we just replace S with V, U with U xg V and X with X xg V. Since U
is flat over S we have fPcycly/s(U) = cyclyyu/v(V X5 U).

The functoriality in X is an immediate consequence of [SV0Ob, Proposition 3.6.2] and
[SV0OOb, Lemma 3.6.4]. For the contravariance in U suppose that p : U — U is a flat
equidimensional S-morphism of relative dimension m. We have an induced morphism or
presheaves

Zequi(U, X, 1) — zequi(U', X,r)

given on V by the appropriate (U x5V — U xg V)® and morphism of presheaves
Zequi(U/S, 1) — zequi(U/S, r+m)

Zequi(X X5 U/S, 1) = 2equi(X xs U' /S, 1+ m)

given by the flat pullbacks [SV00b, Lemma 3.6.4]. By [SV00b, Lemma 3.7.2] these fit
into a commutative square

Cor(—,—)

Zoqui(U, X, 1) @ Zegui(U/S, n) Zequi(X X5 U/S, n)

p®®p* l lp*

Zequi(U', X, 1) @ Zequi(U' /S, n + m)cﬁ)zequi(X xs U /S,n+ m)

Now since p*cycly/s(U) = cycly/5(U’) we are done. O

For the convenience of the reader we reproduce the following theorem.
Theorem 5.4.11 ([FV00, Theorem 7.1]). Let X,Y be smooth projective equidimensional
schemes over a field k. Then the embedding of presheaves

D : 2equi(Y, X, 1) = Zequi(X X1 Y, 7 +n)

induces a quasi-isomorphism of presheaves on Sm(k) after applying C,(—).

We wish to extend this theorem to non-smooth non-projective quasi-projective schemes.
To do this we use the presheaves z¢(X,n) and z¢(U, X,n) (with U,X € Sch(k),n > o)
which are the subpresheaves of z(X,n) and z(U, X,n) consisting of those cycles of the
form > niz; with all n; > o.
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Definition 5.4.12. Suppose that

1. kis a perfect field of exponential characteristic p,

, X, Y are proper schemes in Sch(k), with U equidimensional of dimension n,

N
al

3. U— U, X — X are open immersions,
4. Y — X is a proper morphism,

Given U, X we can always find a suitable U, X [Nag62]. We define aeg as the morphism

of presheaves of abelian monoids
a%ff 2 U Y, r 4 n) = 20U < X, r +n)
which is the composition of the proper push-forward
U X Y, r+n) = 2H(U X X, r+1n)
and the flat pullback
U < X, r+1n) = 2H(U X X, r+1n).
We also define the corresponding morphism of presheaves of abelian groups

ag : Zequi(U Xk Y, r—+ n) — Zequ,’(U X X, r+ 1’1).

The presheaf of abelian monoids Cbeg is the presheaf which fits into the following cartesian
diagram

eff eff
Uk zeqm-(U, X,r)

| |

Zequi(U X Y, r 4 1) —— Zequi(X X1 U, 7 + 1)
and the subpresheaf of abelian groups
817 : (D? — Zequi(U Xk ?, r+ 11)

is defined to be the subpresheaf of abelian groups generated by the subpresheaf of abelian
monoids (Diij .

Hence, we have a corresponding commutative square

Oy Zequi(Ua X, r) (5'3)

s | E

o4 1) —— Zequi(X X U, 7 + 1)
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of presheaves of abelian groups. Voevodsky-Friedlander warn us that this is not in
general cartesian [FV00, before Lemma 7.2] but that it is in the case that Y = X.

Example 5.4.13. Consider the case U= U,X = X and Y = XIIX. Let a be any cycle in
2H(X x; U, r+n) that is not in z¢(U, X, ). Then (a, —a) is in the pullback of the square
(5.3) but not in Oy.

Lemma 5.4.14 (cf. [FV00, proof of Theorem 7.4]). With the notation and assumptions
of Definition 5.4.12 the morphism 8% induces a quasi-isomorphism of complexes of

abelian groups after applying C,(—)(k) [17] if and only if D does.

Proof. We use the following diagram of morphisms of presheaves
° ker' CDX Zequi(Ua X) ——> coker, — o0

la |5 E l

0 ’ ker(“f) > zequi(ﬁ Xk X) e > Zequi(U Xk X) — coker, — o0

where we have used the abbreviations
Zequi(Ua X) = zequi(U7 X, 7')

Zequi(U Xk X) = Zequi(U Xk X, r+ 1’1)
Zequi(U X1 X) = Zequi(U Xk X, 7 + n)

Since D is a monomorphism and the square involving §x and D is cartesian, the morphism
a is an isomorphism and the other vertical morphisms are all monomorphisms. Hence,
it suffices to show that C,(coker;)(k)[3] is acyclic for i = 1,2. By Theorem 5.3.1 it
suffices to show that (coker;).qn = o for i = 1,2 and since ¢ is a monomorphism we
can restrict our attention to i = 2. This is a standard application of the platification
theorem (Theorem 2.2.16) as described in [SV00b, Theorem 4.3.1] and [SV00b, Theorem
4.2.9]. O

Proposition 5.4.15 (cf. [FV00, Proposition 7.3]). With the notation and assumptions
of Definition 5.4.12 suppose further that Y and U are smooth. Then the morphism 8y
induces a quasi-isomorphism of complexes of abelian groups after applying C,(—)(k).

Proof. This is the first case treated in the proof of [FV00, Proposition 7.3]. O

Theorem 5.4.16 (cf. [FV00, Theorem 7.4]). Suppose that k is a perfect field, p its expo-
nential characteristic, U a reduced quasi-projective equidimensional scheme of dimension
n over k, and X a scheme of finite type over k. Then for any r > o the embedding

D : 2equi(U, X, 1) = Zequi(X X U,r + n)

induces a quasi-isomorphism of complexes of abelian groups after applying Q*(—)(k)[f,].

123



5.4 Bivariant cycle cohomology - After Friedlander, Voevodsky

Proof. We can assume that X is reduced as the canonical morphism X,.,; — X induce
isomorphisms of all the presheaves involved.

Choose embeddings of U and X as open subschemes of proper k-schemes U — U,
X — X [Nag62] so that we are in the situation of Definition 5.4.12. By Lemma 5.4.14
it suffices to show that 8% induces a quasi-isomorphism after applying Q*(—)(k)[é]. We
will show that we obtain a quasi-isomorphism after applying C,(—)(k) ® Z for each
L #p.

Let U — U and X — X be morphisms given by Theorem 3.2.12 and let V — X (resp.
W — U) be an open immersion such that the induced morphism V xyf — V (resp.
WxgU — W) is finite flat surjective locally (on the target) of degree prime to £. Define
V =VxxX and W =WxgU.

Replacing U and X with W and V and using Lemma 5.4.14 again if suffices to show
that

D® Z(Z) : zeqm-(W, V, r) (029 Z(g) — zeqm-(V X W,r—+ n) & Z(g)

induces a quasi-isomorphism after applying C,(—)(k). Now D is functorial with respect
to flat pullback and proper push-forward (Lemma 5.4.10), and so since the degrees of
our flat finite surjective morphisms are invertible in Z, this D just mentioned is a
retraction of

D® Z(g) : Zequi(W, v, r® Z(g) — zeqm-(V' Xe W, r+ n) Z(g)

(cf. [SVOOb, Lemma 2.3.5]). So it suffices to show that this latter induces a quasi-
isomorphism after applying C,(—)(k). Now W’ and V' are open subschemes of U and X
respectively which are both smooth and proper over k. Using Lemma 5.4.14 a final time
we reduce to showing that

S © Zey : O @ Lty = zequlX ¥k U7+ 1) © 2

induces a quasi-isomorphism after applying C, (—)(k). This is given by Proposition 5.4.15.
O

Corollary 5.4.17. Suppose that k is a perfect field, p its exponential characteristic, U a
reduced quasi-projective equidimensional scheme of dimension n over k, and X a scheme
of finite type over k. Then for any r > o the embedding

D zequi(U, X, r) — zeqm-(X XU, r+ n)

induces a quasi-isomorphism after applying C,(—)[%] of complexes of presheaves on the

p
category of quasi-projective smooth k-schemes.
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Proof. For any smooth scheme V of dimension m we have

hi(zequi(Uv X, "))(V)[;] —— hi(zequi(X Xk U, r+n))(V)[3]

p

hi(Zegui(X, 1)) (V X1 U)[] hi(Zequi(V, X X3 U, r+ 1)) (k) [ ]

i~

hi(2equi(U % V, X, 1)) (k) [;] ?hi(zequi(X X U X Vyr+n+m))(k) [;]
where the isomorphisms are given by Theorem 5.4.16. O

5.4.3 PROPERTIES

Definition 5.4.18 (cf. [FV00, Beginning of Section 4]). If F is a presheaf on Sch(k)
or Sm(k) recall that [FVO00] denote by h,(F) the homology presheaves of the complex of
presheaves C, (F).

Theorem 5.4.19 (cf. [FV00, Theorem 8.1]). Let k be a perfect field of exponential
characteristic p, let U be a smooth quasi-projective scheme over k and X a separated
scheme of finite type over k. Then the natural homomorphisms of abelian groups

hi(zequi(X, 7)) (U)[5] = Ari(U, X)[7]
are isomorphisms for alli € 7.

Proof. The proof of [FV00, Theorem 8.1] works fine after applying (—)[;] to everything.
O
Theorem 5.4.20 (cf. [FV00, Theorem 8.2]). Let k be a perfect field of exponential

characteristic p, let U be a smooth scheme of pure dimension n over k, and let X,Y be
separated schemes of finite type over k. Then there are canonical isomorphisms

Ari(Y X U, X)[3] = Arpni(Y, X x U)[1].
Proof. We begin with canonical morphisms
Hc_dlh(Ya Q* (Zequi(Ua X, r))cdh) — Hc_dth (Y Xk U, g* (Zequi(X7 r))cdh)-
Let p : U — k denote the projection. We have two canonical left exact functors

I(

)

Shvean(Sch(U)) ©5 Shvegn(Sch(k)) "5 Ab

where the first is composition with the functor — x; U : Sch(k) — Sch(U) and the second
is evaluation at Y. Let G = p,,F = I'(Y,—), and K = C,(Zequi(X,7))can- Then the
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hypercohomology groups on the left are
H'™'RF(G(K))
and the hypercohomology groups on the right are
H'R(FG)(K) = H'RF(RG(K)).

Our morphism is induced by the canonical morphism G(K) — RG(K). Notice that these
are natural in Y.

To show that these canonical morphisms are isomorphisms (after (—)[;;]), it suffices to
do so after —® Zy) for each prime ¢ different from p. As we are dealing with presheaves
with transfers, we can replace the cdh topology with the ¢dh topology, and so we are
now trying to show that the canonical morphisms

H,, (Y, C, (2equi(U, X, 1)) an) ® Ly — H,, (Y X U, C, (2equi(X, 7)) ean) ® Ly

are isomorphisms. Due to the theorem of Gabber (Corollary 3.2.13) it suffices to consider
the case when Y is smooth and quasi-projective, and indeed we can also replace Sch(k)
by Sm(k). In this case, we claim that, in the notation used above, G(K) — RG(K) is an
isomorphism in the derived category of complexes of ¢dh sheaves. For this morphism to
be an isomorphism it suffices that it induces isomorphisms after applying H~*(V, —) for
each smooth quasi-projective V. That is, we have returned to the following version of
our initial morphism

Hy 3, (Y, C, (Zequi(U, X, 7)) gan) @ Zoy — Hy (Y Xk U, C, (Zequi(X, 7)) ean) ® Zp

but now assuming that Y is smooth and quasi-projective and that we are on the ¢dh site
Sm(k). We have the morphism

D - zequi(U, X, r) — zeqm-(X X U, r+ 1’1)

and Corollary 5.4.17 tells us that this induces a quasi-isomorphism of presheaves on Sm(k)
after applying C,(—) ® Zy) and hence it suffices to show that the induced morphism

H g, (Y, C(Zequi (X X U, v+ 1)) gan) @ Zgpy = Hiyg (Y X U, C, (2equi (X, 7)) ean) @ Zgp)
is an isomorphism. By definition, this morphism is the morphism

Ar+n7i<Y,X Xk U) & Z(g) — Aryi(Y X U, X) & Z(@).
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Our result now follows from Theorem 5.4.19 using the following diagram.

Ar+n7i(Y,X Xk U) ® Z(@) 4>Ar’i(Y X U, X) & Z(g)

5.4.19

5.4.19 hi(zequi(xa r))(Y Xk U)

hi(zequi(X X U, r + n))(Y) h;(Zegui(U, X, 7)) (Y)

5-4.17
]

Theorem 5.4.21 (cf. [FV00, Theorem 8.3]). Let k be a perfect field of exponential
characteristic p and let X,Y be separated schemes of finite type over k.

1. (Homotopy invariance) The pull-back homomorphism zegui(X,r) — Zegui(X X A', r41)
induces for any i € Z an isomorphism
Ani(¥,X0[2] = Appag (. X x A2,

2. (Suspension) Let
p:XxP'—X

it X—>XxP
be the natural projection and closed embedding. Then the morphism
i D P ¢ Zequi(X, 7+ 1) @ Zegui(X, 1) — Zegui(X X P, r +1)
induces an isomorphism
Apai (1 0[2] & A(Y, X0[2] = Apsra(¥, X x P[2].
3. (Cosuspension) There are canonical isomorphisms:

Ari(Y x PLX)[R] = A (Y, X) 5] @ Ani(Y. X)[3].

4. (Gysin) Let Z C U be a closed immersion of smooth schemes everywhere of codi-
mension ¢ in U. Then there is a canonical long exact sequence of abelian groups
of the form

. 'Ar+c,i(Z> X) [é] - Ar,i(Uv X)[;] - Ar,i(U - Z, X) [;]
— Ar+c7i,1(z, X)[;] — ...

Proof. 1. Follows from Theorem 5.4.19 and homotopy invariance (Proposition 5.4.3).
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2. Follows from the localisation sequence (Corollary 5.4.5) and the first part.
3. Follows from Theorem 5.4.19 and the second part.

4. Follows from Theorem 5.4.19 and (Corollary 5.4.5).
U

5.5 TRIANGULATED CATEGORIES OF MOTIVES OVER A FIELD - AFTER VO-
EVODSKY

In this section we show how Theorem 5.3.1 can be used to lift the assumption of resolu-
tion of singularities on all of the results in [Voe0Ob], if we are willing to work Z[}%]—linearly.
The principle is that every time Voevodsky assumes the existence of a smooth cdh cover
we can use the existence of a smooth ¢dh-cover, and the only other way he uses resolution
of singularities is via [Voe0Ob, Theorem 4.1.2] which we replace with Theorem 5.3.1.
Definition 5.5.1. We define DM;?(n(k, Z[;]) as the full triangulated subcategory of com-
pact objects in DM (k,Z[}%]). The category DMgm(k,Z[;]) is obtained by formally ad-
joining a tensor inverse to Z[I}'](U as is done for Chow motives.

Lemma 5.5.2 (cf. [VoeOOb, Corollary 4.1.4]). Let k be a perfect field of exponential

characteristic k. Then DMgfn(k,Z[;]) contains M(X)[;] for any scheme X of finite type
over k.
Proof. Follows immediately from Corollary 5.3.9. O

Proposition 5.5.3 (cf. [VoeOOb, Corollary 3.5.5]). Let k be a perfect field of exponen-
tial characteristic p. Then DM??;(k,Z[;]) is generated as a pseudo-abelian triangulated
category by objects of the form M(X)[}l,] for smooth projective varieties X over k.

Proof. We will show that the image of the family SP = {M(X) [;} : X is smooth and
projective } in DMk, Z(y)) is a compact generating family for every prime ¢ different
from p. It then follows from Lemma A.2.15 that the smallest triangulated category of
DM (k, Z[;]) containing SP is in fact the full subcategory of compact objects.

Let & denote the smallest pseudo-abelian triangulated subcategory of DM (k, Z(g))
containing objects of the form M(X) for smooth projective varieties X over k. As
£ = {M(X)() : X is smooth } is a compact generating family for DM (k,Z(y)), the
smallest triangulated category containing .# is the full subcategory of compact objects
of DM#(k,Zy)). So it suffices to show that every M(X)() with X smooth (but not
necessarily projective) is contained in &?. We will do so by induction on the dimension
of X. Suppose it is true for all smooth schemes of dimension strictly less than d and
let X be a smooth scheme of dimension d. Due to the Mayer-Vietoris distinguished
triangles [Voe0Ob, Lemma 2.1.2] it suffices to consider X quasi-projective. Let X — X
be a compactification of X and Y — X a morphism given by Theorem 3.2.12. So Y is
a smooth projective variety and there exists a dense open subscheme U C X such that
U x% Y — U is finite flat surjective of degree prime to £.
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We claim that for any dense open embedding V — V' of smooth schemes, My, (V) is
in & if and only if M, (V') is in &. Assuming this claim we proceed as follows. By
definition of & it contains Y. Due to our claim, Mg,(U xxY) is in &. By the degree
formula for correspondences and the fact that we are working Zy)-linearly, Mgy, (U) is a
retract of Mg, (U x5 Y). Since & is pseudo-abelian, this implies that M, (U) is in 2.
Finally, by using our claim again, this implies that Mg, (X) is in &2,

It remains to prove our claim. Let V — V' be a dense open embedding of smooth
schemes. Since the base field is perfect, every reduced scheme contains an open dense
smooth scheme. Consequently, there exists a sequence V=V, CV, C --- C V, = V' of
dense open immersions such that each V;—V;_, is smooth and everywhere of codimension
¢; for some ¢;. Then our claim follows from the inductive hypothesis and the triangles

Mgm(Viﬂ) — Mgm(Vi) - Mgm(Vi — Vi) (i) [2ci] — Mgm(Viﬂ)[l]

given by [Voe00b, Proposition 3.5.4]. O

Proposition 5.5.4 (cf. [Voe00b, Proposition 4.1.3]). Consider a cartesian square of
morphisms of schemes of finite type over k of the form

[/ — (5.4)

b

Z— X

such that p is proper, i is a closed immersion, and p is an isomorphism over X—Z. Then

there is a canonical distinguished triangle in DM (k, Z[Pﬂ) of the form

M(Z)[2] - M(2)[2] & M(X)[2] = MOO[] - M(Z) 2]l
Proof. Follows from the following short exact sequence of cdh sheaves ([SV0Ob, Theorem
4.2.9], [SV0Ob, Proposition 4.3.3]) and our definitions.

o — Cequi(Z//ka o)cdh — Cequi(z/ka o)cdh S¥ Cequi(X,/k7 O)th — Cequi(X/ka °>cdh — 0.
]

Proposition 5.5.5 (cf. [VoeOOb, Proposition 4.1.5]). Let k be a perfect field of exponen-
tial characteristic p and X a scheme of finite type over k. Let Z be a closed subscheme
of X. Then there is a canonical distinguished triangle in DMeff(k,Z[;]) of the form

M(2)[2] = MX)[2] = M(X - 2)[2] - M(2)[2]}]

If X is proper then there is a canonical isomorphism M¢(X) [é] = M(X)[j]

Proof. The second statement follows from the equality cequi(X/k,0) = zequi(X/k, 0) when
X is proper. The proof of the first is the same as that of Proposition 5.5.4 with z.g;, z
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replacing cequi, ¢ and the short exact sequence [SV00b, Theorem 4.3.1] replacing [SVO0ODb,
Theorem 4.3.3]. O

Lemma 5.5.6 (cf. [VoeOOb, Corollary 4.1.6]). Let k be a perfect field of exponential
characteristic k. Then Dsz,fn(k,Z[;]) contains M(X) [I{] for any scheme X of finite type
over k.

Proof. Follows immediately from Lemma 5.5.2 and Proposition 5.5.5 using a compacti-
fication [Nag62]. O

Proposition 5.5.7. Let k be a perfect field of exponential characteristic p. Suppose
that M,,M, : Cor(k)? — 7 are functors to a Z[;]—linear triangulated category. Let
n: M, = M, be a natural transformation between these functors. Suppose further, that
for every cartesian square of the form (5.4) such that p is proper, i is a closed immersion,
and p is an isomorphism over X — Z, there exist morphisms y, : Mj(X) — M;(Z')[1] for
i =1,2 such that the triangles

Mi(Z') = My(Z) & Mi(X') — My(X) 5 My(Z)]1].
are distinguished for i = 1,2 and the squares

M, (X) — Ml(Z/) [1]

L

M, (X) —= M,(Z')[3]

are commutative. Then if n is an isomorphism for every smooth scheme, it is an
isomorphism for every scheme.

Proof. After Lemma A.2.14 it suffices to show that the statement is true for every Z -
linear triangulated category for each prime ¢ different to p. We will work by induction
on the dimension of X. The natural transformation 5 can be seen to be an isomorphism
in dimension zero by considering the distinguished triangle with Z = X' = X,.4. So
suppose that 5 is an isomorphism for all schemes of dimension less than n, and let X
be a scheme of dimension n. Let Y — X be a morphism given by Theorem 3.2.12 and
X — X a blow-up such that the proper transform Y — X is flat (Theorem 2.2.16). Let
Z, W be closed subschemes of X, Y such that the dimensions of Z, W,Z xx X and W xy Y
are less than n, and X — X (resp. Y — Y) is an isomorphism over X — Z (resp. Y — W).
Then considering the associated distinguished triangles, to show that M,(X) — M,(X)
(resp. M,(Y) — M,(Y)) is an isomorphism, due to the induction hypothesis, it suffices to

show that M, (X) — M,(X) (resp. M,(Y) — M,(Y)) is an isomorphism. Since Y is smooth,
it follows that M,(Y) — M,(Y) is an isomorphism. Now since Y — X is generically finite
surjective of degree prime to ¢, the flat morphism ¥ — X is globally finite surjective

and locally of degree prime to ¢. In particular, as M,, M, are natural in Cor(k) and we

are working Zy) linearly, the morphism M,(X) — M,(X) is a retract of M,(Y) — M,(Y)
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(Proposition 2.5.8 - traces). Hence, M,(X) — M,(X) is an isomorphism, and therefore
M, (X) — M,(X) is an isomorphism.
O

Proposition 5.5.8 (cf. [VoeOOb, Proposition 4.1.7]). Let k be a perfect field of expo-
nential characteristic p. Let X,Y be schemes of finite type over k. In DM (k, Z[;]) there
are canonical isomorphisms:
M(0)[2] © M(Y)[2] = M(X x¢ Y)[2] and
M [2] © MEY)[2] 2 MECX i V)2,
Proof. Due to Proposition 5.5.7, for the first isomorphism it is sufficient to give an
isomorphism

tr
Cequi(X/ka o)cdh ® Cequi(Y/ka o)cdh — Cequi(X Xk Y/ka o)cdh

tr
in Shv.gn(Cor(k)). This follows immediately from the definition of ® as the functor
induced by the left Kan extension along Cor(k) x Cor(k) — Cor(k).
For the second isomorphism, use compactifications [Nag62] and Proposition 5.5.5. [

Corollary 5.5.9 (cf. [Voe00Ob, Corollary 4.1.8]). Let k be a perfect field of exponential
characteristic p. For any scheme X of finite type over k one has canonical isomorphisms

M(X x A‘)[}ﬂ ~ M(X) [11,] and

MAX < AN = MO () 2]

In particular, we have
ME(AM)[2] 2 Z[2) (1) o).
Proof. After Proposition 5.5.8 it is sufficient to show that
M(AY)[2] = Z[2], and

M(AY[E] = Z[E) ()l

The first follows from the definition of DM (k, Z[f’]) as we have inverted A} — k. The
second follows from the definition of the Tate object and Proposition 5.5.5. O

Corollary 5.5.10 (cf. [Voe0OOb, Corollary 4.1.11]). Let k be a perfect field of exponential
characteristic p and X a scheme of finite type over k. Let £ be a vector bundle on X.
Denote by p : P(€) — X the projective bundle over X associated with £. Then one has a
canonical isomorphism in DMeff(k,Z[;}) of the form

M(P(£))[3] = @R M(X)[3] (n)[2n].

Proof. The proof of [Voe00b, Corollary 4.1.11] works fine with the usual adjustments to
use the theorem of Gabber as done in Proposition 5.5.8. ]
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Proposition 5.5.11 (cf. [Voe0Ob, Proposition 4.2.3, Corollaries 4.2.4, 4.2.5, 4.2.6, 4.2.7,
Theorem 4.3.2]). Let k be a perfect field of exponential characteristic p and X, Y schemes
of finite type over k.

1. For any r > o there are canonical isomorphisms

hompyp(e zi2)) (MY G1()[er +4, MU]) = Ani(V X)),

2. If f: X = Y is a flat equidimensional morphism of relative dimension n then there
is a canonical morphism in DM¥(k, Z[;]) of the form

[ M) ] () [2n] — ME(X)[]

and these morphisms satisfy the standard properties of the contravariant functori-
ality of algebraic cycles.

3. IfX happens to be smooth, and we denote by A'(X) the group of cycles of codimension
i on X modulo rational equivalence, then there is a canonical isomorphism

Ai(X) [;] = homDMeff(k,Z[;])(M(X) [f,], Z[f,](i) [Zi])-
4. If X, Y are smooth and proper then one has
homDMeﬁ(kvz[;])(M(X) [fl,]aM(Y) [f,]) = Agim(x) (X X Y)
homggoe 22 (MO L MODZIE) = o for i > .
5. If X is smooth then there is a canonical isomorphism

hom(M(X)[2], M‘(Y)[£]) & C. (2equi(X, Y,0)).

6. Suppose that k is a perfect field of exponential characteristic p. Let X be a smooth
proper scheme of dimension n over k. The morphism

M(X)[;] = hom(M(X)[;]], Z[;](n)[2n])
induced by the diagonal X — X x X (5.5.11(83)) is an isomorphism.
Proof. The proofs in [Voe00Ob] go through without changes. O

We recall Voevodsky’s Cancellation Theorem.

Theorem 5.5.12 ([VoelOa, Corollary 4.10]). Suppose that k is a perfect field. Then for
any K,L € DM# (k) the map

hom(K,L) — hom(K(1),L(1))
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s a bijection.

Proposition 5.5.13 (cf. [VoeOOb, Proposition 4.3.3]). Let k be a perfect field of expo-
nential characteristic p. Let X be a scheme of finite type of dimension n over k. Then
for any n,r > o the morphism

hom (MO 131212100 ) () > hom (MOO[ZL 2o+ )

is an isomorphism.

Proof. For any A we have the following isomorphisms given by Theorem 5.5.12:

hom(a().bom(MOO[ZLZL31(n) ) () hom(A(), hom (MO0 Z[21Gr 1))

hom(A(r) ® M(X)[2], Z[;](” + 7))

hom(4, m(zw(x)[;m[;](n))) — hom(A®MX)[], Z[](n))

Taking A = hom(M(X) [;], Z[Pﬂ(n)), the identity id,(,) induces the desired morphism, and

moreover, this morphism is natural in X. We then use Proposition 5.5.7 (together with
Proposition 5.5.4) to reduce to the case when X is smooth, in which case it follows from
Proposition 5.5.11(1) and Theorem 5.4.20. O

Theorem 5.5.14 (cf. [VoeOOb, Theorem 4.3.7]). Let k be a perfect field of expo-
nential characteristic p.  Then DMgm(k,Z[;]) has an internal hom. Setting A* =

mDMgm(k,Z[}%])(AZ[;]) one has:

1. For any object A in DMgm(k,Z[;}) the canonical morphism A — (A*)* is an iso-
morphism.

2. For any pair of objects A, B of DMgp,(k, Z[;]) there are canonical morphisms
(A®B)* = A* ® B*
hom(A, B) = A* ® B.

3. For a smooth scheme X of pure dimension n over k one has canonical isomorphisms

M(X)[2)" 2 ME(X)[2] ()] 2]

M2 2 MX)[2](—)[~2n].
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5.6 Higher Chow Groups and Etale Cohomology — After Suslin

5.6 HIiGHER CHOW GROUPS AND ETALE COHOMOLOGY — AFTER SUSLIN

Our goal in this section is to relate Bloch’s higher Chow groups of varieties over an
perfect field to étale cohomology. We follow Suslin’s article [Sus00] very closely, but we
replace the theorem of Voevodsky [Sus00, Theorem 3.1] he cites with a Z[;]—Version that
uses Gabber’s theorem on alterations instead of resolution of singularities.

For the rest we follow his strategy to the letter. In Section 1 and Section 2 of [Sus00]
Suslin shows that the higher Chow groups of an affine equidimensional separated scheme
of finite type over a field can be calculated using equidimensional cycles. This is valid
with integral coefficients and no restrictions on the base field. In Section 3 he generalises
this, showing that the higher Chow groups of any quasi-projective scheme X of character-
istic zero can be calculated as the Suslin homology of the presheaves z.q,i(X/Spec(k), —).
This is proven using induction on the dimension, a localisation long exact sequence, the
result for affine varieties, and the theorem [Sus00, Theorem 3.1] of Voevodsky that we
will replace.

Voevodsky’s theorem assumes resolution of singularities, and this is the only place
Suslin’s proof assumes the base field is of characteristic zero. Replacing this with our
theorem that uses Gabber’s theorem on alterations, permits us to have this result in
characteristic p if we use Z[;]—coeﬂicien‘cs. That is, the higher Chow groups with Z[;]—
coeflicients of any quasi-projective scheme X of characteristic p can be calculated as the
Suslin homology of the presheaves zequi(X/Spec(k), —)[11?]

In Section 4 of [Sus00] Suslin goes on to use the main result of [SV96] to show that the
higher Chow groups of codimension d = dim X are dual to Ext}g (zequi(X/Spec(k), 0), Z/m)
if X is an equidimensional quasi-projective variety over an algebraically closed field k of
characteristic zero. Having removed the reliance on resolution of singularities, we now
have this result over algebraically closed fields of positive characteristic when m is prime

to the characteristic of the field. This latter implies the following theorem.

Theorem 5.6.1. Let X be an equidimensional quasi-projective scheme over an alge-
braically closed field k. Leti > d = dim X and suppose that m is prime to the characteristic
of k. Then

CH (X, n; Z/m) = H2@=)"(X 7. /m(d — i))*

where H, is étale cohomology with compact supports. If the scheme X is smooth then
this formula simplifies to CH'(X,n; Z/m) = Hy; "(X, Z/m(i)).

In what follows we reproduce the argument used in Section 3 of [Sus00], with the
appropriate adjustments, fixing some small mistakes along the way.

We make a final remark. We have claimed that Voevodsky’s theorem [Sus00, Theorem
3.1] is the only place that Suslin assumes resolution of singularities. This is not strictly
true, as [SV96], published in 1996, assumes resolution of singularities. However, de
Jong’s theorem on alterations [dJ96], published that same year, is sufficient for the
purposes of [SV96]. See [Gei00] for a discussion of this fact.

Denote by A" the linear subvarieties of A" given by the equation t, + --- +¢t, = 1.
Any non-decreasing morphism ¢ : {o,...,n} — {o,...,m} induces a canonical morphism
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5.6 Higher Chow Groups and Etale Cohomology — After Suslin

A" — A™ and these morphisms give A® the structure of a cosimplicial scheme. If ¢ is
injective, the image of the corresponding morphism A" — A™ is called a face.

Suppose that X € Sch(k) is equidimensional. Let z'(X, n) denote the free abelian group
generated by codimension i subvarieties V' C X x A" which intersect X x A™ properly
for every face A™ — A". Using a suitable definition of intersection, as outlined at the
beginning of Section 2 of [Sus00], we obtain the structure of a simplicial abelian group on
Z/(X, —) for each i. The nth homotopy group of this simplicial abelian group is denoted
CH!(X,n). These groups were introduced in [Blo86].

Now suppose that i < d = dimX. Denote by ziqui(X, n) the free abelian group gen-
erated by the closed subvarieties V in X x A" such that the projection V. — A' is an
equidimensional morphism of relative dimension d —i. It can be shown that z{,,(X,n)
is a subgroup of z'(X, n) — see the discussion in [Sus00] before [Sus00, Theorem 2.1]. We
have the following theorem.

Theorem 5.6.2 ([Sus00, Theorem 2.1]). Assume that X is an affine equidimensional
scheme and i < d = dimX. Then the embedding of complexes z,,;(X,n) = 2'(X,n) is a
quasi-isomorphism.

Recall that to a presheaf F on Sch(k) we associate the presheaves C,(F)(—) = F(A" x
—). The face maps give the C,(F)(—) the structure of a simplicial abelian presheaf,
and taking the alternating sums of the face morphisms, the presheaves C,(F) gain the
structure of a complex of presheaves. It is immediate that if F is a Nisnevich sheaf,
then so are the C,(F). The (co)homology groups of the complexes C,(F), C,(F) @ Z/m,
and RHom(C,(F),Z/m) (i.e., the (co)homology sheaves evaluated on the base field) are
written as Hy ¢(F), Hy ¢(F,Z/m), and Hy;,o(F, Z/m) respectively.

We replace [Sus00, Theorem 3.1] with the following theorem, which is an immediate
consequence of Theorem 5.3.1.

Theorem 5.6.3. Let F be a presheaf with transfers on Sch(k). If Fegp ® Z[I‘;] = o then
H:"(F) ® Z[2] = o.

Recall that by the definition of the presheaves zq,(—/Spec(k),n) and the functor
C.(—), each presheaf C,(zequi(X/Spec(k),d —i)) is a subgroup of z (X, n).

Theorem 5.6.4 (cf. [Sus00, Theorem 3.2]). Let k be a perfect field of characteristic
p, let X € Sch(k) be an equidimensional quasi-projective scheme, and let i < d = dimX.
Then the composition

C.(Zequi(X/Spec(k), d — i) = z,gs(X, —) = 2'(X, —)

s a quasi-isomorphism.

Proof. The proof is by noetherian induction. Clearly none of the presheaves in question
see nilpotents and so we can assume that X is reduced. We can find an open affine
subscheme U — X which is regular. Let Y be a closed complement. The sequence of
presheaves

0 = Zequi(Y/Spec(k),d — i) — Zequi(X/Spec(k), d — i) — zequi(U/Spec(k), d — i)
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5.7 Vanishing of negative K-theory

is exact and the cdh sheaf associated to the quotient

Zequi(U/Spec(k), d — i)/ zegui(X/Spec(k), d — i)

is trivial. This is because the cdh sheafifications of the zg(—/Spec(k),d — i) are iso-
morphic to z(—/Spec(k),d —i) ([SV00a, Theorem 4.2.9]) and the corresponding sequence
for the z(—/Spec(k),d — i) is exact [SV00a, Theorem 4.3.1]. Thus, applying C,(—) and
using Theorem 5.6.3 we get a long exact sequence associated to the homology groups of
the C,(Zequi(—/Spec(k),d — i)). The inclusion C,(zequi(X/Spec(k),d —1i)) < zi,;(X, —) =
Z/(X,—) gives a morphism between this long exact sequence and the localisation se-
quence for higher Chow groups [Blo86, Theorem 3.1]. By the inductive hypothesis, this
is an isomorphism on the terms containing Y. On the terms containing U, it is an iso-
morphism because C, (zequi(U/Spec(k),d — i)) < z,,;(U, —) is an equality for regular U

([SV00a, Corollary 3.4.5]) and Theorem 5.6.2 says that z},,,(X, —) < 2/(X, —) is a quasi-
isomorphism for affine equidimensional U. Hence, by the five lemma, the morphism of

long exact sequences is an isomorphism. O

5.7 VANISHING OF NEGATIVE K-THEORY

In [Wei80, 2.9] Weibel asks if K,(X) = o for n < —dimX for every noetherian scheme
X where K, is the K-theory of Bass-Thomason-Trobaugh. This question was answered
in the affirmative in [CHSWO8] for schemes essentially of finite type over a field of
characteristic zero. Assuming strong resolution of singularities, it is also answered in
the affirmative in [GH10] for schemes essentially of finite type over a field of positive
characteristic. Both of these proofs compare K-theory with cyclic homology, and then
use a cdh descent argument.

In this section we will give a partial answer to Weibel’s conjecture. The proof is
actually very short, and uses almost none of the machinery we have developed. Its
key is a theorem of Cisinski which says that the homotopy invariant K-theory presheaf
of S'-spectra KH satisfies cdh descent ([Cisl3, 3.7]). To prove this, he proves that
KH is representable in the Morel-Voevodsky stable homotopy category, and then applies
Ayoub’s projective base change result [Ayo07] that we reproduced as Theorem 4.2.11(4a).
It is perhaps needless to say that Voevodsky’s reduction of cdh descent to the statement
that appropriate squares are homotopy cartesian is used as well.

It is possible to give a self-contained account of the proof (that is, without referring
to the previous sections) in a few pages. The references we make to earlier results are
Proposition 5.2.3, Lemma 4.3.4, Proposition 3.4.8, Example 3.4.6, and Corollary 3.2.13).

Proposition 5.2.3 says that K-theory has a structure of object with traces but we
actually only use (Deg), and this is straight-forward. Remark 4.3.5 says that traces
on an object in SH imply traces on its homotopy presheaves but we don’t need this
if we show directly that the groups KH, have trace morphisms which satisfy (Deg).
Proposition 3.4.8 is an elementary property of refinable Grothendieck pretopologies,

A
FExample 3.4.6 notices that the ¢dh-pretopology is fp% «dp refinable, and Corollary 3.2.13
is a statement of Gabber’s theorem on alterations.
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Theorem 5.7.1. Let X be a quasi-separated quasi-excellent noetherian scheme and p a
prime that is nilpotent on X. Then KB(X) ® Z[é] =o forn < —dimX.

Proof. Since p is nilpotent on X the canonical morphism K2 ® Z[;] — KHy ® Z[3] is
an isomorphism [TT90, 9.6]. Hence it suffices to prove that KH,(X) ® Z) vanishes for
every prime £ # p and n < —dim X. Since KH satisfies cdh descent ([Cis13, 3.7]) we have
a spectral sequence (cf. [Tho85, 1.36], [Wei89, Corollary 5.2])

B2l =H (X, KH_g(—)ean) = KH_p_o(X)

which converges due to the cdh cohomological dimension being bounded by dim X [SV00a,
12.5]. Furthermore, we see that the E, sheet is zero outside of o < p < dimX. We tensor
this spectral spectral sequence with Z) to obtain a second spectral sequence

P = Hg (X, KH—g(<)ean) © Zr) = KH—p—q(X) © Z)

Due to the vanishing of E, terms already mentioned, we have reduced to showing that
KH_4(—)ean @ Zgy = o for ¢ > o. The presheaves KH_,4(—) have a structure of traces
(Proposition 5.2.3, Lemma 4.3.4, Remark 4.3.5) and so their cdh associated sheaves are
¢dh separated (Lemma 3.4.10, Proposition 3.4.8, Example 3.4.6). Now every scheme
admits an fdh cover {U; — X} with U; regular (Corollary 3.2.13) and KH_4(U) ® Z[P}]
vanishes for U regular and g > o ([TT90, Proposition 6.8]). It follows that KH_4(—)cn ®
Zg = o for ¢ > o. That is, the E, terms of the spectral sequence vanish unless q¢ < o

and o < p < dimX. This implies that KH,(X) ® Z;) = o for n < —dimX. O
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Appendix

A.1 SOME LOCAL ALGEBRA

Lemma A.1.1. Suppose that ¢ : A — B is a finite flat A algebra with A and B Artinian
local rings. Then
length A - degp = length B - [B/mp : A/ma].

Proof. Both sides are equal to length, B. Alternatively (and more explicitely), define
L = A/my. Every indecomposable A-module is isomorphic to L. So since A — B is flat,
applying — ®4 B to a composition series for the A-module A shows that

length, B = length, Alengthy (L ®4 B),

since lengthy is additive. Now L ®4 B is a finite local L-algebra with residue field B/mg,
and so we have
dimL(L XA B) = lengthL®AB(L Xa B) . [B/mB : L]

Finally, recognising that lengthy(L ®4 B) = length; o (L ®4 B) and putting everything
together, we find the desired equality. O

Lemma A.1.2. Suppose that k %A% B are finite flat morphisms of local rings with k

a field. Then
length(B/m4B) - length A = length B.

Proof. We apply Lemma A.1.1 to the three morphisms ¢, Y@, and A/ma — B/maB to
obtain the following equalities:

degp = length A - [A/my : K]
deg o degy = length B - [B/mgp : k]
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A.1 Some local algebra

degy = length(B/maB) - [B/mp : A/my]

Multiplying the first and last together and comparing with the second gives the desired
result. O

Lemma A.1.3. Let K/k be a field extension, A a finite local k algebra. Let Spec(B;) be a
connected component of Spec(A®iK) and Spec(C;) the corresponding connected component
of K®y (A/ma). Then we have

length B; = length C; - length A.
Proof. We have the following cartesian square

Spec(C;) — Spec(A/my)

i |

Spec(B;) — Spec(A)

with the lower, and hence upper, horizontal morphism being flat. Every indecomposable
A-module is isomorphic to A/mu and so applying B; ®4 — to a composition series for A
we find that lengthy B; = length, A - lengthy (B; ®4 (A/ma)). But lengthy (B; ®4 (A/ma)) =
length. C;, hence the result.

O

Lemma A.1.4. Suppose that we have a finite set of commutative triangles

hy

N4

X

Y

Y

(k=1,...,n say) such that
1. all of f,, g are finite flat surjective,
2. each Yy, is generically reduced,

3. there exists an integer d such that for each generic point n of Y we have d =
>_ deg(h Xy 1),

4. there exist integers my such that for each generic point n € h(Y},) we have my =
length Oy,,,.

Now suppose that x is a point in X, let y be a point of Y over x, and let y,, be the points
of Y} overy. Then we have

d - length O,y = Z My Zlength Oty KVig) = k)]
k l
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A.1 Some local algebra

Remark A.1.5. One of the applications of this lemma is to Proposition 3.5.7. In this
case, it will be applied to triangles arising from the axioms (Tril) and (Tri2), both of
which are included in the hypotheses of the lemma, and both of which are easier cases.
We have combined them because they are both special cases of this more general result.
In the case of (Tril) we have d = 1 and the equality becomes

length Oy xyy = > mi > length Oy k() < k().
k ¢

In the case of (Tri2) there is a unique Y}, and my = 1 so the equality is
d-length Opyy = > length Oy vy k(i) * k().
)4

Proof. We first consider the case where there is a unique point y € Y over x € X. We
begin with some identities. Choose a generic point § € X. We let 7, be the generic points
of Y that are over £, and i the generic points of I1Y} that are over 7, (we don’t care
which Y they belong to). For each i we let k; be an index such that #; € h,(Y},) so we
have my, = length Oy, . We claim that

d‘degf:ka-deggk. (A1)
k

Notice that since Y’ is generically reduced, so is X and consequently, the multiplicity of
a generic point of Y in Y is the same as its multiplicity in Y xx .

Consider the base change by the chosen generic point £ — X. Due to the hypotheses
in the statement, we have

d-degf=d-deg(fxx §) " a D [k(n) : K(E)}m,
PP N ) < k() < k()
ij

= [k(n};) : k(§)lmi, =Y _ deg(g, xx §)me = Y _ degg,my.
j

k k

Hence, our claim (A.1) is proven.
We now use the same ideas for the point x in X. Let n = length Oyxys,y, and r =
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length Oy, . Using the identity (A.1) we find that we have

XX,y

(A 1) d - deg Equ Z mi deg g,

A kazmkw k()]
ZMerkek()’kg k(y)][k(y) : k()]

k

n k(y) : k()]

and cancelling [k(y) : k(x)] from either side gives the desired equality.

Now we remove the hypothesis that there is a unique point y over ¥ and consider the
general case. The hypotheses on the triangle in the statement are preserved by change
of base by étale morphisms X’ — X (Lemma A.1.6) and consequently, by base change by
the henselisation "x at the point x. After base change we find that in each connected
component of "x xx Y there is a unique point of "x xx Y over the closed point x of
"x. Since it suffices to verify the formula on each connected component of Y, we are
done. O

Lemma A.1.6. Suppose that (3.2) is a triangle that satisfies the hypotheses of Lemma A.1.4
and X' — X is an étale morphism. Then

YXXX/ YXXX/

N7

X/

also satisfies the hypotheses of Lemma A.1.4.

Proof. Let f, ¢, h be the pullbacks of f,g, and h respectively. Clear the first hypothesis
is preserved by base change and so we only need concern ourselves with the other three.
These all take place within the generic fibers, and so we can assume X (and hence
everything else as well) is of dimension zero.

Y xx X' is generically reduced because base change of a field extension by a sepa-
rable field extension does not introduce nilpotents. The third hypothesis is satisfied
because degree is preserved by pullback. Finally the forth hypothesis is satisfied due to
Lemma A.1.3: let K/k be X’ — X, A the local ring of a generic point of Y and note that
since K/k is étale, Ayeq @ K is reduced and so length C; = 1. L]

A.2 INVERTING INTEGERS IN TRIANGULATED CATEGORIES

In this section we discuss some ways to invert integers in triangulated categories. The
goal is to be able to make analogues of familiar statements such as “an element a of an
abelian group A is zero if and only if its image in A ® Zy) is zero for every prime £”.
We present two analogues of —®Zy) for triangulated categories. The first is to tensor
all the hom groups with Z). We show that this category has a canonical structure of a
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triangulated category (Proposition A.2.3), however the canonical functor 7 — 7 ®Zy)
does not behave well with respect to sums and so we don’t have the necessary ad-
junctions. The second is to consider the triangulated subcategory of Z-local objects.
For nice triangulated categories this is a localisation (Proposition A.2.8). We compare
these two constructions in Corollary A.2.12. We then state the “local-global” princi-
ples that we need (Lemma A.2.14, Lemma A.2.15). The first says that we can detect
isomorphisms via these localisations, and the second says that we can detect compact
generating families via these localisations.
This section is a little notation heavy and so we make the following summary.

1.

7.

7 & A (Definition A.2.1) The category obtained by applying — ® A to each hom
group.

. A-local (Definition A.2.7).
. 7187 (Definition A.2.7) The subcategory of Z[S™"| local objects.
. 57 (Definition A.2.7) The left orthogonal to .7[S7"].

. (—)[S7"],s(—) (Proposition A.2.8) Localisation functors.

7. (Definition A.2.9) The full subcategory of compact objects.

Sy C Z (Lemma A.2.14) the set of integers coprime to /.

We also recall for reference the following standard terms from the theory of triangu-
lated categories.

1.

A compact object is an object F such that hom(F, ®E;) = ©hom(E,F,) for any
family of objects whose sum exists.

. A thick triangulated subcategory is a triangulated subcategory that is closed under

direct summands.

. A localising subcategory of a triangulated category admitting small sums is a

triangulated subcategory closed under small sums.

. A compactly generated triangulated category with small sums is a triangulated cat-

egory with small sums which itself is the smallest localising subcategory containing
its subcategory of compact objects.

Definition A.2.1. Suppose A is a ring and A an additive category. Define A® A to be
the (a postiori additive) category which has the same objects as A and hom gg (A, B) =
hom 4 (A, B) ® A.
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Example A.2.2. Let Ab be the category of abelian groups, and suppose that Ab —
Ab ® Q preserves sums. Then we would have

(12/p) ® Q= ([[hemaus(Z/p.@/Z) £ @
= hom 4, (©Z/p,Q/Z) ® Q
= hom 400 (®Z/p, Q/Z)

= HhomAz,@Q(Z/Pa Q/z)
=[]z/r 2 Q).

However, the last groups is zero and the first group is not.
A similar problem is exhibited with the derived category of abelian groups.

Proposition A.2.3. Suppose that 7 is a triangulated category and A C Q a subring
of the rationals. Then there is a “minimal” structure of triangulated category on T ® A
such that the canonical functor F: 7 — 7 ® A is exact.

Remark A.2.4. We mean minimal in the sense that given any other structure of trian-
gulated category on .7 ® A such that F: .7 — 7 ® A is exact, the class of distinguished
triangles contains this “minimal” class of distinguished triangles.

Remark A.2.5. This is a consequence of every morphism in .7 ® A being isomorphic
to a morphism in the image of 7 — 7 ® A in some kind of nice way. If the category
7 happens to be R-linear for a ring R then the result holds for any localisation R[S’
of R. The proof does not seem to easily generalise to other kinds of R-algebras.

Proof. The proof follows via the principle that the diagrams in .7 ® A in question are
isomorphic to diagrams in the image of 7. We will elaborate. Let S C Z be the set of
integers which are invertible in A, so that A = Z[S7"].

Clearly, any triangle of 7 ® A that is isomorphic to a distinguished triangle in the
image of F is necassarily distinguished. We will show that this class of triangles satisfies
the axioms for a triangulated category.

TRO. The triangle X LX 50— X[1] is in the image of F.

TR1. Suppose that X Jyisa morphism of 7 ® A (where s € S). Completing
f: X — Y to a distinguished triangle in .7 we find a commutative diagram

xS Loy g o)

lS.idY

XngZhX[l]

where the vertical morphisms are isomorphisms in .7 ® A (the inverse to s-id is s7* - id.
Hence, the upper triangle is a distinguished triangle in 7 ® A.
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TR2. 1t is clear from our definition of distinguished triangles in .7 ® A that the class
is closed under rotation.

TR3. Since every distinguished triangle of 7 ® A is isomorphic to a triangle that is
the image of a distinguished triangle in .7 it suffices to consider the case when the two
triangles in question are in the image of F (see the following diagram).

L &ImF (A.2)
| €ImF
|
|
VL cImF
¢ImF

Suppose we are given such a diagram as follows (where s, t € S).

f f /!

We use (TR3) in 7 to find the dashed morphism ¢ in 7 making the following diagram
commute and then compose with (st) ™" -id in .7 ® A.

f f /!

X X X’ X[1] (A.3)
|
lt-a is-b le t-af1]
g g V¢
Y Y Y Y[1]
i(st)_l-id l(st)_*id l(st)_“id (st)*id[1]
Y g v g v g Y[

TR4’ Instead of proving the octohedral axiom (TR4) we will prove (TR4’) ([Nee01,
Definition 1.3.13]). This is equivalent to (TR4) ([Nee01, Remark 1.4.7]) but is sometimes
easier to work with. The statement of (TR4’) is as follows: Given a diagram

X Y Z X[1]
ft gl a
X —=Y —7 —>X[1
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where the rows are distinguished triangles, the morphism h : Z — Z’ given by (TR3) may
be chosen such that the mapping cone MapCone(f, g, h) is a distinguished triangle. The
mapping cone MapCone(f, g, h) is by definition ([NeeO1, Definition 1.3.1]) the diagram

—vV O —w O —u[l] [¢]
)0 e) Gt )
YeX —Z2aY —X1|®Z — Y1 ® X'[1]

By (TR4’) in .7, the morphism c in the diagram (A.3) above may be chosen so that
the mapping cone of (t-a,s- b,c) is distinguished in 7. By the following lemma, the
isomorphism in Diagram A.3, and the remark preceding Diagram A.2 this is enough to

conclude that we have (TR4’) in .7 ® A.
O

Lemma A.2.6. Consider a composable pair of morphisms of triangles

X—=y—"=7—">X[]
AN
x oy e X
AR
X" sy s g L x]

Then the obvious potential morphism (f ,g, W) (resp. (f,g, h)) between the mapping cones
([Nee01, Definition 1.3.1]) MapCone(f, g, h) — MapCone(ff,gg, W'h) (resp. MapCone(ff,g'g, h'h) —
MapCone(f, g, h)) is actually a morphism of triangles. That is, all the appropriate squares
commudte.

In particular, if (f g, W) (resp. (f, g, h)) is an isomorphism of triangles, then there ex-
ists an isomorphism MapCone(f, g, h) = MapCone(ff,gg, h'h) (resp. MapCone(ff,g'g, W'h) =

MapCone(f, g, h)).

Proof. We write down the first square in each case. The following is the first square for
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the map MapCone(f, g, h) — MapCone(ff,gg, h'h).

(v o)

zZaoY

YoX' ——ZaY'
—v o
gg u//
The two compostions are equal to
<—v o)and<_v o>
gg g gg u'f
and these are equal by the commutativity of the appropriate square in the statement

u"f == gul.

The first square for the map MapCone(ff,g'g, W'h) — MapCone(f, g, h) is

(o)

YOX' ——ZaY’

The two compostions are equal to

—hv o —'g o
< gg o' ) and ( fgg u’ )
and these are equal by the commutativity of the appropriate square in the statement

h =g O

Definition A.2.7. Suppose that A is an additive category, E € A an object, and A C Q
a subring of the rationals. We will say E is A-local if for every integer n € Z which is
invertible in A, the morphism n - idg is an isomorphism. If S C 7Z is a multiplicative
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system! then we will denote the full subcategory of Z[S™*] local objects by A[S7]. It
will also make life easier to define

sA=(A[ST)L.
That is, s.A is the full subcategory of A of objects F such that hom(F, E) = o for every
E e A[S7Y.
Proposition A.2.8. Suppose that T is a compactly generated triangulated category
admitting small sums and S C Z is a multiplicative system. Then:
n-idg

1. §7 is the smallest localising subcategory of T containing the objects Cone(E — E)
forn € S and E compact in T .

2. The inclusion i : T[S7'] — 7 has a left adjoint (—)[S™*| and the inclusion j :
s 7 — 7 has a right adjoint s(—).

j ()87
Sg -~ -~ 9[8‘1

s(—) i

3. There is a canonical equivalence T[S7' = T [(sT).
4. Both the functor (=)[S7"] and the inclusion i: T[S™'| — T preserve small sums.
5. The functor (—)[S™'] preserves compact objects.

6. If G is a small generating family of compact objects for T then
G ={E[S"]: E€ G}
is a generating family of compact objects for T[S7].

7. Both 7 [S7'] and §7 are compactly generated triangulated categories admitting
small sums.

n-idg

Proof. Let A denote the smallest localising subcategory of .7 containing Cone(E — E)
for every compact object E € 7 and every n € S which is in S. The localisation
T — /A always exists [NeeOl, Theorem 2.1.8] and given our assumptions it has a
right adjoint if A is compactly generated ([NeeOl, Proposition 8.4.2] and see also the
end of [NeeOl, Remark 8.1.7]). But A is compactly generated by definition. The image
of the right adjoint .7 /A — .7 is canonically identified with ~A [Nee01, Theorem 9.1.16]
where +A is the full subcategory of .7 whose objects E satisfy hom s (F,E) = o for all
F € A [NeeOl, Definition 9.1.10]. As A is compactly generated, for E to belong to +A
it is sufficient that hom 4 (F,E) = o for all F in a compact generating family of A. For

idgy
example, F of the form Cone(F’ S ) for n € S and F' compact in 7. But since 7

Lie., S is closed under multiplication.
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A.2 Inverting integers in triangulated categories

is compactly generated, for an object E to satisfy this means precisely that n - idg is
invertible for every n € S. Hence, *A = 7[S7}].

1. It now follows from [Nee01, Corollary 9.1.14] that A = (*A)* = s7.
2. This is also [Nee01, Corollary 9.1.14].
3. This too is [Nee0l, Corollary 9.1.14].

4. (—)[S7] preserves small sums by virtue of it having a right adjoint. Similarly, for
any adjunction (L,R) if LR = id then R preserves small sums.

5. In general, a left adjoint preserves compact objects if its right adjoint preserves
small sums.

6. Again, this is true in general whenever L preserves compact objects and LR = id.

7. 7[S7] admits small sums via the presentation as *A = 7[S7'] given above. we
have just seen that it is compactly generated. We have seen already that A = 3.7
is compactly generated and localising.

O]

Definition A.2.9. For 7 a triangulated category admitting small sums, let 7, denote
the full subcategory of compact objects.

We will need the following result of Thomason-Neeman.

Lemma A.2.10 ([Nee0l, Lemma 4.4.5]). Suppose that .7 is a triangulated category
admitting small sums and G is a small generating family of compact objects. Then the
smallest thick subcategory of 7 containing G is the full subcategory of compact objects.

Remark A.2.11. This is a special case of [NeeOl, Lemma 4.4.5] where a = 8, = B.
In this case 7% is the subcategory of compact objects (see the end of [NeeOl, Example
1.10]). It might also be relevant to point out to the conscientious reader unfamiliar with
the theory that [TR5] and a-localising are defined after [NeeOl, Remark 1.4] and the
notation 7%, (S), (S)* is defined in [Nee0l, Definition 1.12].

We now have the following comparison of our two ways of inverting integers.

Corollary A.2.12. With the assumptions and notation of Proposition A.2.8 we have a
canonical equivalence of categories T, R L[S = T /(57 ).. Consequently, the induced
functor

Te QLIS = (T[S7]).
is fully faithful.
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Proof. Consider the unversal property that 7 — J,. ® Z[S™"] satisfies. It is the universal
exact functor towards Z[S7!] linear triangulated category. It is also the unversal exact
functor whose image is a Z[S™] linear triangulated category. One more way of saying

this, is that it is the unversal exact functor sending each E "M B to an isomorphism
where E € .7, and n € S. That is, if B is the smallest thick triangulated subcategory of

7, containing each Cone(E " E) where E € 7, and n € S, then we have a canonical
equivalence

T. @ L[S = T, /B.

Lemma A.2.10 tells us that in fact we have B = (s.7)..
We are now trying to show that the canonical functor

T/ (sT)e = (T [(sT))e

is fully faithful. Glancing at the statement of [NeeOl, Theorem 2.1.8] it suffices to
show that (5.7), consists precisely of the objects of 7, which are sent to zero under the
canonical functor

The objects that this functor sends to zero are precisely the objects in the thick subcat-

egory 7. N (s-7). Notably, Cone(E g E) is in this subcategory for every E € 7 and
n € S. Since these compactly generate g7 it follows that 7, N (s.7) = (57 )., hence the
result by Lemma A.2.10. O

Corollary A.2.13. With the notation and assumptions of Proposition A.2.8, for any
objects E, F in 7 with F compact, the canonical morphism

hom g (F,E) ® Z[S '] — hom 75— (FIST',E[STY])
is an isomorphism.

Proof. 1f E is also compact, then this follows immediately from Corollary A.2.12. If not,
consider the natural transformation of homological functors

hom 7 (F, —) @ Z[S ] = hom s (FIS ], —[S™*]).

Note also that since F is compact and (—)[S™"] is very nice (Proposition A.2.8) both these
functors send small sums to small sums. Hence, the full subcategory of 7 on which
this natural transformation is an isomorphism is localising, and contains all compact
objects. Since .7 is compactly generated, this natural transformation is an isomorphism
on all of 7. O

Now we come to our “local-global” principles.

Lemma A.2.14. With the assumptions and notation of Proposition A.2.8, a morphism
f: F — E between Z[S7'] local objects is an isomorphism if and only sz[S(_gﬂ is an

isomorphism in 9[8(_5} for every prime € that is not in S where Sy = (Z — {Z).
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Proof. Tt is equivalent to prove the following. Let E be a Z[S™*] local object such that
E[S&;] is zero for every prime ¢ that is not in S. Then E is zero.

Suppose that E is a Z[S™"] local object such that E[S(_é;] is zero for every prime ¢ that
is not in §. To show that E is zero it suffices to show that hom4(F,E) = o for every
compact object F of .7 (as .7 is compactly generated). Since E is Z[S™*|-local, this group
is a Z[S™*] module and so it is sufficient to show that hom 7 (F, E) ® Z(, = o for every
prime /¢ that is not in S. But now since F is compact we have by Corollary A.2.13

homz(F,E) ® Ly = homg[sﬂ)] (F[S&;],E[S(};])

(¢
which vanishes since we are assuming E[S(_é] =o. O

Lemma A.2.15. With the assumptions and notation of Proposition A.2.8 suppose that
G is a small family of compact objects of 7. Then the following are equivalent:

1. The family
G[S'|={E[ST']:E€ G}

is a generating family for 7[S7].

2. The smallest thick triangulated subcategory of T[S™'] containing G[S™'] is the full
subcategory T[S, of compact objects.

3. For each prime £ which is not in S, the family
gls) = {EIS3] :E€ 0}
is a generating family of compact objects for 9[8(}3].

4. The smallest thick triangulated subcategory of 9[8(}3] containing Q[S(};] is the full
subcategory 9[8(}3]6 of compact objects.

Proof. By Proposition A.2.8 the categories .7 [S7!] also admit small sums and are com-
pactly generated. Moreover, the functor .7 — .7[S7!] preserves compact generating
families. So we can apply Lemma A.2.10 to show that (1) <= (2) and (3) < (4).
To see that (1) implies (3) it suffices to note that we can replace .7 with .7[S7'] and
apply Proposition A.2.8 again. Finally, suppose (3) is true and consider E € J[S7]
such that

hom (- (F[S '], E) = o

for every F € G. We wish to show that E[S™!] = o. As this latter is Z[S™] local, by
Lemma A.2.14 it suffices to show that E[S(_éﬁ] = o for each prime ¢ not in S. For this, by
the assumption that (3) is true, it suffices to have
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A.2 Inverting integers in triangulated categories

For each F € G. But since F is compact we have

homﬂ[s (F[S(_EILE[S_I]) = homg (F,E) ® Z(@)

S Y@l B

and

hom 55— (F[S™"], E) = hom (F, E) ® Z[S™]

and so the required vanishing follows from ¢ not being in S together with the assumed
vanishing. O
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