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SMOOTHNESS, SEMI-STABILITY AND ALTERATIONS
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1. Introduction

Let X be a variety over a field k. An alteration of X is a dominant proper morphism
X' -> X of varieties over k, with dim X = dim X'. We prove that any variety has an
alteration which is regular. This is weaker than resolution of singularities in that we
allow finite extensions of the function field A(X). In fact, we can choose X' to be a
complement of a divisor with strict normal crossings in some regular projective variety X'.
(For a more precise statement see Theorem 4.1 and Remark 4.2.) If the field k is local,
we can find X' C X' such that X' is actually defined over a finite extension k C k' and
has semi-stable reduction over O^ in the strongest possible sense, see Theorem 6.5.

Although these results are perhaps not surprising, being consequences of standard
conjectures on resolution of singularities, it did surprise the author that they are relatively
easy to obtain using results on existence of moduli spaces of stable (pointed) curves.

As an application, we note that Theorem 4.1 implies that for any variety X over
a perfect field k, there exist (a) a simplicial scheme X. projective and smooth over A,
((B) a strict normal crossings divisor D. in X.; we put U. = X.\D., and (y) an augmen-
tation a: U. -> X which is a proper hypercovering of X. (The construction of X. works

* The research of Dr. A. J. de Jong has been made possible by a fellowship of the Royal Netherlands Academy
of Arts and Sciences.
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as in [5, Section 2.3] with Theorem 4.1 instead of Hironaka.) In case k is local, we
may assume that the pairs (Xy^, DJ are defined over finite extensions k^ of k and extend
to strict semi-stable pairs over 0^ , see 6.3. This should be interpreted as saying that
in a suitable category c^L^ of mixed motives over k^ any variety X may be replaced
by a complex of varieties which are complements of strict normal crossing divisors in
smooth projective varieties. The functor h^i^ar^->JKJK^ should have the property
that for any alteration X' -> X, the object A(X) corresponding to X may be replaced
by the complex A(X') -^A(X' Xx X') ->A(X' X^ X' Xx X') -> ...

We have

H^(X0A,^)^H^(U.®^%,).

The cohomology of each U^ ® k can be computed by a spectral sequence whose E^-terms
consist of direct sums of cohomology groups occuring in the stratification of X^®A
defined by D^®^, compare [4, Section 3.2]. As an example, suppose the field k is finite.
We see that the eigenvalues of Frobenius on H^(X®^, Q^) occur as eigenvalues of
Frobenius on some cohomology group of some smooth projective variety, and hence
are Well numbers; this reproves a result of [3], using [2]. The author had hopes that
Theorem 4.1 might imply results on independence of t for ^tale cohomology, but this
seems not automatic. It is clear, by the above, that independence of I for maps
H^Xg) -> H'(Xi) given by correspondences between smooth projective varieties Xi, Xg
will imply independence of i results for H*(X) for arbitrary varieties X. (The best
indication in this direction is perhaps the result ofjannsen [13].)

Assume k = C and X., a: U. -> X are as above. We have a canonical isomorphism

HWC), %) ^ H^U^C), %)

of singular cohomology groups. In fact Theorem 4.1 suffices to construct the mixed
Hodge structure on H^X^), %) as in [5].

Assume char(A) = p > 0 is perfect, let W = W(^) and KQ = W® %. We define
HL^) ••=H^(U./W)®KO. Here we define H^(U./W) as crystalline cohomology
of X. with logarithmic poles along D.. It is clear that this defines a finite-dimensional
cristalline cohomology, but unfortunately it is not so clear that the result is independent
of the choice of X., D. and a. However, it has been shown that Theorem 4.1 implies
finite-dimensionality for Berthelot's rigid cohomology with compact supports; further-
more finite-dimensionality for rigid cohomology of smooth varieties follows, and in parti-
cular finite-dimensionality for Monsky-Washnitzer cohomology of smooth affines, see [I],

Assume k is a local field and t not equal to the residue characteristic of k. By [21]
the ^-adic ^tale cohomology of a strict semi-stable variety X over k is semi-stable: the
inertia subgroup I C Gal(A/^) acts unipotently and the eigenvalues of Frobenius on the
graded parts are Well numbers. In case X has dimension 2, still in the strict semi-stable
case, [21] proves Deligne's conjecture on the purity of the monodromy filtration
(see [20, 2.8] for a formulation of this conjecture). Let X be any variety over k; we
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do not assume X is smooth or proper. The results of [21], together with Theorem 6.5,
give that there exists a finite extension k C k ' such that the Gal(A/yfe')-modules
H^(X®A, Q^) are semi-stable for all t (in the sense explained above). If X is smooth
and proper over k and has dimension at most 2, then Deligne's conjecture on the purity
of the monodromy filtration follows.

Applications to the case where k is local and 0^ has mixed characteristic. We note that
Theorem 6.5 proves an implication of the form Gg^ => Cp^, see [12] for notation. For,
if one proves C^ functorially for projective varieties having a strict semi-stable model
as in 2.16 (but not necessarily over the same base field), then Cj^ will follow for an
arbitrary smooth projective variety over k. Moreover, if one can prove a conjecture
like C^ functorially for strict semi-stable pairs as in 6.3, then a conjecture like Gpg^
will follow for varieties (singular and/or non proper) over k.

Of course there are other ways to try and apply Theorems 4.1 and 6.5. For
example, it has been shown by F. Pop that Theorem 4.1 can be used to prove Grothen-
dieck's conjecture on birational anabelian geometry in characteristic p > 0, see [19].
We leave to the reader to find other applications.

We give a short sketch of the argument that proves our results in case X is a proper
variety. The idea is to fibre X over a variety Y such that all fibres are curves and work
by induction on the dimension of X. After modifying X, we may assume X is projective
and normal and we can choose the fibrarion to be a kind of Lefschetz pencil, where
the morphism is smooth generically along any component of any fibre. Next one chooses
a sufficiently general and sufficiently ample relative divisor H on X over Y. After
altering Y, i.e. we take a base change with an alteration Y' -> Y, we may assume that
H is a union of sections <r^: Y —>• X. The choice of H above gives that for any component
of any fibre of X -> Y, there are at least three sections o, intersecting it in distinct points
of the smooth locus of X -> Y. The generic fibre of X —> Y, together with the points
determined by the o, is a stable pointed curve. By the existence of proper moduli spaces
of stable pointed curves, we can replace Y by an alteration such that this extends to
a family ^ with sections T^ of stable pointed curves over Y. An important step is to show
that the rational morphism ^C ' • • -> X extends to a morphism, possibly after replacing Y
by a modification; this follows from the condition on sections hitting components of
fibres above. Thus we see that we may replace X by ̂ . We apply the induction hypothesis
to Y and we get Y regular. However, our induction hypothesis is actually stronger and
we may assume that the locus of degeneracy of %7 -> Y is a divisor with strict normal
crossings. At this point it is clear that the only singularities of ^ are given by equations
of the type

xy = t^ . .. . . ty.

These we resolve explicitly.
Let us give some instructions to the reader. We advise not to read Section 2: it

contains definitions and results, which we assume known in the rest of the paper. (In 2.20,
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the precise definition of an alteration is given.) In Section 3 we resolve singularities
for a family of semi-stable curves over a regular scheme, which is degenerate over a
divisor with normal crossings. This we use in Section 4, where we prove the theorem
on varieties. Section 5 deals with the problem of altering a family of curves into a family
of semi-stable curves. This we use in Section 6, where we do the relative case, i.e. the
case of schemes over a complete discrete valuation ring.

In the final two sections we indicate how to refine the method of proof of
Theorem 4.1 and Theorem 6.5 to get results where one has additional restraints or
works over other base schemes. In Section 7 we prove that our method works (over
algebraically closed fields) to get resolution of singularities up to quotient singularities
and purely inseparable function field extensions. In fact we deal with the situation where
there is a finite group acting. In Section 8 we do the arithmetic case. In particular,
we show that any integral scheme X, flat and projective over Spec Z can be altered
into a scheme Y which is semi-stable over the ring of integers in a number field
(Theorem 8.2).

In a follow-up of this article the author proves that one can alter any family
of curves into a semi-stable family of curves, see [15]. This is stronger than the result
of Section 5. In [15] the author deals with group actions as well. Thus in [15] the reader
can find a number of results that extend the results (especially Theorems 7.1, 8.2) of
this article to (slightly) more general situations. For example it is shown that regular
alterations exist of schemes of finite type over two-dimensional excellent base schemes.
However, as the methods of that article are more technical, the author feels it is advan-
tageous to the reader to include Sections 7 and 8 in this article, since the methods employed
in them are relatively straightforward.

Acknowledgements. The author thanks Prof. Oort for some discussions and for insisting that the author should
do the relative case. The author thanks the universities of Torino and Rennes where parts of this work were done.
He thanks Prof. Fallings for suggesting a proof of Lemma 2.13. Moreover, he is grateful to all those who pointed
out mistakes in and made remarks about the preprint version.

2. Notation, conventions and terminology

2.1. If X is a scheme and x e X is a point, then K(x) denotes the residue field of
the local ring 63:, a; • ^ point is sometimes also considered as a scheme: x = Specie^).

A scheme is integral if and only if it is irreducible and reduced. The function field
of an integral scheme S is denoted R(S).

2.2. A closed subset Z of the underlying topological space of a scheme X will
be confused with the reduced closed subscheme ZC X it gives rise to [10, I, 4.6]. In
particular an irreducible component X' C X will often be considered as a reduced closed
subscheme of X.
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2.3. In this article a divisor D of a scheme X will be a closed subscheme D C X
regularly embedded of codimension 1, i.e. a positive divisor on X [10, IV, 21.1.6
and IV, 21.2.12].

2.4. Let S be a Noetherian scheme. Let D C S be a divisor and let D^ C D, i e I
be its irreducible components (considered as reduced closed subschemes of D or S,
see 2.2). We say that D is a strict normal crossings divisor in S if a) for any s e D the local
ring fl^g g is regular, b) D is a reduced scheme, i.e. D == U D^ (scheme-theoretically)
and c ) for any nonempty subset J C I, the closed subscheme Dj = Fl^.^j D .̂ is a regular
scheme of codimension ft J in S [10, IV, 5.1.3].

A divisor D on S is a normal crossings divisor if there is a surjective ^tale morphism
S' —> S such that the inverse image of D is a strict normal crossings divisor on S'. In
this case there exists a blowing up <p : S' -> S in an ideal with support in D such that
the reduced inverse image ^"^(D)^ is a divisor with strict normal crossings on S'.
(In case S is a surface, blow up the singular points of D; in case S is a threefold, first
blow up the points where D has three branches, then blow up the strict transform of
the curves on S where D has two branches, etc.)

2.5. Letjf: X -> S be a morphism of schemes. We write sm(X/S) for the open
subscheme of X where f is smooth [10, IV, 17.3].

2.6. 'Letf: X -> S be a morphism of schemes. We say that f is generically etale,
if there exists an open dense subscheme U C X such thatyj^j is ftale.

2.7. Let S be a Noetherian scheme and letjf: X -> S be a morphism of finite
type. a) If S is reduced, then there is a dense open subset U C S such that/: X^j -^ U
is flat, cf. [10,1V, 11.3.2].^ If/is proper then the sets T^ = { s e S | dim/-^) ^ d}CS
are closed, c ) If/is proper dominant, and X and S are integral, then every fibre of/
has everywhere dimension at least equal to the dimension of the generic fibre.

2.8. Let A -> B be a local homomorphism of Noetherian complete local rings.
Assume A is regular of dimension d, with residue field k. Assume that dim B == d + r
and that B ®^ k is formally smooth of dimension r over k. Then B is formally smooth
over A.

Proof. — It is easy to reduce to the case k == k. Then B®^A ^ k[[t^, . .., ty]]
and by lifting ^ to B we find a surjection A[[^, . . . , ^]] -> B. This cannot have a non-
trivial kernel, otherwise dim B < d + r. (Actually, this proof works as soon as A is a
domain.) Q.E.D.

8.9. Let k be a field. A variety X over A is a separated scheme of finite type over
Speck which is irreducible and reduced, i.e. integral. This definition does not agree
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with the definition of a variety as given in some of the textbooks on algebraic geometry,
e.g. Hartshorne's Algebraic Geometry, where one assumes that X is geometrically integral
over k.

2.10. If X is a variety over k and the function field k(X) is separable over k, then
the structural morphism p : X -> Spec(^) is smooth over a nonempty open subscheme
ofX. Ifk is perfect, then sm(X/Spec(^)) == Reg(X), the regular locus ofX. This is not
true ifk is not perfect, even in case k C ^(X) is separable. Example: V(j^ — x2 — a) C Aj,
where a e k is not a p-th power and the characteristic of k is p.

2.11. Let k be a field and let XC P^ be a closed subscheme, with the following
properties: a) X has pure dimension rf< n\ b) there exists a dense open subscheme
V C X which is geometrically reduced over k.

Let kC k' be a finite separable extension, let p eP^A'), p ^X^. Consider the
projection morphism

pr^X^P,-1

ofX^ to the projective space of lines/C P^ passing through^. This is a finite morphism
as all fibres are finite (being equal to I n X^ =(= 1) and X is projecdve. We claim there
exists a nonempty open subset U C P^ such that for p e U(^') the morphism pr^ has
the following property:
(a) if dim X == d< n — 1, then pTy : X^ -> pry(X^) is biradonal;
(P) if dim X == d = n — 1, then pTp : X^ -> P^/ is finite dtale over a nonempty open

subset of P^ (equivalently: pr^ is generically ^tale, see 2.6).

These statements are geometric, hence it suffices to prove them over a separable
algebraic closure of k. (Any nonempty open subscheme U^ C P^ep contains an open
subscheme of the form U ®^ ^8ep, with U C P^ nonempty.) The conditions may be
checked component by component, hence we may assume X irreducible. By condidon b)
there exists a nonempty open subscheme V ofX which is smooth over k. Choose a k- valued
point q eV'(^); this is possible as k is separably closed. In case (a) consider all lines t
through q, meedng X only in q and transversally in q, i.e. £ n X = q scheme theore"
dcally. We may choose p 4= q on any such line £y since pr^1^) = q will imply that
pr^ : X -> pr^(X) is biradonal. Clearly such^ sweep out a nonempty open subset ofP^.
In case (p) consider all lines t through q which intersect X transversally at q. The
morphism pr^ : X -> P^ for p =t= q on such a line / is unramified at the point q e X.
Therefore the stalk at q of the sheaf QS^^d vanishes, and pTp is generically Aale. (One
could also use 2.8.) The result follows.

2.12. We will denote (complete) discrete valuadon rings with the letter R (or R'
and somedmes 0). Usually, the residue field ofR is written k and a uniformizer is denoted
by TC, or sometimes n^. A morphism of (complete) discrete valuation rings R -> R' will refer
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to a local ring homomorphism such that TT^ is not mapped to zero. The ramification
index e == <?(R'/R) of such a morphism is simply the valuation of the element T^ in the
valuation ofR/. We note that a morphism of complete valuation rings R -> R' is formally
smooth (see [10, Gh. 0, 19.3.1], we take the m-adic topology on R) if and only if
<?(R'/R) == 1 and the residue field extension k C k' is separable. If we have morphisms
of discrete valuation rings R -> R' -> R", and R -> R" is formally smooth, then so is
R->R'.

A scheme S is called a trait if it is isomorphic to a scheme Spec R, where R is a
complete discrete valuation ring. The generic point of a trait S is denoted T], and the
special point is denoted s. We write TCg for a uniformizer in 0^. A morphism of traits is
a morphism S' -> S corresponding to a morphism of complete discrete valuation rings
R -> R7 as above. Such a morphism is said to be a finite extension of traits if the extension
R C R' is finite.

2.13. Lemma. — Let R be an excellent discrete valuation ring; put S = Spec R. Let X
be a normal integral S-scheme which is flat of finite type over S and let ^ e X be a generic point
of the special fibre X, of X. Put (9 == ^, s • Th€re exisis ̂  ^tension R C R' of discrete valuation
rings R C R' such that
(i) Q(R)CQ(R') is finite, and
(ii) the algebra 0' = (6^ R')norm ̂  normalization of the reduction of 0®^ R'J is formally

smooth over R', i.e. the localizations 0^ of Q' at its maximal ideals are discrete valuation
rings with <?(^/R') == 1 and the field extensions k' C (PJn^ 0, are separable.

For any further extension R' C R" for which (i) holds, the result of (ii) also holds.

Proof (Fairings). — We reduce to the case dim X/S == 1. We argue by induction
on dim X/S; so assume that dim X/S > 1. Choose an element t e^x,s suc^ ^at the
image of t in K(^) is transcendental over k. Thus we get (after shrinking X) a dominant
morphism/: X ->Ag such that/(S) == ^ is the generic point ofA^.

By induction hypothesis, we find an extension of discrete valuation rings Op^i r C Q*
with K(t) C Q '̂) finite and such that

^C^x.S®^.^')110"11

is formally smooth. We have 0' ^ ^y ^ for some integral normal S-scheme Y, with
Y ->A^ finite, dominant and ^' a generic point of Y,. Hence by induction, we find
an extension of discrete valuation rings R C R', such that Q,(R) C Q(R') is finite and

R/c (^Y^^ER-T0""

is formally smooth. We have homomorphisms

^X, ̂ R R' -> ^X. S 0^. ̂  ̂  ̂  ®B R'

^ (^X, S ̂ Al. n ̂  ̂ nonn ̂ Y. ̂  (^ !;' ̂  R')"0"" ==: B.
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The algebra B is formally smooth over {0' ®^ R')^™ ^y j^g^ change and (^' ®^ R^norm
is formally smooth over R/. By transitivity we get that B is formally smooth over R/.
In this situation we may, by extending R', assume that Q,(R) C Q^R/) is normal. Let D
be the decomposition group of R' in the Galois group. There is a nontrivial ^-homomor-
phism (^(g^R')110"11-^ B, and we conclude that one of the localizations 0, is formally
smooth over R^see 2.12). However, D acts transitively on the set of such localizations 0^
whence the result for all i.

The case dim X/S = 1. We may assume that the component X(^) of X, with
generic point S has genus at least 2$ by this we mean that any irreducible component
of X(^) (x) K(^) has genus at least 2. If not, then replace X by the normalization X' in
a function field extension given by an equation of the formj/ —f== 0 for some rational
function/on X. We can take/e fi^ such that/)^ is a nonvanishing rational function
having at least three simple poles {i + char^ and i > 5). There will be a unique point
^ e X' lying over S such that 0^ C 0^^, is finite (Stale and ^(X'(^')) ^ 2. The result
for ^x',^' implies the result for ^x,^*

We may assume that X ->• S is projective. Let K = Q,(R). For some finite extension
K C K", the normalization of the reduction of X^ (x) K/' is a union of smooth projective
curves of genus at least 2. After a finite extension K" C K' these curves all get stable
reduction over a discrete valuation ring R' 3 R with Q,(R') = K'. Thus there exists
a scheme X' —> Spec R' which is a finite disjoint union of stable curves over Spec R
and such that X' ® K' is equal to the normalization of the reduction of X 00 K'. Let
X" be the normalization of the reduction of X ® R'. Thus X" is birational to the
scheme X' and there is a blow up X'" -> X' which dominates X":

X' <———— X'" ————> X" ————> X

t i l l
SpecR' ^d- SpecR' -^-> Spec R' —> Spec R.

For any component X," of X^ mapping onto X(^), there is a unique component X,"'
ofX," lying over it. Since ^(X,"') = g(K^) ^ ^(X(^)) ^ 2, it is not contracted to a
point on X'. We get a component X,' of Xg. Let ^ /, resp. ̂ ' , resp. ̂  be the generic points
of the components X^', etc. Thus, as the schemes X", X"' and X' are birational, we have

o . ^ ^ o „. y... ̂  o .. " ,x , î — x , î — x , ̂ i •

Thus we see that fix", s;' ls formally smooth over R', as X' is stable over R'. It is easy
to check that these are the discrete valuation rings (9^ occuring in the statement of the
lemma. Q.E.D.

2.14. Remark. — There are similar statements to be found in the literature. See
for example [8], where a result is proved in the rigid analytic setting; see [7] for lowering
the invariant e of an extension of discrete valuation rings (and a counterexample to
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too optimistic conjectures); see [14, Section 6.3] for a method to deal with the residue
extensions in the complete mixed characteristic case.

2.15. Let S be a trait. An S-vamty X is an irreducible, reduced and separated
scheme X, flat and of finite type over S. The condition of flatness is equivalent (in view
of the fact that X is integral) to the condition that X^ is a nonempty variety over the
field K (•/)). Let/: X -> Sbe the structural morphism. We write f~1^), X^ or X®K(^)
for the (scheme theoretic) fibre of X at the point s e S. We write/"^{j}) for the set-
theoretic inverse image of the point s e S (but note that we sometimes view/"1 ({.?})
as a reduced closed subscheme ofX, see 2.2). We remark that Xg = V(7rg) is a (principal)
divisor on the scheme X.

2.16. Let S be a trait and let X be an S-variety. Let X^, i e I be the irreducible
components ofXg. Put Xj = fl^j X ,̂. (scheme-theoretic intersection), for a nonempty
subset J of I. We say that X is strictly semi-stable over S if the following properties hold:
a) X^ is smooth over K(T)),
b) Xg is a reduced scheme, i.e. Xg = U X^ scheme-theoretically,
c ) for each i e I, X^ is a divisor on X, and
d ) for each nonempty J C I, the scheme Xj is smooth over K{s) and has codimension #J in X.

We remark that these conditions imply that X is a regular scheme, see below.
(Local description of strictly semi-stable S-varieties.) Let x e X^ be a point of

the special fibre. Suppose that x lies on the components X^, . . ., Xy and not on the
other components of X^. Let ^ e fi^,a; be an element such that V(^) == X, n Spec ^x,a?-
Consider the completion A of O^y, and let B =- A/(^, . . ., ^). By d ) , B is a formally
smooth K(^)-algebra. Hence we can find a complete local R-algebra B, formally smooth
over R, which lifts B. Further, since B is formally smooth over K(^), we can find a K(^)-
algebra homomorphism B -> A/nA, which is a section of AfnA -> B. Thus it is clear
that A/TiA ̂  B[pi, ..., t,]] /(^ • ... • t,). We can lift this to a surjection B[pi, ..., t,]] -> A
(again using formal smoothness) and we see that

A ^ B [ ^ , . . . , ^ ] / ( ^ . . . . . ^ - 7 r ) .

(To get rid of the unit in front of TT, change one of the t, by a unit.) We conclude that
a neighbourhood of x is smooth over the scheme Spec Rpi, ..., ^r]/(^i ' • • • * ^r ~" 7r)*

We define semi-stable S-varieties (i.e. not necessarily strictly so) by requiring that
the situation etale locally looks as described above. We will not make use of this definition.

We remark that ifX is proper over S, then b), c) and d) imply a). Furthermore,
ifK(j-) is perfect, then b ) , c ) and d) are equivalent to the statement: X, is a divisor with
strict normal crossings on X, see 2.10. Of course the concept of strict semi-stability is
most useful if X is proper over S.

2.17. Let S be an integral Noetherian scheme. A modification S' ofS is an integral
scheme S', together with a proper birational morphism 9 : S' -> S. The center of the
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modification is the closed subset of S over which 9 is not an isomorphism. A composition
of modifications is a modification.

2.18. Let/: X -> S be a morphism of finite type, with S Noetherian and integral.
Let ^ : S' -> S be a modification. We consider the diagram

X' —> X X g S ' —> X

[ft i [fy ^ ^

s' —•—. s' ——, s.

Here X' is the closed subscheme of X X g S' given by dividing the fl^-torsion out of
^xxss7- we remark that X' may be empty, even ifS' = S. The morphism/': X' -> S'
is called the strict transform off (with respect to ^). There is an obvious transitivity property
in case we have a second modification ^ : S" -> S'.

There exists a nonempty open subscheme U C S such that X^ -> U is flat, see 2.7.
Clearly, X'|^-i^ ^ X x^ +-1(U) and X' is the schematic closure of this in X Xg S'.
Thus if X is integral and dominates S, then X' -> X is a modification as well. Finally,
if X" is closed in X X g S', flat over S' and equal to X Xg S' over a nonempty open
part of S', then it equals the schematic closure of X X^ ̂ (U) and hence equals the
strict transform of X, i.e. X" == X'.

2.19. We recall some arguments from [22, p. 36-37]. Let/: X -> S be a projective
morphism of Noetherian schemes. We assume S integral. Let U C S be a nonempty
open subscheme over which/is flat; such exist, see 2.7. We claim that there exists a
modification ^ : S' -^ S with center in S\U such that the strict transform/': X' -> S'
of/ is flat.

Choose a relatively ample line bundle JSf on X over S. Let P(^) be the Hilbert
polynomial of ^ ® K{u) on X^ for u e U. Consider the functor Hilb^/g : (eS^/S)0 -> yet
which associates to T over S the set of closed subschemes Z C X X g T of finite presentation
over X Xg T and flat over T, such that oSfjz has Hilbert polynomial P on all fibres
of Z -»T. The theory of Hilbert schemes, see [9], applies and gives that Hilb|/g is
representable by a scheme Hilb projecdve over S. The S-morphism U ->- Hilb, which
we have by construction, extends to a morphism S' -> Hilb, where S' -> S is a modifi-
cation with center in S\U. Indeed, we can take S' to be the schematic closure ofU<-> Hilb.
This gives ZC X Xg S', flat over S', which is the strict transform of X, see 2.18.

We remark that for the existence of a modification S' -> S such that the strict
transform of/is flat, it suffices that/is locally (in S) projective. Locally, one then finds
a modification U' -^ U as above, these then glue since they solve a universal problem,
see [22, p. 37]. Thus we can, using the arguments described above, deal with proper
morphisms/: X -^ S which have the property that all the fibres have dimension ^ 1. (Such
a morphism is automatically Aale locally projective.) This will suffice for the applications
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we have in mind. Anyway, we can deal with arbitrary morphisms / of finite type (S
Noetherian) by invoking [22, Theorem 5.2.2].

2.20. Let S be a Noetherian integral scheme. An alteration S' of S is an integral
scheme S', together with a morphism 9 : S' -> S, which is dominant, proper and such
that for some nonempty open UC S, the morphism 9-1(U) -> U is finite. (This last
condition is equivalent to the condition dim S == dim S', at least if these are finite.)
If <p : S' -> S is an alteration there is a nonempty largest open subscheme U C X such
that y'^U) ->U is finite and flat; the complement of U is called the center of the
alteration. A composition of alterations is an alteration. One can define the strict
transform of a morphism/: X -> S with respect to alterations as in 2.18. We remark
that an alteration S' -> S is generically ftale if and only if the (finite) extension of
function fields R(S) C R(S') is separable.

2.21. Let S be a scheme. A semi-stable curve X over S is a flat proper f: X -> S of
finite presentation, such that all geometric fibres are connected curves having at most
ordinary double points as singularities. Let Sing(y) C X be the closed subscheme
defined by the first Fitting ideal of the sheaf O^/s- The morphism Sing(/) -> S is finite,
unramified and of finite presentation.

2.22. We say that a semi-stable curve X over a field k is split if a) all the irreducible
components of X are geometrically irreducible and smooth over k and b) all singular
points of X are ^-rational. Let/: X -> S be a semi-stable curve over S. We say that
/ is split or that X is a split semi-stable curve over S if for any s e S the fibre X, is a split
semi-stable curve over K(^). We remark that the pullback by S' -> S of a split semi-
stable curve is a split semi-stable curve over S'.

2.23. (Local description of (split) semi-stable curves.) Let/:X -> S be a semi-
stable curve with S Noetherian. Consider a point x eSing(f) and let s ==./(A;). The
extension k = K{s) C A' = K(A?) is finite separable, as Sing(/) -> S is finite unramified.
Let B be the complete local ring of X at A; and let A be the complete local ring of S at s.
Choose a finite ^tale extension of local rings A -> A' realizing the residue field extension
k == A/m^ C A' = A'/m^'. As B is henselian and B/ma ^ k\ the ring homomorphism
A -> B factors through A'; we get A ~> A' ->• B.

By assumption of semi-stability we have that B/m^ B ̂  k'[[u, v}]l(q), where
q == q(u, v) == OQ u2 + ^i uv + ^2 y2 ls a quadratic form with coefficients in A' and non-
vanishing discriminant. Choose an arbitrary lift

Q === Q(^ v) == AQ u2 + AI uv + Ag y2 e A'[u, v] of q(u, v).

By flatness ofB over A', we see that B ̂  A'[[^, y]]/(Q,— h) for some h e m^.A'^u, y]].
Rechoosing the coordinates u, v e B' appropriately, using that discr(^) 4= 0, we see that
we may assume h e A'. (One may also prove this by showing that the minimal versal
deformation space of the singularity ^'[[^, ^]]/(?) is one-dimensional.)
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We remark that in this case (i.e. h e A') the trace of Sing{f) on the scheme
Spec B is given by the ideal {u, v) C B. This lies over the closed subscheme of Spec A
given by the element N^^^(^) e m^ C A, the map being finite ^tale.

Iff is a split semi-stable curve, then k = A' and the quadratic form q splits over k.
The last assertion follows as there are two components passing through x, both defined
over A. Thus we may choose q = uv and Q^ == uu. The complete local ring of X at x is

B ̂  A[[^ v]]l{uv - h)

for some h e A.

2.24. A general reference for this subsection is [16] (see also [11] for the case
of genus 0). Fix g ^ 0, n ̂  3 and let Jt\^ denote the algebraic stack over Z classifying
stable ^-pointed curves of genus g. The open substack ̂  „ C Jl^ „ classifies smooth
^-pointed curves. Let i be a prime number at least 3. Let

,^, -^«<J1/<1 =^,. X^czSpecZ[l/<l

be the finite ftale cover given by trivializing the ̂ -torsion of the Jacobian of the universal
genus g curve over ^^[l/^]. We remark that ^Jig ̂  == fMg ̂  is a scheme (usual
arguments). Finally, let

A, -^Jl/O =.<. X^czSpecZ[l/<|

be the normalization ofc^Jl/^] in the function field of /^^. We remark that
f^g^=^g,n ls a projective scheme over SpecZ[l//'], compare [6]. By pullback
from Jig ,n[l/^] we get a "universal" stable ^-pointed curve of genus g over /Mg^.

We can get a scheme M projective over Spec Z, with a "universal" curve over
it by taking distinct primes ^1,^2 ^ 3 and putting^ equal to the normalization Q^Jfy „
in the function field of ̂ J( g , n - Then Jl = M is a projective scheme over Z with a
finite dominant morphism M ->^g ,^ . Compare [6].

3. Semi-stable curves and normal crossings divisors

3.1. Let S be an excellent regular scheme and let D C S be a divisor with strict
normal crossings. (Recall that this means that D = U^iD,, each D, is a divisor on S
and for any nonempty subset JC I the scheme Dj == D^jD^ is a regular scheme of
codimension #J in S.) Assume we have a semi-stable curve /: X -> S smooth over S\D.
We remark that the singular locus Sing(X) of the scheme X is contained in Sing(/).

3.2. Lemma. — There exists a projective modification 91: X^ -> X with the following
properties:

(i) The center of (pi lies in Sing(X).
(ii) Xi is a semi-stable curve over S, smooth over S\D.
(iii) Sing(X^) has codimension at least three in Xr
(iv) If the curve X is split semi-stable (2.22), then the curve X^ is split semi-stable over S.
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3.3. Let us describe the local situation at a point x e Sing(X). Put s ===f(x) e S.
Let A ->A' ->B be as in 2.23, and choose an isomorphism B ̂  A'[[^, y]]/(Q,— A),
with h eA' (2.23). Suppose that s lies in the components D^, . .., D,. of D but not in
any other component. Let ^ e fi^g be an element such that V(^) == D, n Spec fl^g g.
Note that the elements /i, ..., ty form a regular system of parameters of 0^ g , hence
also of A and A'. The singular locus ofy traced on Spec B maps isomorphically to the
closed subscheme V(A) C Spec A'. By assumption we have V(A) C V(^ • ... • ^). Therefore
we see that

h=^t^ . ... • ^, se(A7

with ^ ̂  0 and S ̂  ^ 2 (if S ̂  = 1, then the point x is regular on X). We change Q,
into s~1 Q. Thus we have

B^A'[M]/(Q--^. ... .c-).

We remark that B is the completion of the algebra

B'==A'[^]/(Q-^. ... .^)

at the maximal ideal m^ B' + (u, v) B'. For questions which are not sensitive to comple-
tion, we may compute using the algebra B'.

Furthermore, in the split case we may assume A = A' and Q,(^, v) == uu, see 2.23.

3.4. Let T be an irreducible component ofSing(X) of codimension 2 in X. (Note
that codim(Sing(X), X) ^ 2, either by the formulae above, or by noting that X is
normal.) Since TC Sing(X) C Sing(/), the morphism T-> D is finite unramified,
hence for reasons of dimensions T maps onto a component D^ of D and the map is finite
unramified. As D^ is regular, we conclude that T is regular too.

Further, if x e T C X and we write the complete local ring B of X in x as in 3.1,
then we see that the complete local ring of T at A: corresponds to the quotient map

B ̂  A'[^, v]]l((i - ̂  • ... • ^r) -^ A'/^ A\

The integer n^ must be ^ 2, otherwise X is regular along the generic point of T, in
contradiction to our assumption. This integer is independent of the choice of A; e T,
i.e. it is an invariant n^ of the codimension 2 irreducible component T of Sing(X).

We write 9 : X' -> X for the blowing up of X in the ideal sheaf of T, and let
/': X' ->S be the structural map. We claim that (i) the center of 9 lies in Sing(X),
(ii) X' is a semi-stable curve over S, smooth over X\D, (iii) the invariant n^ has dropped
and (iv) if X is split, then so is X'. More precisely, (iii) means the following: Let T' be
an irreducible component ofSing(X). There exists at most one such irreducible compo-
nent T"C Sing(X') lying above T'; we have ^ = ^r'5 unless T == T in which case
we have n^,, == n^ — 2.

Clearly, the lemma follows from the claim, by repeatedly blowing up components
of the singular locus of codimension 2 in X and induction on the numbers n^.
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We remark that completion and blowing up commute in a suitable manner, so
that it suffices to compute the blow up of Spec B' (3.3) in the ideal {u, y, ^). Also we
only treat the split case, as the non-split case reduces to this one after a finite ^tale base
extension. This blow up is covered by three affine charts (corresponding to the coordi-
nates u, v, ̂ ); we just give the affine algebras and the reader may read of properties (i)-(iv)
from this.

Chart: "u + O". — Here we get

A[u, v, y', t[]l(v - uu\ t^ - ut[, v' - t^i-W11^ ' • . • • ^)-

For the convenience of the reader we give the special fibre intersected with this chart;
it is the spectrum of the ring

k[u, v, v\ t[]l{u - uu\ ut[, y') ^ k[u, t[]l{ut,)

at least if some n^> 0, z + 1. This scheme is smooth over k, except at the maximal
ideal (u, t[). Thus the algebra is regular along (/')'" ̂  by 2.8 and/'smooth, except
perhaps for the point u == t[ == 0. However, the equation ^ — ut[ shows that our algebra
is regular in this point also. (It is rather clear that all components of the special fibre
are smooth, defined over k, and that the singular points are ^-rational.)

Chart: "y =t= O". — By symmetry this is the same as above.

Chart: % 4= O". — Here we get

A[u, v, u\ v'}l(u - t^ u\ v - /i y', u' v' - t^-21^ • ... . ̂ ).

Again the situation is rather clear. The "new" component T lying over T is given by
v! = v ' == ^ == 0, unless n^ == 2, 3, then T' lying over T does not exist. Clearly, n^ has
dropped by 2. This proves Lemma 3.2.

3.5. (Local description of the case codim(Sing(X), X) ^ 3.) Looking at the
equations Q, — t^ • .. . • t^ for a point x e Sing(X) as in 3.3, we see that we must have
n, e { 0 1, }. Thus B looks like A'[[^, y]]/(Q,-~ h ' ... • ^) for some 2 ̂  [s. ̂  r and D at s
is defined by ^ • ... • ^ = 0. We remark that this implies that Sing(X) has pure codi-
mension three in X. (In the equations above X is singular along u = v == <i == t^ == 0.)
Let Sing(X) = U E^ be the decomposition into irreducible components of Sing(X).
Each E^ maps in a finite ^tale manner to an irreducible component of some D^ n D,,
i 4= j, hence E^ is a regular scheme.

3.6. Proposition. — Letf: X -> S be a split semi-stable curve smooth over S\D, as in 3.1.
There exists a projective modification 91: X^ -> X with the following properties:

(i) The center of^ lies in Sing(X).
(ii) Xi is a split semi-stable curve over S, smooth over S\D.
(iii) The scheme X^ is regular.
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Proof. — By Lemma 3.2 we may assume codim(Sing(X), X) ^ 3. Let D^ be an
irreducible component of D and let EC X be an irreducible component of/""^^).
We are going to blow up X in the ideal sheaf of the closed subscheme E. Let 9 : X' -> X
be this blowup.

If x e E is a regular point of X, then 9 will be an isomorphism at A? as E can then
be defined by one equation. Hence consider x eSing(X). By the above the complete
local ring B of X at x looks like

B ̂  A[[u, v]]l(uv - ̂  ..... ^),

where D in A is given by ̂  • ... • ty = 0 (r ^ \L ̂  2). If D» corresponds to ^ == 0 for some
i > ^, then E is given by the principal ideal (^) C B, hence <p is an isomorphism at x.
If not, say D^ is given by ̂  == 0; then E will be given by the ideal (u, t-^) or the ideal (y, ^).
This follows from the fact that f is split: The morphism ^ : Spec B/(M, v, t-^) -> X maps
into Sing(/) and Im(^) dominates D». (Since Spec B/(^, v, t^) ^ Spec A/(^) dominates D^
as A/(^) is the completion of^p.^.) Thus there are two components E^, E^ of/'^D,)
each containing Im(^), by the assumption that/is split applied to the fibre over the
generic point of D,. We have x eE^ n E^, hence we get two components through x,
one given by (u, ^) the other given by (y, t^) and one of them is E.

Therefore we study the blow up of the ring B' = A[u, v\f{uv — t^ • ... • ^) in
the ideal (u, t^). There are two charts.

Chart: "u + O". — We get the algebra

A[u, v, t[}l(t^ - ut[, v - t,'t^ . .. . . ̂ ) ^ A[u, t[]l(uf[ - ̂ ).

Chart: % =t= O'5. — We get the algebra

A[u, v, u'}l(u - ̂  u\ u' v - t^ • .. . . ̂ ) ^ A[>, M']/(^' y - ̂  . ... . ̂ ).

We observe that/': X' -> S is again a split semi-stable curve, smooth over S\D. Further-
more, the modification X' -> X has center in Sing(X) as observed above. Therefore,
its exceptional locus has codimension at least 2 (since the fibres have dimension at most 1).
Thus the number of irreducible components of/'^D) is equal to the number of irre-
ducible components of (/'^(D), a bijection given by taking inverse image under y.
Moreover, the component (p'^E) of (/^"^(D) has become a divisor on X', whereas
this property also holds for the components of (/'^(D) corresponding to components
of/'^D) having this property on X. Thus repeatedly blowing up components of/'^D),
we arrive at the situation where all components of/'^D) are divisors.

However, the discussion above shows that at any point A; of X where the invariant ^
is at least 2, there are at least two components E^, Eg of/'^D), passing through^, which
are not divisors at x. Thus (x == 1 everywhere, i.e. X is regular. Q.E.D.
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4. Varieties

4.1. Theorem. — Let X be a variety over afield k and let Z C X be a proper closed subset.
There exist an alteration

9i: X^ —> X

and an open immersion j\: X^ -> X^ such that

(i) X^ ^ a projective variety and is a regular scheme^ and
(ii) the closed subset Ji^i'^Z)) u Xi\j\(Xi) is a strict normal crossings divisor in X^.

If k is perfect then the alteration 9^ may be chosen to be generically etale.

4.2. Remark. — The construction of X^ below gives that the morphism X^ -> Spec k
factors through Spec^i, with k C k y , finite, such that X^ is geometrically irreducible
and smooth over k^. If k is perfect, then X^ is smooth over A, see 2.10.

4.3. We argue by induction on d = dim X. The case dim X == 0 is all right.
(And so is the case dim X == 1, as we see by taking X^ to be the normalization of X.
However, this does not give the result of Remark 4.2. To get this see 4.5.)

4.4. Strategy of proof . — We proceed step by step, each time reducing the theorem
to a case where we have additional restaints, numbered (i), (ii), etc., on the pair (X, Z).
For example, i f9 :X / —'-Xisan alteration, put Z' == (p'^Z). If we can prove the theorem
for the pair (X', Z'), then the theorem will follow for the pair (X, Z). Here we assume
that 9 is generically ^tale in case k is perfect. Usually, the properties (i), (ii), etc., will be
preserved in this process.

4.5. Let k be an algebraic closure of k. Let X^ be an irreducible component of
the scheme X Xgpecjk Spec A, and let Z^ be the inverse image of Z in X^. Suppose
we can find 9^ : X^ -> X^ and j^ : X^ <-> X^ over k as in the theorem. There exists
3i finite extension k-^ of k contained in k such that X^, X^, X^, 9^ andj^ exist over k^.
Thus we have X', X^, X^ and j\ over k^ and <p^ : X^ -> X', such that these give rise
to X^, X^, X^, 9^ and j^ over k. If we put 9^: Xi —^ X equal to the composition of 9^
with the natural morphism X' <-> X®^ -> X then the quadruple (X^, X^, 9i,ji) is a
solution to the problem posed in the theorem. (Note that if 9^ is generically ftale then
so is 91, and if k is perfect, then X' -> X will be generically Aale too.) Therefore it
suffices to prove the theorem under the additional hypothesis:

(i) The field k is algebraically closed.

' 4.6. We apply Chow's lemma to the variety X. This gives a modification 9 : X' -> X
such that X' is quasi-projective over k. Put Z' = 9-1(Z). As remarked in 4.4, and
by 4.5 we reduce to the case where we have (i) and

(ii) X is quasi-projective.
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4.7. Assume (i) and (ii). Letj : X -»- X be an open immersion ofX into a projective
variety X over the field _&. J.et Z ==j(Z) u X\X. Suppose that 9^ : X^ -^ X, ji solves
the problem for the pair (X, Z). Clearly, X^ is a proper variety, hence ji is an isomorphism.
Put Xi = 9i'^(j(X)), 91 = 9i[xi and j\: X^ -> X^ the inclusion morphism. Note that
AOpr^7)) u ^VXi = pF^Z) and that 91 is an alteration. We have reduced the problem
to the case where we have (i) and

(iii) X is projective.

4.8. Assume (i) and (iii). Let 9 : X' -^ X be the blowing up in the ideal sheaf
ofZ (considered as a reduced closed subscheme, see 2.2). Thus 9 is a modification ofX.
Note that Z' = 9"^) is the reduction of a divisor D'C X' (see 2.3). We apply the
procedure explained in 4.4 and we reduce to the case where we have (i), (iii) and the
property:

(iv) There exists a divisor D C X such that Z is the support of D.

4.9. Assume (iii) and (iv). We may enlarge Z on X. Indeed, suppose that Z' is
a closed subset of X containing Z and that we can solve the problem for the pair (X, Z')
as in the theorem. Then the closed subset 93" ̂ Z) will have pure codimension 1 in the
variety X^ = X^ and will be contained in the strict normal crossings divisor ^l(Zf).
It follows that 93-1(Z) is a strict normal crossings divisor.

4.10. The property (iv) is preserved if we apply any alteration 9 : X' -> X as
in 4.4. The property (i) is trivially preserved, and (iii) holds as long as we only take
projective alterations 9. In particular, taking 9 equal to the normalization morphism
we may assume in addition to (i)-(iv) that we have

(v) X is a normal variety.

4.11. Lemma. — Suppose that the pair (X, Z) over k satisfies (i)-(iv). There exist a
modification 9 : X' -> X and a morphism /: X' -^P1-1 of varieties having the following
properties :

(i) There exists a finite subset SC Reg(X), consisting of closed points, disjoint from Z,
such that 9 : X' —> X is equal to the blowing up of X in S.

(ii) a) All fibres off are equidimensional of dimension 1 and nonempty.
b) The smooth locus off is dense in all fibres off.
c) Let Z' = 9'-1(Z), which we consider as a reduced closed subschema o/*X'. The mor-

phism f\y : Z' ->Pd~l is finite and etale over an open subscheme ofV'1.
IfX is normal, i.e. if (X, Z) satisfies (v), then we may choose 9 and f such that in addition

we have
d ) At least one fibre off is smooth.

Proof. — There exists a finite morphism

n-.X-^y
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which is (Stale over an open subset of P^ and such that 7c|z : Z -> TC(Z) is birational.
To construct such a TC, we choose an embedding X <-> P^ and we let TT be the composition
of projection morphisms as in 2.11, adapted to Z and X.

Let B C P^ be the branch locus of TT, more precisely, the complement of B is the
locus over which n is <5tale. Note that TT;(Z) is a reduced closed subscheme of P ,̂ equi-
dimensional of dimension d — 1. Therefore, for a general point p e P^, p ^ B u 7c(Z),
the morphism pr^ : 7r(Z) -^P^-1 is dtale over a nonempty open subscheme of V~1.
See 2.11.

Choose p and put

X' =={(^) eX X P'-1]^) e^}.

It is easy to see that X' equals the blowing up of X in the finite set TC"1^), which is
contained in the regular locus of X (since p (f: B) and disjoint from Z (since p ff: TT(Z)).
The fibres of the morphism

/^pr^X'-^-1

are the schemes Tr"1^) (scheme theoretic inverse image, i.e. •nT1^) == t XprfX) . Since
Tc"1^) ->t is finite, we see that vT^{i} has dimension at most 1. On the other hand,
t is given locally by d — 1 equations, hence Tr"1^) has at every point dimension at least 1,
as X has pure dimension d. Any component of ^~1^) is finite over t, hence contains
one of the points of^1^?})' Thus it suffices to show that/is smooth along the exceptional
fibres E, of X' -> X. Locally in the ^tale topology, / along E, looks like pTp : P* -> y~1

along the exceptional fibre of the blowing up P^ -> V1 of P2 in p. This proves (ii) a)
and b). Assertion (ii) c ) is clear as Z'^Z-^Z) —P^-1 is generically (Stale by
construction.

To prove the last assertion, we go back to the method whereby we constructed TT.
We see that TT = pr^ is the linear projection of X onto P^ with center in some linear
variety L C Vs of dimension N — d — 1 in general position. The space L together with
the point p, define a linear subvariety L' C Vs of dimension N — d and the fibres of/
are the intersections X n H, where H varies over the linear subvarieties of dimension
N — d + 1 containing L'. By the usual Bertini arguments we see that choosing L and p
general gives that there is at leajst one H such that the curve X n H is smooth over k.

Q..E.D.

4.12. Assume (i)-(v) and apply 4.11. This gives 9 : X' -> X and/: X' -^P^-1.
Note that X' is normal also. We remark that/, having one nonsingular fibre and P^1

being nonsingular imply that/is smooth over a nonempty open part ofy~1, see 2.8.
(This could have been seen in the proof of 4.11 as well.) Let X' -^Y' -^P^-1 be the
Stein factorization of/. Note that Y' -> P^"1 is (finite) ^tale, in view of property (ii) b)
of the lemma (cf. [18]). (The reader may circumvent this result by replacing 'Pd~lby Y'.)
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We conclude that Y' = P^"1, hence all fibres of/ are geometrically connected. By
replacing (X, Z) by (X', Z'), see 4.4 and 4.10, we may assume we have (i)-(v) and
the following property:

(vi) There exists a morphism/: X -> Y of projective varieties such that:
(vi) a) All fibres are nonempty, geometrically connected and equidimensional of

dimension 1.
(vi) b) The smooth locus of/ is dense in all fibres.
(vi) c ) The generic fibre of/ is smooth.
(vi) d) The morphism/^ : Z ->Y is finite and generically etale.

4.13. Lemma. — Suppose /: X ->Y is a morphism of projective varieties over an alge-
braically closed field k satisfying (vi) a) and b). There exists a divisor H C X such that
(i) /[g : H -> Y is finite and generically etale, and
(ii) for all geometric points J eY and any irreducible component C of X^ =f~l[y) we have

# ^m(X/Y) n C n H ̂  3.

Here we count the number of points of the underlying set, i.e. not with multiplicities.

Proof. — We fix a natural number n e N. Let S be a very ample line bundle on X
and let

i:x ->p =P(^(x,JSf0n))
be the projective embedding associated to S>®n. Note that for any irreducible curve
C C X, the curve i{G) C P is not contained in any linear subspace of dimension n — 1.
Indeed, since ^ is very ample the image of the map F(X, J^f) -> r(G, «S?L) contains
a base point free pencil VC r(G, oSfjc). The map Syn^V -> r(G, oS^c) has rank
at least n + 1. Hence F(X, ̂ n} -> r(C, oS^c) has rank at least n + 1, which proves
the assertion.

We write Pv for the dual projective space of hyperplanes in P. Consider
T={(H,^) GPV x YIdim/-1^) n H == l^P7 x Y.

Note that T is Zariski closed in Pv x Y : it is the locus over which the morphism

{(H,^) eP^ x X\xeH}^ P^ x Y
(H,A;) ^(H,/M)

has fibres of dimension 1. (Note: all fibres of TC have dimension at most 1. Use 2.7.)
The morphism pr^ : T -^ Y has geometric fibres pTy which can be described as follows:

pr^J) = Ucc,-K,) { H e P^^ ® K(J) | z(C) C H }.

The union is over all irreducible components G of/'^J). Buti(G) is a curveinP®K(J)
not contained in any linear space of dimension n — 1. Hence

codm^pr^J^P^KOO) ^ n.
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Thus

dim T ̂  dim Y + dim Pv — n.

We see that taking n large enough gives T large codimension in P^ x Y, hence the
closed subset pri(T) of P7 has large codimension in P^ In particular, pri(T) =t= P^

Let y e Y(A) be a closed point. Consider

H^pr,(T)
U = < H e P^) H r\f-\y) C sm(X/Y)

H (^f~l{y) is a reduced scheme

Herey"1^) denotes the scheme-theoretic fibre. The second condition means that H
avoids the finite set (cf. b}) which is the complement of sm(X/Y) inf"1^) and the
third condition that H is transversal ^of~l{y) in all the points of intersection. This gives
a nonempty open set ofP^ Thus by the above {ifn is large enough) UC Pv is nonempty
open. Take H' e U and put H = X n H'. The morphism y j g : H - > Y i s quasi-finite
hence finite (as H' ^pri(T)). At each of the intersection points x ef"1^) n H we
have O^^ ^ ^.i,[ML since/is smooth at x. Further H is defined by {H} C ̂ ^ with
h e t + Tn,y 6^ a;, as ^Hnr-1^),^ ^ ^' Therefore yjg : H —>• Y is finite ^tale over a neigh-
bourhood ofy in Y. (Actually, we could also have used 2.8 to see this, at least if Y is,
say, normal.) Any component of H dominates Y in view of dimensions, hence f\^ is
generically ^tale.

We claim that there exists an open neighbourhood U C Y of y such that (ii)
holds for geometric points of U. Indeed, any open neighbourhood U C Y such that
a) f: H ny-^U) ->U is finite ftale and b) H ny-^U) C sm(X/Y) works. We can
find U with a), see above, and b) will follow after shrinking U, as H ^f~l{y) C sm(X/Y)
and an ftale morphism is open. (Actually, a) implies b).) Choose any geometric pointy
of U and a component G of Xy. Note that G n H consists of exactly deg G points
(over K(J)) in view of a ) . Furthermore, these are all contained in sm(X/Y) in view
of b). The degree of G in P is at least n, hence if n ̂  3 we get our claim.

If U 4= Y, take a closed point y ' e Y\U and choose H' C X, which has property (i)
and satisfies (ii) over an open neighbourhood U' of y ' . Then H u H' C X satisfies (i)
and (ii) over U U U'. Continuing like this we get the result by Noetherian induction.

Q.E.D.

4.14. Assume the pair (X, Z) satisfies (i)-(v) and (vi) a)-d). We apply 4.13 to
the morphism y: X -> Y of (vi). This gives H C X. It suffices to prove the theorem
for the pair (X, Z U H), see 4.9. Note that this pair also satisfies (i)-(v), (vi) a)-d) and

(vi) e ) For all geometric points y of Y and any irreducible component G of Xy
we have

# sm(X/Y) n G n Z ^ 3.
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4.15. Assume (i)-(v), (vi) a)-e). In the sequel we will consider projective alterations
^ : Y' -> Y, which are generically dtale. Consider the diagram

X' —> Y' X y X ̂  X^ ^ [f
Y' id Y' ^ v

Here X' is the reduction of the scheme Y' Xy X, i.e./' is the strict transform of/with
respect to the alteration ^, cf. 2.20 and 2.18. Put Z' == pr^^Z)^ considered either
as a closed subscheme ofY' Xy X or ofX'. It is easy to see that the morphism/' satisfies
(vi) a ) - c ) ; from this we conclude that X' is irreducible. Thus 9 : X' -> X is a projective
alteration which is generically ^tale. Conditions (i), (iii) and (iv) are all right for the
pair (X', Z'), but (v) may fail, for example ifY' is not normal. Finally, (vi) d) is trivial
to verify for/'[^ and (vi) e ) holds since (p'^sn^X/Y)) C sn^X'/Y'). As before it is clear
that it suffices to prove the theorem for the pair (X', Z').

4.16. Assume (i)-(iv), (vi) a)-e). Let Z = U^jZ, be the decomposition into
irreducible components of Z. Choose a finite separable Galois extension k(Y) C L such
that k(Z^) may be embedded over A(Y) into L for all i; this is possible as the field
extensions A(Y) C ^(Z^) are finite separable by (vi) d ) . Let Y' be the normalization
of Y in the field L, then ^ : Y' —> Y is a (finite) generically ^tale alteration of Y. Cons-
tructing (X', Z') as in 4.15, we see that Z' = Z[ U ... u Z^ with Z[ -> Y' finite and
birational. (Any component of Z' dominates Y' as Z' has pure codimension 1 in X'
in view of (iv).) Thus Z^ -> Y' is an isomorphism as Y' is normal. It follows that we
may assume the following property in addition to (i)-(iv), (vi) a)-e}:

(vi) / ) There are sections cr^: Y -> X, i = 1, . . . ,^of / such that Z = U <7i(Y).
We note that (vi) f) is also preserved by alterations as in 4.15.

4.17. Assume (i)-(iv), (vi) a)-f). We define an open subscheme U C Y by the
formula

U == [y e Y | Xy is smooth overj/ and o,(j) =(= Oj(jy) for i 4= j }.

By (vi) c ) we have U 4= 0. Let g denote the genus of/'^jy) forjy e U. In view of (vi) e )
we have n ̂  3 (with n as in (vi) /J), hence (X^j, Gi|n, . . ., ^Ju) ls a stable ^-pointed
curve of genus g over U. This defines a 1-morphism

U->^..

of U into the algebraic stack classifying smooth stable ^-pointed curves of genus g,
see 2.24 for notation and results. Choose i ^ 3 prime to the characteristic of k. Let

U 'CUX^.M^
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be an irreducible component; it is finite ftale over U, nonempty since t is prime to the
characteristic of k. Put Y' equal to the closure of

I m ( U ' - > Y x , M , , J C Y x , M ^ .

It is clear that Y' is a projective variety over k and that ^ : Y' -> Y is an alteration which
is generically ftale. The smooth stable ^-pointed curve (X^ (Ti|u, ' " , ^ n \ v ) X u U '
extends to a stable ^-pointed curve over Y', see 2.24. (The 1-morphism U' ->• U -> J(
extends to Y' ->/Mg ̂  ->Ji\^\(\ -> Jl g^ by construction.)

Replacing Y by Y' and X by X' as in 4.15 we reduce to a case in which (i)-(iv),
(vi) a)-f) hold and

(vi) g ) There exist a stable ^-pointed curve (%7, TI, .. ., rj over Y, a nonempty
open subscheme U C Y and an isomorphism [B : ̂  -> X^j mapping the section T,L to
the section or^L*

Again we remark that (vi) g ) is preserved by operations as in 4.15, by putting
<T = <Sf XyY', etc.

4.18. We want to prove that the rational map [B extends to a morphism of ̂  into X,
perhaps after replacing Y by a modification. Since we will need a similar statement
later on we prove the result in a slightly more general situation.

Suppose we are given a proper morphism/: X -> S of integral excellent schemes,
with sections CT^, . . . , <?„ satisfying the following properties:

a) All fibres of/ are nonempty, geometrically connected and equidimensional of
dimension 1.

b) The smooth locus of/ is dense in all fibres.
c ) The generic fibre of/is smooth.
e ) For all geometric points 7 of S and any irreducible component G of Xj we have

for Z = U (r,(S) that

# sm(X/Y) n G n Z ̂  3.

g ) There exist a stable ^-pointed curve (^, T^, ..., rj over S, a nonempty open
subscheme U C S and an isomorphism (B : ̂  ->• X^j mapping the section T, L to the
section cr,L.

Let us define T as the closure of Fp in the scheme ̂  x g X. Note that T is integral,
as it is the closure of the integral scheme Fp ^ %\j (flat, geometrically reduced and
connected fibres over U and irreducible generic fibre). Let S' —»- S b e a modification
and apply the reasoning of 4.15. This gives a new set of data X', CT^, %7', T^, j3' over the
scheme S' satisfying the properties a)-c), e ) and g ) . We remark that X' is the strict trans-
form ofX, see 2.18. Similarly, the closed subscheme T' C %7' X g / X' C (^ X g X) X g S'
is the strict transform of T with respect to S' -> S. Therefore, by [22], see 2.19, we
may assume in addition to a)-c), e ) and g ) that we have

h) Both X and T, defined as above, are flat over S.
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This condition is also stable under further modifications of S. Thus we may
normalize S and assume that

i) The scheme S is normal.

4.19. Assume we have X, S as above, satisfying a)-c), e) and g)-i). We will show
that (3 extends to a morphism.

Take a point s e S. Denote by X,, ^,, T, the fibres ofX, < ,̂ T over s. Note that
T, has pure dimension 1 as T -> S is flat. We decompose these into irreducible components

X,=X,u... uX,,

^ = Ci u ... u C,,

T. ==Ti u... uT<.

We have the morphisms pr^: T -> ̂  and pr^: T -> X. We remark that these are
birational, i.e. modifications.

4.20. Lemma. — In the situation above.

(i) For each i, 1 ^ z< r there is exactly one j ==j, such that pr^T^) == X^. There is
an open subscheme V == V,C X such that V n X^ is nonempty^ and pr^^V) ->V is an
isomorphism. The morphism pr^: T^ == T,.. -> ̂ , is nonconstant.

(ii) For each i, 1 ̂  i^ c there is exactly one j ==j\ such that pri(T,) == G^. There is
an open subscheme V == V,C %7 such that V n C, is nonempty, and pr^^V) ->V is an
isomorphism.

Proof. — Let W C X, be the finite set of closed points where the morphism
pr2:T,->X^ has one-dimensional fibres. Take a closed point A?eX, , x ^W. The
proper morphism pr^ has a finite fibre at x, hence there exists an open neighbourhood
V C X o f A : such that pr^V) ~^V is finite, 2.7. The morphism T ->X is birational,
hence pr^^V) -> V is a finite modification. If x lies in the smooth locus ofy: X -> S,
and this excludes only finitely many closed points ofX^ by b), then A; is a normal point
of X, as S is normal. In this case we may assume that V is normal. Thus the finite
birational morphism pr^^V) -^V is an isomorphism. Note that for any irreducible
component X^C X,, we may choose such an x eX<. The first two statements of (i)
follow.

The same argument applied to pr^ : T -> ̂  proves (ii).
Let T -^ X' -> X be the Stein factorization of pr^: T -> X. Then X' -> X is a

finite modification, hence an isomorphism over the locus of points where X is normal.
We conclude that pr^^A;) is connected, for any normal point x ofX, in particular for
^esm(X/S).

Choose i, 1 ̂  i < r, and let j ==j\ as in (i). Let { a, p, y }C { 1, ..., n} be such
that Xy, = Gy{s)^ A?p = <^(J) and x^ == a^{s) are distinct, lie on X, and in sm(X/S).
Such a triple exists by e). Suppose that pr^ : T, -> ̂ \ is constant and let c e ̂ , be the

10
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unique point in its image. Let T^ == pr^^a), Tp == pr^^^p) and Ty = pr^1^); these
are connected schemes by the remark above. Note that ^ = (^aC^ ^aM) e Z is a point
ofT^, and similarly for /? and /y. Further, T^ n T, =4= 0, since the complete curve T,
dominates X, and x^ e X,. Again we have a similar statement for (B and y- Finally,
putting ^ = pri(^a) == ^aC^ etc., we have # { ^ , ^p, ̂ } == 3, as (^, T^), ..., T^))
is a stable ^-pointed curve.

There are two cases; both leading to an absurdity.

Case 1. — Suppose c ^{c^c^c^}. This means that pri(TJ has dimension 1 as
it connects c = pri(T^ n T,) with the point ^; similarly for pri(Tp) and pri(T^).
By (ii) the curves pri(TJ, pri(Tp) and pri(T^) have no component in common. Thus
we get at least three distinct components through the point c e ^3. This contradicts
the semi-stability of the curve ^.

Case 2. — Suppose now that c (={ c^, ̂ , c^ }, say c = ^- I11 tllls case we see ̂ ^
the curves pri(Tp) and pri(T^) meet in the labeled point c = c^. This contradicts the
stability of (^,Ti(J), ...,T^)).

4.21. In the situation of 4.19, the lemma implies that the morphism pri: T -> V
has finite fibres, hence is a finite morphism. We remark that ^ is a normal scheme:
it is flat over a normal excellent scheme, with reduced fibres of dimension 1, hence
condition Sg is fullfilled; the smooth locus of ^ -> S is dense in all fibres and the generic
fibre is smooth, hence ^ is regular in codimension 1; apply the criterium of Serre
(Sg + RI => normal). Thus the biradonal finite morphism pr^: T -> ̂  is an isomorphism.

We conclude that the properties a)-c), e) and g ) on data X -> S, or, as in 4.18
imply that the rational map (B extends to a biradonal morphism (3 : ̂  -> X, at least
after replacing S by a modification and ^ and X by their strict transforms.

4.22. We continue the discussion of the proof of Theorem 4.1, from the point
we left it in the beginning of 4.18. Thus we have a pair (X, Z) satisfying (i)-(iv),
(vi) a)~g). We apply the results of 4.18-4.21 and find a modification ^ : Y' ->Y, such
that (B' extends. Once again using 4.15 we may replace Y by Y', etc., and assume that
P extends to (3 : ̂  -> X and we still have (i)-(iv), (vi) a)-g). Consider the closed subset
P'^Z), which is pure of codimension 1 in ^ by (iv). Let E' be an irreducible component
of (B'^Z). If we do not have E' == T,(Y) for some i, then the image D' of E' in Y has
codimension 1 in Y, as (B is an isomorphism over the open set U of (vi) g ) . Thus there
is a closed subset D C Y such that we have [B-^Z) C Ti(Y) u ... u T^(Y) u/'^D)
and such that ^ -> Y is smooth over Y\D.

We replace X by ^ and Z by Ti(Y) u .. . u rJY) uy-^D), see 4.4 and 4.9.
At this point we apply the induction hypothesis: there exists a nonsingular projective
variety Y' and a generically ^tale alteration ^ : Y' -> Y such that the closed subset
^(D) is a strict normal crossings divisor on Y. Pulling back the family ^ to a family V
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over Y' and applying 4.4 once again, we reduce to the situation described in 4.23 below.
(We drop the stability hypothesis, since we will not need it any more.)

4.23. Situation. — Here Y is a nonsingular projective variety over the algebraically
closed field k, D C Y is a divisor with strict normal crossings, andy: X -> Y is a semi-stable
curve, smooth over Y\D. The closed subset Z C X equals Ti(Y) u ... u rJY) u/'^D),
where T^, l ^ i ^ n are mutually disjoint sections into the smooth locus of f^
i.e. T,:Y^sm(X/Y).

4.24. Using the modification of Lemma 3.2 we reduce to the situation 4.23,
where we have in addition that codim(Sing(X), X) ^ 3. (Of course the sections T, still
map into the smooth locus of/; in fact, Z is already everywhere a divisor with normal
crossings, except in the singular points of X. Furthermore, it is a divisor, as D is a divisor
and T^(Y) is a divisor.) The situation is further explained in 3.5. Using these explanations
we see that we reduce to the situation described in 4.25 below. (Note that there we
consider only closed points, so that the situation is automatically split.)

4.25. Situation. — Here X is a projective variety of dimension d over an algebraically
closed field k. We have a divisor Z C X. Let x e X(A) be an arbitrary closed point; either
of the following two conditions holds:

(i) A? is a nonsingular point of X. In this case Z is a normal crossings divisor at x
(or x ^Z).

(ii) A; is a singular point of X. In this case there are integers 2 ̂  «?^ r^ d — 1
such that the completion of the local ring 0^ ^ is isomorphic to

k[[u, v, t^ . . ., td-i]]l(uv — /i . ... • /,)

and Z is defined by ^ • ... • ty == 0.
Finally, the components of the singular locus of X are nonsingular.

4.26. Assume (X, Z) as in 4.25. Let E C X be an irreducible component of
Sing(X). Let TT : X' ->X be the blowing up of X in the ideal sheaf of E, and put
Z'^-^ZL,.

4.27. Claim. — The pair (X', Z') is as described in 4.25. The number of components
o/*Sing(X') is one less than the number of components o/*Sing(X).

Again the proof is a nice exercise in blowing up: Since E is smooth, its ideal in
the rings of (ii) is given by (^, y, ^, t^) after renumbering. Before we give some compu-
tations, let us describe the singular locus of X'. Let E' C X be another irreducible
component of the singular locus of X. Let E' C X' be the strict transform of E'. This
equals the blowing up of E' in the nonsingular closed subscheme E' n E (scheme-
theoretically), hence E' is nonsingular. Then Sing(X/) is the union of the E' so obtained.
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We blow up the scheme

Spec k\u, v, t^ ..., td-i]l(uv — h • • • • • ^)

in the ideal {u, v, ̂ , t^). ̂ e g^ f0111' charts associated to the coordinates u, », t^ t^. By
symmetry, we need only deal with two of these.

Chart'. (< u 4= 0 95 . — Here we have coordinates u, v, t^ ..., ^-i? y/? ^ i»^2 ^d
equations,

» = ̂ ', ^ = t^, ^ = ut^ and »' -~ ^•^3 • • • • • ^ == 0.

Clearly, this is smooth and Z7 is given by ut[ t^ t^ • ... • .̂ == 0, a normal crossings divisor.

Chart: " ̂  =)= 0 ??. — Here we have coordinates u, v, f^y ..., ̂ _i, ^', ^', ^2 an(!
equations

u = t^u', v = ̂  »', ^ == î ^2 and M/ y' — ^•^- • • • -^ == °-

The divisor Z' is given by t'^t^ • ... • t^t^ == 0. Clearly the singularities are of the type
described in (ii). The irreducible component u' == v ' == t^ == t^ == 0 of the singular locus
maps onto u == ff == t^ = ^3 == 0, the component vf == v1 = ^3 == ^ = 0 is the strict
transform of the component u == y == ^3 = ^4 = 0.

4.28. By repeatedly blowing up (X, Z) as in 4.26 we finally get the situation
that X is nonsingular and Z is a normal crossings divisor. It is well known that by blowing
up X further we can reach the situation where Z has strict normal crossings, see 2.4.
This finishes the proof of Theorem 4.1.

5. Alterations and curves

5.1. Lety: X -^S be a proper morphism of Noetherian schemes. We define a
number of conditions on f:

a) All fibres of/ are nonempty and equidimensional of dimension 1.
b) The smooth locus of/ is dense in all fibres of/.
c ) f is flat.
Let (TI, .. .,(!„: S -> X be sections of/. We also consider the following conditions

(here we usually assume a) and b)):
d ) For any geometric point ~s of S and any singular point x e X,, there is an i

such that x==a^(s).
e ) For any geometric point 7ofS and any irreducible component C ofX^, there

exist z,j, k e{ 1, ..., n} such that <^(7), <T,(7) and c^(7) are three distinct points lying
on G nsm(X/S).

5.2. Lemma. — Let S be an excellent integral scheme. Letf: X -> S be a projective morphism
satisfying 5.1 a) and b). There exists a projective alteration ^ : S' -> S, and sections (TI, ..., a^ :
S' -> X X s S' such that property 5.1 e) is satisfied.
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Proof. — The assertion is local on S in the following sense. Suppose that S = U U^
is a finite covering of S by open affines, ^a : Ux -> U^ are projective alterations, and
o^, .. ., CT^ are sections of X x^ U^ -> U^ such that ^ holds for geometric points
of Ua. Then we can construct S' ->S, CTI, ..., o^ as in the lemma.

We can choose alterations S^ -> S, dominating U^ over U^ such that the sections a^
extend so S^, see Lemma 5.5. Next, we choose an alteration S' -> S which dominates
all S^, see 5.4. As sections <TI, ..., <?„ we take the pullbacks of all the sections <r?. It is
easy to verify that S', (TI, ..., a^ satisfies e ) .

Let s e S be a closed point. We will find an affine open neighbourhood U of s
in S, such that we can solve the problem over U. By the above and since S is Noetherian,
this will suffice.

First we take U affine such that X is projective over U. Let £S be very ample
on X over U. Let n ̂  3 be so large that/, ̂ 0n -> H°(X,, ̂ n^) is surjective. (For
example if H1 is zero; this remains true after flat base change). There exists a finite
separable extension kC k' and a section t e r(X®A', (oS^®^)0"), such that the divisor
H(t) C X ® k' defined by t is (i) a scheme finite dtale over Spec k' and (ii) H(t) C sm(X/S).
(Bertini Theorem on the generically smooth curve X, over s; actually (ii) is implied
by (i).) There exists a (p : U' ->V finite ^tale such that ^^M == sf 2Ln(^ ^^ ^ ̂
see Lemma 5.7, possibly we have to shrink U. We can lift the section t to a section
7 e F(X^, o^071). Let H(7) be the divisor it defines. The locus in U', where H(T) -> U'
has fibres of dimension 1 is closed and avoids s\ Removing its image in U from U, we
may assume that H(T) is finite over U'. The complement ofsm(X/S)^' in H(T) is closed
and disjoint from H(T) n Xg,. Thus we may remove its image in U from U (by finiteness
this is closed), and we see that H(^) C sm(Xu'/U'). It follows that H^?) -> U' is flat,
as it is a relative divisor in a scheme smooth over U'. In particular, ti(7) -> U' is 6tale
at all points of H(T) n X^ = H(^), by our choice of t. We remove from U the image
of the closed subset of points of H(T), where H(T) -> U' is not ^tale. Thus, finally, we
have that H(T) -> U' is finite (Stale.

Let u9 be a geometric point of U', and let C be an irreducible component of X^,.
Since JS^L has degree at least 1, we see that oS^0^ has degree at least three. Since
H(T) -> U' is finite ^tale, we see that H(T) n C consists of at least three distinct points,
contained in sm(X^/U') by the above. We apply Lemma 5.6 to the triple
(U', Xu., H(T) C X^,). This gives U" -> U' and sections a,: U" -> X^ such that e )
holds for geometric points of U". This finishes the proof. Q.E.D.

5.3. Lemma. — Let S be an excellent integral scheme. Letf : X —> S be a projective semi-stable
curve. There exists a projective alteration ^ : S' -> S, and sections CTI, ...,(?„: S' -> X Xg S'
such that property 5.1 d) is satisfied.

Proof. — The same arguments as in the proof of the preceding lemma show that
the question is local on S. We take a closed point s e S and find an affine open neigh-
bourhood U of s over which the problem can be solved.
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First we take U affine such that X is projective over U. Let oSf be very ample on X
over U. This time we take n so large that

(*) /^^/^tin^))

is surjective. Choose a section t e r(X^ JSf®^) such that Sing(jf),C H(^) and no
component of Xg is contained in H(^). (Here we may have to enlarge n a bit.) The
surjectivity above implies that we may choose a lift T e r(X^j, JSf071) of / which lies in
the kernel of (*). Thus Smg(f)yC H(^). Arguing as in the proof of Lemma 5.2, we
may after shrinking U assume that H(T) is finite over U, hence it is flat over U. We apply
Lemma 5.6 to the triple U, X^j, H(T), and conclude as before. (Note that since we have
a semi-stable curve, the formation of singular locus commutes with base change.) QJE.D.

5.4. Lemma. — Let S^, ..., S^ be a finite set of alterations of an integral N oetherian scheme
S. There exists a projective alteration S' —> S which dominates all the S,'.

Proof. — Take S' to be an arbitrary irreducible component of S[ X 9 ... X g S^
which dominates S. If it is not projective over S, use Chow's lemma to get it so. Q.E.D.

5.5. Lemma. — Let f: X -> S be a proper morphism, with S integral and N oetherian.
Let U C S be open, U' -> U an alteration and <TI, . ..,(?„: U' -> X^j, sections of X over U'.
There exist an alteration ̂  : S' -> S, and an S-morphism of^"1^) to U', such that the sections CT(
extend to sections ^ : S' -> Xg.

Proof. — Apply Chow's lemma to U' —- U, to see that we may assume there
exists a closed immersion i: U' —>-P^. Let S' be the (schematic) closure in
Vs X (X X s . . . X s X) of the image of

U'^P^ x ( X X s . . . X,X)^.

Everything is clear. Q^.E.D.

5.6. Lemma. — In this lemma S is integral and excellent. Let f: X -> S be a proper
morphism, and let Z C X be a closed subset, finite and flat over S. There exists a finite alteration
S' —> S, and sections CTI, . . . , C T ^ such that 9-1(Z) == U^ CT^(S') (set theoretically), where
9 : X X a S' -> X denotes the projection morphism.

Proof. — Let Z = U Z^ be the decomposition of Z into its irreducible components.
The field extensions R(S) C R(ZJ are finite; choose a finite normal field extension
R(S) C L, such that R(Z,) C L for all i. Let S' be the normalization of S in L (as S is
excellent, this is finite over S). We have the diagram:

Z x ^ S ' <— Z ,XsS ' -^ Z,

v y Y

s' <—"— s' ——> s.
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Since the left vertical arrow is finite and flat all components of Z X g S' dominate S'.
Thus we see that the irreducible components of Z X g S' are the irreducible components
ofZ^ X g S' which dominate S'. By our choice of L, all these irreducible components Z .̂
ofZ, X g S' are finite and birational over S'. Since S' is normal we get Z^ ^ S'. Hence
we get ^,: S' -> Z, Xg S' such that Z X g S' == U ^,(S'). d.E.D.

5.7. Lemma. — Let U be an of fine scheme, u e U a closed point and K{u) C k' a finite
separable extension. There exists a finite free ^ : U' -> U such that ^~l{u) == u' with K(^') ^ k1

as field extensions ofK(u). There is an open neighbourhood of u in U over which ^ is ^tale.

Proof. — Write k1 = K{u) [x]l(f{x)), with/monic. Lift/to a monic polynomial F
in F(U, 6\j), and use this do define U'. Q.E.D.

5.8. Theorem. — Let f: X —> S be a projective morphism of integral excellent schemes.
Assume that

a) all fibres off are nonempty and equidimensional of dimension 1;
b) the smooth locus of f is dense in all fibres off.

There exists a diagram

Xi ^> X

[fl [fy v

S. -^ S,

where ̂  and <pi are alterations andf^ is a projective split semi-stable curve with smooth generic fibre.
Suppose that Z C X is a proper closed subset. We may choose the diagram above such that

there are mutually disjoints sections (T^, ..., a^ of^i into sm(Xi/Si) and a divisor D^ C S^ with
the property that

^(ZL, C/.-̂ D,),, u a,(Si) U ... u oJS,).

5.9. The strategy of the proof is similar to the strategy used in the proof of
Theorem 4.1. In particular, we will consider alterations <p : S' -> S and diagrams

X' —> X XgS ' -"̂  X

I/' [^ [f

S' ld > S' ———. S.

Here X' is an irreducible component of X X g S' dominating X. (Such a component
exists, as ^ is finite flat over a nonempty open part of S.) It follows that the generic
fibre of/' is equidimensional of dimension 1, hence all fibres of/' have everywhere
dimension at least 1 (2.7). Thus, since a) holds for pr^, we get a) for/'. Property b) then
follows for/' as it holds for pr^. Denote 9 : X' -^ X the obvious morphism; it is dominant
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and proper and finite overf~1 of the locus where ^ is finite. Hence it is an alteration.
Note that Z' = ^~~1^Z)^ is a proper closed subset of X' also. It suffices to prove the
theorem for the triple (X', Z', S').

5.10. Let T] e S be the generic point of S. The curve X^ is irreducible, since X
is irreducible. There exists a finite extension K(T]) C L such that the normalization
of (X^ ® L)^ is a union of smooth geometrically irreducible curves over Spec L.
Let ^ '- S' ->-S be the normalization of S in the field L$ it is an alteration. Choose an
irreducible component X' as in 5.9 and let (X')" -^X' be the normalization mapping.
The scheme sm(X7S') is normal as it is smooth over a normal scheme. Thus (X')71 -> X'
is an isomorphism outside a locus finite over S'. Obviously this implies that the condi-
tions a) and b) hold for the morphism (X')" -> S'. Hence replacing S by S', X by (X')**
and Z by its inverse image in (X')" we may assume that we have a), b) and

c ) the generic fibre of f is smooth and geometrically irreducible.
This property is preserved by replacing X, S by X', S' as in 5.9; note that in this

case X' is actually equal to the reduction of the irreducible scheme X X g S', i.e. X' is
the strict transform of X (see 2.18 and 2.20).

5.11. Assume a)-c). Let U C S be a nonempty open subset such that Z^j -> U is
finite flat, see 2.7. By 5.6 there exists an alteration U' ->V and sections CTI, ..., <?„
over U' such that Z^j' = Oi(U') U ... U c^(U') (set-theoretically). Extend U' -> U to
an alteration S' —>• S such that the sections a^ extend to sections cr,: S' -> Xg»,
see 5.5. Take X ' = = ( X X s S ' ) ^ and Z'C X' as before. Then it is clear that
Z' == Z^ u ^(S') U ... u (^(S'), where Z^ is vertical, i.e. /'(Z^) =t= S'. We blow up
S" -> y in the (ideal sheaf of the) closed subscheme/'(Z^). Thus we get a divisor D" C S"
and sections < such that Z" C (/")-1 (D") u ^'(S") u ... u <(S"). Replacing
y, X, S, Z by the objects with two dashes, we reduce to a situation where we have a)-c)
and the following property:

d) Z C/'^D)^ u <7i(S) u ... u crJS) for a divisor D C S and sections a,: S -> X,
L, . . ., ft.

Again this is stable for the process described in 5.9.

5.12. We apply Lemma 5.2, this gives S' -> S and a set of sections a[ of X' to S'
such that property 5.1 e ) is satisfied for X' -> S'. Applying 5.9 and adding the sec-
tions a[ to the sections we already produced in 5.11 we reduce to the case where we
have a)-d) and 5.1 e ) . (We write e ) instead of 5.1 e ) in the sequel.)

5.13. There is a nonempty open subscheme U C S such that (X^j, CT^L, ..., dju)
is a smooth stable ^-pointed curve of genus g, where g == ̂ (X^). This gives a 1-morphism
U ->^g „. Let U' -> U be an irreducible component dominating U of the scheme
M x ^ U, where M is an in 2.24. Let S' be the closure of U' in the scheme M x S.-w^,n '
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Remark that S' -> S is a projective alteration as M is projective over Spec Z. It follows
that in addition to a)-e) we may assume that we have

g ) there exist a stable n-pointed curve (%', T^, ..., rj over S, a nonempty open
subscheme UC S and an isomorphism (B : ̂  ->X^ mapping the section T,L to the
section o,[^.

5.14. We apply the results of 4.18-4.21. Thus we may (after modifying S) assume
that p extends to a morphism (3 : ̂  -> X of schemes over S. Put X' == V and Z' = (3- 1(Z).
In order to get d) for the new pair (X', Z') it may be necessary to blow up S' a bit,
since (3 blows up outside X^j and so Z' may have some "new" vertical components.
However, note that the sections a[ == T, : S -> X' no longer satisfy e ) , since as mentioned
just now, p : X' ->• X blows up and X, has in general more components than X^. Still,
we have certainly reduced to the case described in 5.15 below.

5.15. Situation. — Here/: X -> S is a projective semistable curve, with smooth generic
fibre. There are mutually disjoint sections ori, ..., ̂ : S -> X into sm(X/S) and
Z ̂ f-^-D)^ u <Ti(S) u ... u crJS) for some divisor D C S.

5.16. We note that the assumptions of 5.15 are preserved by replacing S by an
alteration S' of S. Thus we apply Lemma 5.3 and Lemma 5.2 and we get additional
sections d^i, ..., (T^^ such that 5.1 d) and e ) hold for (X, ai, ..., <^+J.

Going through the arguments of 5.13 and 5.14 once again, we see that after
replacing S by an alteration of S, we have (^, TI, ..., T^J a stable n + ̂ -pointed
curve over S and

(3: ̂  -»X

mapping T, to <y,. We know that for any geometric point 7 of S, any singular point
x e X^ is equal to a,(T) for some i, in view of 5.1 d). Since the genus of ^ is equal to
the genus of X^, we either have that (S^1^) is a point, or a string of smooth P^s. But
^CO e Pi"1^)lies in the regular locus of^, hence we see that (3^1^) is not a point. Thus
we see that all components of ̂  are smooth: the components contracted under (B are
smooth curves of genus zero, the components mapping onto components of X^ by the
preceding arguments.

We replace X by ^ as before and we reduce to Situation 5.15 with the additional
information that all irreducible components of all geometric fibres X^ are smooth.

5.17. Assume/: X -> S, <^, D are as in 5.15, and all components of all geometric
fibres of/are smooth. At this point we are essentially through. Just apply Lemmata 5.3
and 5.2 once again, to get additional sections pi, ..., p, such that 5A d) and e) are
satisfied for the system (X, pi, ..., p,.) over S. But then all singular points of all fibres
X, are rational: they lie in the finite set of points pi(J), ..., p/.?) e X,(^) in view
of property 5.1 d ) . Similarly, all components are defined over K(^), since each component

11
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of X^ has a rational point in view of 5.1 e ) . These components were smooth to begin
with.

Thus/: X -> Sis a split semi-stable curve, and/: X -> S, <^, D solves our problem.
Theorem 5.8 is proven.

6. Semi-stable alterations

6.1. In this section we work over a trait S, see 2.12. We want to prove an analogue
of 4.1 for S-varieties. First we describe what is the best possible result that one can
obtain by our methods.

6.2. If (X, Z) is a pair consisting of an S-variety and a closed subset Z C X (also
considered as a reduced closed subscheme ofX), then we can write Z == Zy U Z', where
Zy -> S is flat and Z' is contained in/""1^). In fact, in the sequel we will only consider
pairs (X, Z) with/-1^}) C Z, so that Z = Z, uf-\{s}).

6.3. We say that (X, Z) is a strict semi-stable pair if the following conditions are
satisfied:

a) X is strict semi-stable over S, see 2.16.
b) Z is a divisor with strict normal crossings on X.
c ) Let Zy = U, g j Z, be the decomposition of Zy in its irreducible components.

For each J C I, the scheme Zj = f13 g j Zj is a disjoint union of S-varieties which are strict
semi-stable over S.

In particular, c ) implies that the schemes Zj are flat over S. This concept is of
most use when X is proper or projective over S.

6.4. (Local description of strict semi-stable pairs.) Let (X, Z) be a strict semi-
stable pair over S and let x e X, be a point. Choose a uniformizer TC e fl?g. We write
Z = X, u Zy, with Zf flat over S and we write the irreducible components of Z as
follows: X, == Uf X^ and Zy = U, Z,.. Assume that x e Z^, ..., Z^, not in other compo-
nents Zj (m might be zero), and x eX^, ..., X^, not in other components X,. We
claim that the complete local ring A of X at x can be described as

A ̂  GdA, ..., ̂ , s^ .. .^J]/(TT - ̂  . . . . . ^),

with C a Noetherian complete local formally smooth R-algebra and Z, (resp. XJ given
by Sj = 0 (resp. ^ = 0).

By 2.16, since X is semi-stable, we already have that

A^B[fc , . . . , ^ ] ] / (7 r -^ . ... .a

and X, given by ^ = 0. Suppose Sj eA, j == 1, ..., TTZ defines the component Z,
at A;. By semi-stability the complete local ring B/(7i, . . . ,7^) is a formally smooth
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K(.y)-aj[gebra, and 7i, ..., 7^ form part of a regular system of parameters of B. Lifting
C == B/(7i, .. ., 7J to a formally smooth R-algebra, and arguing as in 2.8, we derive
the claim.

On the other hand, suppose that for all points xeX.,, we have that
A ^ C[[/i, ..., ̂ , ji, ..., ^J]/(7c — ^ • ... . ^), with G a Noetherian complete local
formally smooth R-algebra and that Z, (resp. X,) given by s, == 0, j == 1, ..., m
(resp. ^ = 0, z = 1, . . ., n) are the only components of Z passing through x. Then (X, Z)
is a strict semi-stable pair.

6.5. Theorem. — Let X be an S-variety and let Z C X be a proper closed subset (with
f~l{{s})cl^)' There exist a trait S^ finite over S, an S^-variety X^, an alteration of schemes
over S

9i: Xi -> X

and an open immersion j\: X^ -> X^ of S^-varieties, with the following properties:

(i) Xi is projective S-^-variety with geometrically irreducible generic fibre, and
(ii) the pair (Xi, p^^Z)^ u Xi\j\(Xi)) is strict semi-stable, 6.3.

6.6. Diagram.
. h -v <P! .X, ^- Xi -̂  X

S, -̂ -> Si ——> S.

6.7. The strategy of the proof is the same as in the case of varieties, compare 4.4
and 4.9. Again we will argue by induction on the relative dimension d of X over S.
The case dim X/S = 0 is all right. (We note that the case d == 1 does not trivially follow
from the stable reduction theorem.) We do not repeat all the arguments; we just remark
that if 9 : X' -> X is a modification or an alteration, then X' is an S-variety too
(as X^ is nonempty). Thus arguing as in 4.6 and 4.7 we reduce to the case where

(i) X is projective over S.
As in 4.8 we see that we may assume (in addition to (i)):
(ii) There exists a divisor D C X, such that Z is the support of D.

6.8. A new feature is that we are going to perform base change with respect to S.
Suppose S' ->S is a finite morphism of traits. Put Xg. == X X g S' and let X'C Xg,
be an irreducible component, considered as a reduced closed subscheme. The morphism
9 : X' -> X is finite and dominant (since Xg, -> X is finite and flat), hence an alteration.
Also, X' is an S'-variety. Put T == (p'^Z). The result of the theorem for the pair (X', Z')
over S' implies the result for the pair (X, Z) over S.

6.9. There exists a finite extension R(S) C L such that some quotient field K
of the Artinian semi-local ring R(X) ®^g) L is separable over L and L is algebraically
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closed in K. Let S' -> S be the associated finite extension of traits, i.e. R(S') ^ L.
Let X' C Xg, be the irreducible component corresponding to K. Performing the base
change as explained in 6.8, we see that we may assume

(iii) X^ is geometrically reduced and irreducible over K(T]).
Note that the properties (i) and (ii) are preserved by the operation described

in 6.8. Hence we may assume we have (i)-(iii). Note that, in this case, Xg, is irreducible
and reduced for all morphisms of traits S' -> S.

6.10. Assume (i)-(iii). Performing the normalization modification <p :X ' ->"X
gives (i)-(iii) and

(iv) X is a normal scheme.

6.11. Assume (i)-(iv). Let {^ i , . . . , ^ r } be the generic points of the fibre X,.
Let ^P, be the local ring of X at the point S,, 1 < J ^ r. Let S' -> S, given by R -> R',
be a finite morphism of traits. We want that, for eachj, the normalization of ^®R R'
is formally smooth over R'. To get this, we apply 2.13 to the homomorphisms R -> ̂ .
This gives R C R,. for eachj, and we take R' to be a finite common extension of all R,.
(See last statement of 2.13; we remark that we do not need to reduce as X is geome-
trically reduced.)

Let <p:X' ->Xg. be the normalization morphism, and let Si,...,^ be the
generic points of X,.. By the above we see that the extensions R' C ̂ ', s'- have e = 1
and separable residue field extensions. The morphism X' -> S' is therefore smooth in a
neighbourhood of the point ^'. We replace X by X' and Z by the inverse image of Z
in X' and S by S'. This gives that in addition to (i)-(iv) we may assume:

(v) sm(X/S) is dense in Xg.
We note that the properties (i)-(iii) and (v) are preserved by further base change

X h-» Xg, whereas (iv) in general is not. Of course, (iv) is preserved by base change
with S' -> S finite ^tale. (Actually, we will note use (iv) any further.)

6.12. Assume (i)-(v). We claim that there exists a finite ^tale extension S' -> S
of traits and a finite morphism

7T : Xg, —» Pg,,

such that TT is ^tale over V C Pg» open, with V,, nonempty.
Let X -> P^ be a closed immersion. We remark that the conditions of 2.11 are

satisfied for the closed subscheme X, C P^(,) . We find a finite separable extension
K(s) C k' sindp eP^t such that pr^ : X,®A' -^pr^X,®^) is birational. The conditions
of 2.11 are satisfied for the closed subscheme pr^(X,®A') C P^~1. We continue and
we find a finite separable extension K(s) C k' and a linear sub variety L C P^t of dimension
N - d - 1 such that L n X,®k' == 0 and

pr^X^-^

is finite and ^tale over a nonempty open subset ofP^.
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Let S' -> S be the unique finite ^tale extension of traits such that K(^') s k' as
K(^)-extensions. Choose a linear subvariety tl C Pj^ lifdng L, i.e. Tl ® K(J') = L. Note
that L n Xg, == 0, as L n Xg. is closed with empty special fibre. The morphism

TT = pr^ : Xg, -> Pi,

satisfies the properties of the claim. Use 2.8.

6.13. Thus we reduce to the case where we have (i)-(v) and a finite morphism

7t:X^P|,

such that TT is 6tale over V C Pg open, with V, nonempty. There exists a point p e V(A')
defined over a finite separable extension K(J) C k\ We use base change 6.8 (with S' -> S
finite 6tale, K(J') ^ k ' ) to getp defined overK(^). Take any lift of? to a section a : S -> Pg;
note that (T(S) C V, as a(s) e V. As in the proof of 4.11, consider the space P^~1 of lines /
through or and put

X'^MeSXgP^-1 !^)^}.

In this case the morphism 9 : X' —»-X blows up in the locus ^""^(S)) C sm(X/S),
which is finite ^tale over S. (In particular, X' is an X-variety.)

Arguing exactly as in 4.11 we see that
f=pr,:X^Pi-1

has the following properties: a) All fibres ofy are equidimensional of dimension 1 and
nonempty, b) The smooth locus ofy* is dense in all fibres ofy. If we replace X by X'
and Z by ^~1{Z), then we see that we have (i)-(v) and

(vi) There exists a morphism/: X ->Y of projecdve S-variedes having the fol-
lowing two properdes:
(vi) a) All fibres ofjf are nonempty and equidimensional of dimension 1.
(vi) b) The smooth locus of/ is dense in all fibres ofy.

6.14. We apply Theorem 5.8 to the morphism f\ X ->Y of (vi). Thus we get
alteradons y, ^ fittmg into the diagram

X' ^ X

[r [fT T

Y' —1-^ Y

where f is a projective split semi-stable curve. There are mutually disjoint sections

(7i,.. . ,<T,:Y'-»sm(X7Y')

such that y-^Z) C (/T^D') u ffi(Y') u ... u <r,(Y'), for a divisor D' C Y'. Clearly,
Y' is also an S-variety. Let us enlarge D' so that it contains f'{Sing(f'))^.
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We may apply our induction hypothesis to the pair (Y', D') over S. Thus we find
a finite extension S' -> S, a projective strict semi-stable pair (Y", D") over S' and an
alteration ^/:Y"->Y' of S-schemes such that (^"'(D')^ = D". The split semi-
stable curve /': X' -> Y' pulls back to a split semi-stable curve /" : X" -> Y", the
mutually disjoint sections o, pull back to mutually disjoint sections cr," into sm(X"/Y")
and we have Z" C (/^-'(D") u ^'(Y") u ... u <(Y"). Furthermore, we have that
X" is smooth over Y"\D".

Therefore we have reduced the problem to the situation described in 6.15. (Recall
that we may enlarge Z, compare 4.9.)

6.15. Situation. — Here (Y, D) is a projective strict semi-stable pair over S, /: X -> Y
is a projective split semi-stable curve over Y, smooth over Y\D. There are mutually
disjoint sections (T^, ..., a^: Y -> X into the smooth locus of X over Y, such that

Z^C/ r^U^U ... UaJY).

Finally, Y has geometrically irreducible generic fibre.

6.16. Assume we are in Situation 6.15. Consider the modification 9 : X' -> X
described in Proposition 3.6. Since it has center in the singular locus off, the sections c^
lift to mutually disjoint sections o,' into sm(X'/Y). Let Z' be the (set-theoretic) inverse
image of Z in X'. Clearly, we also have Z' = (/'^(D) u (J;(Y) u ... u <^(Y).

Thus we reduce to the case described in 6.15 with the additional information
that X is a regular scheme. We claim that (X, Z) is a strict semi-stable pair over S in
this case. If we show this, then the proof of Theorem 6.5 is finished: a projective curve
over a projective scheme over S is projective over S, the assertion on geometric irredu-
cibility follows from the corresponding property of Y.

To prove the claim we write D == U^j D,, decomposition into irreducible compo-
nents. Let us -write f~l(D^ = U,gj.Z^. for the irreducible components of f~l(D^).
Take a point x e X, with image y in Y. We have to show that the situation at x looks
like the description given in 6.4, see the remark at the end of 6.4.

In case x e sm(X/Y) and x ^ o,(Y) for all z, this follows trivially from the fact that
(Y, D) is strict semi-stable and the description given in 6.4 of the complete local ring A
atj. (Just add one formal variable to the ring C.) If x esm(X/Y) and x e <^(Y) for
some i, then we just have to add one more s- variable to the ring A.

The case A; e X is a singular point off. Let A be the complete local ring ofY atj/,
let B be the complete local ring of X at x. The situation looks as follows:

A ^ G[fa, . . ., ̂ , S^ . . ., ̂ ]]/(^ . . . . . ^ - 7T),

the components of D passing through y are given as the zero sets of the elements
^i? • • • ) ^n? ^i? • • •? ^w ^e know, since X is regular and split, see proof of 3.6, that
B ̂  A[[^, v]]l{uv — A), with h = s^ or h = t^ (up to a renumbering). In either case
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consider the associated component D^ of D, i.e. the one given by the equation h = 0
in A. There must be two Z^ passing through x. (The following argument also occurs
in the proof of 3.6.) Indeed, the image of ^: Spec B/(^, v) -> X lies in Sing(/) and
dominates D,, hence by the assumption that / is split we get Z,i, Z^C/'^D,) with
Im(/) C Z,i n Z^, hence also x e Z^ n Z^. Therefore in both cases, the ideals (u) C B
and (v) C B correspond to the traces of distinct components of Z on Spec B. Since this
was already clear for the other ideals (^) and ( .̂) (by the corresponding property for A),
we see that B is as in 6.4. (In case h = s-^ we get one more parameter s9, in case h = t^ we
get one more parameter t.) This ends the proof of Theorem 6.5.

7. Group actions and alterations

7.1. Let S be a Noetherian scheme, let D be a divisor on S and let G be a finite
group acting on S. Assume that G preserves D, i.e. for all g e G we have ^(D) C D.
We say that D is a G-strict normal crossings divisor on S if (i) D==U^iD, is
a strict normal crossings divisor on S, and (ii) the orbit of a component D, is a disjoint
union of components of D. This means that D, n^(D^) + 0 => D, =^(D,). It also
gives Z n^(Z) + 0 => g{Z) == Z, if Z is an irreducible component of D, n D,,.

7.2. Let S be an excellent scheme and assume that D is a divisor with normal
crossings on S. Let us write D110™ for the normalization of D, and write n: D110™ -> D
for the normalization morphism. We define

'DW^{sED\rk^n-l(s)=i}.

These are locally closed subschemes ofD, and they are regular schemes. (These assertions
and various other assertions may be checked ^tale locally on S, in which case one can
compute explicitely using a local equation ^ • ... • ^ == 0 for D.) We have

i == dim SD = n D^,
i=l

with dim D^ = dim S — i.
Assume that S has pure dimension d. We define a sequence of blowings up

S = s^ -> s^ ->...-> s^-^ -> s^ = s.
The map S^"^ -> S^ is the blowing up in the closed subscheme D^ of S. Thus we can
view D^ for i< d as a locally closed subscheme of S^-^. The map S^-^ -^S^-^
is defined as the blowing up of the closure ofD^"^ in S^"^; note that this equals the
normalization of the closure of D^"^ in S. Thus we can view D^ for i < d — 1 as a
locally closed subscheme of S(d~2). In general, S^"^ -^S^ is defined as the blowing
up of the closure of D^ in S^.

Let 9 : S -> S be the composition of the morphisms above. It has the following
properties: (i) The reduced inverse image D = y'^D)^ is a divisor with strict normal
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crossings, (ii) The set of components of S is naturally bijective to the union of the sets
of components of the D^, z = l , . . . , r f . I f Z C D^ is a component, then it corresponds
to the closure of y^Z). (iii) Let us write D^ = U D^. The irreducible components
corresponding to D^ and D^ intersect if and only if D^ is contained in the closure
of D^ or vice versa.

These assertions may be proven by induction on dim S, using that S -> S induces a
similar morphism B, -> D, for any component D, of D.

Suppose in the situation above that the finite group G acts on the scheme S, pre-
serving the divisor D. Since S -> S is defined intrinsically in terms of the pair (S, D),
the action of G lifts to an action of G on S. Moreover the divisor E) is a G-strict normal
crossings divisor on S. This is clear as all the components in one G-orbit on the set of
components of D are of the same type, i.e. they correspond to components of D^ for
a fixed i. By the above these do not intersect.

7.3. Theorem. — Let k be an algebraically closed field, let X be a variety over k, G C Aut X
a finite subgroup of the automorphism group of X over k, and Z C X a G-stable proper closed
subset. There exist an alteration

<pi:Xi->X,

an open immersion j\: Xi -> X^, and a finite subgroup G^ C Aut X^ such that the following
properties hold:

(i) The action ofG^ preserves the open subscheme Xi, there is a surjection G^ -> G such that <pi
is equivariantfor the induced actions ofG^ an X^ and X. The field extension k^f C ̂ (Xi)01

is purely inseparable.
(ii) Xi is a projective nonsingular variety over k.
(iii) The closed subset j^^l(Z}) U X^\j\(X^) is a G-strict normal crossings divisor in X^,

see 7.1.

7.4. Corollary. — Let X be a variety over afield k. There exist a finite field extension
k C k\ a component X' of X ® k', a radicial morphism X" -> X' of varieties over k' and a modi-
fication Y -> X" such that Y has only quotient singularities.

7.5. The strategy of the proof of 7.3 is the same as in the proof of Theorem 4.1.
We just point out those places where we have to use substantially different arguments.

7.6. Let <p : X' -> X be a modification with X' quasi-projective over k. Write Xy
for the scheme X' considered as a scheme over X with structural morphism X' 4" X -"> X.
Let G ={,?i, . . . ,5n} and let

X-CX^X^Xx... X,X^

be the irreducible component dominating X. Then X" is quasi-projective, a modification
of X and G acts on X". Hence we may assume that X is quasi-projective.
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7.7. By arguments similar to 7.6 and 4.7 we may assume that X is projective.

7.8. We blow up in the ideal sheaf of ZC X. The group G acts on the result.
Hence we may assume that Z is the support of a divisor on X.

7.9. We may assume that X is normal, compare 4.10.

7.10. Assume that the pair (X, Z) of the theorem satisfies conditions (iii), (iv)
and (v) of Section 4. Consider the quotient morphism X ->X/G; of course X/G is a
normal projective variety. Let B C X/G be the branch locus of the morphism X -> X/G.
We apply 4.11 to the variety X/G and the closed subset B u Z/G. We get a diagram

x' —> (X/G)' —> y^1i i
X ——> (X/G)

where X' is the fibre product. The morphism/' : X' -^P^"1 is G-equivariant (with
the trivial action on P^"1) and has the following properties:

a) All fibres are nonempty, geometrically connected and equidimensional of
dimension 1.

b) The smooth locus of/' is dense in all fibres of/'.
d) The morphism f'\^, : Z' —P^-1 is finite.
We are not able to conclude that/'|z' is generically ^tale, since the map of Z'

to its image in X/G might be inseparable on some components. If we choose the fibration
general enough, we may assume that X^ is geometrically irreducible also. To see this
we remark that, by a Bertini theorem, for H C P^ general, dim H = N — d + 1 (as
at the end of the proof of 4.11 applied to X/G <-> P^, the inverse image of X/G n H
in X is irreducible. Thus we get

c ) ' X^ is geometrically irreducible and X^/G = (X/G)^ is smooth over 73.

7.11. Let us apply Lemma 4.13 to the situation above. This gives a relative divisor
HCX with properties (i), (ii) of Lemma 4.13. Of course we replace Z by Z u U^e ̂ (H).
This reduces us to a situation where we also have:

e ) For all geometric points y of Y and any irreducible component G of X-,

#sm(Y) uG uZ^ 3.

7.18. Thus we have reduced to the case where there is a "nice" G-equivariant fibra-
tion X -> Y of projective varieties satisfying a)-e) above. In the following we are going to
allow situations where G does not act trivially on Y. Thus we assume that G also acts on Y
and that/is G-equivariant (with an obvious modification of property c/ above).

12
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Suppose we are given a finite field extension A(Y) C L. Let LC L' be a finite
extension such that the field extension ^(Y)0 C L' is normal. (Such exist.) Write
H == Ga^L'/^Y)0) and let Y' be the normal closure of Y in L'. Write

U- == -H. X QaKOTVOT)®) VJr*

The map G' ->• G is surjective, and A(Y)0 C I/0' is purely inseparable. Further, G' acts
on Y'. At this point we can do base change with Y' ->Y as in 4.15. The result will
be a G'-equivariant morphism X' -> Y', where G' C Aut X'. This proves that we may
assume that the function field of the variety Y is sufficiently big.

7.13. Therefore, after extending ^(Y), we may assume that the generic fibre of/
is smooth. (Here one has to normalize X" compare with the argument of 5.10.) Thus
we get:

c ) The generic fibre of/ is smooth.
Also, by the procedure of 4.16 we may assume that:
f) There are sections (T^, ..., ̂  : Y -^ X of/such that Z = ^(Y) u ... u crJY).

7.14. Arguing as in 4.17, we see that there exists an alteration Y' -> Y such that
we have a stable curve ^ over Y', which agrees with Xy, over an open subscheme ofY'.
By 7.12, we may assume that Y' ->Y is birational, i.e., is a modification. Arguing as
in 7.6, we can dominate Y' by a modification on which the group G' acts. Thus we may
assume that we have:

g ) There exist a stable Tz-pointed curve (^, TI, ..., rj over Y, a nonempty open
subscheme U C Y and an isomorphism (B : ̂  -> X^j mapping T^L into the section CT^L.

7.15. We know that (B extends to a morphism after a modification ofY, see 4.18-
4.21. As above, we can dominate this by a G-equivariant modification. Thus we may
assume that ^ ->• X exists. We replace X by ^ and Z by the inverse image of the dege-
neracy locus union the sections T,. (Note that the group G will act on ^ over Y.)

7.16. We are in the situation where we can apply induction to the variety Y
with closed subset D C Y and as group the image of G into Aut Y. We again do pullback.
Hence we arrive at the situation of 4.23 where the finite group G acts on the situation
and D is a G-strict normal crossings divisor on Y.

The blowing ups that occur in 4.24 can be done G-equivariantly, more precisely,
when one blows up in a component as in 3.4, then one can blow up in the G-orbit of
this component, which will be a disjoint union of components in view of the G-strictness
ofD. The same argument works for the procedure described in 4.26. (See end of 7.1
and end of 3.5.) Finally, apply the results of 7.2 to make the divisor Z into a G-strict
normal crossings divisor on X. This ends the proof of Theorem 7.3.
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8. Arithmetic case

8.1. In this section K is a global field, and R C K is a Dedekind ring with fraction
field K. We put S == Spec R.I fKC K' is a finite extension of fields, we let S' == Spec R',
where R' is the integral closure ofR in K'. A morphism S' -> S so obtained will be called
a finite extension of Dedekind schemes.

An S-variety will be an integral scheme X over S with X -> S separated of finite
type and flat.

8.2. Theorem. — Let X be an S-variety and Z C X a proper closed subset. There exists a
diagram

x^ <^ x, -̂ > xx! ^ ^1

I i 1
o ^ i d o ^i, c0^ <—— ,̂ ——> ^J! ^ ^1

where:

a) ^i: Si ->• S is a finite extension of Dedekind schemes,
b) <pi is an alteration, j\ is an open immersion and X^ is protective over S,
c) the scheme X^ is regular and the closed subset J\(^1(Z)) u Xi\j\(Xi) is a strict normal

crossings divisor in X^,
d) over some nonempty open U^C Si the scheme X^ is smooth andj^^1^)) u Xi\ji(Xi) is

a relative normal crossings divisor over U\, and
e) for points s^eS^ s^V^ the pair (X^j^y.-^Z)) u (X^ u Xi\j\(Xi)) is a strict

semi-stable pair over the completion S^/y of S^ in s^, see 6.3.

8.3. We use the same techniques as those employed in Section 6. We may assume
that dim X/S ^ 1. Using Chow's lemma and taking projective closure, we may assume
that (i) X -> S is projective; blowing up Z we may assume that (ii) Z is the support
of a divisor in X.

8.4. We extend the field K, i.e. we take base change with S' -> S finite as in 6.8
to arrive at the situation where

(iii) X^ is geometrically reduced and irreducible.

8.5. Thus for some U C S open nonempty we have that sm(X/S) is dense in all
fibres over U and sm(X/S)^ is geometrically irreducible. Let S\U == {^ , ..., s^}.
Choose for each z e { l , . . . ^ r } a finite extension of complete discrete valuation rings
R, = ̂  sic ^i suc!1 ̂ at the normalization of X ® R '̂ has generically reduced special
fibre (compare with 6.11). Since K is a global field, there exists a finite normal extension
KC K' such that R,' embeds into R^K' for all i == 1, . . . , r . Thus if we take
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S' == Spec R' and X' equal to the normalization of X 00 R', then we see that we reduce
to the case where we have

(v) sm(X/S) is dense in all fibres of X -> S.

8.6. Let U C S be the open subscheme of 8.5. First we replace K by a finite
extension and S by S' such that all geometric components ofX,, for s e S\U, are defined
over K(s). For any s e S\U and any component G of X^, we can find a finite extension
S' -> S and a section or : S' -> sm(X/S) such that a{S[) C C. This follows from Rumely's
theorem (see [17, Theorem 1.7]), applied to the scheme sm(X/S)\(X,\G) over S. We
may also avoid any given number of multisections c^. Replacing S by a finite extension
we may assume that we have mutually disjoint sections o-i, ..., o-,. : S -> X into the
smooth locus of X over S, such that for all s e S, and any component G of X,, there is
an i with a^{s) e G.

Take a closed immersion X -> P^. Let d = dim X/S. For each i == 1, . .., r we
put L, C P^ equal to the tangent space of X at cr,, seen as a linear subspace of relative
dimension d over S of P^. Next, let G -> S be the Grassmanian of (N — d — 1)-dimen-
sional linear subvarieties L of P^. There is an open subscheme V C G consisting of those
L such that L n X = 0 and L n L» == 0. Note that V -> S is surjective. Thus, using
Rumely's theorem, after replacing S by a finite extension, we can find such an L defined
over S. We consider the projection morphism

pr^X^P(L),

where P(L) ^ P^ denotes the space of (N — ^-planes through L, and a point x e X
maps to the (N — d) -plane that contains x and L. By our choice of L we see that pr^
is ^tale along the sections <TI, ..., or,.. We conclude that we may assume:

(v)' There exists a finite morphism TI::X->P^ ftale over an open subscheme
V C P^ which surjects onto S.

8.7. Once again using Rumely's theorem, we may assume that there is a section
o-: S -> V, with V C P^ as in (v)'. Applying the arguments of 6.13 we get:

(vi) There exists a morphism/: X ->Y of projective S-varieties having the fol-
lowing two properties:
(vi) a) All fibres of/are nonempty and equidimensional of dimension 1.
(vi) b) The smooth locus is dense in all fibres of/.

8.8. The rest of the argument works exactly as in 6.14-6.16. This ends the proof
of Theorem 8.2.
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