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1. Intersection (co)homology

1.1. The idea of homology. Let Top denote the category of topological spaces with continuous mor-
phisms and Top2 the category of pairs in Top. Thus objects of Top2 are pairs (X,A) of X,A ∈ Top
with an inclusion A ⊂ X, morphisms are the obvious ones. We denote by

T : Top2 −→ Top2

the functor associating to a pair (X,A) ∈ Top2 the pair (A, ∅).
At the end of the 19th century Poincaré associated simple algebraic invariants to (pairs of) spaces.

Ordinary homology theory (with Z-coefficients) is a collection of functors

Hc
• : Top2 −→ Ab ,

and natural transformations
∂• : Hc

• −→ Hc
•−1 ◦ T

(where Ab denotes the category of Abelian groups) satisfying the following axioms :

- Homotopy invariance : If f : (X,A) −→ (Y,B) is a homotopy equivalence then

f∗ : Hc
•(X,A) −→ Hc

•(Y,B)

is an isomorphism.
- Exactness : for every pair (X,A) ∈ Top2 there is a long exact sequence

· · · −→ Hc
q (A) −→ Hc

q (X) −→ Hc
q (X,A)

∂q−→ Hc
q−1(A) −→ · · · ,

where Hc
q (X) := Hc

q (X, ∅).
- Excision : if (X;A,B) is an excisive triad (i.e. A and B are two subspaces of X such that X is

the union of the interiors of A and B) then the inclusion

(A,A ∩B) ↪→ (X,B)

induces an isomorphism
Hc
•(A,A ∩B) ' Hc

•(X,B) .

- Additivity : If (X,A) =
∐
i(Xi, Ai) then the inclusions (Xi, Ai) ⊂ (X,A) induce an isomorphism

⊕iHc
•(Xi, Ai) ' Hc

•(X,A) .

- Dimension : If X = {∗} then Hc
0(X) = Z and Hc

i (X) = 0 for any i 6= 0.

Remarks 1.1.1. (1) For simplicity of notations we used the notation Hc
•(X) rather than the correct

one Hc
•(X,Z).

(2) We chose the unusual notationHc
• to emphasize the use of finite chains (or homology with compact

support). The notation H• will be reserved to the Borel-Moore homology, which is more natural
from the point of view of sheaf theory.

One can show that these axioms uniquely define ordinary homology Hc
• (“dual” axioms define ordinary

cohomology theory H•(·)). There are many equivalent geometric ways to define it : via homotopy theory,
simplicial homology, cellular homology, singular homology, · · · .

1.2. Homology and manifolds : Poincaré duality.

Definition 1.2.1. A (topological) manifold is a paracompact Hausdorff space M such that each point
x ∈ M has an open neighbourhood homeomorphic to Rn for some fixed integer n. We refer to n as the
dimension of M .

Ordinary homology theory Hc
• is particularly efficient when studying a closed (i.e. compact without

boundary) oriented n-manifold X. Indeed in this case Poincaré and Lefschetz showed that Hc
• satisfies

two crucial properties :

1. There is a functorial intersection product

Hc
i (X)×Hc

j (X)
∩−→ Hc

i+j−n(X) .
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2. Poincaré duality : Let Hc
•(X,Q) := Hc

•(X)⊗Z,Q). When i+ j = n then the pairing

Hc
i (X,Q)×Hc

j (X,Q)
∩−→ Hc

0(X,Q)
ε−→ Q

is non-degenerate (here ε is the “augmentation” counting the points of a 0-cycle with multiplici-
ties).

However these properties miserably fails for singular spaces !

Example 1.2.2. Let X = S2 ∨ S2 be the union of two 2-spheres glued at a point. Algebraically X can be
realized as the complex projective variety

{(x : y : z) ∈ P2C / yz = 0} ,
union at the point (1 : 0 : 0) of the two P1C ' S2

U := {(x : y : z) ∈ P2C / y = 0} and V := {(x : y : z) ∈ P2C / z = 0} .
Using the Mayer-Vietoris exact sequence

· · · −→ Hc
q (U ∩ V ) −→ Hc

q (U)⊕Hc
q (V ) −→ Hc

q (X) −→ Hc
q−1(U ∩ V ) −→ · · ·

for the excisive triad (X,U + ε, V + ε) one obtains Hc
0(X) = Z

Hc
1(X) = 0

Hc
2(X) = Z⊕ Z .

Thus Poincaré duality does not hold.

Example 1.2.3. The following was Poincaré’s original example of how singularities can cause the failure
of Poincaré’s duality.

Let X3 = Σ(S1×S1) be the suspension of the 2-torus (where ΣX = (X ×{0})\X × [0, 1]/(X ×{1})).
The two isolated singularities of X3 are the two cone-points. Let x = Σ({∗} × S1) and y = Σ(S1 × {∗}),
these are two 2-cycles. The intersection x ∩ y = Σ({∗} × {∗}) is still a 2 + 2 − 3 = 1-chain, but it has
a boundary, namely the two cone-points. This boundary does not change as we move x and y in their
homology classes.

One easily computes Hc
0(X) = Z, Hc

1(X) = 0, Hc
2(X) = Z⊕Z and Hc

3(X) = Z, thus Poincaré duality
does not hold.

Intersection (co)homology theory, developed by Goresky and MacPherson in the 1970’s (cf. [17] for an
interesting historical account), is a generalization to a large category of singular spaces of the Poincaré-
Lefschetz intersection theory for compact oriented manifolds. Naturally enough, although originally
defined in classical topological terms, this theory develops all its power only once interpreted in sheaf-
theoretical terms. It naturally leads to the theory of perverse sheaves and D-modules which will be our
main topic of study.

1.3. Simplicial complexes and polyhedra. A good reference for this section is [19].

The easiest, if not the most elegant, way of understanding Hc
• and intersection product, is to restrict

ourselves to a subcategory of Top : the category of polyhedra, for which Hc
• is conveniently defined via

simplicial homology (with compact support). The very down-to-earth definition of simplicial homology
is the most natural way of guessing the “right” definition for intersection homology.

1.3.1. Simplicial complexes. A polyhedron is the geometric realization of a combinatorial gadget : a
simplicial complex. We first recall some standards definitions :

- an n-simplex σ in RN is the convex hull of independent points v0, · · · vn (i.e. v1 − v0, · · · vn − v0
are linearly independent vectors). These points are called the vertices of the n-simplex.

- the faces of σ are the (n− 1)-simplices whose vertices are those of σ.
- an orientation of σ is an ordering of its vertices modulo even permutations.
- a simplicial complex in RN is a set N of simplices in RN such that :

(i) if σ ∈ N then the faces of σ are in N .
(ii) if σ, τ ∈ N and σ ∩ τ 6= ∅ then σ ∩ τ is a simplex whose vertices are also vertices of σ and τ .
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(iii) if x ∈ σ ∈ N there exists a neighbourhood U of x in RN such that U ∩ τ 6= ∅ for only finitely
many simplices τ in N .

Note that simplicial complexes naturally form a category. A morphism f : N −→M is a collection of
linear maps on simplices compatible with faces.

1.3.2. Polyhedra.

- The support |N | of a simplicial complex N is the union of its simplices :

|N | := ∪σ∈Nσ .

- a triangulation of X ∈ Top is a homeomorphism

T : |N | −→ X

with N a simplicial complex. A space X admitting a triangulation is called triangulable.
- a polyhedron is a topological space equipped with a class of triangulation stable under passing

to finer and finer subdivisions.

Polyhedra form a subcategory of Top, morphisms being piecewise linear maps.

1.3.3. PL-manifolds.

Definition 1.3.1. Let K be a polyhedron. We will say that K is a piecewise linear (PL) manifold of
dimension n if every point x ∈ K admits an open neighbourhood U with a piecewise linear homeomorphism
U ' Rn.

Let K be a polyhedron and x a point of K. Choose a triangulation of K containing x as a vertex.
The star of x is the union of those simplices containing x. The link lk(x) of x consists of those simplices
of the star of x which do not contain x.

As a subset of K the link lk(x) depends on the choice of the triangulation of K. However one can
show that as an abstract polyhedron lk(x) is independent of the triangulation up to piecewise linear
homeomorphism. Moreover lk(x) depends only on a neighbourhood of x in K.

If K = Rn and x ∈ Rn is the origin then lk(x) can be identified with the sphere Sn−1 seen as the
polyhedron ∂∆n. It follows that if K is any PL-manifold the link lk(x) is equivalent to Sn−1 for ever
point x ∈ K. Conversely if K is a polyhedron such that every link in K is an (n − 1)-sphere then K is
a PL-manifold. Indeed for any polyhedron K and for every x ∈ K the star of x can be identified with
the cone on lk(x). If lk(x) ' Sn−1 then the star of x is a closed PL-ball so that x has a neighbourhood
which admits a PL-homeomorphism to Rn. Thus :

Proposition 1.3.2. Let K be a polyhedron. The following are equivalent :

(i) K is a PL-manifold.
(ii) For each x ∈ K the link lk(x) is a PL-sphere.

Warning : If K is a n-polyhedron whose underlying topological space is a n-manifold then K need
not be a PL manifold : it is not possible in general to choose piecewise linear local charts in Rn !

Indeed let K be such a polyhedron. As K is a topological n-manifold we deduce that H•(K,K \{x};Z)
is isomorphic to Z in degree n and zero elsewhere. It is equivalent to saying that lk(x) is an homology
(n− 1)-sphere. However it does not imply that lk(x) is itself a PL-sphere.

An explicit example is obtained as follows. Let P be the Poincaré homology 3-sphere. Thus P
is obtained from a dodecahedron by identifying the opposite pentagonal faces after a rotation of π/5.
Alternatively P = SU(2)/I ' S3/U where I is the binary dodecahedral group, a group of order 120 (the
spin extension of the group A5 ⊂ SO(3) of isometries of the dodecahedron). The suspension ΣP is a
4-dimensional polyhedron whose link is isomorphic to P at precisely 2 points x and y. Notice that ΣP
is not a manifold : one can show that the local fundamental group of P \ {x} near X is isomorphic to
π1(P ) = I. However Σ2P is a topological manifold, as a particular case of the following surprising result :

Theorem 1.3.3 (Cannon-Edwards). Let P be an n-dimensional homology sphere. Then Σ2P is homeo-
morphic to an (n+ 2)-sphere.
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But then Σ2P is a 5-dimensional polyhedron which is a manifold but not a PL-manifold : it contains
two points whose links are ΣP which is not even a topological manifold (let alone a PL 4-sphere).

1.3.4. Remarks on triangulability. We mention some results without proofs concerning triangulability.

- any differentiable manifold can be triangulated in an essentially unique way (Whitehead (1940)).
- any compact topological manifold of dimension ≤ 3 can be triangulated (Möıse (1951)).
- there are 4-dimensional compact topological manifolds which cannot be triangulated (Casson

(1985)).
- Nothing known in dimension larger than 5.

Is any compact topological manifold at least homotopically triangulable (i.e. homotopically equivalent
to a compact polyhedron) ? First notice that such a manifold M is a Euclidean Neighboorhood Retract
(i.e. there exists i : M ↪→ Rn with i(M) retract of some neighbourhood) : it easily follows from local
contractibility and the fact that any compact manifold can be embedded in Rn. Now one checks that
a compact space is an ENR if and only if it is a retract of a compact polyhedron. In particular M
is dominated by a finite polyhedron L : there exists f : M −→ L, g : L −→ M and a homotopy
fg ' 1 : M −→M (Borsuk (1933)). Thus M has the homotopy type of the non-compact polyhedron

(∪∞k=−∞L× [k, k + 1])/((x, k) ' (gf(x), k + 1), x ∈ L, k ∈ Z) .

In general it is not true that a compact space dominated by a finite polyhedron is homotopy equivalent
to a finite polyhedron. However it holds true for compact manifolds (Kirby-Siebenmann (1970)). Moreover
if we enlarge the category of polyhedra to the category of CW-complexes then any compact topological
n-manifold, n 6= 4, admits a structure of a finite CW -complex (Kirby-Siebenmann (1970)).

1.4. Simplicial homology with compact support. From now on X will be a triangulable space. Fix
T : |N | −→ X a triangulation. Note that N is finite if and only if X is compact. Let

N (i) := {σ ∈ N , σ is an i-simplex} .

For each σ ∈ N we fix an orientation of σ.

Definition 1.4.1. We denote by Cc,Ti (X) the Z-module of compactly supported i-chains of (X,T ), namely

the Abelian free group freely generated by N (i). Thus an i-chain is a linear combination

ξ =
∑

σ∈N (i)

ξσσ

with ξσ ∈ Z is non-zero for only finitely many σ’s.

Definition 1.4.2. We define

∂ : Cc,Ti (X) −→ Cc,Ti−1(X)

by

∂σ =
∑

τ face of σ

±τ

for any σ ∈ N (i) and the requirement that ∂ is R-linear. In this formula the sign ± is 1 if the orientation
of τ is obtained from the one of σ by omitting an even vertex, −1 otherwise.

Lemma 1.4.3. ∂2 = 0 .

Definition 1.4.4. Hc,T
i (X) := (ker ∂ : Cc,Ti (X) −→ Cc,Ti−1(X))/(Im ∂ : Cc,Ti+1(X) −→ Cc,Ti (X)).

Of course we want to get rid of the choice of the triangulation

T : N −→ X .

Definition 1.4.5. A triangulation T : |N | −→ X is a refinement of a triangulation T ′ : |N ′| −→ X if
for any σ ∈ N there exists σ′ ∈ N ′ such that T (σ) ⊂ T ′(σ′).
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In this case one easily checks that the natural map Cc,T
′

i (X) −→ Cc,Ti (X) which associates to σ′ ∈ N ′(i)
the sum ∑

σ∈N i
T (σ)⊂T ′(σ′)

±σ

(where the sign ± is 1 if the orientations of σ and σ′ are compatible) is compatible with the differentials
∂.

Definition 1.4.6. The simplicial chain complex with compact support of X is defined as Cci (X) =

colimTC
c,T
i (X) with the induced differential ∂. The simplicial homology with compact support of X is

Hc
i (X) =

ker ∂ : Cci (X) −→ Cci−1(X)

Im ∂ : Cci+1(X) −→ Cci (X)
.

Remarks 1.4.7. - Note that this definition is independent of any triangulation of X but a priori
impossible to compute.

- It is not obvious that it is functorial, namely that a continuous f : X −→ Y induces a linear map

f∗ : Hc
•(X) −→ Hc

•(Y ) .

However one has the following result :

Theorem 1.4.8. If T : |N | −→ X is any triangulation of X ∈ Top then there is a natural isomorphism

Hc
•(X) ' Hc,T

• (X).

Proof. (sketch of) : one shows that both cöıncide with the usual singular homology Hsing
• (X). Let

T : |N | −→ X be any triangulation of X. Let σ : ∆i −→ X be a singular i-simplex of X. One shows that
there exists σpl : ∆i −→ X, which is piecewise linear with respect to T and a refinement of the obvious
triangulation on ∆i and approximates σ in the sense that

σ = σpl + ∂singΣ

for some singular (i + 1)-chain Σ. Since ∂2sing = 0 one has ∂singσ = ∂singσpl. It follows that the natural

map Hc,T
• (X) −→ Hsing(X) is an isomorphism. Taking colimits over T we get the result. �

1.5. Local coefficients. In the definition of homology with compact support we can replace Z by any
Abelian group R, thus obtaining Hc

•(X,R), homology with compact support and constant coefficients R.
Homology with constant coefficients loses a lot of topological information. A key idea of this course will
be that one should always consider (co)homology with local coefficients.

Definition 1.5.1. Assume X is connected. A local system L on X is a left Z[π1(X)]-module L.

Suppose T : |N | −→ X is a triangulation. It induces a triangulation T̃ : |Ñ | −→ X̃ which is naturally

π1(X)-equivariant. Hence the complex Cc,T̃• (X̃) is naturally a complex of right Z[π1(X)]-modules.

Definition 1.5.2. The complex of singular L-chains with compact support on X is Cc,T• (X,L) :=

Cc,T̃• (X̃)⊗Z[π1(X)] L with the differential ∂ induced from the differential on Cc,T• (X̃).

Once more taking the colimit over T one obtains a complex (Cc•(X,L), ∂) whose cohomology is
Hc
•(X,L).

Examples 1.5.3. - Of course considering Z as the trivial left π1(X)-module one recovers Hc
•(X) =

Hc
•(X,Z).

- If L = Z[π1(X)] then Hc
•(X,L) ' Hc

•(X̃).
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1.6. Simplicial homology (= Borel-Moore homology). Let L be a local system on X. Let T :

|N | −→ X be a triangulation. Rather than using the complex (Cc,T• (X,L), ∂) of finite linear combination
of simplices, Borel and Moore noticed that one can work with chains which are formal infinite linear
combinations of simplices to obtain a complex (CT• (X,L), ∂). Taking colimits one obtains the inclusion
of complexes

Cc•(X,L) ↪→ C•(X,L)

and a homology map
Hc
•(X,L) −→ H•(X,L) ,

which is an isomorphism if X is compact.

1.7. Cohomology and cohomology with compact support. Given a right Z[π1(X)]-module M we
denote by M the corresponding left Z[π1(X)]-module. We define

Ci(X,L) := HomZ[π1(X)](C
c
i (X̃), L)

with the dual differential ∂∗ which makes (C•(X,L), ∂∗) a complex. Its cohomology is denoted H•(X,L).
One define similarly the Borel-Moore cohomology or cohomology with compact support H•c (X,L) as

the cohomology of the complex

Cic(X,L) := HomZ[π1(X)](Ci(X̃), L) .
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1.8. Stratified spaces. References are [18], [12], [1].

Singular spaces are naturally associated with many important mathematical objects (for example in
representation theory). We are essentially interested only in singular spaces of “finite type”, i.e. spaces
that require finitely many data to characterize them (like finite simplicial complexes). Such spaces should
always be embeddable in manifolds. Hence a natural idea for defining singular spaces is rather to define
a reasonable notion for a singular subspace X of a finite dimensional manifold Y .

A desirable property would be the existence of a disjoint decomposition (called stratification) of X into
smooth submanifolds of Y (called strata). The underlying idea is the following : for a singular space X
of “finite type” the group Homeo(X) should act on X with finitely many orbits. These orbits should be
the natural strata of X. A transitive action should define a manifold.

Whitney proposed the following definition :

Definition 1.8.1. A Whitney stratification of a manifold Y is a disjoint decomposition Y = ∪αSα of Y
into submanifolds that satisfies the following four axioms :

(i) The decomposition is locally finite : every point x ∈ Y has a neighbourhood U such that U ∩ Sα
is empty for all but finitely many α.

(ii) If Sβ has a non-empty intersection with the closure Sα then Sβ is contained in Sα.

(iii) Whitney’s condition A. Suppose Sβ ⊂ Sα. If a sequence of points ak ∈ Sα tends to a point x ∈ Sβ
then

TxSβ ⊂ lim
k
TakSα .

(iv) Whitney’s condition B. Suppose Sβ ⊂ Sα. If two sequences (ak) ∈ Sα and (bk) ∈ Sβ both converge
to the same x ∈ Sβ then

lim
k

[ak, bk] ⊂ lim
k
TakSα ,

provided both limits exist (here the chords are understood in the Grassmannian manifold of a local
coordinates system in Y , the validity of the condition is independent of the system chosen).

If Y is a complex manifold then a complex Whitney stratification is a decomposition into complex
submanifolds which satisfies the same four conditions. In this case tangent spaces and chords can be
taken complex or real.

It is not clear at all why the Whitney conditions are the right ones (Whitney introduces these conditions
in 1965, they were recognized to be natural 20 years later...).

Accordingly one can define a “good singular space” X as a stratified space : a closed subspace of a
manifold Y , union of strata of a Whitney stratification of Y . The decomposition of X in these strata will
still be called a Whitney stratification of X.

Let us try to give a more formal definition of a stratified space.
First notice that if we are given a Whitney stratification of the sphere Sn−1 ⊂ Rn, it defines a Whitney

stratification on Rn, the conical stratification attached to the one on Sn−1 : the strata are the open cones
on the strata of Sn−1, plus the origin.

An important result is then the following local structure theorem :

Theorem 1.8.2. Let Y be a n-dimensional manifold with a Whitney stratification (Sα). Let x be a point
of a k-dimensional stratum Sα. Then there exists a Whitney stratification of the sphere Sn−k−1 and a
homeomorphism, taking strata to strata, of a neighbourhood Nx of x :

Nx
φ
' Rk × Rn−k .

Here Rn−k is given the conical stratification and Rk has only one stratum.

The stratification of the sphere Sn−k−1 at x is called the link stratification at x.

This enable us to formalize our definition of stratified space :

Definition 1.8.3 (Stratified spaces). A 0-dimensional stratified space is a countable set of points with
the discrete topology.
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For n > 0 an n-dimensional stratified space is a paracompact Hausdorff space X with a filtration

X = Xn ⊇ Xn−1 ⊇ · · ·X1 ⊇ X0

of X by closed subsets Xi such that :

(a) X \Xn−1 is dense in X.
(b) any x ∈ Xi \Xi−1 admits a neighbourhood Nx in X of the form

Nx
φ
' Ri × C(L)

where
L = Ln−i−1 ⊇ · · · ⊇ L1 ⊇ L0

is an (n− i− 1)-stratified space and C(L) denotes the cone L× [0, 1)/L× {0}.
One requires that φ preserves the stratification :

Nx ∩Xi+j+1
φ
' Ri × C(Lj) ,

for n− i− 1 ≥ j ≥ 0.

Remarks 1.8.4. One easily checks the following facts :

- up to homeomorphism the space L, called the link at x, only depends on the stratification at the
point x.

- necessarily Xi := Xi \Xi−1, if non-empty, is a topological manifold of dimension i. The strata
of X are the connected components of these manifolds Xi and we recover our previous picture.
In particular X0 is the union of the open strata, called the regular strata.

Definition 1.8.5. Let X be an n-dimensional stratified space. We denote by Σ the set of singular strata,
i.e. all the strata except the regular ones.

1.8.1. Complex quasi-projective varieties are stratified spaces.

Theorem 1.8.6 (Whitney). Any complex quasi-projective variety of pure dimension admits a (complex)
Whitney stratification, hence is a stratified space.

Example 1.8.7. Let X be a quasi-projective variety of pure dimension n. Let S(X) be the singular locus
of X. Define a filtration of X by

Xn−1 = S(X), Xn−k = S(Xn−k+1) .

In general this does not define a Whitney stratification but some refinement will (cf. [20]).

1.9. (Simplicial) Intersection homology. Let X be an n-dimensional stratified space. Intersection
homology will associate to the data (X,L, p) (where L is a local system on X0 and p : Σ −→ Z a function
called perversity) a graded Z-module IpH•(X,L).

1.9.1. PL stratified spaces. We will give the definition of intersection homology in the simplicial context.
We thus need a notion of triangulation for stratified spaces.

Definition 1.9.1. A PL stratified space is a stratified space admitting a triangulation T : |N | −→ X
satisfying :

- each Xi is a union of simplices.
- at each point x ∈ X the link L is a PL stratified space and the homeomorphism

Nx
φ
' Ri × C(L)

is a PL-homeomorphism.

Theorem 1.9.2 (Lojasiewicz, Goresky). Let

X = Xn ⊇ Xn−1 ⊇ · · ·X1 ⊇ X0

be a Whitney filtration of a complex quasi-projective variety X of pure dimension n. Then the stratified
space X is PL.
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1.9.2. Intersection homology : the constant coefficients case. To give the intuition without technical
details we start with the constant coefficients case. Let X be a PL stratified space and let T : |N | −→ X
be a compatible triangulation.

Definition 1.9.3. Let ξ =
∑
σ∈N (i) ξσσ ∈ CTi (X) be a simplicial i-chain. Its support is

|ξ| = ∪ξσ 6=0T (σ) .

There are two ideas in the definition of intersection homology.
First one considers only chains ξ ∈ CTi (X) such that every simplex σ in ξ satisfies : the interior of σ

is contained in X0. Because of this condition it will make sense to consider such chains with coefficients
in a local system L over X0. We denote by CTi (X0) the Z-module of such chains. Notice that this does
not form a subcomplex of CT• (X) as ∂ does not naturally map CTi (X0) to CTi−1(X0). We modify ∂ by
neglecting all simplices of the boundary which do not satisfy our condition, thus obtaining a complex
CT• (X0).

Second, we will consider only chains ”sufficiently dimensionally transverse” to the strata Sα ∈ Σ. If ξ
is dimensionally transverse to Sα then

dim(|ξ| ∩ Sα) ≤ i− codimSα .

We will allow “less transverse” chains. This default of transversality will be encoded in a function called
perversity.

Definition 1.9.4 (perversity). A perversity is a function p : Σ −→ Z.

Definition 1.9.5. A i-chain ξ =
∑
σ∈N (i) ξσσ ∈ CTi (X0) is said p-allowable if for all each simplex

σ ∈ N (i) with ξσ 6= 0 and each Sα ∈ Σ

dim(|ξ| ∩ Sα) ≤ i− codimSα + p(Sα) .

We define
IpCTi (X) := {ξ ∈ CTi (X0) / ξ is p-allowable and ∂ξ is p-allowable .}

Similarly one defines IpCc,Ti (X) ⊂ Cc,Ti (X).

Remarks 1.9.6. (i) In this definition saying that a set has negative dimension should be taken as
saying that the set is empty.

(ii) Notice that if ξ is an i-chain then it is not every i − 1-face of every i-simplex of ξ that must be
checked for its allowability but only those that survive in ∂ξ. Boundary pieces that cancel out do
not need to be checked for allowability.

If T ′ is a refinement of T the induced map

CTi (X0) −→ CT
′

i (X0)

preserves the support thus restricts to maps

IpCTi (X) −→ CT
′

i (X) .

Similarly for IpCc,Ti (X).

Definition 1.9.7 (perverse chains). IpCi(X) := colimT I
pCTi (X) where the colimit is taken over all

triangulations compatible with the given stratification.
Define similarly IpCci (X).

Notice that the differential ∂ : Ci(X
0) −→ Ci−1(X0) induces differentials ∂ : IpCi(X) −→ IpCi−1(X)

and ∂ : IpCci (X) −→ IpCci−1(X)

Definition 1.9.8. The i-th intersection homology group of X with perversity p is defined as

IpHi(X) :=
ker ∂ : IpCi(X) −→ IpCi−1(X)

Im ∂ : IpCi+1(X) −→ IpCi(X)
.

On defines similarly IpHc
•(X).
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1.9.3. Local coefficients. Let L be a local system on X0. For simplicity we assume that X0 is connected
(i.e. contains only one strata).

The embedding X0 ↪→ X gives a natural group morphism π1(X0) −→ π1(X). In general this morphism
is neither injective nor surjective. In particular L does not necessarily extends to a local system on X.

Definition 1.9.9. The complex of allowable p-chains with coefficients in L is

IpCTi (X,L) := IpC T̃• (X̃)⊗Z[π1(X0)] L

with the differential ∂ induced from the differential on IpCT• (X̃). Here the natural Z[π1(X)]-module

IpC T̃• (X̃) is seen as a Z[π1(X0)]-module through the natural map π1(X0) −→ π1(X).

Similarly one defines IpCT,ci (X,L).

Taking colimits over admissible triangulation one defines similarly to the constant coefficients case the
intersection homology groups IpH•(X,L) and IpHc

•(X,L).

1.9.4. Intersection cohomology. In a dual way one defines intersection cohomology groups IpHi(X,L)
and intersection cohomology groups with compact support IpHi

c(X,L).

2. Properties of intersection homology

In this section we enumerate and try to motivate several properties of intersection homology. Most
of them were proved in [9] using topological methods. We will prove some of them later in the sheaf
theoretic context.

2.1. Restricting perversities. In [18, p.30-31] Macpherson claims that the computation of the groups
IpH•(X,L) can always be (non-trivially, by changing spaces !) reduced to the case where the perversity
p satisfies p(Sα) ≥ 0 and p(Sα) ≤ codimSα− 2. Thus usually we will restrict ourselves to such perversity
functions.

2.2. PL-pseudomanifolds. Consider now the case where codimSα = 1. Then any value of p(Sα) is
either < 0 or > codimSα − 2 = −1. By the previous remark the intersection homology group brings
nothing new to a codimension one stratum of X. For this reason one sometimes assume that X has no
codimension one stratum.

Definition 2.2.1 (PL-pseudomanifold). A PL-stratified space is a PL- pseudomanifold if it admits an
admissible triangulation with no codimension one stratum.

Notice that any quasi-projective variety with a (complex) Whitney stratification is a PL-pseudomanifold.

2.3. Finite generation. If X is a compact stratified space then IpH•(X) is a finitely generated Z-
module.

2.4. Considering all compatible triangulations is not necessary. Theorem 1.4.8 does not hold for
intersection homology : it is not true that IpH•(X) and IpHT

• (X) (with the obvious definition) cöıncide
for any compatible triangulation T . However Goresky and MacPherson proved this is true if T is flaglike,
meaning that for each i the intersection of any simplex σ with Xi is a single face of σ, cf. [11].

Notice that given any compatible triangulation its second barycentric subdivision is flaglike.

2.5. Comparing perversities. The zero perversity 0 is the function 0(Sα) = 0 for all Sα ∈ Σ, the top
perversity t is t(Sα) = codimSα − 2 for all Sα ∈ Σ.

If p and q are two perversities we write p ≤ q if p(Sα) ≤ q(Sα) for all α ∈ Σ.
If p ≤ q we have an inclusion

IpC•(X) ↪→ IqC•(X)

which induces a canonical morphism

IpH•(X) −→ IqH•(X) .
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2.6. Failure of universal coefficients. If R ⊂ R′ is a morphism of Abelian groups one has a natural
inclusion

IpC•(X,R)⊗R R′ ⊂ IpC•(X,R′)
which is not surjective in general because of the allowability condition on ∂ξ. Thus there is no universal
coefficients theorem in general.

2.7. Normalization and top perversity. An PL-stratified space X is said to be normal if any point
x ∈ X has a fundamental system of neighbourhoods U such that U \Xn−2 is connected. Equivalently X
is normal if the link at any point is connected.

Notice that if X is a normal complex analytic space then X with an adequate filtration is a normal
pseudomanifold.

For any stratified space X there is a normal stratified space X̂ and a projection π : X̂ −→ X uniquely
characterized by the property that the point of π−1(x) are in bijection with the connected components

of U \Xn−2. The stratified space X̂ (with X̂n−k = π−1(Xn−k)) is called the normalization of X. It is
easily defined as follows :

X̂ := (∪x∈XN̂x)/R ,

where if x ∈ X has a neighbourhood Nx ' Rj×C(L) and the link L has connected components L0, · · · , Ln
one puts

N̂x := ∪iRj × C(Lj)

and the equivalence relation R identifies two points in N̂x and N̂y with the same image in X \Xn−2.

Theorem 2.7.1. [9, theor.4.3] If X is a normal pseudomanifold and L is the restriction to X0 of a local
system LX on X then the map ItH•(X,L) −→ H•(X,LX) for the maximal perversity is an isomorphism.
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2.8. Cap product with the fundamental class. Let X be an Z-oriented n-dimensional PL stratified
space : there exists a cycle [X] with support X and associating to each oriented n-simplex ±1.

Let T be a compatible triangulation of X. Let T ′ be the first barycentric subdivision of T .

Definition 2.8.1. For a n − k-simplex σ of T let D′(σ) be the union of those simplices of T ′ whose
vertices are the barycenters of the simplices τ of T containing σ. The k-simplex D′(σ) is called the dual
block of σ.

Remark 2.8.2. Let L′(σ) be the union of those simplices of T ′ whose vertices are the barycenters of the
simplices τ of T containing σ and different from σ. Then D′(σ) is the cone over L′(σ).

Definition 2.8.3. The Poincaré duality map is the chain map

Cn−•T (X)
∩[X]−→ CT• (X)

which maps the cochain associating{
1 to the oriented (n− k)− simplex σ

0 to the others

to the k-chain of CT
′

k (X) with support D′(σ) and multiplicity 1 for a suitable orientation.

This map induces homomorphisms

Hn−k(X)
∩[X]−→ Hk(X)

and

Hn−k
c (X)

∩[X]−→ Hc
k(X) .

If X is an n-manifolds then these maps are the Poincaré isomorphisms. The point in this case is that
the dual block D′(σ) of σ is a cell so the chain complex based on dual blocks computes the homology of
X. For stratified spaces on the other hand, the dual blocks D′(σ) = C(L′(σ)) are cones on spaces that
may not be spheres, thus are not cells in general.

Proposition 2.8.4. Let X be a Z-oriented n-dimensional PL stratified space . Then the cap product
with the fundamental class

Hn−k(X)
∩[X]−→ Hk(X)

factors canonically for any perversity 0 ≤ p ≤ t through

Hn−k(X) −→ I0Hk(X) −→ IpHk(X) −→ ItHk(X) −→ Hk(X) .

Proof. First notice that for the complex CT• (X0) is a subcomplex of CT• (X) thus the map ItHk(X) −→
Hk(X) is well-defined.

Let T be an admissible triangulation on X, T ′ its first barycentric subdivision. Let σ be an n − k-
simplex in T .

There exist a unique open stratum of Xs containing the interior of σ, s ≥ n − k. We have D′(σ) ⊂
X \Xs−1 and if n− l ≥ s then

D′(σ) ∩ T ′|Xn−l = D′Xn−l(σ) .

Let Sα be any stratum of Xn−l. If n− l ≥ s then

dim(|D′(σ)| ∩ Sα) = dim |D′Sα(σ)| = (n− l)− (n− k) = k − l ,
and if n− l < s then

D′(σ) ∩ Sα ⊂ (X \Xs−1) ∩Xn−l = ∅ .
Arguing similarly for ∂D′(σ) one obtains that D′(σ) is 0-allowable and the result. �

Theorem 2.8.5. [9, theor.4.3] If X is a normal Z-oriented n-dimensional PL-pseudomanifold then

Hn−k(X) −→ I0Hk(X)

is an isomorphism.
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2.9. Intersection pairing and Poincaré duality.

Definition 2.9.1. Two perversities p and q are dual if p + q = t (i.e. for each Sα ∈ Σ we have
p(Sα) + q(Sα) = codimSα − 2).

Definition 2.9.2. Two (finite dimensional) Q-local systems L and L′ on X0 are said to be dual if there
exist a perfect pairing

L ⊗Z L′ −→ OrX0 ,

where OrX0 is the orientation local system on X0 (thus we have a class [X0] ∈ Hn(X0,O) which for any
x ∈ X0 restricts to a generator of Hn(X0, X0 − {x},Q) ' Q).

Theorem 2.9.3. [9, theor.1] Let X be an n-dimensional stratified space. Let p, q, r be perversities such
that p+ q ≤ r. Let L and L′ be two dual Q-local systems on X0.

Then there is a canonical intersection pairing

IpHi(X,L)× IqHj(X,L′)
∩−→ IrHi+j−n(X,Q) .

Similarly with compact support and also

IpHc
i (X,L)× IqHj(X,L′)

∩−→ IrHc
i+j−n(X,Q) .

Theorem 2.9.4. [9, theor.3.3] If p+ q = t then the intersection pairing

IpHi(X,L)× IqHc
n−i(X,L′)

∩−→ ItHc
0(X,Q)

ε−→ Q
is non-degenerate.

2.10. Topological invariance. From now on we assume X is an n-dimensional pseudomanifold.

The groups IpH•(X,L) are defined using a lot of non-topological baggage : first triangulation, second
and more importantly stratification.

We will see an example (cf. example ??) where intersection homology depends on the choice of the
stratification. On the other hand we already stated that for the zero and the top perversity (and trivial
local system) intersection homology is just ordinary cohomology or homology, thus topological invariant..
In general some restrictions on the perversity will be needed to obtain topological invariance.

First we make some remarks. In [9] Goresky and MacPherson consider another complex IpCGM• (X)
(which we call the GM complex) defined as a subcomplex of C•(X) :

IpCT,GMi := {ξ ∈ CTi (X) / ξ is p-allowable and ∂ξ is p-allowable .}
In general this GM-complex IpCGM• (X) does not cöıncide with IpC•(X) for two reasons :

(1) a simplex of a GM-chain does not necessarily have its interior contained in X0, thus there is no

natural inclusion from IpCT,GMi (X) to IpCTi (X).
(2) conversely, even if IpCTi (X) ⊂ CTi (X), IpC•(X) is not a subcomplex of CT• (X) as the differential

is modified.

The first problem can be solved by imposing the condition p(Sα) ≤ 1 for any codimension 2 stratum
Sα. In this case any simplex of a GM-chain has its interior contained in X0 and

IpCGMi (X) ⊂ IpCi(X) .

To fix the second problem one has to ensure that given a chain ξ ∈ IpCi(X) ⊂ Ci(X), any face of any
simplex in its support is not entirely contained in the singular strata : in this case the usual boundary of
ξ will have no simplex entirely contained in the singular strata, the two boundary operators will cöıncide
on ξ and the two complexes IpC•(X) and IpCGM• (X) will cöıncide.

Thus let ξ =
∑
i∈N(i) ξσσ ∈ IpCTi (X) and Sα be any codimension 2 stratum. The condition

dim(|σ| ∩ Sα) < i− 1

will force any codimension 1 face of a simplex σ with ξσ 6= 0 to have its interior in X0. As the p-allowability
condition forces

dim(|σ| ∩ Sα) ≤ i− 2 + p(Sα) ,

it is enough to require p(Sα) ≤ 0.
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Goreski and MacPherson consider in [9] even more restricted perversity functions, depending only on
the codimensions of the strata :

Definition 2.10.1. A GM-perversity (for Goresky-MacPherson) is a function p : N≥2 −→ N with the
properties that p(2) = 0 and p(i + 1) = p(i) or p(i) + 1 for i > 2. Given a classical perversity p the
associated perversity is defined by

∀Sα ∈ Σ, p(Sα) = p(codimSα) .

Theorem 2.10.2. [9] Let X be an n-dimensional PL pseudomanifold and p a GM-perversity. Then
IpH•(X) is a topological invariant (in particular independant of the stratification).

2.11. Singular intersection homology. The independance from the stratification has also proven by
King [16] without sheaf theory. He developed a version of singular intersection homology and proved an
analog of theorem 1.4.8.

2.12. Intersection homology is not functorial under continuous maps. Let f : X −→ Y be a
continuous map of pseudomanifolds. Composition with f does not in general map perverse simplices to
perverse simplices. Thus in contrast to ordinary homology f does not induce any map f∗ : IpH•(X) −→
IpH•(Y ).

A continuous map f : X −→ Y which is stratum preserving (i.e. the image of each stratum of X is
contained in a single stratum of Y ) and placid (i.e. for each stratum T of Y one has codim f−1(T ) ≥
codimT ) induces a linear map f∗ : IpH•(X) −→ IpH•(Y ).

2.13. Intersection homology is not an homotopy invariant. We will show in the next section that
the intersection homology of a cone (thus a contractible space) is in general non-trivial (for a non-trivial
perversity). Hence intersection homology is not a homotopy invariant.

However G. Friedman [4] showed that composition with stratum preserving, codimension preserving,
homotopy equivalence induces isomorphism in intersection homology.

Gajer [6] defined a version of intersection homotopy and proved an intersection version of the classical
Dold-Thom theorem :

IpH•(X,Z) ' Ipπ•(AG(X)) ,

where AG(X) denotes the free abelian topological group generated by X.

3. Examples

We just copy the examples given by MacPherson [18].
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3.1. Example 6 : intersection cohomology of pseudomanifolds with isolated singularities. Let
X be an n-pseudomanifold with singular set X0 of dimension 0. Given a perversity p the only relevant
information is the number p(n), which satisfies 0 ≤ p(n) ≤ n−2. We fix once for all a ring R of coefficients
that we won’t mention.

A chain ξ of dimension i is p-allowable if and only if{
dim |ξ| ∩X − 0 ≤ i− n+ p(n) ,
dim |∂ξ| ∩X0 ≤ i− 1− n+ p(n) .

Thus, if we denote by φ the set of closed sets in X contained in X \X0, one has :

IpCi(X) =


Cφi (X \X0) if i < n− p(n)

Ci(X) ∩ ∂−1(Cφi−1(X \X0)) if i = n− p(n)

Ci(X) if i > n− p(n) .

Hence

IpHi(X) =


Hφ
i (X \X0) if i < n− p(n)− 1

Im : Hφ
i (X \X0) −→ Hi(X) if i = n− p(n)− 1

Hi(X) if i > n− p(n)− 1 .

Similarly

IqHc
i (X) =


Hc
i (X \X0) if i < n− q(n)− 1

Im : Hc
i (X \X0) −→ Hc

i (X) if i = n− q(n)− 1

Hc
i (X) if i > n− q(n)− 1 .

3.2. Example 7 : cone over a manifold. Let L be a compact manifold and X = c0L the open cone
L× [0, 1[/L× {0}. By the previous computation one obtains :

IpHi(X) =

{
0 if i ≤ n− p(n)− 1

Hi−1(L) if i > n− p(n)− 1 .

Similarly

IpHc
i (X) =

{
Hi(L) if i ≤ n− p(n)− 1

0 if i > n− p(n)− 1 .
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4. Sheaves on locally compact spaces

4.1. Presheaves.

Definition 4.1.1. Let S and C be two categories.
A C-valued presheaf on S is a functor

F : Sop −→ C .

A morphism of presheaves is a morphism of such functors.

We will denote by PSh(S, C) the category of C-valued presheaves on S.

Definition 4.1.2. Let X ∈ Top and C a category.
A C-valued presheaf on X is a C-valued presheaf on OpX , where OpX denotes the category of open

subsets of X (morphisms being inclusions of open subsets).
We denote by PSh(X, C) the category of C-valued presheaves on X.

Thus F ∈ PSh(X, C) associates to each open set U ⊂ X an object F(U) ∈ C and to each inclusion
V ⊂ U of open subsets a restriction morphism ρV,U : F(U) −→ F(V ) in C with the conditions :{

ρU,U = idF(U) .
ρW,U = ρW,V ◦ ρV,U for W ⊂ V ⊂ U ∈ OpX .

Definition 4.1.3 (localization). Let F ∈ PSh(X, C). Assume C has colimits.
For x ∈ X we define Fx = colimx∈UF(U), where U runs through the family of open neighbourhoods of

x and the transition maps are the ρV,U .
The object Fx ∈ C is called the stalk of F at x and the image sx ∈ Fx of any s ∈ F (U) (for x ∈ U) is

called the germ of s at x.

4.2. Sheaves. A C-valued sheaf on X can be thought (at least) in two different equivalent ways :

• either as a C-valued presheaf with good glueing properties.
• or as a space with horizontal topological structure and vertical C-structure.

We start with the first viewpoint and will come back to the second viewpoint in section 4.5.

Definition 4.2.1. A presheaf F ∈ PSh(X, C) is a sheaf if for any family (Ui)i∈I ∈ OpX and denoting
by U the union ∪i∈IUi ∈ OpX the following two conditions hold :

(a) Given two sections s′, s′′ ∈ F(U) whose restrictions s′|Ui(:= ρUi,U (s)) and s′′|Ui cöıncide for every

i ∈ I, then s′ = s′′.
(b) Given si ∈ F(Ui), i ∈ I, such that si|Ui∩Uj = si|Ui∩Uj for any i, j ∈ I then there exists s ∈ F(U)

such that s|Ui = si.

A morphism of C-valued sheaves F −→ G is a morphism of presheaves.
We denote by Sh(X, C) ⊂ PSh(X, C) the full subcategory of C-valued sheaves on X.

Examples 4.2.2. (1) Let Ci(U) denote the C-vector space of C-valued i-th differentiable functions
on U . Then the presheaf U 7→ Ci(U) (with the usual restrictions morphisms) is a sheaf CiX ∈
Sh(X,C − Vect). Similarly one defines the sheaf OX of holomorphic functions on an analytic
variety X.

(ii) Let A be an Abelian group and X a topological space. If X contains two disjoint open sets the
constant presheaf U 7→ A is not a sheaf (the glueing property of sheaves would imply that its
value on the union of two disjoints open sets is A⊕A, not A).

(iii) Let X = R. The presheaf F defined by

F(U) := {bounded continuous functions onU}

is not a sheaf : the constant function x defines a section of F on each interval ]− i, i[ but these
sections can’t be glue together into a global section of F on R.



INTERSECTION HOMOLOGY AND PERVERSE SHEAVES 19

4.3. Abelian sheaves. From now on we will work with presheaves of Abelian groups (one could work
with PSh(X,A) where A is any Abelian category).

Lemma 4.3.1. The category PSh(X) := PSh(X,Ab) is Abelian.

Proof. As everything in PSh(X) is defined objectwise this follows immediately from the fact that Ab is
Abelian. �

Lemma 4.3.2. Let f : F −→ G ∈ Sh(X). Then the presheaf ker f defined by

(ker f)(U) = ker(F(U)
fU−→ G(U))

is a sheaf.

Proof. Let U = ∪i∈IUi. Let si ∈ (ker f)(Ui) := ker(F(Ui)
f−→ G(Ui)) such that

si|Ui∩Uj = sj |Ui∩Uj .

As F is a sheaf there exists a unique s ∈ F(U) such that s|Ui = si. The section f(s) ∈ G(U) vanishes on
the Ui’s. As G is a sheaf f(s) = 0. Thus s ∈ ker f and ker f is a sheaf. �

Proposition 4.3.3. Let f : F −→ G ∈ Sh(X). Then :

(i) f is a monomorphism in Sh(X) if and only if f is a monomorphism in PSh(X) if and only if
for all x ∈ X the morphism fx : Fx −→ Gx ∈ Ab is injective.

(b) f is an isomorphism in Sh(X) if and only if f is an isomorphism in PSh(X) if and only if for
all x ∈ X the morphism fx : Fx −→ Gx ∈ Ab is an isomorphism.

Proof. For (i) : that f is a monomorphism in Sh(X) if and only if f is a monomorphism in PSh(X)
follows from lemma 4.3.2. In particular the condition that fx : Fx −→ Gx ∈ Ab is injective is clearly
necessary. Assume conversely that fx is injective for all x ∈ X and let us prove that f : F(U) −→ G(U)
is injective. Let s ∈ F(U) with f(s) = 0. Then (f(s))x = 0 = fx(sx). As fx is injective sx = 0 for all
x ∈ U . Thus there exists an open covering U = ∪i∈IUi with s|Ui = 0. As F is a sheaf s = 0.

For (ii) : the fact that f is an isomorphism in Sh(X) if and only if f is an isomorphism in PSh(X)
follows from the fact that Sh(X) is a full subcategory of PSh(X). The condition that fx : Fx −→ Gx ∈
Ab is an isomorphism is clearly necessary. Assume conversely that fx is an isomorphism for all x ∈ X
and let us prove that f : F(U) −→ G(U) is surjective. Let t ∈ G(U). Thus there exists an open covering
U = ∪i∈IUi and si ∈ F(Ui) such that t|Ui = f(si). In particular f(si)|Ui∩Uj = f(sj)|Ui∩Uj . Hence by
part (i) of the lemma, si|Ui∩Uj = sj |Ui∩Uj . As F is a sheaf there exists s ∈ F(U) with s|Ui = si. Since

f(s)|Ui = t|Ui we have f(s) = t as G is a sheaf. �

While kernels cöıncide in PSh(X) and Sh(X) this is no more true for images and cokernels : if
f : F −→ G ∈ Sh(X) in general the presheaves

U 7→ coker(F(U) −→ G(U))

and
U 7→ Im (F(U) −→ G(U))

are not sheaves.

Examples 4.3.4. Let us give two similar examples.

(a) Let X = C, F = G = OX the sheaf of holomorphic functions on C and consider the sheaf
morphism f = ∂/∂z : OX −→ OX . Then on any open disk U of C one has coker(f(U)) = 0 has
the equation ∂f/∂z = g always admits a solution on such a disk. On the other hand the cokernel
presheaf is non-trivial as coker(f(C∗)) 6= 0 : indeed the equation ∂f/∂z = 1/z does not have any
solution on C∗. Hence U 7→ coker(F(U) −→ G(U)) is not a sheaf.

(b) Let X = C∗, F = C0
X , G = F∗ the sheaf of complex invertible continuous functions on C∗, and

f = exp : F −→ G. Then f is locally surjective but the invertible continuous function z on C∗ is
not the exponential of a continuous function defined on C∗. Thus U 7→ Im (F(U) −→ G(U)) is
not a sheaf.
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4.4. Sheafification; cokernel; image.

Proposition 4.4.1. The inclusion PSh(X) ⊃ Sh(X) admits a left-adjoint functor

+ : PSh(X)
−→←↩ Sh(X) : i

called sheafification.
The sheaf F+ is called the sheaf associated to the presheaf F .

Proof. For any U ∈ OpX let F+(U) be the set of functions

s : U −→
∐
x∈U
Fx

such that for any x ∈ U one has s(x) ∈ Fx and there exists an open neighbourhood x ∈ V ⊂ U , t ∈ F(V )
such that s(y) = ty for any y ∈ V . Then F+ is clearly a sheaf, there is a natural morphism F −→ F+

which induces an isomorphism Fx −→ (F+)x for any x ∈ X. In particular if F is a sheaf then the natural
map F −→ F+ is an isomorphism of sheaves by proposition 4.3.3. One easily checks this is the required
adjoint. �

Definition 4.4.2. Let f : F −→ G ∈ Sh(X). We define cokerf as the sheaf associated to the
presheaf U 7→ coker(F(U) −→ G(U)). Similarly one defines Im f = ker(G −→ cokerf) and Coimf =
coker(ker f −→ F).

Notice that for all x ∈ X one has :

(ker f)x = ker fx and (cokerf)x = cokerfx .

It implies immediately the following :

Proposition 4.4.3. The category Sh(X) is Abelian and for any x ∈ X the functor F 7→ Fx from Sh(X)
to Ab is exact.

4.5. Espaces étalés. Let F ∈ PSh(X. We denote by Fet the set
∐
x∈X Fx (here the Fx are seens as

sets and the coproduct is the disjoint union in Set) and define a topology on Fet by deciding that for
U ∈ OpX and s ∈ F(U) the subset

{sx ∈ Fx}

is open in Fet.
Then the map π : Fet −→ X mapping Fx to x is continuous and a local homeomorphism. One easily

checks that the topology on Fet is the coarsest making the sections s ∈ F(U) of π|U continuous.

Remark 4.5.1. Even if X is Hausdorff in general Fet is not. Consider for example the presheaf F(U) = 0
if 0 6∈ U and F(U) = Z/2Z if 0 ∈ U on R. The associated space π : Fet −→ R is a global homeomorphism
on R∗ with fiber Z/2Z over 0.

With these notations F+(U) is nothing else than the set of continous sections of Fet over U . This
provides the alternative definition :

Definition 4.5.2. A sheaf on X is a pair (Fet, π : Fet −→ X) satisfying :

(a) Fet ∈ Top.
(b) π : Fet −→ X is a local homeomorphism (also called : espace étalé).
(c) every Fx := π−1(x) is an Abelian group.
(d) The group theoretic operations are continuous.

This viewpoint naturally generalizes the definition of a locally constant Z-sheaf.
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4.6. Direct and inverse image.

Definition 4.6.1. Let f : Y −→ X ∈ Top. Let G ∈ Sh(Y ). The presheaf

U 7→ G(f−1(U))

on X is a sheaf, denoted f∗G and called the direct image of G.

Examples 4.6.2. (i) Let pX : X −→ ∗ the map to the final object ∗ ∈ Top. Let F ∈ Sh(X). Then
(pX)∗F = Γ(X,F) = F(X).

(ii) Let X = Y = C∗ and f : Y −→ X be the map z 7→ z2. If D is an open disk in X then f−1D is
a disjoint union of two copies of D. Hence the sheaf (f∗AY )|D is isomorphic to A2

D, the constant
sheaf of rank two on D. However Γ(X, f∗AY ) = Γ(Y,AY ) = A thus f∗AY is locally constant but
not constant.

Definition 4.6.3. Let f : Y −→ X ∈ Top. Let F ∈ Sh(X). The inverse image f−1F ∈ Sh(Y ) is the
sheaf on Y associated to the presheaf :

V 7→ colimU⊃f(V )F(U) .

Examples 4.6.4. (i) Let ix = {x} ↪→ X. Then i−1x F ' Fx.
(ii) Let A be an Abelian group, thus A ∈ Ab ' Sh(∗). Then AX = (pX)−1A. In particular if

f : Y −→ X then AY ' f−1AX .

One defines in an obvious way the direct and the inverse image of morphisms. Hence we get two
functors :

f∗ : Sh(Y ) −→ Sh(X) ,

f−1 : Sh(X) −→ Sh(Y ) .

Lemma 4.6.5. (f−1F)y = Ff(y). In particular the functor f−1 : Sh(X) −→ Sh(Y ) is exact.

Proof. Follows immediately from the definitions. �

Proposition 4.6.6. f−1 : Sh(X)
−→←− Sh(Y ) : f∗ is an adjonction i.e. there is a natural isomorphism

HomSh(Y )(f
−1F ,G) ' HomSh(X)(F , f∗G) .

Proof. Let us define morphisms of functors :

(1) f−1 ◦ f∗ −→ id and id −→ f∗ ◦ f−1 .

For the first one : notice that

(f−1 ◦ f∗)(G)(U) = colimV⊃f(U)f∗(G)(V )

= colimV⊃f(U)G(f−1(V )) .

As V ⊃ f(U) one has U ⊂ f−1(V ) and there are natural restriction maps G(f−1(V )) −→ G(U). These
maps are compatible with the colimit. This defines f−1 ◦ f∗ −→ id.

For the second one :

(f∗ ◦ f−1)(F)(U) = (f−1(F))(f−1(U))

= colimV⊃f(f−1(U))F(V ) .

As U ⊃ f(f−1(U) there is a natural map F(U) −→ colimV⊃f(f−1(U))F(V ) which defines id −→ f∗ ◦ f−1.
We thus have homomorphisms :

Hom(F , f∗G)
α−→ Hom(f−1F , f−1 ◦ f∗G)

β−→ Hom(f−1F ,G) ,

Hom(f−1F ,G)
γ−→ Hom(f∗f

−1, f∗G)
δ−→ Hom(F , f∗G) ,

where α and γ are defined in the obvious way and β and δ are deduced from (1).
One checks easily that β ◦ α and δ ◦ γ are inverse one to each other. �

Corollary 4.6.7. The functor f∗ : Sh(Y ) −→ Sh(X) is left-exact and maps injectives to injectives.



22 BRUNO KLINGLER

Proof. The first property follows formally from the fact that f∗ is right adjoint to the right-exact functor
f−1.

The second one follows formally from the fact that f∗ is right adjoint to the left-exact functor f−1.
Indeed let I ∈ Sh(Y ) an injective object. We would like to complete the diagram in Sh(X) :

A
� � //

  BBBBBBBB B

���
�
�

f∗I

.

By the adjunction property and as f−1 is left-exact this is equivalent to the completion of the following
diagram in Sh(Y ), which holds as I in injective :

f−1A
� � //

$$HHHHHHHHHH f−1B

���
�
�

I

.

�

We can say more if we consider i : Z ↪→ X a closed subspace :

Lemma 4.6.8. Let i : Z ↪→ X be a closed subspace. Then i∗ : Sh(Z) −→ Sh(X) is exact.

Proof. By definition for F ∈ Sh(Z) and x ∈ X we have

(i∗F)x = colimU3xF(Z ∩ U) .

Hence

(i∗F)x =

{
Fx if x ∈ Z
0 if x 6∈ Z .

The result follows immediately. �

Corollary 4.6.9. Let i : Z ↪→ X be a closed subspace. Then H•(X, i∗F) = H•(Z,F) for any F ∈ Sh(Z).

Proof. Choose F −→ I• an injective resolution in Sh(Z). Then i∗F −→ i∗I
• is still a resolution as i∗ is

exact, injective as i∗ maps injective to injective. �

Lemma 4.6.10. Direct and inverse images are compatible with composition :

(f ◦ g)∗ = f∗ ◦ g∗ and (f ◦ g)−1 = g−1 ◦ f−1 .

Proof. The first equality follows easily from the definition, the second by adjunction. �

4.7. Restriction of sheaves and direct image. Let j : W −→ X be the inclusion of any subset W of
X with the induced topology. We define

F|W := j−1F and Γ(W,F) := Γ(W,F|W ) .

Notice that these definitions agree with the previous ones if W is open in X.

The morphism F −→ j∗j
−1F defines a morphism pX∗F −→ pW ∗j

−1F i.e. a morphism Γ(X,F) −→
Γ(W,F). Replacing X par U open containing W we get a natural morphism

(2) colimU⊃WΓ(U,F) −→ Γ(W,F) .

Notice that this morphism is always injective : if s ∈ Γ(U,F) is zero in Γ(W,F ) this implies sx = 0
for all x ∈ W , hence s = 0 on a neighbourhood of W . This morphism is not an isomorphism in general
but will be under reasonable assumptions :



INTERSECTION HOMOLOGY AND PERVERSE SHEAVES 23

Definition 4.7.1. Recall that W ⊂ X is relatively Hausdorff if two distinct points in W admit disjoint
neighbourhoods in X. If W = X one says that X is Hausdorff. Recall the convention that a compact set
is Hausdorff.

A paracompact space is a Hausdorff space such that each open covering admits a refinement which
is locally finite. Closed subspaces of paracompact spaces, as well as locally compact spaces countable at
infinity or metrizable spaces are paracompact.

A normal space is a Haudorff space such that for any closed disjoint subsets A and B there exist
disjoint open sets U ⊃ A and V ⊃ B.

Any paracompact space is normal but there exist normal spaces which are not paracompact.

Proposition 4.7.2. Assume one of the following :

(i) W ∈ OpX .
(ii) W is a relatively Hausdorff compact subset of X.
(iii) W is closed and X is paracompact.

Then the natural morphism

colimU⊃WΓ(U,F) −→ Γ(W,F)

is an isomorphism.

Proof. Case (i) is obvious.
For case (ii) : let s ∈ Γ(W,F). As W is compact and by definition of Γ(W,F) there exists a finite

family of open subsets (Ui)1≤i≤n of X covering W and sections si ∈ Γ(Ui,F) such that si|Ui∩W = s|Ui∩W .

Moreover we can find another family of open set (Vi)1≤i≤n covering W such that W ∩ Vi ⊂ Ui. We shall
glue the sections Si on a neighbourhood of W . We argue by induction on the number n of the Ui’s. Thus
let n = 2 and define Wi = W ∩ Vi. Then s1|W1∩W2

= s2|W1∩W2
. Let E be an open subset of X such that

s1|E = s2|E . We may find open subsets Ei ⊂ Ui, i = 1, 2, such that W ⊃ E1 ∪ E ∪ E2 and E1 ∩ E2 = ∅.
Set E′i = Ei ∪ E. Then s1|E′1∩E′2 = s2|E′1∩E′2 . This defines t ∈ Γ(E′1 ∪ E′2,F) with image s in Γ(W,F).

For case (iii) : adapt case (ii), exercice (cf. [15]). �

Let f : Y −→ X a continuous map and G ∈ Sh(Y ). Let x ∈ X. The natural morphism

colimU3xΓ(f−1U,G) −→ Γ(f−1(x),G|f−1(x))

defines a morphism

(3) (f∗G)x −→ Γ(f−1(x),G|f−1(x)) .

This morphism is not an isomorphism in general.

Example 4.7.3. Let f : U ↪→ X be an open inclusion. Choose x ∈ U \ U . Then f−1(x) = ∅ and
Γ(f−1(x),G|f−1(x) = 0 but (f∗G)x = colimV 3xΓ(U ∩ V,G) is non-zero in general.

Definition 4.7.4. A morphism f : Y −→ X is called proper if f is closed (i.e. the image of any closed
subset of Y is closed in X) and its fiber are relatively Hausdorff and compact.

If X and Y are locally compact then f is proper if and only if the preimage of a compact subset of X
is compact in Y . If X = ∗ then f is proper if and only if Y is compact.

Proposition 4.7.5. Assume that f : Y −→ X is proper and let G ∈ Sh(Y ). Then the morphism

(f∗G)x −→ Γ(f−1(x),G|f−1(x))

is an isomorphism.

Proof. When U ranges over the family of open neighbourhoods of x then f−1(U) ranges over a neigh-
bourhood system of f−1(X). Hence

colimU3xΓ(f−1(U),G) ' Γ(f−1(x),G|f−1(x))

by proposition 4.7.2[(ii)]. �

As a corollary one obtains the following generalization of lemma 4.6.8 :
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Corollary 4.7.6. If f is finite (i.e. proper and the preimage of any point is a finite set) then the functor
f∗ is exact.
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4.8. Internal Hom and tensor product. Let F ,F ′,F ′′ ∈ Sh(X).

Lemma 4.8.1. The presheaf Hom(F ,F ′) defined by

Hom(F ,F ′)(U) = HomSh(U)(F|U ,F ′|U )

is a sheaf.

Proof. Easy exercice. �

In general the morphism Hom(F ,F ′)x −→ Hom(Fx,F ′x) is neither injective nor surjective.
By definition one has Γ(Hom(F ,F ′)) = Hom(F ,F ′). As the bifunctor Hom(·, ·) is left-exact, this

implies that the bifonctor

Hom(·, ·) : Sh(X)op × Sh(X) −→ Sh(X)

is left-exact.

Definition 4.8.2. We define F ⊗ F ′ as the sheaf associated to the presheaf

U 7→ F(U)⊗F ′(U) .

Since tensor products commute with colimits we get that

(F ⊗ F ′)x = Fx ⊗F ′x
hence

· ⊗ · : Sh(X)⊗ Sh(X) −→ Sh(X)

is right-exact.
Most classical formulas relating ⊗ and Hom for Z-modules have their counterpart for Sh(X). In

particular one has an adjunction formula :

Hom(F ⊗ F ′,F ′′) ' Hom(F ,Hom(F ′,F ′′))
' Hom(F ′,Hom(F ,F ′′)) .

In particular Hom(F ⊗ F ′,F ′′) ' Hom(F ,Hom(F ′,F ′′)).
The adjunction between direct and inverse images generalizes as

Hom(F , f∗G) ' f∗Hom(f−1F ,G) .

4.9. Direct image with proper support.

Definition 4.9.1. Let F ∈ Sh(X) and U ∈ OpX . The support of a section s ∈ F(U) is the closed set

supp (s) = {x ∈ U / sx 6= 0} .

Definition 4.9.2. Let f : Y −→ X ∈ Top.
We define the sub-presheaf f!G ⊂ f∗G by

f!G(V ) = {s ∈ G(f−1(V )) / f|supp s : supp s −→ V is proper} .

Proposition 4.9.3. f!G is a sheaf.

Proof. It is enough to show that given (Ui)i∈I a family of open subsets of X with union U , and S a closed
subset of f−1(U) such that f : S ∩ f−1(Ui) −→ Ui is proper for all i ∈ I then f : S −→ U is proper. Any
fiber of f : S −→ U is the fiber of some f : S ∩ f−1(Ui) −→ Ui, thus is relatively Hausdorff and compact.
Hence it is enough to check that f : S −→ U is closed. This follows once more from the fact that the
maps f : S ∩ f−1(Ui) −→ Ui, i ∈ I, are closed. �

Remarks 4.9.4. (1) notice that if f is proper (for example if Y and X are compact, or f : Z ↪→ X is
a closed subspace) then f! = f∗.

(2) As f! is a subfunctor of f∗ it is left exact.
(3) One showed that (f ◦ g)∗ = f∗ ◦ g∗. Similarly one can check that (f ◦ g)! = f! ◦ g!.
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Definition 4.9.5. The sections of G with proper support are defined by

Γc(Y,G) := pY !G .

Equivalently : Γc(Y,G) = {s ∈ Γ(Y,G) / supp (s) is compact and relatively Hausdorff} .

Remark 4.9.6. In particular Γc(X, f!G) = Γc(Y,G).

Last time we proved that the natural morphism

(4) (f∗G)x −→ Γ(f−1(x),G|f−1(x))

is an isomorphism if f is proper. Similarly one obtains :

Proposition 4.9.7. Let f : Y −→ X ∈ Top, and G ∈ Sh(Y ). Assume that X and Y are locally compact
spaces (in particular Hausdorff).

Then for any x ∈ X the natural morphism

(f!G)x −→ Γc(f
−1(x),G|f−1(x))

is an isomorphism.

Proof. First notice that the natural morphism

(5) (f!G)x
α−→ Γc(f

−1(x),G|f−1(x))

is nothing else than the restriction of the morphism (4) :

(f!G)x� _

��

//___ Γc(f
−1(x),G|f−1(x))� _

��
(f∗G)x // Γ((f−1(x),G|f−1(x)) .

As we already showed in full generality that the morphism (4) is injective, the morphism (5) too.
Next we show that α is surjective. Let s ∈ Γc(f

−1(x),G|f−1(x)) and put K = supp (s). As K is
compact and Y is Hausdorff, by proposition ??(ii) there exists an open neighbourhood U of K in Y and
a section t ∈ Γ(U,G) such that t|K = s|K . By shrinking U we may assume t|U∩f−1(x) = s|U∩f−1(x). Let V

be a relatively compact open neigbourhood of K with V ⊂ U . Since x 6∈ f(V ∩ supp (t) \ V ) there exists
an open neighbourhood W of x such that f−1(W )∩ V ∩ supp (t) ⊂ V . One defines u ∈ Γ(f−1(W ),G) by{

u|f−1(W )\(supp (t)∩V ) = 0 ,

u|f−1(W )∩V = t|f−1(W )∩V .

Since supp (u) is contained in f−1(W )∩supp (t)∩V the map f is proper on this set. Moreover u|f−1(x) = s.
�

Recall that a subspace of a locally compact space is locally compact for the induced topology if and
only if it is locally closed, where :

Definition 4.9.8. A subspace Z ↪→ X is said locally closed if any point z ∈ Z has a neighbourhood U
in X such that U ∩ Z is closed relative to U .

Equivalently Z = U ∩W with U open in X and W closed in X; or Z is open in its closure Z.

Proposition 4.9.7 has the following consequence :

Corollary 4.9.9. If X is locally compact and j : Y ↪→ X is a locally closed subspace then j! is exact.

Proof. Proposition 4.9.7 implies in this case that

(j!G)x =

{
Gx ifx ∈ Y ,

0 otherwise

and the result. �
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Notice that proposition 4 can be read as i−1x f!G = f|f−1(x)!
i−1f−1(x)G for the diagram

f−1(x)
f|f−1(x) //

� _

if−1(x)

��

{x}� _
ix

��
Y

f
// X

We generalize it to the following :

Proposition 4.9.10 (proper base change). Let

Y ′
f ′ //

g′

��

X ′

g

��
Y

f
// X

be a Cartesian square of locally compact spaces. Then

g−1 ◦ f! = f ′! ◦ g′
−1

.

Proof. We first construct a canonical morphism

f! ◦ g′∗ −→ g∗ ◦ f ′! .

Let G′ ∈ Sh(Y ′). Let V ∈ OpX . A section t ∈ Γ(V, f!◦g′∗(G′)) is a section t ∈ Γ(f−1(V ), g′∗G′) such that

f : supp (t) −→ V is proper. Equivalently this is a section s ∈ Γ((f ◦g′)−1(V ),G) with supp (s) ⊂ g′−1(Z)

for f−1(V ) ⊃ Z f proper−→ V . But then g′
−1

(Z) −→ g−1(V ) is proper thus s defines a section of g∗f
′
!G′.

By adjunction :

Hom(g−1f!G, f ′!g′
−1G) = Hom(f!G, g∗f ′!g′

−1G) .

The morphism

f! −→ f!g
′
∗g
′−1 −→ g∗f

′
!g
′−1 ,

where the first map comes from the adjunction 1 −→ g′∗g
′−1, gives the required canonical morphism

g−1 ◦ f! = f ′! ◦ g′
−1

.

To show this is an isomorphism we compute the stalks at a point x′ ∈ X ′: Then

(g−1f!G)x′ = (f!G)g(x′)

= Γc(f
−1(g(x′)),G)

by proposition 4.9.7.
The map g′ induces a homeomorphism f ′

−1
(x′) ' f−1(g(x′)) and an isomorphism

Γc(f
−1(g(x′)),G) ' Γc(f

′−1(x′), g′
−1G) ' (f ′!g

′−1G)x′ .

�

4.10. Locally closed subspaces : the functors (·)Z , ΓZ , and j!. Let j : Z ↪→ X a locally closed
subspace of a locally compact space X. We already noticed that j! is exact in this case. Moreover the
definition of j! is equivalent to :

Γ(U, j!G) = {s ∈ Γ(Z ∩ U,G) / supp (s) is closed relative to U} .

Definition 4.10.1. Let F ∈ Sh(X). The support of F is

suppF = {x ∈ X / Fx 6= 0} .
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Proposition 4.10.2. The functor j! : Sh(Z) −→ Sh(X) defines an equivalence of categories

j! : Sh(Z)
←−−→ ShZ(X) : j−1 ,

where ShZ(X) denotes the full subcategory of Sh(X) of sheaves with support in Z.

Proof. First notice that for any sheaf G ∈ Sh(Z) then j−1j!G = G.
Next, let F ∈ ShZ(X). One easily checks that the adjunction morphism F −→ j∗j

−1F factorizes
through j!j

−1F , yielding an isomorphism F ' j!j−1F . �

4.10.1. Restriction functor (·)Z .

Definition 4.10.3. We define the functor (·)Z : Sh(X) −→ Sh(X) by

∀F ∈ Sh(X), FZ := j!j
−1F .

As both functors j! and j−1 are exact, the functor (·)Z is exact too. If Z is closed in X then FZ = j∗j
−1

thus one has a morphism F −→ FZ . If Z is open one easily checks that FZ = ker(F −→ FX\Z) thus one
has a morphism FZ −→ F .

Proposition 4.10.4. (i) The sheaf FZ is uniquely characterized by the properties :

(6) (FZ)|Z = F|Z and (FZ)|X\Z = 0 .

(ii) For any other locally closed subspace Z ′ ↪→ X one has :

(FZ)Z′ ' FZ∩Z′ .

(iii) If Z ′ ⊂ Z is closed one has an exact sequence :

0 −→ FZ\Z′ −→ FZ −→ FZ′ −→ 0 .

(iv) If Z1, Z2 are two closed subsets of X the following sequence is exact :

0 −→ FZ1∪Z2

(α1,α2)−→ FZ1
⊕FZ2

(β1,−β2)−→ FZ1∩Z2
−→ 0 .

(v) If U1, U2 are two open subsets of X the following sequence is exact :

0 −→ FU1∩U2
−→ FU1

⊕FU2
−→ FU1∪U2

−→ 0 .

4.10.2. The functor ΓZ . Let U ⊂ X be open and Z ⊂ U be closed. One defines :

ΓZ(U,F) := {s ∈ F(U) / supp (s) ⊂ Z}(= ker(F(U) −→ F(U \ Z))) .

If Z ⊂ V ⊂ U then the canonical morphism ΓZ(U,F) −→ ΓZ(V, F ) is an isomorphism. Thus for Z
locally closed we may define ΓZ(X,F) as ΓZ(U,F) where U is any open subset of X containing Z as a
closed subset.

Definition 4.10.5. One denotes by ΓZ(F) the sheaf U 7→ ΓZ∩U (U,F) and calls it the sheaf of sections
of F supported by Z.

Proposition 4.10.6. Let j : Z ↪→ X be a locally closed subset of X and F ∈ Sh(X). Then :

(1) The functors ΓZ(X, ·) : Sh(X) −→ Ab and ΓZ : Sh(X) −→ Sh(X) are left exact. Moreover

ΓZ(X, ·) = Γ(X, ·) ◦ ΓZ(·) .

(ii) Let Z ′ be another locally closed subset of X. Then :

ΓZ′(·) ◦ ΓZ(·) = ΓZ∩Z′(·) .

(iii) Assume that Z is open in X. Then

ΓZ = j∗ ◦ j−1 .

(iv) Let Z ′ ⊂ Z be closed. Then the following sequence is exact :

0 −→ ΓZ′(F) −→ ΓZ(F) −→ ΓZ\Z′(F) .
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(v) Let U1, U2 be two open subsets of X. Then the sequence

0 −→ ΓU1∪U2(F)
(α1,α2)−→ ΓU1(F)⊕ ΓU2(F)

(β1,−β2)−→ ΓU1∩U2(F)

is exact.
(vi) Let Z1, Z2 be two closed subsets of X. Then the sequence

0 −→ ΓZ1∩Z2(F)
(α1,α2)−→ ΓZ1(F)⊕ ΓZ2(F)

(β1,−β2)−→ ΓZ1∩Z2(F)

is exact.

Proof. Easy exercice. �

4.10.3. Link with Hom and ⊗. The functors (·)Z and ΓZ can be obtained using ZZ := (ZX)Z :

FZ ' ZZ ⊗F(7)

ΓZ(F) ' Hom(ZZ ,F)(8)

(F ⊗ F ′)Z ' FZ ⊗F ′ ' F ⊗ F ′Z(9)

ΓZ(Hom(F ,F ′)) ' Hom(F ,ΓZ(F ′)) ' Hom(FZ ,F ′)(10)

4.10.4. The functor j!.

Proposition 4.10.7. Let j!F := j−1ΓZF . Then the pair (j!, j
!) defines an adjunction :

j! : Sh(Z)
←−−→ Sh(X) : j! .

Proof. Let U ∈ OpX . Then

Γ(U, j!j
!F) = Γ(U, (j!j

−1)ΓZF)

= Γ(U,ΓZF)

= {s ∈ Γ(U,F), / supp (s) ⊂ Z} .

This formula defines a monomorphism j!j
! −→ 1. Moreover it implies that any morphism G −→ F where

G ∈ ShZ(X) factorizes through j!j
!F −→ F . For a sheaf G ∈ Sh(Z) we get accordingly

Hom(j!G,F) ' Hom(j!G, j!j!F) .

From proposition 4.10.2 we have an isomorphism :

(j!)
−1 : Hom(j!G, j!j!F) ' Hom(G, j!F) .

By composing the two previous isomorphisms we get the result.
�

Corollary 4.10.8. The functor j! : Sh(X) −→ Sh(Z) is left exact and carries injective sheaves into
injective sheaves.

Proof. Once more it follows formally from the fact that j! is right adjoint to the exact functor j!. �

Lemma 4.10.9. If j : Z −→ X is open then j! = j−1.

Proof. By definition j!F = j−1ΓZF . Using the inclusion ΓZF −→ F this yields a monomorphism
j!F −→ j−1F . One checks this is an isomorphism by localization. �

Corollary 4.10.10. The inclusion j : U −→ X of an open subset transform an injective sheaf I on X
into an injective sheaf j!I on U .
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5. Cohomology and derived category of sheaves

Standard definitions and constructions in homological algebra (Abelian categories, derived categories,
triangulated categories, derived functors, cf. [7], [15, chap. I]) are assumed to be vaguely familiar. We
recall some basic facts of interest.

Definition 5.0.11. Let A, B be Abelian categories and F : A −→ B an (additive) left-exact functor.
Recall that :

• an object I ∈ A is called injective if the functor Hom(·, I) : A −→ Ab is exact, equivalently if
each diagram

A
� � //

��@@@@@@@@ B

φ

���
�
�

I

in A admits a completion φ.
• the category A has enough injectives if any object A ∈ A admits a monomorphism A ↪→ I, I

injective.
• if A has enough injectives then RF (A) := F (I•) in the derived category D(B), for any injective

resolution A ' I• in A.

Proposition 5.0.12. (Leray) Let A, B be two Abelian categories and F : A −→ B a left-exact functor.
We suppose that A has enough injectives.

Recall that an object L ∈ A is called F -acyclic if RiF (L) = 0, i > 0.
For any A ∈ A the object RF (A) ∈ D(B) can be computed as F (L•), where A ' L• is an F -acyclic

resolution.

Proof. We show by induction on i ≥ 0 that RiF (A) = Hi(F (L•)).
We have an exact sequence

(11) 0 −→ A
d0−→ L0 −→ B −→ 0 ,

where B denotes the cokernel of d0. On the other hand one has a resolution

(12) 0 −→ B
d1−→ L1 −→ L2 −→ · · · .

The short exact sequence (11) gives the long exact sequence

· · · −→ RiFA −→ RiFL0 −→ RiFB −→ Ri+1FA −→ Ri+1FL0 −→ · · · ,
which implies, as L0 is F -acyclic :{

RiFB ' Ri+1FA, i ≥ 1

R1FA = coker(F (L0) −→ F (B))
.

As F is left exact, the resolution (12) implies that

F (B) = ker(F (L1) −→ F (L2)) .

Thus R1FA = H1(F (L•)).
The equalityRiFB ' Ri+1FA and the existence of the resolution (12) gives the result by induction. �

5.1. Injectives in Sh(X).

Lemma 5.1.1. The Abelian category Sh(X) has enough injectives.

Proof. We first use that Ab has enough injectives (injectives in Ab are divisible groups). Let F ∈ Sh(X).
For any x ∈ X choose Fx ↪→ Ix with Ix injective in Ab. Define

I0 :=
∏
x∈X

ix∗Ix .

One thus has a canonical short exact sequence 0 −→ F −→ I0.
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Let us show that I0 is injective in Sh(X). For any G ∈ Sh(X) one has

HomSh(X)(G, I0) =
∏
x∈X

HomSh(X)(G, ix∗Ix)

=
∏
x∈X

HomAb(i−1x G = Gx, Ix) .

Completing the diagram

G � � //

��???????? G′

φ

���
�
�

I0

is thus equivalent to completing all diagrams

Gx � � //

  @@@@@@@@ G′x
φx

���
�
�

Ix

.

As each Ix is injective in Ab we get that I0 is injective.
�

What are the injectives in Sh(X) ?

Lemma 5.1.2 (Spaltenstein ?). A sheaf I ∈ Sh(X) is injective if and only if for all U ⊃ V ∈ OpX ,
I(U) and I(V ) are injectives in Ab and the restriction morphism I(U) −→ I(V ) is a (split) surjection
in Ab.

Remark 5.1.3. Such a characterization is in fact valid for sheaves in any category of modules.

Proof. Let I be injective. By the previous lemma one can find an injective J of the form
∏
x∈X ix∗Jx

and an injection I ↪→ J .
As I is injective, the morphism I ↪→ J splits, thus I is a direct factor of J .
Notice that the injective J satisfies trivially the condition of the lemma, and that this condition is

stable by passing to a direct factor.
For the converse we refer to [3, 1.13]. �

5.2. Flasque sheaves. In practice we won’t work with injective sheaves. We introduce other classes of
sheaves, which will be acyclic for many functors of interest (in particular we will use them for computing
the corresponding derived functors).

Definition 5.2.1. We relax the injectivity condition in Sh(X) as follows. A sheaf F ∈ Sh(X) is flasque
if for any open set U ∈ OpX the restriction map F(X) −→ F(U) is surjective.

Remark 5.2.2. (a) By functoriality of the restriction, a sheaf F is flasque if and only if for any pair
V ⊂ U of OpX the restriction F(U) −→ F(V ) is surjective.

(b) Notice that by lemma 5.1.2 a sheaf of complex vector spaces is injective if and only if it flasque.

Lemma 5.2.3. Let F ∈ Sh(X) be flasque. Then :

(i) for any continuous map f : X −→ E the sheaf f∗F ∈ Sh(E) is flasque.
(ii) for any locally closed Z ↪→ X the sheaf ΓZF ∈ Sh(X) is flasque.

Proof. The first statement is clear by definition of f∗.
For the second one, let U ∈ OpX such that Z is a closed subspace of U . As ΓZF = iU ∗ΓZF|U one

can thus assume that Z ↪→ X is closed.
We have to prove that for any U ∈ OpX the restriction morphism

ΓZ(X,F) −→ ΓZ(U,F)
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is surjective. Let s ∈ ΓZ(U,F) = ΓZ∩U (U,F) = ker(Γ(U,F) −→ Γ(U \ U ∩ Z,F). We first extend s
by 0 to a section t ∈ Γ((X \ Z) ∪ U,F). As F is flasque we can then extend t to a section of Γ(X,F),
necessarily in ΓZ(X,F). �

Proposition 5.2.4. Let F ∈ Sh(X) be flasque. If Z ↪→ X is locally closed, Z ′ ⊂ Z is closed, Z1, Z2 are
closed in X and U1, U2 are open in X, then the sequences

0 −→ ΓZ′(F) −→ ΓZ(F) −→ ΓZ\Z′(F)(13)

0 −→ ΓU1∪U2(F)
(α1,α2)−→ ΓU1(F)⊕ ΓU2(F)

(β1,−β2)−→ ΓU1∩U2(F)(14)

0 −→ ΓZ1∩Z2
(F)

(α1,α2)−→ ΓZ1
(F)⊕ ΓZ2

(F)
(β1,−β2)−→ ΓZ1∪Z2

(F)(15)

are also surjective on the right.

Proof. For any open set U ∈ OpX , Γ(U,ΓZ(F)) −→ Γ(U,ΓZ\Z′(F)) ' Γ(U \ Z ′,ΓZ(F)) is surjective as
ΓZ(F) is flasque by the previous lemma.

To show that ΓU1(F)⊕ΓU2(F)
(β1,−β2)−→ ΓU1∩U2(F) is surjective, notice that the first factor ΓU1(F) −→

ΓU1∩U2
(F) is already surjective as F is flasque.

To show that ΓZ1
(F) ⊕ ΓZ2

(F)
(β1,−β2)−→ ΓZ1∩Z2

(F) is surjective let s ∈ ΓZ1∩Z2
(X,F). We may find

si ∈ ΓZi(X \ Z1 ∩ Z2,F) (i = 1, 2), such that s = s1 − s2 on X \ Z1 ∩ Z2. We extend s1 and s2 to all X
as F is flasque. Then s1 − s2 = s+ s′ for some s′ ∈ ΓZ1∩Z2

(X,F). Thus (s1 − s′)− s2 = s. �

Proposition 5.2.5. Let 0 −→ F ′ −→ F −→ F ′′ −→ 0 be an exact sequence in Sh(X). Let Z ↪→ X be
locally closed.

Assume that F ′ is flasque. Then the exact sequences

0 −→ ΓZ(X,F ′) −→ ΓZ(X,F) −→ ΓZ(X,F ′′)

and

0 −→ ΓZ(F ′) −→ ΓZ(F) −→ ΓZ(F ′′)

are also surjective on the right.

Proof. We first prove the surjectivity on the right of the first sequence in the case Z = X.
Let s′′ ∈ Γ(X,F ′′).
Let Σ be the set of pairs (U, s) with U ∈ OpX and s ∈ Γ(U,F) mapping to s′′|U . The set Σ can be

ordered by setting (U, s) ≤ (V, t) if U ⊂ V and t|U = s. Clearly any totally ordered set in Σ admits an
upper-bound. By Zorn’s lemma Σ admits a maximal element (U, s).

Suppose U 6= X. Let x ∈ X \ U . Then there exists an open neighbourhood V of x and a section
t ∈ Γ(V,F) such that t is mapped to s′′|V . On U ∩ V the difference s− t belongs to Γ(U ∩ V,F ′). As F ′

is flasque one can extend s − t to a section r ∈ Γ(X,F ′). Replacing t by t − r we may assume t = s on
U ∩ V . Hence s can be extended to U ∪ V , contradiction to the maximality of (U, s).
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For a general locally closed Z choose U ∈ OpX containing Z as a closed subset. One has the commu-
tative diagram

0

��

0

��

0

��
0 // ΓZ∩U (U,F ′) //

��

ΓZ∩U (U,F) //

��

ΓZ∩U (U,F ′′) //

��

0

0 // Γ(U,F ′) //

��

Γ(U,F) //

��

Γ(U,F ′′) //

��

0

0 // Γ(U \ Z,F ′) //

��

Γ(U \ Z,F) //

��

Γ(U \ Z,F ′′) //

��

0

0 0 0

By the previous case the second and third rows are exact. All the columns are exact by definition of
ΓZ∩U . It implies that the first row is exact too. This proof the first statement of the lemma.

The second follows immediately. �

Corollary 5.2.6. Let 0 −→ F ′ −→ F −→ F ′′ −→ 0 be an exact sequence in Sh(X). Suppose that F ′
and F are flasque. Then F ′′ is flasque.

Proof. In the commutative diagram

Γ(X,F) //

α

��

Γ(X,F ′′)

γ

��
Γ(U,F)

β
// Γ(U,F ′′)

the maps α is surjective as F is flasque and β is surjective as F ′ is flasque (previous proposition).
Thus γ is surjective. �

Definition 5.2.7. Let A,A′ be Abelian categories and F : A −→ A′ an additive functor. Recall that a
full additive subcategory J ⊂ A is F -injective if :

(a) for any X ∈ A there exists X ′ ∈ J and an exact sequence 0 −→ X −→ X ′.
(b) if 0 −→ X ′ −→ X −→ X ′′ −→ 0 is exact in A and X ′, X ∈ J then X ′′ ∈ J .
(c) if 0 −→ X ′ −→ X −→ X ′′ −→ 0 is a sequence in J , exact in A then 0 −→ F (X ′) −→ F (X) −→

F (X ′′) −→ 0 is exact.

Corollary 5.2.8. Let Z ↪→ X be locally closed. Then the full subcategory of flasque sheaves in Sh(X) is
injective with respect to the functors f∗, ΓZ(·) and ΓZ(X, ·).

Proof. With what we already proved it is enough to show that flasque sheaves are acyclic for any of
these functors. Let F be a flasque sheaf. Let 0 −→ F −→ I −→ F ′′ −→ 0 be an exact sequence, with
I injective in Sh(X). As I is injective it is flasque. By the previous proposition the sheaf F ′′ is thus
flasque.

Let F be any of the functors f∗, ΓZ(·) or ΓZ(X, ·). As F (I) −→ F (F ′′) is surjective the previous short
exact sequence gives the long exact sequence

0 −→ R1F (F) −→ R1F (I) = 0 −→ R1F (F ′′) −→ R2F (F) −→ R2F (I) = 0 −→ · · · .

Hence R1F (F) = 0. As F ′′ is also flasque R1F (F ′′) = 0 and then R2F (F) = 0 etc... �
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Corollary 5.2.9. Let F• ∈ D+(Sh(X)). If Z ↪→ X is locally closed, Z ′ ⊂ Z is closed, Z1, Z2 are closed
in X and U1, U2 are open in X, then we have the following exact triangles :

RΓU1∪U2
(F•) −→ RΓU1

(F•)⊕RΓU2
(F•) −→ RΓU1∩U2

(F•) +1−→(16)

RΓZ1∩Z2
(F•) −→ RΓZ1

(F•)⊕RΓZ2
(F•) −→ RΓZ1∪Z2

(F•) +1−→(17)

F•U1∩U2
−→ F•U1

⊕F•U2
−→ F•U1∪U2

+1−→(18)

RΓZ′(F•) −→ RΓZ(F•) −→ RΓZ\Z′(F•)
+1−→ .(19)

Proof. This follows immediately from the previous corollary and the following classical homological result
applied to J the full subcategory of flasque sheaves of Sh(X) :

Proposition 5.2.10. Let A and A′ be Abelian categories and F −→ F ′ −→ F ′′ three additive functors
from A to A′.

Assume there exists a full subcategory J ⊂ A injective with respect to F , F ′ and F ′′ and such that for
any object X ∈ J the sequence

0 −→ F ′(X) −→ F (X) −→ F ′′(X) −→ 0

is exact. Then there exists a morphism of functors ν : RF ′′ −→ RF ′[1] such that for any X• ∈ D+(A)
one has an exact triangle :

RF ′(X•) −→ RF (X•) −→ RF ′′(X•)
+1−→ .

Proof. We replace X• by a quasi-isomorphic object J• composed of objects of J . We thus obtain an
exact sequence of complexes

0 −→ F ′(J•) −→ F (J•) −→ F ′′(J•) −→ 0 .

But any such exact sequence of complexes defined an exact triangle in D+(A). One easily checks that
this triangle is independent of the choice of J•. �

�

5.3. The fundamental exact triangle. We will apply the previous reminder to the Abelian category
Sh(X).

Definition 5.3.1. We denote by DGSh(X) the category of complexes of ZX-modules (i.e. sheaves of
Abelian groups) on X and by D(ZX) the derived category of Sh(X).

5.3.1. The general locally closed case.

Proposition 5.3.2. Let S
iS
↪→ X be locally closed. Let A := X \ S iA

↪→ X. Let F ∈ Sh(X).
Then the sequence (where all morphisms are given by adjunction)

(20) 0 −→ iS !iS
!F −→ F −→ iA∗iA

−1F

is exact.
If moreover F is flasque then this sequence is also surjective on the right.

Remark 5.3.3. Notice that in general A is not locally closed in X : consider for example S =]0, 1[
embedded in X = R2. Then A is not open in its closure X.

Proof. Let U be any open set in X containing S as a closed subset. If x ∈ X \ U then the sequence (20)
gives at the level of stalks :

0 −→ 0 −→ Fx −→ Fx
which is exact (and even surjective on the right).

To show the result for the stalks at x ∈ U , notice that we can replace F by F|U . Thus we are reduced
to the case where S is closed and A is open.
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In this case the sequence for stalks reads :{
0 −→ iS

!Fx −→ Fx −→ colimV 3xF(A ∩ V ) if x ∈ S
0 −→ 0 −→ Fx −→ Fx if x ∈ A

This sequence is exact as ΓS(U,F) = ker(Γ(U,F) −→ Γ(A ∩ U,F)) by definition of ΓS .

When F is flasque the same reduction to the case S closed makes the surjectivity on the right trivial. �

Corollary 5.3.4. Let S
iS
↪→ X be locally closed. Let A := X \ S iA

↪→ X. Let F• ∈ D+(Sh(X)).
Then the triangle

∆(S,X,A;F•) := (iS !RiS
!F• −→ F• −→ RiA∗(F•|A)

+1−→)

is exact.

5.3.2. The open or closed case. From now on we are in the following situation

Z
� �

/
iZ
// X U?

_
o
iU
oo .

The triangle ∆(U,X,Z,F•) is just the short exact sequence of complexes of sheaves

∆(U,X,Z,F•) = (0 −→ iU !F•|U −→ F
• −→ iZ∗F•|Z −→ 0) .

By applying RΓ(X, ·) to this triangle we obtain the long exact sequence :

· · · −→ Hm(X, iU !F•|U ) −→ Hm(X,F•) −→ Hm(Z,F•|Z) −→ · · · .

By applying RΓc(X, ·) we obtain

· · · −→ Hmc (U,F•|U ) −→ Hmc (X,F•) −→ Hmc (Z,F•|Z) −→ · · · .

The triangle ∆(Z,X,U,F•) is

∆(Z,X,U,F•) = (iZ !RiZ
!F•) −→ F• −→ RiU ∗F•|U

+1−→) .

Applying RΓ(X, ·) we obtain

· · · −→ HmZ (X,F•) −→ Hm(X,F•) −→ Hm(U,F•|U ) −→ · · · .

5.4. c-soft sheaves. In the previous section we defined the notion of flasque sheaves in order to study
Rf∗ and RΓZ . We do the same here for the functors Rf! and R(·)Z , the corresponding notion being the
notion of c-soft sheaf.

In this section X is locally compact.

Definition 5.4.1. A sheaf F ∈ Sh(X) is said to be soft (resp. c-soft) if for any closed (resp. compact)
subspace K ⊂ X the restriction

Γ(X,F) −→ Γ(K,F)

is surjective.

Lemma 5.4.2. Suppose moreover that X is paracompact. Then injective =⇒ flasque =⇒ soft =⇒ c-soft.

Proof. This follows immediately from the fact we already proved that

colimU⊂KF(U) ' Γ(K,F)

under our topological assumptions. �

Lemma 5.4.3. A sheaf F ∈ Sh(X) is c-soft if and only if for any closed Z ↪→ X the restriction
Γc(X,F) −→ Γc(Z,F|Z) is surjective.

Proof. If K is compact then Γ(K,F) = Γc(K,F). This proves the sufficiency of the condition.
Conversely suppose F is c-soft. Let s ∈ Γc(Z,F|Z) with compact support K. Let U be a relatively

compact open neighbourhood of K in X. Define s̃ ∈ Γ(∂U ∪ (Z ∩ U),F) by setting s̃|Z∩U = s, s̃∂U = 0,

and extend s̃ to a section t ∈ Γ(X,F) as F is c-soft and ∂U ∪ (Z ∩ U) is compact. Since t = 0 on a
neighbourhood of ∂U we may assume that t is supported by U . �
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Proposition 5.4.4. Let F ∈ Sh(X) be c-soft. Then :

(i) Let Z ↪→ X be locally closed and f : X −→ Y a continuous map. Then f!F , F|Z and FZ are
c-soft.

(ii) If 0 −→ F ′ −→ F −→ F ′′ −→ 0 is an exact sequence in Sh(X) and assume that F ′ is c-soft.
Then the sequence

0 −→ f!F ′ −→ f!F −→ f!F ′′ −→ 0

is exact in Sh(X). In particular the sequence

0 −→ Γc(X,F ′) −→ Γc(X,F) −→ Γc(X,F ′′) −→ 0

is exact.

Proof. Let us prove that F|Z is c-soft. If Z is open this is clear by definition. Thus we can assume that
Z is closed. The result follows then from proposition 5.4.3.

For f!F : if K is a compact subset of Y then Γ(K, f!F) = Γc(f
−1(K),F). Since Γc(Y, f!F) = Γc(X,F)

the result follows from proposition 5.4.3.
For FZ : the result follows from the two previous cases as FZ = f!(F|Z).

For (ii) : it is enough to show that for all y ∈ Y :

0 −→ (f!F ′)y −→ (f!F)y −→ (f!F ′′)y −→ 0

is exact. As (f!G)y = (f!(G|f−1(y)))y we can assume f = pX : X −→ ∗.
Let s′′ ∈ Γc(X,F ′′) and let U a relatively compact open neighbourhood of supp s′′. We will show that

s′′ is in the image off Γc(X,F) −→ Γc(X,F ′′). By replacing G by G|U (for G = F , F ′ or F ′′) and then X

by U one may assume that X is compact.
For s′′ ∈ Γ(X,F ′′) let {Ki}1≤i≤n be a finite covering of X by compact subsets such that there exists

si ∈ Γ(Ki,F) whose image is s′′|Ki . We argue by induction on n. For n ≥ 2, on K1 ∩K2, s1 − s2 defines

an element of Γ(K1 ∩ K2,F ′) hence extend to s′ ∈ Γ(X,F ′). Replacing s2 by s2 + s′ we may assume
s1|K1∩K2

= s2|K1∩K2
. Therefore there exist t ∈ Γ(K1 ∪ K2) such that t|Ki = si, i = 1, 2. Thus the

induction proceeds. �

Similarly to the flasque case one proves the following :

Corollary 5.4.5. Let 0 −→ F ′ −→ F −→ F ′′ −→ 0 an exact sequence in Sh(X). If F ′ and F are c-soft
then F ′′ is c-soft.

Corollary 5.4.6. The full subcategory of c-soft sheaves is injective with respect to the functor f!, thus in
particular also with respect to (·)Z , Γc(X, ·) and Γ(K, ·) (K compact).

Corollary 5.4.7. Let F• ∈ D+(ZX). If Z ↪→ X is locally closed, Z ′ ⊂ Z is closed, Z1, Z2 are closed in
X then we have the following exact triangles :

F•Z1∪Z2
−→ F•Z1

⊕F•Z2
−→ F•Z1∩Z2

+1−→(21)

F•Z\Z′ −→ F
•
Z −→ F•Z′

+1−→(22)

The following result is also of interest :

Proposition 5.4.8. Let X be locally compact and countable at infinity. Then the category of c-soft
sheaves is injective with respect to the functor Γ(X, ·).

Proof. Let 0 −→ F ′ −→ F −→ F ′′ −→ 0 be an exact sequence in Sh(X) with F ′ c-soft. Let (Kn)n∈N be
an increasing sequence of compact subspaces of X such that X = ∪n∈NKn and Kn is contained in the
interior of Kn+1 for all n. As F ′ is c-soft all the sequences

0 −→ Γ(Kn,F ′) −→ Γ(K,F) −→ Γ(K,F ′′) −→ 0

are exact. By taking the limit over n ∈ N and as Γ(Kn+1,F ′) −→ Γ(Kn,F ′) is surjective for all n, the
limit sequence is still exact :

0 −→ lim
n

Γ(Kn,F ′) −→ lim
n

Γ(Kn,F) −→ lim
n

Γ(Kn,F ′′) −→ 0 .
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Since for any sheaf G ∈ Sh(X) one has Γ(X,G) ' lim Γ(Kn,G) (the sheaf condition !) one gets the
result. �
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6. Sheaf theoretic intersection cohomology

6.1. Sheafification of intersection homology.

Definition 6.1.1. Let X be a PL pseudomanifold of dimension n with stratification

X : X = Xn ⊃ Xn−2 ⊃ · · · ⊃ X0 ⊃ X−1 = ∅ .
Let p be a classical perversity and let E be a local system on U2 := X \Xn−2. We define the complex of
presheaves IpC•(X, E) by

Γ(U, IpC•(X, E)) := IpCn−•(U, E) .

Remark 6.1.2. In order to get restriction maps and thus a presheaf it is crucial to use unbounded chains.

Lemma 6.1.3. The complex IpC•(X, E) ∈ DGSh(X) is a complex of c-soft sheaves.

Proof. One easily checks that this is a complex of sheaves. For the c-soft property : let K ⊂ X be
compact and s ∈ Γ(K, IpCn−i(X, E)). We want to show that s can be represented by a section over X.
As Γ(K, IpC•(X, E)) = colimU⊃KΓ(U, IpC•(X, E)) there exists U ⊃ K open in X and ξ ∈ IpCi(U, E)
defining s. The problem to see ξ as an element of IpCi(X, E) is that ξ might not have closed support in
X.

We choose a triangulation of U fine enough such that there is a closed PL-neighbourhood N of K
entirely in U . Then ξ ∩N ∈ Γ(X, IpCn−i(X, E)) still represents s. �

Definition 6.1.4.

IpHi(X, E) := Hi(X, IpC•(X, E)) ; IpHi
c(X, E) := Hic(X, IpC•(X, E)) .

As c-soft sheaves are Γc-acyclic and also Γ-acyclic because X is locally compact paracompact, we
obtain :

Corollary 6.1.5. IpHi(X, E) = IpHn−i(X, E) and IpHi
c(X, E) = IpHc

n−i(X, E), where both terms on
the right were defined simplicially.

Remark 6.1.6. Notice that although every x ∈ X has a system of contractible neighbourhoods, the stalks

Hi(IpC•(X, E))x := colimU3xI
pHn−i(U, E)

are in general non-trivial as IpHl is not homotopy invariant. In particular the complex IpC•(X, |E) is
not in general q.i. to a sheaf concentrated in a single degree. This has to be compared to the classical

case C•(X) = Cn−•(X)
q.i.
' OrX .

6.2. First axiomatic characterization of the intersection cohomology sheaf. Given

X : X = Xn ⊃ Xn−2 ⊃ · · · ⊃ X0

one defines for 2 ≤ q ≤ n+ 1 :

• Sk = Xn−k \Xn−k−1 the union of codimension k strata.
• Uk = X \Xn−k open in X, one has U2 ⊂ U3 ⊂ · · · ⊂ Un+1 = X.

We have the fundamental triangle

Uk
� �

o
jk
// Uk+1 Sk? _/

ik
oo .

Definition 6.2.1. Given F• ∈ DGSh(X) we define F•k := F•|Uk .

The attachment map is αk : F•k+1 −→ jk∗F•k −→ Rjk∗F•k .

Definition 6.2.2. Given a stratification X of X, p a perversity and E a local system on U2 we denote
by (AX1)X ,E,p the following set of axioms for F• ∈ DGSh(X) :

(1) HiF• = 0 for i < 0 ; F• is bounded below ; F•2 ' E.
(ii) if x ∈ Sk then Hi(F•x) = 0 for i > p(k).
(iii) αk : F•k+1 −→ Rjk∗F•k is a quasi-isomorphism in degree ≤ p(k).
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Remark 6.2.3. Given F• ∈ DGSh(X) and k ∈ Z one defines

(τ≤kF•)i =


F i if i < k,

ker(di : F i −→ F i+1) if i = k,

0 if i > k .

Then the natural inclusion τ≤kF• −→ F• induces a quasi-isomorphism in degree ≤ k.

Proposition 6.2.4. The complex IpC•(X, E) satisfies (AX1)X ,E⊗OrU2
,p.

Proof. Let F• := IpC•(X, E).
For (i) : obviously F• is bounded below and its cohomology sheaves vanish in negative degrees.

Moreover :

F•2 = Cn−•(E) ' E ⊗OrU2
,

where the first equality follows from the fact that the perversity conditions are empty on U2.

For (ii) : By definition (HiIpCn−•(X, E))x = colimU3xI
pHn−i(U, E). If x ∈ Sk let U ' Rn−k⊗C(L) be

a distinguished neighbourhood of x, where C is the open cone and L is a PL-pseudomanifold of dimension
k − 1.

One easily checks the following Künneth type result : the product

R× · : Ci(X, E) −→ Ci+1(X, E)

induces an isomorphism

IpH•(X, E) ' IpH•+1(R×X, p∗2E) .

Thus

IpHn−i(U, E) ' IpHk−i(C(L), E) .

Recall the crucial cone formula :

IpHl(C(L), E) =

{
0 if l < k − p(k),

IpHl−1(L, E) if l ≥ k − p(k) .

It follows (in cohomological notations) that

IpHi(U, E) = IpHi(C(L), E) =

{
0 if i > p(k),

IpHi−1(L, E) if i ≤ p(k) .

This implies (ii).

For (iii) : consider

Uk
� �

o
jk
// Uk+1 Sk? _/

ik
oo .

We want to show that the map αk in the following diagram is a quasi-isomorphism up to degree p(k) :

IpCn−•(X, E)k+1
//

αk ))SSSSSSSSSSSSSS
jk∗I

pCn−•(X, E)k

��
Rjk∗I

pCn−•(X, E)k

As IpCn−•(X, E) is a complex of c-soft sheaves the map jk∗I
pCn−•(X, E)k −→ Rjk∗I

pCn−•(X, E)k is a
quasi-isomorphism hence it is enough to show that

IpCn−•(X, E)k+1 −→ jk∗I
pCn−•(X, E)k

is a quasi-isomorphism up to degree p(k).
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Let us check it at the stalk level. This is obvious if x belongs to Uk. On the other hand any x ∈ Sk
admits a system of compatible neighbourhoods in Uk+1 of the form

V Rn−k × C(L)
∼oo

V ∩ Uk
?�

o

OO

Rn−k × C(L)∗
?�

o

OO

∼oo

Notice that as a PL-manifold C(L)∗ ' R× L. Thus we have the commutative diagram :

Γ(V, IpC•(X, E))

αk(V )

��

IpC•(C(L), E)

��

∼
q.ioo τ≤p(k)I

pC•(L, E)

Γ(V ∩ Uk, IpC•(X, E)) IpC•(L, E)
∼oo

which gives

Γ(V, IpC•(X, E))
αk(V )
' Γ(V, τ≤p(k)jk∗I

pC•(X, E))

and the result. �

Using (AX1)X ,E,p we will find a complex quasi-isomorphic to IpC•(X, E) whose definition does not
depend on any simplicial structure.

Lemma 6.2.5. Assume F• satisfies (AX1)X ,E,p. Then F•k+1 ' τ≤p(k)Rjk∗F•k .

Proof. Consider the commutative diagram

F•k+1
αk // Rjk∗F•k

τ≤p(k)F•k+1

βk+1

OO

α′k

// τ≤p(k)Rjk∗F•k

By the axiom (ii), the map βk+1 is a quasi-isomorphism.
By the axiom (iii) the map α′k is a quasi-isomorphism. This concludes the proof. �

6.3. Deligne’s extension.

Definition 6.3.1. Given a stratified pseudomanifold (X,X ) and E a local system on U2 we define induc-
tively

P•(E)2 = E and P•(E)k+1 := τ≤p(k)Rjk∗P•(E)k .

Hence
P•(E) := τ≤p(n)Rjn∗τ≤p(n−1)Rjn−1∗ · · · τ≤p(2)Rj2∗E .

Theorem 6.3.2. (a) P•(E) satisfies (AX1)X ,E,p.
(b) Any F• ∈ DGSh(X) satisfying (AX1)X ,E,p is quasi-isomorphic to P(E)•.

Proof. The first assertion is clear.
For (2) : Suppose F• satisfies (AX1)X ,E,p. Thus F•2 ' E ' P(E)•2. By induction assume F•k and

P(E)•k are quasi-isomorphic for some k. Thus :

F•k+1 = τ≤p(k)Rjk∗F•k = τ≤p(k)Rjk∗P(E)•k ' P(E)•k+1 .

�

Corollary 6.3.3. IpHn−i(X, E) = Hi(X,P•(E ⊗ OrU2
))

Remark 6.3.4. The previous theorem enables us to extend the definition of intersection homology from
PL pseudomanifold to any pseudomanifold.

We can now prove some results we stated for simplicial intersection homology.
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Proposition 6.3.5. Let (X,X ) be a stratified pseudomanifold. Let p = 0 be the zero perversity. Let E
be a local system on U2

j
↪→ X. Then j∗E satisfies (AX1)X ,E,0. In particular

I0H•(X, E) = H•(X, j∗(E ⊗ OrU2
)) .

If X is normal oriented then j∗ZU2 = ZX and I0H•(X,ZU2) = H•(X,ZX).

Proof. The sheaf j∗E always satisfies (i). As j∗E is in degree 0 it also satisfies (ii) trivially.
For (iii) let j2,k : U2 ↪→ Uk. If A ∈ Sh(U2) and B ∈ Sh(Uk) then

(j∗A)k+1 = j2,k+1∗A = jk∗j2,k∗A(23)

τ≤0Rjk∗B = jk∗B .(24)

hence j∗E satisfies (iii).

If X is normal any x ∈ Sk has a fundamental system of neighbourhoods U such that U \ Xn−2 is
connected. Hence j∗ZU2 = ZX . �

Similarly a good exercice is to prove :

Theorem 6.3.6. Assume X to be normal and let t be the maximal perversity. Then Cn−• satisfies
(AX1)X ,OrU2

,t. In particular

ItHi(X,OrU2
) = Hi(X, Cn−•) = Hn−i(X,ZX) .

Proof. See [?, p.66] for details. �

7. Cohomological dimension

Definition 7.0.7. Let X ∈ Top. One denotes by dimcohX the smallest n ∈ N ∪ {∞} such that

∀U ∈ OpX , i > n,F ∈ Sh(X), Hi
c(U,F) = 0 .

Proposition 7.0.8. Let X be locally compact and countable at infinity. Then the following are equivalent :

(i) dimcohX ≤ n.
(ii) Hn+1

c (X,F) = 0 for all F ∈ Sh(X).
(iii) Hn+1

c (U,ZU ) = 0 for all U ∈ OpX .
(iv) Any F ∈ Sh(X) admits a c-soft resolution of length at most n.

Moreover in this case X satisfies the following property : any F ∈ Sh(X) admits a flasque resolution of
length at most n+ 1.

Proof. Clearly (iv) admits (i) as the restriction to U of a c-soft sheaf on X is c-soft. Conversely let us
show (i)⇒ (iv). Let 0 −→ F −→ F0 −→ · · · be a c-soft resolution. We thus have an exact sequence

0 −→ F −→ F0 −→ · · · −→ Fn−1 −→ Gn −→ 0

where Gn := Im (Fn−1 −→ Fn). As the F i are c-soft one immediately obtains

∀i ≥ 0, Hi
c(U,Gn) ' Hi+n

c (U,F) .

Hence H1
c (U,Gn) = Hn+1

c (U,F) = 0, i.e. Gn is c-soft.
Clearly (i) implies (ii).
For (ii)⇒ (iii) : Hn+1

c (U,ZU ) = Hn+1
c (X, j!ZU ).

For (iii)⇒ (ii) : arguing as above one obtains that ZU admits a c-soft resolution of length at most n.
Thus Hi

c(U,ZU ) = 0 for i > n. Let M be the family of all sheaves F such that Hn+1
c (X,F) = 0. Thus

M contains ideals nZU , satisfies the property “2 out of 3” for exact sequences and is stable by colimits as
Hi
c commutes with colimits. This implies that M = Sh(X).
For (ii)⇒ (i) : Hi

c(U,F) = Hi
c(X, j!F).

Which finishes the proof of the different equivalences.

Suppose now that 0 −→ F −→ F0 −→ F 1 −→ · · · is flasque resolution of F . Using the same notation
Gn as before we obtain a short exact sequence

0 −→ Gn −→ Fn −→ B −→ 0 .
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As the F i’s are flasque they are c-soft. Arguing as before one obtains that Gn is c-soft. Hence we have
the commutative diagram :

Fn(X) //

α

��

B(X)

��
Fn(U)

β
// B(U) // H1(U,Gn) .

The map α is surjective as Fn is flasque. On the other hand for U paracompact H1(U,Gn) = 0 as
Gn is c-soft thus Γ-acyclic, hence β is surjective. As α and β are surjective the map B(X) −→ B(U) is
surjective.

As X is countable at infinity every point x ∈ X has a neighbourhood U whose open subsets are
paracompact, hence B|U is flasque.

Being flasque is a local property thus B is flasque. �

Proposition 7.0.9. Let M be an n-dimensional topological manifold (thus paracompact). Then dimcohM =
n.

Proof. Nice exercice (cf. [14, p.195]). �
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8. Constructibility

Definition 8.0.10. Let X ∈ Top and F• ∈ DGSh(X).

(i) The complex F• is said cohomologically locally constant (clc) if H•F• is locally constant.
(ii) Suppose X : X = Xn ⊃ Xn−1 ⊃ · · · ⊃ X0 ⊃ X−1 = ∅ is a filtration by closed subsets. The

DG-sheaf F• is X -clc if H•F• is locally constant on each stratum Xi \ Xi−1. It is said X -
cohomologically constructible (X -cc) if it is X -clc and the stalks H•F•x are finitely generated.

(iii) F• is cohomologically constructible (cc) if :
– for x ∈ X and m ∈ Z the inverse system Hmc (Ux,F•) (over all open neighbourhoods of x) is

essentially constant and its limit is finitely generated.
– for x ∈ X and m ∈ Z the direct system Hm(Ux,F•) (over all open neighbourhoods of x) is

essentially constant and its limit is finitely generated.

Remark 8.0.11. Recall that an inverse system (Ai)i∈I is said to be essentially constant if for each i ∈ I
there exists i′ ∈ I such that Im (Ai′ −→ Ai) = Im (limAj −→ Ai) and moreover there exists i0 ∈ I such
that limAj −→ Ai0 is injective. Dually for direct systems.

The goal of this section is to show :

Proposition 8.0.12. Let (X,X ) be a stratified pseudo-manifold and F• ∈ DGSh(X) a X -cc complex.
Then F• is cohomologically constructible.

We start with the following

Lemma 8.0.13. Let M be a an n-dimensional manifold and F• ∈ DGSh(M) which is cohomologically
locally constant. Let x ∈M . Then :

(1) The inverse system Hic(Ux,F•) is constant on the set of neighbourhoods of x homeomorphic to
open balls, equal to Hn−i(F•x). The direct system Hi(U,F•) is constant on this set, equal to HiF•x .

(2) i!xF• = i∗xF•[−n]. In particular Hi(i!xF•) = Hi−n(F•x). Moreover if H•F• has finitely generated
stalks then F• is cc.

Proof. We concentrate on i!x, everything for i∗x is similar and easier.

By hypothesis on F• the complex H•F• is constant on sufficiently small U neighbourhoods of x,
therefore the hypercohomology spectral sequence for Hc(U,F•) collapses. We have :

Hic(U,H•F•) =

{
H•F•x if i = n

0 otherwise

thus
Hjc(U,F•) = Hj−n(F•x) ,

hence (1).

For (2) : let U be an open neighbourhood of x whose closure is homeomorphic to a closed ball and let
J • be an injective resolution of F•. We have natural maps

i!xF• = Γ{x}(U,J •)
β // Γc(U,J •) Γ(U,J •)[−n]

αoo

where the map α is the cup product with the fundamental class [U ]c.
Using the hypercohomology spectral sequence and the fact that

Hi(U,E)
∪[U ]c−→ Hi+n

c (U,E)

is an isomorphism for any constant system E (both terms vanish for i 6= 0 and are equal to E for i = 0),
the map α is an isomorphism.

As we know that Γ(U,J •) −→ J •x ←− F•x is a quasi-isomorphism, to conclude that i!xF• = i∗xF•[−n]
we are reduced to show that

β : Γ{x}(U,J •)
β−→ Γc(U,J •)

is a quasi-isomorphism.
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We consider the commutative diagram

· · · // Hi(i!xF•)

βi

��

// Hi(U,F•) // Hi(U \ {x},F•) //

γi

��

· · ·

· · · // Hic(U,F•) // Hi(U,F•) // Hi(U \ U,F•) // · · ·

We want to show that βi is an isomorphism. It is enough to show that the restriction map γi is an
isomorphism for all i’s. It is enough to show that the restriction map induces an isomorphism of the
E2-terms of the corresponding hypercohomology spectral sequences, i.e.

H•(U \ {x},H•F•) −→ H•(U \ U,H•F•)
is an isomorphism.

We may write
U \ {x} = Sn−1 × (0, 1], U \ U = Sn−1 × {1}

with the obvious inclusion map. Hence the result as H•F• is constant on U .
�

We then have the following refined version of proposition 8.0.12 :

Proposition 8.0.14. Let (X,X ) be a stratified pseudomanifold. Let F• ∈ DGSh(X) be X -clc. Let
x ∈ X. Then :

(1) The inverse system Hic(Ux,F•) is constant on distinguished neighbourhoods of x and its limit
equals Hi(i!xF•).

(2) The direct system Hi(U,F•) is constant on this set and its colimit is Hi(F•x).
(3) For any stratum Sα the sheaf iSα

!F• is clc on Sα.
(4) if F• is X -cc then F• is cc.

Proof. For (1) : let x ∈ Sk. Let U = Bn−k × C(L) a distinguished neighbourhood of x in X. Let
Z := U ∩ Sk ' Bn−k. We have an exact sequence

· · · −→ Hjc(U − Z,F•) −→ Hjc(U,F•) −→ Hjc(Z,F•) −→ · · · .
As F•|Sk is clc and Sk is a manifold lemma 8.0.13 implies that Hj

c (Z,F•) is a constant inverse system.

Since U \ Z = Bn−k × C(L)∗ ' Bn−k+1 × L we obtain

Hjc(U \ Z,F•) = Hj−(n−k+1)(L,F•)
(see [?, V lemma 3.8.b)] for a rigorous proof of this intuitive statement). It follows that Hj

c (U \Z,F•) is
also a constant inverse system.

By the 5-lemma the inverse system Hjc(U,F•) is constant over distinguished neighbourhoods of x.
Arguing essentially as in the smooth case this shows that Hi(i!xF•) = limHic(Ux,F•), which finishes

the proof of (1).

For (3) : One considers the long exact sequence in Sh(Sk)

· · · −→ Hi(i!kF•k+1) −→ Hi(i∗kF•k+1) −→ Hi(i∗kRjk∗F•k ) −→ · · · .
The second term is locally constant as F• is X -clc. To prove that the first is, it is enough to show that
the third one is, i.e. that Rjk∗F•k is X -clc. One computes

(25) H•(U,Rjk∗F•k ) = H•(U ∩ Uk,F•k ) = H•(L,F•)
for a distinguished U = B × C(L) as U ∩ Uk = B × C(L)∗ = B × R× L.

For (2) : the same computation shows that the third term of the long exact sequence

· · · −→ Hi(B, i!kF•) −→ Hi(U,F•) −→ Hi(U,Rjk∗F•k ) −→ · · ·
is constant. The first term is constant by (3) and the case of manifolds. Thus the middle term is constant
by the 5-lemma.

For (4) : One has to follows the finite generation in all steps. �
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The following corollary to proposition 8.0.12 will be of importance for us :

Proposition 8.0.15. Let (X,X ) be a pseudomanifold with stratification X . Let F• ∈ DGSh(X) satisfy
axioms (AX1)X ,E,p for some local system E on U2. Then F• is X -cc and cc.

Proof. In view of proposition 8.0.12 it suffices to show that Deligne’s sheaf P•(E) is X -cc. The local
system E is X -cc on U2 and P•(E) is constructed by successive applications of operations Rjk∗ and
τ≤p(k). The truncation trivially preserves X -constructibility, while we already showed (cf. equation (25))
that Rjk∗ does. �

9. Second characterization of Deligne’s extension and topological invariance of
intersection homology

9.1. Changing the axioms. Let (X,X ) be a pseudomanifold of dimension n with a given stratification
X and let F• ∈ DGSh(X). Recall that we introduced the set of axioms (AX1)X ,E,p :

(i) F• is bounded below, HiF• = 0 for i < 0 and F•2 = E .
(ii) if x ∈ Sk then Hj(F•x) = 0 for j > p(k).
(iii) the attachment map αk : F•k+1 −→ Rjk∗F•k is a quasi-isomorphism in degree up to p(k).

Proposition 9.1.1. The DG-sheaf F• satisfies (AX1)X ,E,p if and only if it satisfies the axioms (AX1)′X ,E,p :

(i) F• is bounded below, HiF• = 0 for i < 0, F•2 = E and F• is X -clc.
(ii) if x ∈ Sk then Hj(F•x) = 0 for j > p(k).
(iii) if x ∈ Sk then Hj(i!xF•) = 0 for j < n− q(k).

Proof. First by proposition 8.0.15 F• is X -clc if F satisfies (AX1)X ,E,p.
Thus it is enough to show that the two conditions (iii) are equivalent under the other ones. We have

the following long exact sequence :

· · · −→ Hj(i!kF•)x −→ Hj(F•x)
αk−→ Hj(Rjk∗F•k )x −→ · · · .

It implies that the attachment map αk : F•k+1 −→ Rjk∗F•k is a quasi-isomorphism in degree up to p(k)

if and only if Hj(i!kF•)x = 0 for j ≤ p(k) + 1 (using that Hp(k)+1(F•x) = 0).
Consider the factorisation

{x} lx //

ix ""EEEEEEEE Sk

ik

��
X .

Thus i!x = l!x ◦ i!k and Hj(i!kF•) = Hj(l!x(i!kF•)). By proposition 8.0.14 the sheaf i!kF• is clc. As Sk is a
manifold of dimension n− k lemma 8.0.13 implies that

Hj(l!x(i!kF•)) = Hj−(n−k)(i!kF•)x .

As j < n− q(k) if and only if j − (n− k) ≤ p(k) + 1 we obtain the result. �

Proposition 9.1.2. The DG-sheaf F• satisfies (AX1)X ,E,p if and only if it satisfies the axioms (AX2)X ,E,p :

(i) F• is bounded below, HiF• = 0 for i < 0, F•2 = E and F• is X -clc.
(ii) dim supp (HjF•)(= dim{x ∈ X / Hj(i∗xF•) 6= 0}) ≤ n− p−1(j) for all j > 0.
(iii) dim{x ∈ X / Hj(i!xF•) 6= 0}) ≤ n− q−1(n− j) for all j < n.

In particular (AX2)X ,E,p caracterizes F• uniquely up to quasi-isomorphism.

Remark 9.1.3. Notice that now only the first condition depends on X .

Proof. First notice that

j ≤ p(k)⇐⇒ n− k ≤ n− p−1(j) ,(26)

j ≥ n− q(k)⇐⇒ n− k ≤ n− q−1(n− j) .(27)

Let us show that (AX1)X ,E,p(ii) implies (AX2)X ,E,p(ii). If x ∈ Sk and Hj(F•x) 6= 0 then j ≤ p(k).
Hence dimSk ≤ n− k ≤ n− p−1(j) and the result.
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Conversely if x ∈ Sk and Hj(F•x) 6= 0 then Hj(F•y ) 6= 0 for y in some neighbourhood of x in Sk since

F• is X -cc. Therefore n− k ≤ n− p−1(j) and thus j ≤ p(k).

We prove that (AX1)X ,E,p(iii) implies (AX2)X ,E,p(iii) in the same way as for (ii). Conversely if

x ∈ Sk then ix = ik ◦ lx where lx : {x} ↪→ Sk and i!x = lx
! ◦ ik!. In particular ix

!F• = lx
!(ik

!F•). It
follows from lemma 8.0.13 that Hj(iy

!F•) = Hj(ix
!F•) for y in some neighbourhood of x in Sk. We can

then proceed as for (ii). �

9.2. Extension of local systems.

Lemma 9.2.1. Let M be a manifold of dimension n and U ⊂M a dense open subset whose complement
has codimension at least 2. If E is a local system on U then there exists a largest open subset V ⊃ U of
M over which E extends to a local system.

Proof. We can assume that M is connected, then so is U by the codimension 2 condition.
First notice that if F and F ′ are two local systems on M and f : F|U −→ F ′|U is a morphism then there

exists a unique morphism g : F −→ F ′ extending f . This follows from the fact that π1(U) � π1(X).
Moreover g is an isomorphism if f is.

Using this remark one can glue together the local systems E ′ extending E over some U ′ ⊃ U . �

Definition 9.2.2. Let E be a local system on some open dense submanifold of X whose complement has
codimension at least 2. A stratification X of X is said to be adapted to E if its open stratum is contained
in the largest open submanifold of X over which E can be extended.
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9.3. Second characterization of Deligne’s extension. We now define a new set of conditions on
F• ∈ DGSh(X).

Definition 9.3.1. Let E be a local system on some open dense submanifold of X whose complement has
codimension at least 2. We denote by (AX2)E,p the following set of conditions on F• ∈ DGSh(X) :

(i) HiF• = 0 for i < 0 ; F• is X -clc for some PL-pseudomanifold stratification X of X ; there exists
an open dense subset submanifold U of X whose complement has codimension at least 2 on which
E is defined such that F•|U ' E|U .

(ii) dim suppHjF• ≤ n− p−1(j) for all j > 0.
(iii) dim {x ∈ X / Hj(i!xF•) 6= 0} ≤ n−q−1(n−j) for all j < n, where q = t−p is the dual perversity.

Notice that in axioms (AX2)E,p the stratification X and the open submanifold U are not related. We
can however assume that U ⊂ U2. As Hi(F•) is locally constant on U2 and has restriction E or 0 on U
depending whether i = 0 or not, E can be extended to U2 and F•|U2

is quasi-isomorphic to E . In particular

F• satisfies (AX2)E,p if and only if it satisfies (AX2)X ,E,p for some stratification X adapted to E .
The main result of this section is the following :

Theorem 9.3.2. Let E be a local system on some open dense submanifold of X whose complement has
codimension at least 2 and let Ũ2 be the largest open submanifold of X over which E extends to a local
system.

Assume that there exists a stratification X of X which is adapted to E.
Then there exists P̃• ∈ DGSh(X) satisfying (AX2)E,p with P̃•|Ũ2

= E and also (AX2)X ,E,p for every

stratification X adapted to E.

Proof. Notice that Deligne’s construction is well defined for any filtration by closed subsets (not necessarily
a stratification of the pseudomanifold X) and for E a local system on the open stratum (not necessarily

a manifold). We construct P̃• as the Deligne sheaf associated to E and some well-chosen filtration X̃ of

X by closed subsets satisfying X̃n−2 := X \ Ũ2.

The main difficulty is to construct X̃ . We proceed by induction on k. With the usual notations we
require, for 2 ≤ k ≤ n :

(Ik) (ak) S̃k is a manifold of dimension n− k or is empty.

(bk) ĩ
∗
kP̃
•
k+1 is clc.

(ck) ĩk
!P̃•k+1 is clc.

(IIk) for every stratification X ofX which is adapted to E , S̃k is a union of strata of X and Uk+1 ⊂ Ũk+1.

Suppose that X̃ has these properties. As we are assuming there exists at least one stratification X
of X which is adapted to E , by (IIn) we have Ũn+1 ⊃ Un+1 = X. Let P̃• = P̃•n+1 ∈ DGSh(X). One

easily checks that P̃• satisfies (AX1)
X̃ ,E,p

(even if X̃ is only a filtration). One can also check that the

conditions (Ik) on the filtration X̃ are enough to ensure the equivalence of the axioms (AX1)X̃ ,E,p and

(AX2)X̃ ,E,p. Thus P̃• satisfies (AX2)X̃ ,E,p. If X is a stratification adapted to X we find by (II) that P̃•

is X -clc. Therefore it satisfies (AX2)X ,E,p. As there exists at least one such stratification X , P̃• satisfies
(AX2)E,p and has the required properties.

We are reduced to construct a filtration X̃ satisfying the properties (Ik) and (IIk) for all k ≥ 2.

The dense stratum Ũ2 is already defined and P̃•2 = E . Let X be a stratification of X adapted to E .

Suppose by induction that Ũ i, 2 ≤ i ≤ k, are already defined and that (Ii) and (IIi), 2 ≤ i < k, hold.

Let P̃•k+1 := τ≤p(k)Rjk∗P̃
•
k, where jk : Uk ↪→ X.

Let S̃
k

1 be the largest submanifold of X̃n−k = X \ Ũk of dimension n − k. Let S̃
k

2 (resp. S̃
k

3) be the

largest open subset of X̃n−k over which ĩ
∗
kP̃
•
k+1 (resp. ĩ

!

kP̃
•
k+1) is clc. We take

S̃
k

:= S̃
k

1 ∩ S̃
k

2 ∩ S̃
k

3 , Ũk+1 = Ũk ∪ S̃
k
.
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Clearly Ũk+1 is open and satisfies (Ik). It remains to check it satisfies (IIk). We refer to [?, p.93-94] for
details. �

Corollary 9.3.3. Let F• satisfy (AX2)E,p. Then F• is quasi-isomorphic to P̃•.

Proof. By the remark before the statement of theorem 9.3.2 we know that F• satisfies (AX2)X ,E,p for

some stratification X adapted to E . The DG-sheaf P̃ • also satisfies (AX2)X ,E,p by the theorem. Thus

F• is qi to P̃ • by proposition 9.1.2. �

In particular, as every stratification is adapted to the orientation sheaf, one obtains :

Corollary 9.3.4. Let X be a PL pseudo-manifold. Then the intersection homology groups IpH•(X) are
independant of the PL-stratification used in their definition.

10. Poincaré-Verdier duality

Our next goal is to prove Poincaré duality for intersection cohomology. It will appear as a special case
of the Poincaré-Verdier duality.

Let f : X −→ Y ∈ Top. We defined three functors :

f−1 : D+(ZY ) // D+(ZX)oo : Rf∗

and

Rf! : D+(ZX) −→ D+(ZY ) .

In this section we show that, under certain assumptions, the functor Rf! admits a right adjoint f !, called
the “exceptional inverse image”.

Theorem 10.0.5. Let X, Y be two locally compact spaces and f : X −→ Y a continuous map such that
f! has finite cohomological dimension (i.e. there exists n ∈ N such that for any F ∈ D+(ZX), Rif!(F ) = 0
for i > n). Then

Rf! : D+(ZX) −→ D+(ZY )

admits a right adjoint

f ! : D+(ZY ) −→ D+(ZX) ,

i.e. there exist two morphisms of functors id −→ f !Rf! and Rf!f
! −→ id inducing :

∀F ∈ D+(ZX), G ∈ D+(ZY ), HomD+(ZX)(F, f
!G) ' HomD+(ZY )(Rf!F,G) .

Remark 10.0.6. We already constructed f ! : Sh(Y ) −→ Sh(X) when f : X −→ Y is a locally closed
subspace. In this case f ! : D+(ZY ) −→ D+(ZX) is nothing else than our previous Rf !. For a general f
however, f ! exists only at the level of derived categories.

Before proving theorem 10.0.5 we first deduce some corollaries. As (f ◦ g)! = f! ◦ g! and g! maps c-soft
sheaves to c-soft sheaves (which are acyclic for any h!) one has R(f ◦ g)! = Rf! ◦Rg!. By adjunction one
obtains :

(f ◦ g)! ' g! ◦ f ! .

Corollary 10.0.7. Let f : X −→ Y such that f! has finite cohomological dimension. Let F ∈ Db(ZX),
G ∈ D+(ZY ) and G′ ∈ Db(ZY ). Then :

Rf∗ RHomZX (F, f !G) ' RHomZY (Rf!F,G),(28)

RHomZX (F, f !G) ' RHomZY (Rf!F,G),(29)

f ! RHomZY (G′, G) ' RHomZX (f−1G′, f !G).(30)
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Proof. Note that (2) follows from (1) by applying RΓ(Y, ·).
For (1) : using adjunction and the projection formula we obtain for all H ∈ D+(ZY ) :

HomD+(ZY )(H,Rf∗ RHomZX (F, f !G)) ' HomD+(ZX)(f
−1H,RHomZX (F, f !G))

' HomD+(ZX)(f
−1H ⊗ F, f !G)

' HomD+(ZY )(Rf!(f
−1H ⊗ F ), G)

' HomD+(ZY )(H ⊗Rf!F,G)

' HomD+(ZY )(H,RHomZY (Rf!F,G)) .

For (3) : similarly for all H ∈ D+(ZX)) :

HomD+(ZX)(H, f
! RHomZY (G′, G)) ' HomD+(ZY )(Rf!H,RHomZY (G′, G))

' HomD+(ZY )(Rf!H ⊗G′, G)

' HomD+(ZY )(Rf!(H ⊗ f−1G′), G)

' HomD+(ZX)(H ⊗ f−1G′, f !G)

' HomD+(ZX)(H,RHomZY (f−1G′, f !G)) .

�

Definition 10.0.8. Given f : X −→ Y we define the relative dualizing complex

ωX/Y := f !ZY ∈ D+(ZX) .

If Y = {∗} we write ωX := f !Z and call it the dualizing complex of X.
If F ∈ Db(ZX) the dual of F is DXF := RHomZX (F, ωX) ∈ D+(ZX).

By definition f !ωY = ωX thus the previous corollary implies :

Rf∗DXF ' DY (Rf!F ) ,(31)

f !(DYG) ' DX(f−1G) .(32)

Proposition 10.0.9. Let X be a (topological) n-manifold. Then

ωX ' OrX [n] .

Proof. Let x be a point of X and U a neighbourhood of x homeomorphic to a n-ball. Let pX : X −→ {∗}
be the canonical projection. Then

RΓ(U, ωX) = RHomZX (ZU , p!XZ)

= RHom(RpX !ZU ,Z)

= RHom(RΓc(U,ZU ),Z) .

The choice of a local orientation of X at x gives a canonical isomorphism RΓc(U,ZU ) = Z[n] thus the
result. �

Corollary 10.0.10 (weak Poincaré duality for manifolds). Let X be a (topological) n-manifold. Then

Hi
c(X,QX)∗ ' Hn−i(X,OrX,Q) .

Proof.

Hn−i(X,OrX,Q) = H−iRHom(QX , pX !Q)

= H−iRHom(RpX !QX ,Q)

= (HiRΓc(X,QX))∗ ,

where we used that the derived category of Q-vector spaces is nothing else than the sum indexed by Z of
copies of the category of Q-vector spaces. �
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10.1. Proof of theorem 10.0.5. We first introduce a relative version of the notion of c-soft sheaves.

Definition 10.1.1. Let f : X −→ Y ∈ Top. A sheaf F ∈ Sh(X) is f -soft if HiRf!F = 0 for all i 6= 0.

Lemma 10.1.2. F ∈ Sh(X) is f -soft if and only if for all y ∈ Y , the sheaf FXy is c-soft.

Proof. We proved that (Rif!F )y = RiΓc(Xy, FXy ). Hence the result. �

Remark 10.1.3. By the lemma above any flasque sheaf is f -soft.

Definition 10.1.4. A sheaf F ∈ Sh(X) is flat if for any monomorphism E i
↪→ F ∈ Sh(X) the morphism

E ⊗ F i⊗1−→ G ⊗ F is also injective.

Thus a sheaf F ∈ Sh(X) is flat if and only if Fx is a flat Z-module for all x ∈ X.

Proposition 10.1.5. Let X, Y be two locally compact spaces and f : X −→ Y a continuous map such
that f! has finite cohomological dimension r. Then ZX admits a flat and f-soft finite resolution :

0 −→ ZX −→ K0 −→ · · · −→ Kr −→ 0 .

Proof. Let Xδ denotes the space X with the discrete topology and let i : Xδ −→ X be the canonical
continuous map.

The sheaf i−1ZX ∈ Sh(Xδ) is flasque thus also K0 := i∗i
−1ZX . Moreover one has the canonical injec-

tion K−1 := ZX ↪→ K0 = i∗i
−1ZX . By induction we define, for 1 ≤ j ≤ r−1, Kj = i∗i

−1coker(Kj−2 −→
Kj−1). The sheaves Kj ∈ Sh(X), 0 ≤ j ≤ r − 1, are flasque, thus f -soft.

Let Kr := coker(Kr−2 −→ Kr−1). As the Kj , 0 ≤ j ≤ r− 1, are f -soft, one has Rif!K
r = Rr+if!ZX .

This last group vanishes because f! has cohomological dimension r. Hence Kr is f -soft. Finally we obtain
a f -soft resolution :

0 −→ ZX −→ K0 −→ · · · −→ Kr −→ 0 .

Let us show that the Kj ’s, 0 ≤ j ≤ r, are flat. By induction if is enough to show that if F ∈ Sh(X) is
flat then i∗i

−1F and coker(F −→ i∗i
−1F) are also flat. As flatness can be checked on germs it is enough

to check that (i∗i
−1F)x and (i∗i

−1F/F)x are flat for all x ∈ X. One computes :

(i∗i
−1F)x = colimU3x

∏
z∈U
Fz,(33)

(i∗i
−1F/F)x = colimU3x

∏
z∈U\{x}

Fz(34)

and the result. �

We will construct f ! using the following heuristics. Suppose that f ! exists. Then for any U ∈ OpX
we have :

RΓ(U, f !G) ' RHom(ZU , f !G) ' RHom(Rf!ZU , G) .

Hence if K• is a f -soft resolution of ZX (thus by lemma 10.1.2 K•U is a f -soft resolution of ZU ) and I•

is an injective resolution of G one has

(35) RΓ(U, f !G) = Hom•(f!K
•
U , I

•)
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Definition 10.1.6. Let K ∈ Sh(X) be f -soft and G ∈ Sh(Y ). One defines a presheaf f !KG ∈ PSh(X)
by :

f !KG(U) := HomZY (f!KU , G) .

Proposition 10.1.7. Let K ∈ Sh(X) be f -soft and flat. Let G ∈ Sh(Y ) be injective.

(i) if F ∈ Sh(X) then F ⊗K is f -soft.
(ii) the functor F 7→ f!(F ⊗K) from Sh(X) to Sh(Y ) is exact.
(iii) f !KG is an injective sheaf.
(iv) for any F ∈ Sh(X) one has

HomZY (f!(F ⊗K), G) ' HomZX (F, f !KG) .

Proof. For (i) : first notice that any F ∈ Sh(X) admits a resolution

· · · −→ F−l −→ · · · −→ F 0 −→ F −→ 0 ,

with F i = ⊕U∈IiZU . For example take F 0 = ⊕U∈OpX ⊕s∈F (U) ZU and d0 : F 0 −→ F the obvious map

sum of 1 7→ s. Construct F i inductively, replacing F by ker d0, etc ...
As K is f -soft, ZU ⊗K = KU is f -soft by lemma 10.1.2. Hence F i ⊗K is f -soft. As K is flat the

sequence

· · · −→ F−l ⊗K −→ · · · −→ F 0 ⊗K −→ F ⊗K −→ 0

is exact.
As f! has finite cohomological dimension this implies that F ⊗K is also f -soft.

For (ii) : it follows immediately from (i).

For (iii) : first we show that f !KG is a sheaf. Let (Ui) be a family of open sets in X with union U . We
have to show that the sequence :

0 −→ (f !KG)(U) −→
∏

(f !KG)(Ui) −→
∏

(f !KG)(Ui ∩ Uj)

is exact.
As (f !KG)(V ) = HomZY (f!KV , G) and HomZY (·, G) is exact as G in injective, it it enough to show

that the sequence of sheaves

f!(⊕KUi∩Uj ) −→ f!(⊕KUi) −→ f!(KU ) −→ 0

is exact.
This follows from (ii) and the fact that the sequence

⊕ZUi∩Uj −→ ⊕ZUi −→ ZU −→ 0

is exact.
The fact that the sheaf f !KG is injective follows from (iv), (ii) and the fact that G is injective.

For (iv) : we first define a morphism

α(F,G) : HomZY (f!(F ⊗K), G) −→ HomZX (F, f !KG) .

Let φ ∈ HomZY (f!(F ⊗K), G). We define α(φ) as the morphism of presheaves defined by the collection

α(φ)(U) : F (U) = HomZX (ZU , F )
f!(·⊗K)−→ HomZY (f!(ZU ⊗K = KU ), f!(F ⊗K))

φ−→ HomZY (f!KU , G) =: f !KG(U) .

We leave as an exercise the fact that α(φ) is really a morphism of (pre)sheaves and that α(F,G) is
functorial in F and G.

Let us prove that α is an isomorphism. First this is true for F = ZU . Indeed in this case the left term
is f !kG(U) by definition, the right one is also f !KG(U) (and one easily checks that α is the identity). By
additivity if follows that α is an isomorphism for any F = ⊕ZUi . For a general F we can find an exact
sequence

0 −→ F ′′ −→ F ′ = ⊕ZUi −→ F −→ 0 .
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As α is functorial and f!(· ⊗K) is exact we have a commutative diagram of exact sequences :

0

��

// Hom(f!(F ⊗K), G) //

α(F,G)

��

Hom(f!(F
′ ⊗K), G) //

α(F ′,G)

��

Hom(f!(F
′′ ⊗K), G)

α(F ′′,G)

��
0 // Hom(F, f !KG) // Hom(F ′, f !KG) // Hom(F ′′, f !KG)

As α(F ′, G) is an isomorphism the morphism α(F,G) is injective for any F . In particular α(F ′′, G) is
injective. This forces α(F ′, G) to be an isomorphism. �

Let us finish the proof of theorem 10.0.5. It is enough to define f ! on complexes of injectives objects
in D+(ZY ). Let IY ⊂ Sh(Y ) denote the full subcategory of injective sheaves.

Fix 0 −→ ZX −→ K0 −→ K1 −→ · · · −→ Kr −→ 0 a flat f -soft resolution of ZX . For G• ∈ C+(IY )
let f !K•G

• be the total complex of the double complex Ci,j = f !K−iG
j . By proposition 10.1.7[(iii)] this

is a complex of injective sheaves. One easily checks that f !K•(·) send morphisms homotopic to zero to
morphisms homotopic to zero and thus defines a functor

f !K•(·) : K+(IY ) −→ K+(IX) .

By proposition 10.1.7[(iv)] one has for any F ∈ K+(IX) and G ∈ K+(IY ) an isomorphism :

HomK+(IY )(f!(F ⊗K•), G) ' HomK+(IX)(F, f
!
K•G) .

As the Ki are flat one has F ⊗ K• ' F ⊗ ZX ' F in D+(ZX). As F ⊗ K• is a complex of f -soft
sheaves one has f!(F ⊗K•) ' Rf!F in D+(ZY ).

This proves that f !K• is a right adjoint to Rf!. Such an adjoint is unique thus the functor f !K• is
independent of the choice of the resolution K• and is the required f !.

Remarks 10.1.8. (1) Notice that ωX belongs to Db(X). Indeed as a complex ω•X can be defined by

ωiX(U) := ⊕j∈Z Hom(Γc(K
j
U ), Ii+j) ,

where ZX ' K• is a c-soft flat resolution and Z ' I• is an injective resolution. Thus Ki = 0
for i < 0, i > r where r is the cohomological dimension of X and Ii = 0 for i < 0, i > 1 (or
more generally i > d if we replace Z by a ring R of finite dimension d). Thus ωiX 6= 0 only for
i ∈ [−r, 1].

(2) By proposition 10.1.7 the DG-sheaf ω•X is injective. Hence :

Hi(U, ω•X) = Hi(Γ(U, ω•X)) = Exti(Γc(K
•
U ,Z)) .

The hypercohomology spectral sequence with

Ep,q2 = Extp(H−1c (U,Z),Z)

gives then (this would still hold replacing Z by any ring R of dimension 1) :

0 −→ Ext1(Hi+1
c (U,Z),Z) −→ H−i(U, ω•X) −→ Hom(Hi

c(U,Z),Z) −→ 0 .

(3) As the complex ω•X is injective the functor F • 7→ DXF
• from C+(X) to itself is exact.

11. Verdier duality and constructibility

The goal of this section is to prove the following :

Theorem 11.0.9. Let (X,X ) be a stratified pseudomanifold. Let F ∈ D+(X) be X -clc (resp. X -cc).
Then DXF ∈ D+(X) is X -clc (resp. X -cc).

As DXF = RHom(F, ωX) it is enough to show the two following results :

Proposition 11.0.10. Let (X,X ) be a stratified pseudomanifold. Then ωX is X -cc.

Theorem 11.0.11. Let (X,X ) be a stratified pseudomanifold. Let F,G ∈ D+(X) be X -clc (resp. X -cc).
Then RHom(F,G) ∈ D+(X) is X -clc (resp. X -cc).
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Proof of proposition 11.0.10. :
First notice that

(ωX)k := j∗Uk→XωX = j!Uk→XωX = ωUk .

We will prove by induction on k ≥ 2 that ωUk is X -cc.
For k = 2 : ωU2

' OrU2
[n] and we are done.

Assume ωUk is X -cc for some k ≥ 2. Consider the exact triangle :

ik!ik
!(ωUk+1

) −→ ωUk+1
−→ Rjk∗ωUk

+1−→ .

To show that ωUk+1
is X -cc it is enough to show the X -constructibility of the other two terms in the

triangle.
As ωUk is X -cc by induction hypothesis, and Rjk∗ maps X -cc on Uk to X -cc on Uk+1, we obtain that

Rjk∗ωUk is X -cc on Uk+1.
On the other hand :

ik
!ωUk+1

= ik
!DUk+1

ZUk+1
= DSk(i−1k ZUk) = ωSk .

As ωSk is constructible on Sk it follows that ik!ik
!ωUk+1

= ik!ωSk is X -cc. 2

Before proving theorem 11.0.11 we recall some classical facts :
First let Y ∈ Top and F,G ∈ Sh(Y ). For any point x ∈ Y one has a natural map

ex : Hom(F,G)x −→ Hom(Fx, Gx)

which extends to a map

e•x : RHom(F,G)x −→ RHom(Fx, Gx) .

This map is neither injective nor surjective in general. However if F is locally constant with finitely
generated stalks we can compute RHom(F,G) using locally a left resolution of F by finitely generated
free sheaves (instead of a right injective resolution of G). As Hom(ZX , G) = G we obtain that e•x is an
isomorphism in this case.

Second we have the following useful lemma :

Lemma 11.0.12. Let Y be locally compact and locally contractible. Then for F ∈ C(X) which is clc,
every point y ∈ Y admits a neighbourhood U on which F is quasi-isomorphic to a complex of constant
sheaves.

Proof. Let U 3 y be a contractible neighbourhhod. Thus H•F is constant on U . The hypercohomology
spectral sequence starting at

Ep,q2 = Hp(U,Hq(F )) =

{
0 if p 6= 0

Hq(Fy) if p = 0

degenerates, giving

Hq(U,F ) = E0,q
2 = HqFy .

Choose F ' I• an injective resolution and let T p be the constant sheaf T py = Γ(U, Ip). Then T • ' I and
the result. �

Proof of theorem 11.0.11. We start with the following proposition, which implies theorem 11.0.11 for X
a manifold with trivial stratification.

Proposition 11.0.13. Suppose Y locally compact and locally contractible. Let F,G ∈ C(Y ) be clc (resp.
cc).

Then for any x ∈ Y , RHom(F,G)x ' RHom(Fx, Gx) and RHom(F,G) is clc (resp. cc).

Proof. The statement is local thus by the previous lemma we can assume that F and G are complexes of
constant sheaves. Then F has a left resolution C• −→ F by a complex C• of constant sheaves with free
stalks. As RHom(F,G) = Hom(C•, G) and Hom(C•, G)x = Hom(C•x, Gx) by the first fact we recalled,
we are done. �
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For (X,X ) a stratified pseudo-manifold and F,G ∈ C(X) which are clc we prove by induction on k
that RHom(F,G)k is X -clc.

For k = 2 it follows from proposition 11.0.13. Suppose the statement holds for some k ≥ 2. Consider
the exact triangle

jk!jk
!Fk+1 −→ Fk+1 −→ ik∗ik

∗F k+1 +1−→ .

Applying RHom(·, Gk+1) we obtain the exact triangle :

RHom(jk!Fk, Gk+1) −→ RHom(Fk+1, Gk+1) −→ RHom(ik∗ik
∗Fk+1, Gk+1)

+1−→ .

Hence it is enough to show that both RHom(jk!Fk, Gk+1) and RHom(ik∗ik
∗Fk+1, Gk+1) are X -clc on

Uk+1.
First, RHom(jk!Fk, Gk+1) = Rjk∗RHom(Fk, Gk). As RHom(Fk, Gk) is X -clc on Uk by induction

hypothesis and Rjk∗ maps X -clc on Uk to X -clc on Uk+1 one obtains that RHom(jk!Fk, Gk+1) is X -clc
on Uk+1.

Second, RHom(ik∗ik
∗Fk+1, Gk+1) = Rik∗RHom(ik

∗Fk+1, ik
!Gk+1). As Gk+1 is X -clc on Uk+1 the

complex ik
!Gk+1 is clc on Sk. By proposition 11.0.13 RHom(ik

∗Fk+1, ik
!Gk+1) is thus clc on Sk. Hence

its extension by zero Rik∗RHom(ik
∗Fk+1, ik

!Gk+1) is X -clc on Uk+1. 2

12. Biduality

Given (X,X ) a stratified pseudo-manifold we first define a morphism of functors

BDX : id −→ DX ◦DX

on the bounded derived category of X -constructible sheaves Db(X ).
We proceed as follows. For any space X, given S, T ∈ Sh(X) one can define

e ∈ Hom(S,Hom(Hom(S, T ), T )) ' Hom(S ⊗Hom(S, T ), T )

in the obvious way. This construction extends to graded sheaves. For DG-sheaves one has to be careful
about signs (we leave the details to the reader). Applying this contruction to T = ω•X and as DXF =
Hom(F, ω•X) we obtain the required biduality map BDX : id −→ DX ◦DX .

Theorem 12.0.14. Let (X,X ) be a stratified pseudo-manifold. Then for any F ∈ Db(X) the biduality
map

BDX : F −→ DXDXF

is an isomorphism.

Proof. First assume that X is a manifold with trivial stratification. Then F is clc with finitely generated
stalk cohomology. The statement is local hence we can assume X = Bn (in particular oriented). Thus
ω•X [n] is an injective resolution of ZX . Moreover H•F is constant on X. By lemma 11.0.12 we can assume
F is a complex of constant sheaves.

If F is just one constant sheaf E, then DXE is clc.
If moreover E is free with finitely generated stalks E∗∗ = E, DXE[−n] = E∗ and E ' DXDXE thus

we are done.
If Ex is finitely generated not free we choose C• −→ E a bounded left resolution by constant free

sheaves with finitely generated stalks. Applying BDX to C• −→ E and using that DXDX is exact
and the previous case for BDX : Ci −→ DXDXC

i we conclude that BDX : E −→ DXDXE is an
isomorphism.

This proves the result for H•F concentrated in one degree. We then proceed by induction on the
length of H•F . Let b the greatest integer such that HbF 6= 0. Consider the short exact sequence :

0 −→ τ<bF −→ F −→ τ≥bF −→ 0 .

As H•(τ≥bF ) is concentrated in one degree and as DXDX is exact we easily conclude. This finishes the
proof in the case X is a manifold.
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For (X,X ) a general stratified pseudomanifold we proceed by induction on k : let us prove that for any

k ≥ 2 the biduality map Fk
BDX−→ DXDXFk is an isomorphism. For k = 2 this follows from the previous

case. Assume this is true for some k ≥ 2. Consider the exact triangle :

ik!ik
!Fk+1 −→ Fk+1 −→ Rjk∗jk

∗Fk+1
+1−→ .

Applying DUk+1
DUk+1

we obtain the map of exact triangles in Db(X ) :

ik!ik
!Fk+1

//

α

��

Fk+1

β

��

// Rjk∗jk
∗Fk+1

γ

��

+1 //

DUk+1
DUk+1

ik!ik
!Fk+1

// DUk+1
DUk+1

Fk+1 // DUk+1
DUk+1

Rjk∗jk
∗Fk+1

+1 //

We want to show that β is an isomorphism in Db(X ). It is enough to show that α and γ are. As

DUk+1
DUk+1

ik!ik
!Fk+1 = ik!DSkDSk ik

!Fk+1 = ik!ik
!Fk+1

(where the last equality follows from by the manifold case) the map α is an isomorphism. As

DUk+1
DUk+1

Rjk∗Fk = DUk+1
jk!DUkFk = Rjk∗DUkDUkFk

we conclude by the induction hypothesis that γ is an isomorphism. �
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12.1. Third (and last) characterization of Deligne’ s extension. Let F• ∈ D+(ZX). Then for
U ∈ OpX and i ∈ Z :

RHom(ZU , DXF•) = RHom(ZU , RHom(F, ωX))

= RHom(ZU ⊗L F•, p!XZ)

= RHom(RpX !F•U ,Z) .

(36)

In particular :

(37) Hi(U,DXF•[−n]) = Ri−n Hom(H•c(U,F•),Z) .

Suppose now that F• ∈ D+(QX) (here Q could be replaced by any field). Then :

Hi(U,DXF•[−n]) = Homi−n(H•c(U,F•),Q)

= Hn−ic (U,F•)∗ ,
(38)

where we used that D(Q− V ec) is the sum indexed by Z of copies of Q− V ec, and where ∗ denotes the
dual in Q− V ec.

This yields :
∀x ∈ X,∀i ∈ Z, Hi(DXF•[−n])x ' Hn−i(i!xF•)∗ .

The following corollary follows immediately :

Corollary 12.1.1. Let E be a local system on some open dense submanifold of X whose complement
has dimension at least 2. The set of axioms (AX2)E,p is equivalent to the following set (AX3)E,p for
F• ∈ DGSh(X) :

(i) HiF• = 0 for i < 0 ; F• is X -clc for some PL-pseudomanifold stratification X of X ; there exists
an open dense subset submanifold U of X of codimension at least 2 on which E is defined such
that F•|U ' EU .

(ii) dim suppHjF• ≤ n− p−1(j) for all j > 0.
(iii) dim suppHjDXF•[−n] ≤ n− q−1(j) for all j > 0.

Theorem 12.1.2. (1) The set of conditions (AX3)E,p determines F• in Db(ZX) uniquely and is
satisfied by Pp(E).

(2) If moreover we work in D(QX) then F• satisfies (AX3)E,p if and only if DXF•[−n] satisfies
(AX3)E∗⊗Or,q where E∗ denotes the local system Hom(E ,QU2

) and q is the perversity dual to p.

Proof. The first part follows from the analogous result for (AX2)E,p.
For the second statement , let G• = DXF•[−n]. Then DXG•[−n] ' DXDXF• ' F • by biduality.

Thus (AX3)E,p(ii) for F• is equivalent to (AX3)E∗⊗Or,q(iii) for G• and similarly exchanging (ii) and
(iii). Hence it remains to show that G• satisfies (AX3)E∗⊗Or,q(i). But :

HiG•x = Hi(DXF•[−n])x = Hn−i(i!xF•)∗ = 0 for i < 0 .

Moreover G• is X -clc if F• is X -clc by theorem 11.0.9. Finally :

G•|U2
= DXF•[−n]|U2

= DU2
F•|U2
E [−n] ' E∗ ⊗OrU2

.

�

Corollary 12.1.3 (Poincaré duality, cf. theorem 2.9.4). Let E be a Q-local system on a dense open
submanifold of X with complement of codimension at least 2. Then

IqHi(X, E∗ ⊗Or) = IpHn−i
c (X, E)∗ .

Proof.

IqHi(X, E∗ ⊗Or) = Hi(X,P•q ((E∗ ⊗Or)⊗Or)) = Hi(X,P•q ((E ⊗ Or)∗ ⊗Or))
= Hi(X,DXP•p (E ⊗ Or)[−n])

= Hn−ic (X,P•p (E ⊗ Or))∗ by equation (38)

= IpHn−i
c (X, E)∗ .
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�

Examples 12.1.4. In this section we assume that X is normal.
Taking E = Or, p = t and q = 0 we obtain :

Hi(X,QX) = I0Hi(X,QX) = IqHi(X,Or∗ ⊗Or)
= IpHn−i

c (X,Or)∗ = ItHn−i
c (X,Or)∗ = Hc

i (X,QX)∗ .

Taking E = QX , p = 0 and q = t we get :

Hn−i(X,QX) = ItHi(X,Or) = IqHi(X,Q∗X ⊗Or)
= IpHn−i

c (X,QX)∗ = I0Hn−i
c (X,QX)∗ = Hn−i

c (X,QX) .

12.2. Pairings. Let us first consider the functoriality of Deligne’s extension.

Proposition 12.2.1. Let f2 : E −→ F be a morphism of local sytems on U2. Let p, q be perversities
satisfying p ≤ q. Then f2 extends in a unique way to a morphism in D(ZX) :

f : P•p (E) −→ P•q (F) .

Proof. Let L• := P•p (E) and M• := P•q (F). By induction it is enough to show that fk : L•k −→ M•k ∈
D(ZUk) extends uniquely to fk+1 : L•k+1 −→M•k+1 ∈ D(ZUk+1

) (k ≥ 2). By definition of M•k+1 one has

HomD(ZUk+1
)(L
•
k+1,M

•
k+1) = HomD(ZUk+1

)(L
•
k+1, τ≤q(k)Rjk∗M

•
k ) .

On the other hand one has a natural sequence of homomorphisms :

HomD(ZUk+1
)(L
•
k+1, τ≤q(k)Rjk∗M

•
k )

φ−→ HomD(ZUk+1
)(L
•
k+1, Rjk∗M

•
k ) ' HomD(ZUk )(L

•
k,M

•
k ) ,

where the last isomorphism is given by adjunction.
Note that τ≤q(k)L

•
k+1 = L•k+1 as q(k) ≥ p(k) and L•k+1 := τ≤p(k)Rjk∗L

•
k. The following easy lemma

(exercice) applied to C = D(ZUk+1
), A = L•k+1, B = Rjk∗M

•
k and m = q(k), implies that φ is an

isomorphism. The result follows.

Lemma 12.2.2. Let C be a triangulated category, A ∈ C and m ∈ Z. Suppose that the natural morphism
τ≤mA −→ A is an isomorphism in C. Then for any B ∈ C the natural homomorphism

HomC(A, τ≤mB) −→ HomC(A,B)

is an isomorphism.

�

Proposition 12.2.3. Let µ2 : E⊗F −→ G be a pairing of local systems on U2 and let p, q, r be perversities
such that p+ q ≤ r. Then there exists a unique morphism in Db(ZX)

µ : P•p (E)⊗L P•q (F) −→ P•r (G)

which cöıncide with µ2 on U2.

Proof. First notice the following lemma, left as an exercice :

Lemma 12.2.4. Let A be an Abelian category and D(A) its derived category. Let A,B ∈ D(A) satisfying
Hi(A) = 0 for i > 0 and Hi(B) = 0 for i < 0. Then the natural homomorphism

HomD(A)(A,B) −→ HomA(H0(A),H0(B))

is an isomorphism.

We apply this lemma to A = DGSh(X), noticing that Hi(E ⊗L F) = 0 for i > 0 and H0(E ⊗L F) '
E ⊗F . Thus µ2 can be seen as µ2 : E ⊗L F −→ G in Db(U2) and the statement of the proposition makes
sense.

Once more we proceed by induction. Let L• := P•p (E), M• := P•q (F), N• := L• ⊗L M• and Q• :=

P•r (G) . We prove by induction the extension of µk : N•k −→ R•k ∈ Db(ZUk) to µk+1 ∈ Db(ZUk+1
).
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We claim that τ≤r(k)N
•
k+1 −→ N•k+1 is a quasi-isomorphism. Applying lemma 12.2.2 it then follows

that
HomD(ZUk+1

)(N
•
k+1, Q

•
k+1 = τ≤r(k)Rjk∗Q

•
k) −→ HomD(ZUk )(N

•
k , Q

•
k)

is an isomorphism. Thus µk uniquely extends to µk+1.
To show the claim, notice thatN•k+1 is quasi-isomorphic to L•k+1⊗LM•k+1. As τ≤p(k)L

•
k+1 −→ L•k+1 and

τ≤q(k)M
•
k+1 −→M•k+1 are quasi-isomorphism we can choose for computing L•k+1⊗LM•k+1 flat resolutions

of L•k+1 and M•k+1 vanishing in degree higher than p(k) and q(k) respectively. The total complex formed
from these resolutions vanishes in degree larger than r(k) ≥ p(k) + q(k).

�

From proposition 12.2.3 we obtain various pairings in hypercohomology. In particular we get a map

Hic(X,P•p (E))⊗Hj(X,P•q (F)) −→ Hi+jc (X,P•r (G)) .

Taking F = E∗ ⊗ Or, G = Or and µ2 : E ⊗ (E∗ ⊗ Or) −→ Or the canonical pairing we obtain the
pairing

IpHi
c(X, E ⊗ Or)⊗ IqHj(X, E∗) −→ IrHi+j

c (X,QX)

described in theorem 2.9.3.
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13. Perverse sheaves

13.1. Summary of what we did. Let X be a pseudomanifold of dimension n. For simplicity we suppose
X oriented. Let p be a Goreski-MacPherson perversity. Given E a local system on U ⊂ X an open dense
submanifold whose complementary has dimension at least 2, we defined Deligne’s extension P•p (E) as the
unique differential graded sheaf F• (up to quasi-isomorphism) satisfying the set of axioms (AX3)E,p :

(i) F• is constructible ; HiF• = 0 for i < 0 ; there exists an open dense subset submanifold U of X
of codimension at least 2 on which E is defined such that F•|U ' EU .

(ii) dim suppHjF• ≤ n− p−1(j) for all j > 0.
(iii) dim suppHj(DXF•[−n]) ≤ n− q−1(j) for all j > 0.

Remark 13.1.1. Recall that for X any stratification admissible for E then (AX3)(ii) and (iii) are equiv-
alent respectively to :

(ii’) ∀x ∈ Sk, Hj(i∗xF•) = 0 for j > p(k) ,
(iii)’ ∀x ∈ Sk, Hj(i!xF•) = 0 for j < n− q(k) ,

where q denotes the dual perversity.

From now on we will assume for simplicity the following :

• X and all its strata have even dimensions. We will denote by dimC the complex dimension
dimR /2. We write r = dimCX. This will be satisfied if we work in the category of complex
analytic spaces with analytic Whitney stratifications or in the category of complex algebraic
varieties with algebraic stratifications.

• we restrict ourselves to the case where p = m is the middle perversity (thus m(2k) = m(2k+1) =
k − 1).

The axioms (AX3)E,m become :

(i) idem.
(ii) dimC suppHjF• ≤ r − j − 1 for all j > 0.
(iii) dimC suppHj(DXF•[−n]) ≤ r − j − 1 for all j > 0.

Under these assumptions it will be convenient to shift our sheaves : rather than working with F•
concentrated in degree [0, 2r] we will work with S := F•[r] concentrated in degree [−r, r].

Our main result up to now can be stated as follows :

Theorem 13.1.2. Let S• ∈ Db(X). Suppose that :

(i) S ∈ Db
c(X) ; HiS• = 0 for i < −r ; there exists an open dense subset submanifold U of X of

codimension at least 2 on which E is defined and such that F•|U ' E|U [r].

(ii) dimC suppHjS• < −j for all j > −r.
(iii) dimC suppHj(DXS•) < −j for all j > −r.

Then S•[−r] ' P•(E).

Remark 13.1.3. As above one can equivalently replace (ii) and (iii) by : for any stratum S of X and any
x ∈ S :

(ii) Hj(i∗xS•) = 0 for j ≥ −dimC S ,
(iii) Hj(i!xS•) = 0 for j ≤ dimC S .

13.2. Perverse sheaves : definition and first main result.

Definition 13.2.1. S• ∈ Db
c(X) is called a perverse sheaf if it satisfies the following relaxed version of

conditions (ii) and (iii) above :

• dimC suppHjS• ≤ −j for all j > −r.
• dimC suppHj(DXS•) ≤ −j for all j > −r.

We denote by Perv(X) ⊂ Db
c(X) the full subcategory of perverse sheaves.

Theorem 13.2.2 (BBDG). (i) The category Perv(X) is Abelian (this is true more generally for any
perversity p).
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(ii) Suppose we are in the algebraic case with middle perversity. Then :
(a) The category Perv(X) is stable under Verdier duality, Noetherian and Artinian. In particular

any perverse sheaf has finite length.

(b) Let U ⊂ Z be a Zariski-open subset of a closed irreducible subvariety Z
i
↪→ X and E an

irreducible local system on U . Then i∗(P•(Z, E)[dimC Z]) is a simple object of Perv(X) and
any simple object is of this form.

13.3. Some remarks on what we did.

13.3.1. To study our space X we started with the category LocX of Q-local systems (of finite rank) on X,
equivalently the category of Q[π1(X)]-modules of finite Q-rank over X. This is an Abelian, Noetherian,
Artinian category with simple objects the irreducible local systems.

However this category is much too small (especially if X is simply connected...). Notice moreover that
it does not contain sufficiently many injectives (we have to enlarge the category to all Q[π1(X)]-modules).

Remark 13.3.1. The natural functor LocX −→ Sh(X) is exact thus induces D(LocX) −→ D(QX). Can
we describe the essential image of this functor ?

13.3.2. One replaced LocX by the full subcategory Shc(X) ⊂ Sh(X) of constructible sheaves (i.e. F ∈
Shc(X) if there exists a filtration in the adequate category such that F in restriction to every stratum is
isomorphic to a local system on this stratum).

We proved that Shc(X) is an Abelian category. Notice that Shc(X) is really an extension of LocX in
the following sense :

Lemma 13.3.2. Let F ∈ Shc,X (X). For any x ∈ X there exists a neighbourhood V of x and a finite
filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm = F|V
such that the Fk’s are X -constructible and the Fk+1/Fk’s are of the form i!L where i : S ∩ V ↪→ V is the
inclusion of the stratum S and L is a local system on S ∩ V .

Moreover in the algebraic case one can take V = X.

Proof. By induction on the number of strata of X .
This is clear if |X | = 1.
Otherwise let

U
� � j
◦ // X Y?

_i
/oo

where U denotes the finite union of open strata (in a sufficiently small neighbourhood V of a given point
x in general, globally if X is algebraic). Consider the exact sequence

0 −→ j!j
∗F −→ F u−→ i∗i

∗F −→ 0 .

Notice that j∗F is a local system on U and G := i∗F is X 0-constructible on Y , where X 0 denotes the
filtration of Y induced by X . As |X 0| < |X | there exists by induction hypothesis a filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm = G

of G on V ∩ Y and the Fk+1/Fk’s have the required form. One then define F ′0 = 0, F ′k := u−1i∗Fk−1
which is X -constructible. The F ′k+1/F ′k still have the required form as the sequence

0 −→ j!j
∗F −→ F ′k −→ i∗Fk−1 −→ 0

is exact. �

The full-subcategory Shc(X) ⊂ Db
c(X) is Abelian but does not have very nice functorial properties

(in particular is not stable under Verdier duality). Notice also that we have to enlarge it to ensure it has
enough injectives.

The natural embedding Shc(X) ⊂ Db
c(X) induces a natural functor

Db(Shc(X)) ↪→ Db
c(X) .
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Theorem 13.3.3 (Beilinson-Nori). In the algebraic case the natural functor Db(Shc(X)) ↪→ Db
c(X) is

an equivalence of categories.

On the other hand our Abelian category Perv(X) ⊂ Db
c(X) will have good functorial properties.

Moreover one still has :

Theorem 13.3.4 (Beilinson). In the algebraic case the natural functor Db(Perv(X)) −→ Db
c(X) is an

equivalence of categories.

14. t-structures

Definition 14.0.5. Let D be a triangulated category. A t-structure on D is a pair (D≤0,D≥0) of two
stricly full subcategories satisfying :

(1) D≤−1 ⊂ D≤0 and D≥1 ⊂ D≥0, where for any integer a ∈ Z one defines D≥a := D≥0[−a] and
D≤a := D≤0[−a].

(2) HomD(D<0,D≥0) = 0, where D<0 is another notation for D≤−1.
(3) For any X ∈ D there exists a exact triangle

A −→ X −→ B
+1−→

where A ∈ D≤0 and B ∈ D>0.

Example 14.0.6. The example to keep in mind is D = D(A) the derived category of an Abelian category
A with

D≤0 := {X ∈ D / HiX = 0 for all i > 0}
and

D≥0 := {X ∈ D / HiX = 0 for all i < 0} .
The axiom (3) reduces to the existence of truncation functors τ≤0 : D −→ D≤0 and τ>0 : D −→ D>0

such that any X ∈ D lies in a exact triangle

τ≤0X −→ X −→ τ>0X
+1−→ .

Definition 14.0.7. The core of the t-structure (D≤0,D≥0) is the full subcategory C := D≥0 ∩D≤0 of D.

Our first goal in this section will be to prove that the core C is an Abelian subcategory of D.

14.1. Truncation functors. First we show that the choice of A and B in axiom (3) is in fact functorial :

Proposition 14.1.1. There exist functors τ≤i : D −→ D≤i and τ>i : D −→ D>i such that any object
X ∈ D lies in a exact triangle

τ≤iX −→ X −→ τ>iX
+1−→ .

The functor τ≤i is right adjoint to the inclusion D≤i ⊂ D and τ>i is left adjoint to the inclusion
D>i ⊂ D.

Proof. Let A −→ X −→ B be as in (3). Given any A′ ∈ D≤0 and any morphism A′ −→ X there exists a
unique factorisation

A // X

A′

``@
@

@
@

OO .

Indeed the exact triangle B[−1] −→ A −→ X
+1−→ induces the long exact sequence :

Hom(A′, B[−1]) −→ Hom(A′, A) −→ Hom(A,X) −→ Hom(A,B) .

As B ∈ D≥1 (hence B[−1] ∈ D≥2) and A′ ∈ D≤0 axiom (2) gives

Hom(A′, B[−1]) = Hom(A,B) = 0

and the result.
Hence A is unique up to unique isomorphism and we define τ≤0X := A (axiom of choice).
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Similarly for τ≥1X.
The adjunction properties follow easily. �

We now proof that the completion

τ≤0X // X // τ≥1X //___ τ≤0X[1]

is functorial :

Proposition 14.1.2. Given X ∈ D there exists a unique morphism

d(X) : τ≥1X −→ τ≤0X[1]

such that the triangle τ≤0X // X // τ≥1X // τ≤0X[1] is exact. Moreover d is a morphism of

functors.

Proof. The existence of d(X) follows from axiom (3). Let us prove uniqueness. Suppose hi : τ≥1X −→
τ≤0X[1], i = 1, 2, are two such morphisms. By TR4 there exists a commutative diagram

τ≤0X // X
g // τ≥1X

h1 //

φ

���
�
�

τ≤0X[1]

ψ

zz
τ≤0X // X

g // τ≥1X
h2 // τ≤0X[1]

hence (idτ≥1
X − φ) ◦ g = 0. Thus there exists ψ : τ≤0X[1] −→ τ≥1X such that

idτ≥1X − φ = ψ ◦ h1 .

As τ≤0X[1] ∈ D≤−1 and τ≥1X ∈ D≥1 necessarily ψ = 0 by axiom (2), hence φ = idτ≥1
X and h1 = h2.

The fact that d is a morphism of functors follows formally. �

Definition 14.1.3. One defines τ≤nX = (τ≤0(X[n]))[−n] and τ≥nX = (τ≥0(X[n]))[−n].

Lemma 14.1.4. D≤n =
⊥
D>n and D>n = D≤n⊥.

Proof. Follows from axiom (3). �

Lemma 14.1.5. Let X −→ Y −→ Z
+1−→ be an exact triangle. If X,Z ∈ D≤n then Y ∈ D≤n. Similarly

replacing D≤n by D>n.

Proof. Suppose X,Z ∈ D>0. We have to show that τ≤−1Y = 0. Applying Hom(τ≤−1Y, ·) to our triangle
we obtain the exact sequence

Hom(τ≤−1Y,X) −→ Hom(τ≤−1Y, Y ) −→ Hom(τ≤−1Y, Z) .

AsX,Z ∈ D>0 and τ≤−1Y ∈ D≤−1 one has Hom(τ≤−1Y,X) = Hom(τ≤−1Y,Z) = 0. Hence Hom(τ≤−1Y, Y ) =
0. However Hom(τ≤−1Y, Y ) = Hom(τ≤−1Y, τ≤−1Y ) by adjunction, hence τ≤−1Y = 0.

The other case is similar. �

Of course for a ≤ b one has τ≤aτ≤b = τ≤a. More interestingly one has :

Lemma 14.1.6. If a ≤ b one has τ≥aτ≤b ' τ≤bτ≥a.
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Proof. Consider the diagram given by the octahedron axiom :

τ<aτ≤bX = τ<aX //

''PPPPPPPPPPPPP
τ≤bX //

��

τ≥aτ≤bX

���
�
�
�
�
�
�

X

''PPPPPPPPPPPPP

��@@@@@@@@@@@@@@@@@@@

τ≥aX

��
τ>bX = τ>bτ≥aX

.

Notice that τ≥aτ≤bX ∈ D≤b : indeed τ>bτ≥aτ≤bX = τ>bτ≤bX = 0. Hence necessarily

τ≥aτ≤b
γ
' τ≤bτ≥a .

�

Remark 14.1.7. Notice that the isomorphism γ above is canonical.

Definition 14.1.8. One defines :

τ[a,b]X := τ≥aτ≤bX ' τ≤bτ≥aX ,

D[a,b] := D≥a ∩ D≤b ,

H0X := τ[0,0]X ∈ D[0,0] =: C ,

HnX := H0(X[n]) = (τ≥n(τ≤nX))[n] .
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15. The core is Abelian

Theorem 15.0.9. Let (D≤0,D≥0) be a t-structure on a triangulated category D and C := D≤0 ∩D≥0 its
core. Then :

(1) C is Abelian.
(2) For A −→ B −→ C ∈ C the following properties are equivalent :

(i) The sequence 0 −→ A −→ B −→ C −→ 0 is exact in C.

(ii) There exists d : C −→ A[1] such that A −→ B −→ C
d−→ A[1] is a distinguished triangle in

D (in fact d is unique).

(3) The functor H0 : D −→ C is cohomological : for any distinguished triangle X −→ Y −→ Z
+1−→

in D there is a long exact sequence :

· · · −→ H−1(Z) −→ H0(X) −→ H0(Y ) −→ H0(Z) −→ H1(X) −→ · · · .

Proof. Proof of(1). First notice that C is obviously additive.

Let us show that C has cokernels. Let f : A −→ B ∈ C. Choose a distinguished triangle in D :

(39) A −→ B −→ C −→ A[1] .

As A ∈ D[0,0] one has τ>1(A[1]) = (τ>0(A))[1] = 0 hence A[1] ∈ D[−1,−1]. For any T ∈ C applying
Hom(T, ·) to the distinguished triangle (39) gives rise to the long exact sequence

(40) · · · −→ Hom(A, T ) −→ Hom(B, T ) −→ Hom(C, T ) −→ Hom(A[1], T ) −→ · · · .

As T ∈ D≥0 one has Hom(C, T ) ' Hom(τ≥0C, T ). Second, Hom(A[1], T ) = 0 as A[1] ∈ D≤−1 and
T ∈ D≥0. Applying Hom(·, X) to (39) for X ∈ D>0 one obtains that C ∈ D≤0 hence τ≥0C ∈ C.

Finally equation (40) tells us that B −→ τ≥0C is a cokernel for f : A −→ B.

Similarly one checks that H−1C = τ≤0C[−1] −→ A is a kernel for f : A −→ B.

It remains to show that Coimf ' Im f . Consider the following diagram obtained from the octahedron
axiom :

ker f [1] = τ≤−1C

��

I

88pppppp

��
ker f = τ≤0C[−1] // A

??�
�

�
�

f
// B //

&&MMMMMMMMMMMM C

��
cokerf = τ≥0C

,

where I = Im f = ker(B −→ cokerf). The distinguished triangle

ker f −→ A −→ I
+1−→

shows that Im f = I = coker(ker f −→ A) = Coimf .

This finishes the proof that C is Abelian.

Proof of (2).

Suppose (ii). Let A
f−→ B

g−→ C
+1−→ be a distinguished triangle with A,B,C ∈ C. By (1) one knows

that cokerf = H0C = C and in a dual way ker g = A. Thus

0 −→ A −→ B −→ C −→ 0

is a short exact sequence in C.
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Conversely let 0 −→ A −→ B −→ C −→ 0 be a short exact sequence in C. Choose a distinguished
triangle

A
f−→ B −→ X

+1−→ .

As A,B ∈ C one has X ∈ D[−1,0]. As f is monic H−1X = 0. As cokerf = H0X one obtains X '
cokerf = C and the result.

Proof of (3). Let X −→ Y −→ Z
+1−→ be a distinguished triangle.

Step 1 : we first show that if X,Y, Z ∈ D≥0 then 0 −→ H0X −→ H0Y −→ H0Z is exact in C.
Notice that H0X = τ≤0X and similarly for Y and Z. Hence it is enough to show that for any T ∈ C

the sequence

0 −→ Hom(T, τ≤0X) −→ Hom(T, τ≤0Y ) −→ Hom(T, τ≤0Z)

is exact. Applying Hom(T, ·) to our triangle we obtain the exact sequence

Hom(T,Z[−1]) −→ Hom(T,X) −→ Hom(T, Y ) −→ Hom(T,Z) .

As T ∈ D≤0 and Z[−1] ∈ D≥1 the term Hom(T,Z[−1]) vanishes. As T ∈ C one has a canonical
isomorphism Hom(T, τ≤0X) ' Hom(T,X) and similarly for Y and Z. The result follows.

Step 2 : let us show that if Z ∈ D≥0 then 0 −→ H0X −→ H0Y −→ H0Z is exact. As before we want
to show that the rows in the following diagram are exact :

0 // Hom(T,H0X) // Hom(T,H0Y ) // Hom(T,H0Z)

0 // Hom(T, τ≥0X) // Hom(T, τ≥0Y ) // Hom(T,Z)

.

Applying the first step, it is enough to show that τ≥0X −→ τ≥0Y −→ Z is part of a distinguished triangle.
The morphism X −→ Y gives rise to a commutative diagram :

τ<0X //

��

X //

��

τ≥0X

��
τ<0Y // Y // τ≥0Y

.

We first claim that τ<0X ' τ<0Y . By the universal property of the truncation functor τ<0 it is
equivalent to showing that for any T ∈ D<0 the morphism Hom(T,X) −→ Hom(T, Y ) is an isomorphism.

This follows from applying Hom(T, ·) to our distinguished triangle X −→ Y −→ Z
+1−→ since Z ∈ D≥0

(hence Z[−1] ∈ D≥1) by assumption.
Applying the octahedron axiom we obtain :

τ<0X = τ<0Y //

&&LLLLLLLLLLL X //

��

τ≥0X

��

Y

��3
333333333333333

""EEEEEEEE

τ≥0Y

���
�
�

Z

and the result.

Step 3 : in a dual way we obtain that if X ∈ D≤0 then H0X −→ H0Y −→ H0Z −→ 0 is exact.
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Step 4 : the general case. Consider the following diagram obtained from the octahedron axiom :

τ≤0X //

""EEEEEEEE X //

��

τ>0X

���
�
�
�
�
�
�

Y

��3
33333333333333

""FFFFFFFFF

U

���
�
�

Z

Apply H0 :

H0τ≤0X //

%%JJJJJJJJJ H0X //

��

0

���
�
�
�
�
�
�

H0Y

��5555555555555555

##HHHHHHHHH

H0U

���
�
�

H0Z

We want to show that H0X −→ H0Y −→ H0Z is exact. This follows from the fact that :

• 0 −→ H0τ≤0X −→ H0X −→ 0 = H0τ>0X is exact by step 2.
• H0τ≤0X −→ H0Y −→ H0U −→ 0 is exact by step 3.
• 0 = H0τ>0X −→ H0U −→ H0Z is exact by applying step 2 to the distinguished triangle

U −→ Z −→ τ>0X[1]
+1−→.

�

16. Non-degenerate t-structures and t-exact functors

Definition 16.0.10. The t-structure (D≤0,D≥0) is non-degenerate if one of the following equivalent
conditions is satisfied :

(i) ∩n∈ZD≤n = {0} and ∩n∈ZD≥n = {0}.
(ii) If X ∈ D satisfies Hp(X) = 0 for all p ∈ Z then X = 0.

Let us show that the two conditions are indeed equivalent. First assume (i). Consider the distinguished
triangle :

τ≤0X −→ X −→ τ<0X
+1−→ .

As

Hp(τ≤0X) =

{
Hp(X) if p ≤ 0

0 otherwise

vanishes in any case, one obtains τ≤0X ∈ D≤p for all p ∈ Z. Similarly τ>0(X) ∈ D≥p for all p ∈ Z. Hence
τ≤0X = τ>0X = 0 by assumption (i), hence X = 0.

Conversely assume (ii). Let X ∈ ∩n∈ZD≤n. Thus τ≥pX = 0 for all p ∈ Z. Hence Hp(X) =
(τ≤p(τ≥pX))[p] = 0 and X = 0 by (ii). Similarly ∩n∈ZD≥n = {0}.

Example 16.0.11. The standard t-structure on the derived category D(A) of an Abelian category is non-
degenerate. On the other hand for any triangulated category D the t-structure ({0},D) is degenerate.

Proposition 16.0.12. If the t-structure (D≤0,D≥0) is non-degenerate then :
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(i) the family of functors (Hi) is conservative : a morphism f : X −→ Y ∈ D is an isomorphism if
and only if for all i ∈ Z the morphisms Hif : HiX −→ HiY are isomorphisms.

(ii) for all n ∈ Z,

D≤n = {X ∈ D / HpX = 0 for p > n},
D≥n = {X ∈ D / HpX = 0 for p < n} .

Proof. For (i) : clearly if f is an isomorphism then Hif is an isomorphism ofr all i ∈ Z. Conversely
suppose HiF is an isomorphism for all i ∈ Z. Let

X −→ Y −→ Z
+1−→

be a distinguished triangle. The associated long exact sequence

HpX
∼−→ HpY −→ HpZ −→ Hp+1X

∼−→ Hp+1Y

forces HpZ = 0 for all p ∈ Z hence Z = 0 as the t-structure is non-degenerate, hence f is an isomorphism.

For (ii) : if X ∈ D≤n then HpX = 0 for p > n. Conversely suppose HpX = 0 for p > n. As
Hp(X) ' Hp(τ≥n+1X) for p > n one has Hp(τ≥n+1)X) = 0 for all p ∈ Z. Thus τ≥n+1X = 0 i.e.
X ∈ D≤n. �

Definition 16.0.13. Let F : D1 −→ D2E be a triangulated functor. Let (D≤0i ,D≥0i ), i = 1, 2 be t-
structures on Di, with core Ci.

One says that :

• F is left t-exact if F (D≥01 ) ⊂ D≥02 .

• F is right t-exact if F (D≤01 ) ⊂ D≤02 .
• F is t-exact if it is both right and left t-exact.

We denote by pF : C1 −→ C2 the functor H0 ◦ F ◦ i1.

Proposition 16.0.14. Let F : D1 −→ D2 be left t-exact. Then :

(1) For all X ∈ D1 one has a canonical isomorphism

τ≤0(F (τ≤0X))) ' τ≤0F (X) .

In particular if X ∈ D≥01 then H0(F (X)) ' pF (H0(X)).
(2) pF : C1 −→ C2 is left-exact.

Symmetric statement for F right t-exact.

Proof. For (1). Consider the exact triangle τ≤0X −→ X −→ τ>0X
+1−→. Applying F one obtains the

exact triangle

(41) F (τ≤0X) −→ F (X) −→ F (τ>0X)
+1−→

As F is left t-exact, F (τ>0X) ∈ D≥12 . Hence it is enough to show that for any A −→ B −→ C
+1−→

with C ∈ D≥1 then τ≤0A ' τ≤0B ; equivalently that for any W ∈ D≤0 the morphism Hom(T,A) −→
Hom(T,B) is an isomorphism. This follows from the long exact sequence obtained by applying Hom(T, ·)
to our triangle.

For (2). Let 0 −→ X −→ Y −→ Z −→ 0 be an exact sequence in C1, hence X −→ Y −→ Z
+1−→

is an exact triangle in D1. Applying F one obtains the exact triangle F (X) −→ F (Y ) −→ F (Z)
+1−→.

Applying H0 and as F (Z) ∈ D≥02 one obtains :

0 −→ H0F (X) −→ H0F (Y ) −→ H0F (Z) ,

hence pF is left t-exact. �
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17. Glueing of t-structures

17.1. The glued t-structure. Consider the following topological situation :

U
� �

o // X Y?
_

/oo .

Denoting by DZ the derived category of sheaves with constructible cohomology Dc(ZZ) on a space Z we
have the following diagram of adjunctions between triangulated categories :

j!

��

DU
j∗

��

i∗

��

DX

j!=j∗

OO

i!

��DY

i∗=i!

OO

satisfying the following identities

id
∼−→ j!j! ,

j∗j∗
∼−→ id ,

i∗i∗
∼−→ id ,

id
∼−→ i!i! ,

j∗i∗ = 0 hence i!j∗ = i∗j! = 0 ,

where we wrote j∗ rather than Rj∗, etc ...
From now on we will assume we are given abstracly three categories DY , DU and DX and functors

i∗, j∗, j!, j∗, i∗, i
! satisfying the previous relations. Suppose that (D≤0Y ,D≥0Y ) and (D≤0U ,D≥0U ) are t-

structures on DY and DU respectively. We would like to “glue them” together into a t-structure on DX .
Our candidate is the following :

Definition 17.1.1. We define :

D≤0X := {F ∈ DX / i∗F ∈ D≤0Y and j∗F ∈ D≤0U } .

D≥0X := {F ∈ DX / i!F ∈ D≤0Y and j!F ∈ D≤0U } .

Theorem 17.1.2. (D≤0X ,D≥0X ) defines a t-structure on DX .

Proof. We have to show that the three axioms (i), (ii) and (iii) of t-structures are satisfied.

For (i) : clearly D<0
X ⊂ D

≤0
X and D>0

X ⊂ D
≥0
X as the same is true for DY and DU .

For (ii) : Let F,G ∈ DX . We have an exact triangle :

i!i
!G −→ G −→ j∗j

∗G
+1−→ .

Applying Hom(F, ·) to this triangle we obtain the long exact sequence :

· · · −→ Hom(i∗F, i!G) −→ Hom(F,G) −→ Hom(j∗F, j∗G) −→ · · · .

If F ∈ D≤0X and G ∈ D>0
X then i∗F ∈ D≤0Y and i!G ∈ D>0

Y hence Hom(i∗F, i!G) = 0. Similarly j∗F ∈ D≤0U
and j!G ∈ D>0

U hence Hom(j∗F, j!G) = 0. The long exact sequence implies Hom(F,G) = 0 in this case,

thus Hom(D≤0X ,D>0
X ) = 0.

For (iii) : Let F ∈ DX . We want to produce an exact triangle : A −→ F −→ B
+1−→ with A ∈ D≤0X

and B ∈ D>0
X .

Let us first analyse the problem, thus suppose such a triangle exists. As j∗ is exact and j∗A ∈ D≤0U
and j∗B = j!B ∈ D>0

U , necessarily j∗A = τ≤0j
∗F and j∗B = τ>0j

∗F .
As j∗ = j! is right-adjoint to j∗ we get from j∗A = τ≤0j

∗F a morphism

j!τ≤0j
∗F −→ A
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which becomes an isomorphism after applying j∗. Applying the octahedron axiom we obtain the diagram :

j!j
!A = j!τ≤0j

∗F //

&&MMMMMMMMMMMM
A

��

// i∗i∗A

���
�
�

F //

""EEEEEEEEE G

���
�
�

B

hence an exact triangle

i∗i
∗A −→ G −→ B

+1−→ .

Applying i! we obtain

i∗A −→ i!G −→ i!B
+1−→ .

As i∗A ∈ D≤0Y we obtain i∗A = τ≤0i
!G necessarily.

Using our analysis we now construct A and B. Start from the morphism

τ≤0j
∗F −→ j∗F .

By adjunction we obtain a morphism
j!τ≤0j

∗F −→ F .

Complete it into an exact triangle

j!τ≤0j
∗F −→ F −→ G

+1−→ .

Consider the morphism τ≤0i
!G −→ G. By adjunction it gives i∗τ≤0i

!G −→ G which we complete into an
exact triangle

i∗τ≤0i
!G −→ G −→ B

+1−→ .

Consider the diagram given by the octahedron axiom :

i∗τ≤0i
!G

##GGGGGGGGG

G

��@@@@@@@

A

DD	
	

	
	

	
	

	
	

// F

::uuuuuuuuuu // B

j!τ≤0j
∗F

::v
v

v
v

v

55kkkkkkkkkkkkkkkkk

which produces A and B.
We have to check that A and B satisfy the required properties, namely A ∈ D≤0X and B ∈ D>0

X . But

j∗A = j∗(j!τ≤0j
∗F ) = τ≤0j

∗F ∈ D≤0U
where the first equality follows from applying j∗ to the triangle

j!τ≤0j
∗F −→ A −→ i∗τ≤0i

!G
+1−→

and j∗i∗ = 0. On the other hand :

i∗A = i∗i∗τ≤0i
!G = τ≤0i

!G ∈ D≤0Y .

Hence A ∈ D≤0X .
SImilarly :

j!B = τ>0j
∗F ∈ D>0

U .

i!B = cone(τ≤0i
!G −→ i!G) = τ>0i

!G ∈ D>0
Y .
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Hence B ∈ D>0
X .

�
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Proposition 17.1.3. (i) The functors j∗ : DX −→ DU and i∗ : DY −→ DX are t-exact.
(ii) The functors j! : DU −→ DX and i∗ : DX −→ DY are right t-exact (but not t-exact in general).
(iii) The functors j∗ : DU −→ DX and i! : DX −→ DY are left t-exact.

Proof. Consider first i∗ : DY −→ DX . As i∗i∗
∼−→ id and j∗i∗ = 0 one has i∗D≤0Y ⊂ D≤0X by definition

of D≤0X . As id
∼−→ i!i∗ and j!i∗ = 0 one has i∗D≥0Y ⊂ D≥0X . Hence i∗ is t-exact (hence pi∗ : CY −→ CX is

exact and i∗ commutes with H0).

Consider next j∗ : DX −→ DU . This time j∗D≤0X ⊂ D≤0U and j∗D≥0X = j!D≥0X ⊂ D≥0U by definition of
the t-structure on DX and the result.

For (ii) : As id
∼−→ j∗j! one has j∗j!D≤0U ⊂ D

≤0
U . As i∗j! = 0 this implies j!D≤0U ⊂ D

≤0
X . On the other

hand i∗D≤0X ⊂ D
≤0
Y by definition.

Statement (iii) is dual to (ii).
�

Corollary 17.1.4. We have the following diagram of adjunctions

H0j!

��

CU

H0j∗

��

H0i∗

��

CX

j!=j∗

OO

H0i!

��CY

i∗=i!

OO

satisfying the following identities

id
∼−→ j!(H0j!) ,

j∗(H0j∗)
∼−→ id ,

(H0i∗)i∗
∼−→ id ,

id
∼−→ (H0i!)i! ,

j∗i∗ = 0 hence (H0i!)(H0j∗) = (H0i∗)(H0j!) = 0 .

Let us now study what the distinguished triangles in D

(42) j!j
!F −→ F −→ i∗i

∗F +1−→

and

(43) i!i
!F −→ F −→ j∗j

∗F +1−→

become in C.

Lemma 17.1.5. Let F ∈ C. One has the following exact sequences in C :

(44) 0 −→ pi∗H
−1i∗F −→ pj!

pj∗F −→ F −→ pi∗
pi∗F −→ 0

and

(45) 0 −→ pi!
pi!F −→ F −→ pj∗

pj∗F −→ pi∗H
−1i!F −→ 0 .

Proof. From the triangle (42) one deduces the long exact sequence :

· · · −→ H−1F −→ H−1i∗i
∗F −→ H0j!j

!F −→ H0F −→ H0i∗i
∗F −→ H1j!j

!F −→ · · · .

As F ∈ C one has H−1F = 0 and H0F = F . As i∗ commutes with H0 (hence with Hi, i ∈ Z) the exact

sequence (44) will follow from H1j!j
!F = 0. As F ∈ D≤0X one has j!F ∈ D≤0U . As j! is right t-exact it

follows that j!j
!F ∈ D≤0X hence H1j!j

!F = 0.
The proof of (45) starting from (43) is similar. �
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Corollary 17.1.6. (a) The essential image of pi∗ : CY −→ CX is

{F ∈ CX / F ' H0i∗i
∗F} = {F / j∗F = 0} .

(b) The essential image of pj∗ = H0j∗ : CY −→ CX identifies with

{F / F ' H0j∗j
∗F} = {F / H0i!F = H1i!F = 0} .

Proof. If F ' i∗G then H0i∗F ' G by adjunction hence F ' i∗H0i∗F = H0i∗i
∗F as H0 commutes with

i∗. We deduce from the sequence (45) that F ∼−→ H0i∗i
∗F if and only if pj!

pj∗F = 0. As id
∼−→ j!pj!

the functor
p
j! is fully faithful and F ∼−→ H0i∗i

∗F if and only if pj∗F = 0.
Similarly : if F ' pj∗F then as j∗pj∗

∼−→ id one has j∗F ' G hence F ' H0j∗j
∗F . Contemplating

the sequence (44) shows this is the case if and only if pi∗
p
j!F = pi∗H

1i!F = 0, hence if and only if
H0i!F = H1i!F = 0 as pi∗ is fully faithful. �

Lemma 17.1.7. Let F ∈ CX . The exact sequences

0 −→ i∗H
0i!F −→ F

and

F −→ i∗H
0i∗F −→ 0

obtained from the sequences (44) and (45) are respectively the biggest subobject and the biggest quotient
of F contained in the essential image of CY .

Proof. Let G ∈ CY . Then Hom(i∗G,F) = Hom(G, H0i!F) = Hom(i∗G, i∗H0i!F) where the first equality
follows from adjunction and the second one from the fact that i∗ is fully faithful.

The second statement is dual to the first one. �

18. Intermediate extensions

Definition 18.0.8. Let G ∈ CU . One says that F ∈ CX extends G if j∗F ∼−→ G.

Example 18.0.9. Both H0j!G and H0j∗G extend G.

Proposition 18.0.10. There exists a pair (F ∈ CX , α : j∗G ∼−→ G), unique up to unique isomorphism,
extending G and satisfying

(i) i∗F ∈ D<0
Y .

(ii) i!F ∈ D>0
Y .

It will be called the intermediate extension of G and denoted j!∗G.

Proof. First notice that :

i∗F ∈ D<0
Y ⇐⇒ H0i∗F = 0

⇐⇒ any quotient of F in CY is 0 by lemma (17.1.7).

Similarly i!F ∈ D<0
Y if and only if H0i!F = 0, if and only if any subobject of F in CY is 0.

Let us prove first the unicity of the intermediate extension. Suppose α : j∗F ∼−→ G and α′ : j∗F ′ ∼−→ G
are two such intermediate extension. Applying Hom(F , ·) to the exact triangle

i!i
!F ′ −→ F ′ −→ j∗j

∗F ′ +1−→

one obtains the long exact sequence :

· · · −→ Hom(i∗F , i!F ′) −→ Hom(F ,F ′) −→ Hom(j∗F , j∗F ′) −→ Hom(i∗F , i!F ′[1]) −→ · · · .

As i∗F ∈ D<0
Y and i!F ′ ∈ D>0

Y (thus i!F ′[1] ∈ D≥0Y ) we obtain

Hom(F ,F ′) ∼−→ Hom(G,G) .

Hence there exists a unique isomorphism between F and F ′ compatible with α and α′.
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Let us show the existence of the intermediate extension. Considering the adjunctions (j!, j
! = j∗, j∗)

we get a canonical morphism j!G −→ j∗G in D which induces the identity of G once composed with j∗.
Applying H0 we obtain a canonical morphism

H0j!G −→ H0j∗G

in C inducing the identity of G once composed with j∗. Define the intermediate extension M as the image
of this morphism :

M � r

$$HHHHHHHHH

H0j!G

<< <<xxxxxxxx
// H0j∗G .

Obviously j∗M = G. It remains to show that M satisfies the conditions (i) and (ii) for intermediate
extensions.

First (H0i∗)(H0j!G) = 0 hence H0j!G has no quotient in CY . A fortiori M has no such quotient.
Dually H0j∗G has no subobject in CY hence also M . �

Example 18.0.11. If D = Dc(ZX) with its standard t-structure then j!∗G = j!G.

Lemma 18.0.12.

j!∗G = H0j!G/i∗H
0i!j!G where i∗H

0i!j!G is the biggest subobject of H0j!G in CY ,

= ker(H0j∗G −→ i∗H
0i∗j∗G) where i∗H

0i∗j∗G is the biggest quotient of H0j∗G in CY .

Proof. Put F = j∗G in the triangle j!j
!F −→ F −→ i∗i

∗F +1−→ . On the other hand put F = j!G in the

triangle i!i
!F −→ F −→ j∗j

∗F +1−→ . One gets the diagram

j!G // j∗G // i∗i∗j∗G −→

i!i
!j!G // j!G // j∗G // i!i!j!G[1] −→

Hence i∗i
∗j∗G

∼−→ i!i
!j!G[1]. As i∗ is fully faithful on D we deduce : i∗j∗G

∼−→ i!i
!G[1]. Applying H0 to

the second line of the previous diagram we obtain the exact sequence :

H0(j∗G[−1]) = 0 −→ i∗H
0i!j!G −→ H0j∗G −→ i∗H

0i∗j∗G −→ H1(j!G) .

As j∗G ∈ D≥0X one has H0(j∗G[−1]) = 0. Similarly j!G ∈ D≤0X hence H1(j!G) = 0 which gives the
result. �

Proposition 18.0.13. Simple objects in CX are the pi∗F , where F ∈ CY is simple, and the j!∗G, G
simple in CU .

Proof. Follows immediately from the exact sequence of Abelian categories :

0 −→ CY −→ CX −→ CU −→ 0 .

�

19. Application to perverse sheaves

Recall our setting :

X = Xm ⊃ Xm−1 ⊃ · · · ⊃ X0 ⊃ X−1
is an evenly stratified space with dimCXi = i and we consider the middle perversity for simplicity.

We define the perverse t-structure on Dbc(X) inductively on m := dimCX as follows :

• if m = 0 we consider the standard t-structure. Hence a perverse sheaf is just a sheaf.
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• the inductive step works as follows. Consider the diagram

Xm−1
� �

/ // X X \Xm−1? _0oo

Y
� �

/ // X U?
_

0oo

.

By induction hypothesis we have the perverse t-structure on DY := Dbc(Y ). On DU := Dbc(U) we
put the standard t-structure shifted by mU := dimC U :{

pD≤0U := stDU≤−mU ,
pD≥0U := stDU≥−mU .

We then define the perverse t-structure on DX := Dbc(X) by glueing the two t-structures on DY
and DU .

Let us show that we recover our previous definition of perverse sheaves.

Proposition 19.0.14. Let F ∈ Dbc(X). Then :

(1)

F ∈ pDX≤0 ⇐⇒ k∗sF ∈
stDX≤−mS for any stratum kS : S −→ X

⇐⇒ dimC suppHiF ≤ −i for any i ∈ Z.
(2)

F ∈ pDX≥0 ⇐⇒ k!SF ∈
stDX≥−mS for any stratum kS : S −→ X

⇐⇒ k∗SDXF ∈ stDX≤−mS for any stratum kS : S −→ X

⇐⇒ dimC suppHiDXF ≤ −i for any i ∈ Z.
(3) F ∈ CX if and only F is a perverse sheaf in the sense of the definition 13.2.1.

Proof. The proof is by induction on m := dimCX.
If m = 0 this is obvious.
The inductive step works as follows. With the above notations F ∈ pDX≤0 if and only if{

j∗F ∈ pDU≤0,

i∗F ∈ pD≤0Y .

By definition of the t-structure on DU and by induction hypothesis this is equivalent to saying that
k∗SF ∈

stDS≤−mS for any stratum S. This proves (1).
The proof of (2) is similar and (3) follows. �

19.1. Intermediate extension for perverse sheaves. Once more consider the situation U
� �

0 // X Y?
_

/oo

and let E be a local system on U (hence E [m] is a perverse sheaf on U). Recall that the intermediate
extension j!∗E [m] is the unique extension F ∈ Perv(X) of E [m] such that i∗F ∈ pDY <0 and i!F ∈ pDY >0.
Let us check it coincides with Deligne’s extension.

Notice that :

i∗F ∈ pDY <0 ⇐⇒ i∗F [−1] ∈ pDY ≤0

⇐⇒ dimC suppHji∗F [−1] ≤ −j for any j ∈ Z

⇐⇒ dimC suppHji∗F < −j for any j ∈ Z

⇐⇒ dimC suppHjF ≤ −j for any j ∈ Z with strict inequality for j 6= −m.

Similarly for i!F replacing F by DXF .
Hence the result.
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