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Introduction

The algebraic theory of quadratic forms, i.e., the study of quadratic forms
over arbitrary fields, really began with the pioneering work of Witt. In his paper
[139], Witt considered the totality of nondegenerate symmetric bilinear forms over
an arbitrary field F' of characteristic different from 2. Under this assumption, the
theory of symmetric bilinear forms and the theory of quadratic forms are essentially
the same. His work allowed him to form a ring W(F'), now called the Witt ring,
arising from the isometry classes of such forms. This work set the stage for further
study. From the viewpoint of ring theory, Witt gave a presentation of this ring as a
quotient of the integral group ring where the group consists of the nonzero square
classes of the field F'. Three methods of study arise: ring theoretic, field theoretic,
i.e., the relationship of W(F) and W (K) where K is a field extension of F', and
algebraic geometric. In this book, we will develop all three methods. Historically,
the powerful approach using algebraic geometry has been the last to be developed.
This volume attempts to show its usefulness.

The theory of quadratic forms lay dormant until the work of Cassels and then
of Pfister in the 1960’s when it was still under the assumption of the field being of
characteristic different from 2. Pfister employed the first two methods, ring theo-
retic and field theoretic, as well as a nascent algebraic geometric approach. In his
postdoctoral thesis [110] Pfister determined many properties of the Witt ring. His
study bifurcated into two cases: formally real fields, i.e., fields in which —1 is not a
sum of squares and nonformally real fields. In particular, the Krull dimension of the
Witt ring is one in the formally real case and zero otherwise. This makes the study
of the interaction of bilinear forms and orderings an imperative, hence the impor-
tance of looking at real closures of the base field resulting in extensions of Sylvester’s
work and Artin-Schreier theory. Pfister determined the radical, zero-divisors, and
spectrum of the Witt ring. Even earlier, in [108], he discovered remarkable forms,
now called Pfister forms. These are forms that are tensor products of binary forms
that represent one. Pfister showed that scalar multiples of these were precisely the
forms that become hyperbolic over their function field. In addition, the nonzero
value set of a Pfister form is a group and in fact the group of similarity factors
of the form. As an example, this applies to the quadratic form that is a sum of
2™ squares. Pfister also used it to show that in a nonformally real field, the least
number s(F') so that —1 is a sum of s(F') squares is always a power of 2 (cf. [109]).
Interest in and problems about other arithmetic field invariants have also played a
role in the development of the theory.

The nondegenerate even-dimensional symmetric bilinear forms determine an
ideal I(F') in the Witt ring of F, called the fundamental ideal. Its powers I"(F') :=
(I (F))n, each generated by appropriate Pfister forms, give an important filtration
of W(F). The problem then arises: What ring theoretic properties respect this

1



2 INTRODUCTION

filtration? From W (F') one also forms the graded ring GW (F’) associated to I(F’)
and asks the same question.

Using Matsumoto’s presentation of Ko(F') of a field (cf. [98]), Milnor gave an
ad hoc definition of a graded ring K, (F) := @,,~, Kn(F) of a field in [106]. From
the viewpoint of Galois cohomology, this was of great interest as there is a natural
map, called the norm residue map, from K, (F) to the Galois cohomology group
H"(T' g, u@") where I'p is the absolute Galois group of F' and m is relatively prime
to the characteristic of F'. For the case m = 2, Milnor conjectured this map to be
an epimorphism with kernel 2K, (F) for all n. Voevodsky proved this conjecture in
[136]. Milnor also related his algebraic K-ring of a field to quadratic form theory
by asking if GW(F) and K,.(F)/2K.(F) are isomorphic. This was solved in the
affirmative by Orlov, Vishik, and Voevodsky in [107]. Assuming these results, one
can answer some of the questions that have arisen about the filtration of W (F)
induced by the fundamental ideal.

In this book, we do not restrict ourselves to fields of characteristic different from
2. Historically the cases of fields of characteristic different from 2 and 2 have been
studied separately. Usually the case of characteristic different from 2 is investigated
first. In this book, we shall give characteristic free proofs whenever possible. This
means that the study of symmetric bilinear forms and the study of quadratic forms
must be done separately, then interrelated. We not only present the classical theory
characteristic free but we also include many results not proven in any text as well
as some previously unpublished results to bring the classical theory up to date.

We shall also take a more algebraic geometric viewpoint than has historically
been done. Indeed, the final two parts of the book will be based on such a viewpoint.
In our characteristic free approach, this means a firmer focus on quadratic forms
which have nice geometric objects attached to them rather than on bilinear forms.
We do this for a variety of reasons.

First, one can associate to a quadratic form a number of algebraic varieties:
the quadric of isotropic lines in a projective space and, more generally, for an
integer ¢ > 0, the variety of isotropic subspaces of dimension 7. More importantly,
basic properties of quadratic forms can be reformulated in terms of the associated
varieties: a quadratic form is isotropic if and only if the corresponding quadric has
a rational point. A nondegenerate quadratic form is hyperbolic if and only if the
variety of maximal totally isotropic subspaces has a rational point.

Not only are the associated varieties important but also the morphisms between
them. Indeed, if ¢ is a quadratic form over F' and L/F a finitely generated field
extension, then there is a variety Y over F' with function field L, and the form ¢ is
isotropic over L if and only if there is a rational morphism from Y to the quadric
of .

Working with correspondences rather than just rational morphisms adds fur-
ther depth to our study, where we identify morphisms with their graphs. Working
with these leads to the category of Chow correspondences. This provides greater
flexibility because we can view correspondences as elements of Chow groups and
apply the rich machinery of that theory: pull-back and push-forward homomor-
phisms, Chern classes of vector bundles, and Steenrod operations. For example,
suppose we wish to prove that a property A of quadratic forms implies a property
B. We translate the properties A and B to “geometric” properties A’ and B’ for
the existence of certain cycles on certain varieties. Starting with cycles satisfying
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A’ we can then attempt to apply the operations over the cycles as above to produce
cycles satisfying B’.

All the varieties listed above are projective homogeneous varieties under the
action of the orthogonal group or special orthogonal group of ¢, i.e., the orthogonal
group acts transitively on the varieties. It is not surprising that the properties of
quadratic forms are reflected in the properties of the special orthogonal groups. For
example, if ¢ is of dimension 2n (with n > 2) or 2n + 1 (with n > 1), then the
special orthogonal group is a semisimple group of type D,, or B,. The classification
of semisimple groups is characteristic free. This explains why most important
properties of quadratic forms hold in all characteristics.

Unfortunately, bilinear forms are not “geometric”. We can associate varieties
to a bilinear form, but it would be a variety of the associated quadratic form.
Moreover, in characteristic 2 the automorphism group of a bilinear form is not
semisimple.

In this book we sometimes give several proofs of the same results — one is clas-
sical, another is geometric. (This can be the same proof, but written in geometric
language.) For example, this is done for Springer’s theorem and the Separation
Theorem.

The first part of the text will derive classical results under this new setting. It is
self-contained, needing minimal prerequisites except for Chapter VII. In this chap-
ter we shall assume the results of Voevodsky in [136] and Orlov-Vishik-Voevodsky
in [107] for fields of characteristic not 2, and Kato in [78] for fields of characteristic
2 on the solution for the analog of the Milnor Conjecture in algebraic K-theory.
We do give new proofs for the case n = 2.

Prerequisites for the second two parts of the text will be more formidable. A
reasonable background in algebraic geometry will be assumed. For the convenience
of the reader appendices have been included as an aid. Unfortunately, we cannot
give details of [136] or [107] as it would lead us away from the methods at hand.

The first part of this book covers the “classical” theory of quadratic forms, i.e.,
without heavy use of algebraic geometry, bringing it up to date. As the character-
istic of a field is not deemed to be different from 2, this necessitates a bifurcation of
the theory into the theory of symmetric bilinear forms and the theory of quadratic
forms. The introduction of these subjects is given in the first two chapters.

Chapter I investigates the foundations of the theory of symmetric bilinear forms
over a field F'. Two major consequences of dealing with arbitrary characteristic are
that such forms may not be diagonalizable and that nondegenerate isotropic planes
need not be hyperbolic. With this taken into account, standard Witt theory, to
the extent possible, is developed. In particular, Witt decomposition still holds,
so that the Witt ring can be constructed in the usual way as well as the classical
group presentation of the Witt ring W(F'). This presentation is generalized to
the fundamental ideal I(F') of even-dimensional forms in W (F') and then to the
the second power I2(F) of I(F), a theme returned to in Chapter VII. The Stiefel-
Whitney invariants of bilinear forms are introduced along with their relationship
with the invariants e, : I"(F)/I""Y(F) — K,(F)/2K,4+1(F) for n = 1,2. The
theory of bilinear Pfister forms is introduced and some basic properties developed.
Following [32], we introduce chain p-equivalence and linkage of Pfister forms as well
as introducing annihilators of Pfister forms in the Witt ring.
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Chapter II investigates the foundations of the theory of quadratic forms over
a field F'. Because of the arbitrary characteristic assumption on the field F', the
definition of nondegenerate must be made more carefully, and quadratic forms are
far from having orthogonal bases in general. Much of Witt theory, however, goes
through as the Witt Extension Theorem holds for quadratic forms under fairly weak
assumptions, hence Witt Decomposition. The Witt group I,(F') of nondegenerate
even-dimensional quadratic forms is defined and shown to be a W (F')-module. The
theory of quadratic Pfister forms is introduced and some results analogous to that
of the bilinear case are introduced. Moreover, cohomological invariants of qua-
dratic Pfister forms are introduced and some preliminary results about them and
their extension to the appropriate filtrant of the Witt group of quadratic forms are
discussed. In addition, the classical quadratic form invariants, discriminant and
Clifford invariant, are defined.

Chapter III begins the utilization of function field techniques in the study of
quadratic forms, all done without restriction of characteristic. The classical Cassels-
Pfister theorem is established. Values of anisotropic quadratic and bilinear forms
over a polynomial ring are investigated, special cases being the representation of
one form as a subform of another and various norm principles due to Knebusch
(cf. [82]). To investigate norm principles of similarity factors due to Scharlau (cf.
[119]), quadratic forms over valuation rings and transfer maps are introduced.

Chapter IV introduces algebraic geometric methods, i.e., looking at the theory
under the base extension of the function field of a fixed quadratic form. In par-
ticular, the notion of domination of one form by another is introduced where an
anisotropic quadratic form ¢ is said to dominate an anisotropic quadratic form
(both of dimension of at least two) if ¢p(y) is isotropic. The geometric proper-
ties of Pfister forms are developed, leading to the Arason-Pfister Hauptsatz that
nonzero anisotropic quadratic (respectively, symmetric bilinear) forms in Ij*(F)
(respectively, I"™(F)) are of dimension at least 2" and its application to linkage
of Pfister forms. Knebusch’s generic tower of an anisotropic quadratic form is in-
troduced and the W (F')-submodules J,(F) of I,(F) are defined by the notion of
degree. These submodules turn out to be precisely the corresponding I7'(F) (to
be shown in Chapter VII). Hoffmann’s Separation Theorem that if ¢ and 1 are
two anisotropic quadratic forms over F' with dim ¢ < 2" < dim for some n > 0,
then pp(y) is anisotropic is proven as well as Fitzgerald’s theorem characterizing
quadratic Pfister forms. In addition, excellent forms and extensions are discussed.
In particular, Arason’s result that the extension of a field by the function field of
a nondegenerate 3-dimensional quadratic form is excellent is proven. The chapter
ends with a discussion of central simple algebras over the function field of a quadric.

Chapter V studies symmetric bilinear and quadratic forms under field exten-
sions. The chapter begins with the study of the structure of the Witt ring of a
field F' based on the work of Pfister. After dispensing with the nonformally real F,
we turn to the study over a formally real field utilizing the theory of pythagorean
fields and the pythagorean closure of a field, leading to the Local-Global Theorem of
Pfister and its consequences for structure of the Witt ring over a formally real field.
The total signature map from the Witt ring to the ring of continuous functions from
the order space of a field to the integers is then carefully studied, in particular, the
approximation of elements in this ring of functions by quadratic forms. The be-
havior of quadratic and bilinear forms under quadratic extensions (both separable
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and inseparable) is then investigated. The special case of the torsion of the Witt
ring under such extensions is studied. A detailed investigation of torsion Pfister
forms is begun, leading to the theorem of Kriiskemper which implies that if K/F
is a quadratic field extension with I™(K) = 0, then I"™(F) is torsion-free.

Chapter VI studies u-invariants, their behavior under field extensions, and
values that they can take. Special attention is given to the case of formally real
fields.

Chapter VII establishes consequences of the result of Orlov-Vishik-Voevodsky
in [107] which we assume in this chapter. In particular, answers and generalizations
of results from the previous chapters are established. For fields of characteristic not
2, the ideals I (F') and J,, (F') are shown to be identical. The annihilators of Pfister
forms in the Witt ring are shown to filter through the I (F), i.e., the intersection
of such annihilators and I"(F') are generated by Pfister forms in the intersection.
A consequence is that torsion in I"™(F) is generated by torsion n-fold Pfister forms,
solving a conjecture of Lam. A presentation for the group structure of the I"(F)’s
is determined, generalizing that given for I?(F) in Chapter I. Finally, it is shown
that if K/F is a finitely generated field extension of transcendence degree m, then
I""(K) torsion-free implies the same for 1"~ (F).

In Chapter VIII, we give a new elementary proof of the theorem in [100] that
the second cohomological invariant is an isomorphism in the case that the charac-
teristic of the field is different from 2 (the case of characteristic 2 having been done
in Chapter II). This is equivalent to the degree two case of the Milnor Conjecture
in [106] stating that the norm residue homomorphism

W Ko (F) /2K, (F) — H"(F,Z/27)

is an isomorphism for every integer n. The Milnor Conjecture was proven in full by
V. Voevodsky in [136]. Unfortunately, the scope of this book does not allow us to
prove this beautiful result as the proof requires motivic cohomology and Steenrod
operations developed by Voevodsky. In Chapter VIII, we give an “elementary”
proof of the degree two case of the Milnor Conjecture that does not rely either on
a specialization argument or on higher K-theory as did the original proof of this
case in [100].

In the second part of the book, we develop the needed tools in algebraic geom-
etry that will be applied in the third part. The main object studied in Part Two
is the Chow group of algebraic cycles modulo rational equivalence on an algebraic
scheme. Using algebraic cycles, we introduce the category of correspondences.

In Chapter IX (following the approach of [117] given by Rost), we develop the
K-homology and K-cohomology theories of schemes over a field. This generalizes
the Chow groups. We establish functorial properties of these theories (pull-back,
push-forward, deformation and Gysin homomorphisms), introduce Euler and Chern
classes of vector bundles, and prove basic results such as the Homotopy Invariance
and Projective Bundle Theorems. We apply these results to Chow groups in the
next chapter.

Chapter XI is devoted to the study of Steenrod operations on Chow groups
modulo 2 over fields of characteristic not 2. Steenrod operations for motivic co-
homology modulo a prime integer p of a scheme X were originally constructed by
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Voevodsky in [137]. The reduced power operations (but not the Bockstein op-
eration) restrict to the Chow groups of X. An “elementary” construction of the
reduced power operations modulo p on Chow groups (requiring equivariant Chow
groups) was given by Brosnan in [20].

In Chapter XII, we introduce the notion of a Chow motive that is due to
Grothendieck. Many (co)homology theories defined on the category of smooth
complete varieties, such as Chow groups and more generally the K-(co)homology
groups, take values in the category of abelian groups. But the category of smooth
complete varieties itself does not have the structure of an additive category as we
cannot add morphisms of varieties. The category of Chow motives, however, is
an additive tensor category. This additional structure gives more flexibility when
working with regular and rational morphisms.

In the third part of the book we apply algebraic geometric methods to the
further study of quadratic forms. In Chapter XIII, we prove preliminary facts about
algebraic cycles on quadrics and their powers. We also introduce shell triangles and
diagrams of cycles, the basic combinatorial objects associated to a quadratic form.
The corresponding pictures of these shell triangles simplify visualization of algebraic
cycles and operations over the cycles.

In Chapter XIV, we study the Izhboldin dimension of smooth projective quad-
rics. It is defined as the integer

dimpp(X) :=dim X — i1 (X) + 1,

where i;(X) is the first Witt index of the quadric X. The Izhboldin dimension
behaves better than the classical dimension with respect to splitting properties.
For example, if X and Y are anisotropic smooth projective quadrics and Y is
isotropic over the function field F'(X), then dimy,, X < dimp,, Y but dim X may
be bigger than dimY.

Chapter XV is devoted to applications of the Steenrod operations. The follow-
ing problems are solved:

(1) All possible values of the first Witt index of quadratic forms are deter-
mined.

(2) All possible values of dimensions of anisotropic quadratic forms in I"(F)
are determined.

(3) Tt is shown that excellent forms have the smallest height among all qua-
dratic forms of a given dimension.

In Chapter XVI, we study the variety of maximal isotropic subspaces of a
quadratic forms. A discrete invariant J(¢) of a quadratic form ¢ is introduced.
We also introduce the notion of canonical dimension and compute it for projective
quadrics and varieties of totally isotropic subspaces.

In the last chapter we study motives of smooth projective quadrics in the
category of correspondences and motives.

This book could not have been written without the help and encouragement of
many of our friends, collaborators, and students nor the many researchers whose
work was essential to producing this volume. These are too numerous to be listed
here individually. We do wish to mention those who gave us valuable advice in the
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preparation and writing of this tome and those who helped proofread the manu-
script: Jon Arason, Ricardo Baeza, Alex Boisvert, Detlev Hoffmann, Bryant Math-
ews, Claus Schubert, Jean-Pierre Tignol, Alexander Vishik, Maksim Zhykhovich.
In addition, we would like to thank the referees who made valuable suggestions to
improve the manuscript and Sergei Gelfand and the American Mathematical Society
for its encouragement. It also gives us great pleasure to thank the National Science
Foundation (grant DMS 0652316), as well as the Collaborative Research Centre 701
of the Bielefeld University, Ecole Polytechnique Fédérale de Lausanne, Institute for
Advanced Study in Princeton (The James D. Wolfensohn Fund and The Ellentuck
Fund), Institut des Hautes Etudes Scientifiques, Institut Universitaire de France,
and Max-Planck-Institut fiir Mathematik in Bonn, for their generous support. Fi-
nally, we wish to thank our families who put up with us through the long process
of bringing this volume to fruition.






Part 1

Classical theory of symmetric
bilinear forms and quadratic forms






CHAPTER 1

Bilinear Forms

1. Foundations

The study of (n x n)-matrices over a field F' leads to various classification
problems. Of special interest is to classify alternating and symmetric matrices. If
A and B are two such matrices, we say that they are congruent if A = P*BP for
some invertible matrix P. For example, it is well-known that symmetric matrices
are diagonalizable if the characteristic of F' is different from 2. So the problem of
classifying matrices up to congruence reduces to the study of a congruence class
of a matrix in this case. The study of alternating and symmetric bilinear forms
over an arbitrary field is the study of this problem in a coordinate-free approach.
Moreover, we shall, whenever possible, give proofs independent of characteristic. In
this section, we introduce the definitions and notation needed throughout the text
and prove that we have a Witt Decomposition Theorem (cf. Theorem 1.27 below)
for such forms. As we make no assumption on the characteristic of the underlying
field, this makes the form of this theorem more delicate.

Definition 1.1. Let V be a finite dimensional vector space over a field F. A
bilinear form on V is amap b : V x V — F satisfying for all v,v’,w,w’ € V and
ceF,

b(v+ v, w) = b(v,w) + b(v,w),
b(’U,’LU + w/) = b(v,w) + b(vaw/)a
b(cv, w) = cb(v,w) = b(v, cw).

The bilinear form is called symmetric if b(v,w) = b(w,v) for all v,w € V and is
called alternating if b(v,v) = 0 for all v € V. If b is an alternating form, expanding
b(v+w, v+ w) shows that b is skew symmetric, i.e., that b(v, w) = —b(w, v) for all
v,w € V. In particular, every alternating form is symmetric if char F' = 2. We call
dim V the dimension of the bilinear form and also write it as dim b. We write b is
a bilinear form over F' if b is a bilinear form on a finite dimensional vector space
over F' and denote the underlying space by V.

Let V* := Homp(V, F') denote the dual space of V. A bilinear form b on V'
is called nondegenerate if | : V. — V* defined by v +— 1, : w — b(v,w) is an
isomorphism. An isometry f : by — bs between two bilinear forms b;, i = 1,2,
is a linear isomorphism f : Vi, — Vg, such that by (v, w) = ba(f(v), f(w)) for all
v,w € Vp,. If such an isometry exists, we write by =~ by and say that b; and by are
isometric.

Let b be a bilinear form on V. Let {v1,...,v,} be a basis for V. Then b is
determined by the matrix (b(vi7 Uj)) and the form is nondegenerate if and only if
(b(vi, vj)) is invertible. Conversely, any matrix B in the n X n matrix ring M, (F)

11



12 I. BILINEAR FORMS

determines a bilinear form based on V. If b is symmetric (respectively, alternating),
then the associated matrix is symmetric (respectively, alternating where a square
matrix (a;;) is called alternating if a;; = —aj; and a;; = 0 for all ¢, j). Let b and b’
be two bilinear forms with matrices B and B’ relative to some bases. Then b ~ b’
if and only if B’ = A*BA for some invertible matrix A, i.e., the matrices B’ and
B are congruent. As det B’ = det B - (det A)? and det A # 0, the determinant of
B’ coincides with the determinant of B up to squares. We define the determinant
of a nondegenerate bilinear form b by detb := det B - F*2 in F*/F*2 where B
is a matrix representation of b and F* is the multiplicative group of F' (and more
generally, R* denotes the unit group of a ring R). So the det is an invariant of the
isometry class of a nondegenerate bilinear form.

The set Bil(V) of bilinear forms on V is a vector space over F. The space
Bil(V') contains the subspaces Alt(V) of alternating forms on V and Sym(V') of
symmetric bilinear forms on V. The correspondence of bilinear forms and matrices
given above defines a linear isomorphism Bil(V') — Mg v (F). If b € Bil(V), then
b — b’ is alternating where the bilinear form b’ is defined by b*(v,w) = b(w,v) for
all v,w € V. Since every alternating n x n matrix is of the form B — B* for some
B, the linear map Bil(V) — Alt(V) given by b — b — b’ is surjective. Therefore,
we have an exact sequence of vector spaces

(1.2) 0 — Sym(V) — Bil(V) — Alt(V) — 0.
Exercise 1.3. Construct natural isomorphisms
Bil(V)~ (V@r V) >V @pr V", Sym(V) ~ S%(V)*,
A(V) = A2(V)* ~ A2(VF)
and show that the exact sequence (1.2) is dual to the standard exact sequence
0= NV)=VeprV—S*(V)—=0
where A%(V) is the exterior square of V and S$?(V) is the symmetric square of V.

If b,c € Bil(V'), we say the two bilinear forms b and ¢ are similar if b ~ ac for
some a € F'*.

Let V be a finite dimensional vector space over F' and let A\ = +1. Define the
hyperbolic A-bilinear form of V' to be the form Hy (V) = by, on V @& V* defined by

bu, (v1 + f1,v2 + f2) := fi(v2) + Afa(v1)

for all v1,vy € V and fi, fo € V*. If A = 1, the form H, (V) is a symmetric bilinear
form and if A = —1, it is an alternating bilinear form. A bilinear form b is called
a hyperbolic bilinear form if b ~ Hy (W) for some finite dimensional F-vector space
W and some A\ = £1. The hyperbolic form Hy(F) is called the hyperbolic plane
and denoted Hy. It has the matrix representation

(3 0

in the appropriate basis. If b ~ H), then b has the above matrix representation
in some basis {e, f} of V,. We call e, f a hyperbolic pair. Hyperbolic forms are
nondegenerate.

Let b be a bilinear form on V and W C V a subspace. The restriction of b to
W is a bilinear form on W and is called a subform of b. We denote this form by
blw.
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1.A. Structure theorems for bilinear forms. Let b be a symmetric or
alternating bilinear form on V. We say v,w € V are orthogonal if b(v,w) = 0. Let
W,U C V be subspaces. Define the orthogonal complement of W by

W :={veV|bww) =0 forall we W}.

This is a subspace of V. We say W is orthogonal to U if W C U+, equivalently
UCWL. IfV=WaU is a direct sum of subspaces with W C UL, we write b =
blw L b|y and say b is the (internal) orthogonal sum of bly and b|y. The subspace
V1 is called the radical of b and denoted by rad b. The form b is nondegenerate if
and only if rad b = 0.

If K/F is a field extension, let Vi := K ®p V', a vector space over K. We have
the standard embedding V' — Vi by v — 1 ® v. Let bg denote the extension of b
to Vi, 80 bg(a ®v,c®@w) = acb(v,w) for all a,c € K and v,w € V. The form bg
is of the same type as b. Moreover, rad bz = (rad b) i, hence b is nondegenerate if
and only if bg is nondegenerate.

Let —:V — V := V/rad b be the canonical epimorphism. Define b to be the
bilinear form on V' determined by b(v7,73) := b(vy,v2) for all vy, v2 € V. Then b is
a nondegenerate bilinear form of the same type as b. Note also that if f: b; — by
is an isometry of symmetric or alternative bilinear forms, then f(rad b;) = rad bs.

We have:

Lemma 1.4. Let b be a symmetric or alternating bilinear form on V. Let W be
any subspace of V' such that V =radb @ W. Then blw is nondegenerate and

b= E1|1radb L b‘W = 0|radb 4 b‘W

with bly ~ b, the form induced on V/radb. In particular, bly is unique up to
isometry.

The lemma above shows that it is sufficient to classify nondegenerate bilinear
forms. In general, if b is a symmetric or alternating bilinear form on V and W C V'
is a subspace, then we have an exact sequence of vector spaces

0 Wt v

where Iy is defined by v + l,|w : z + b(v,z). Hence dim W+ > dim V — dim W.
It is easy to determine when this is an equality.

Proposition 1.5. Let b be a symmetric or alternating bilinear form on V. Let W
be any subspace of V. Then the following are equivalent:

(1) Wnradb =0.

(2) lw : V — W™ is surjective.

(3) dimW+ =dimV — dim W.

PRrOOF. (1) holds if and only if the map Ij}, : W — V* is injective, if and only
if the map Iy : V. — W™ is surjective, and if and only if (3) holds. O

Note that the conditions (1)-(3) hold if either b or b|y, is nondegenerate.
A key observation is:

Proposition 1.6. Let b be a symmetric or alternating bilinear form on V. Let
W be a subspace such that bly is nondegenerate. Then b = by L blyyr. In
particular, if b is also nondegenerate, then so is bly L.
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PRrROOF. By Proposition 1.5, dim W+ = dim V — dim W, hence V. =W @ W+.
The result follows. O

Corollary 1.7. Let b be a symmetric bilinear form on V. Let v € V satisfy
b(v,v) #0. Then b =b|p, L bip,r.

Let b; and by be two symmetric or alternating bilinear forms on V; and V;
respectively. Then their external orthogonal sum, denoted by by L bo, is the form
on V; & V5 given by

(b1 L ba)((v1,v2), (w1, w2)) := by (v1,wr) 4 ba(va, ws)

for all v;,w; € V3, 1 =1,2.
If n is a nonnegative integer and b is a symmetric or alternating bilinear form
over F', abusing notation, we let

nb:=bL1L---16b.
—_——

n
In particular, if n is a nonnegative integer, we do not interpret nb with n viewed
in the field.
For example, H (V) ~ nH), for any n-dimensional vector space V over F.
It is now easy to complete the classification of alternating forms.

Proposition 1.8. Let b be a nondegenerate alternating form on'V. Then dimV =
2n for somen and b ~nH_q, i.e., b is hyperbolic.

PROOF. Let 0 # v € V. Then there exists w € V such that b(v,w) = a # 0.
Replacing w by a~'w, we see that v, w is a hyperbolic pair in the space W = Fv @®
Fuw, so by is a hyperbolic subform of b, in particular, nondegenerate. Therefore,
b ="b|w L b|y+ by Proposition 1.6. The result follows by induction on dimb. O

The proof shows that every nondegenerate alternating form b on V has a
symplectic basis, i.e., a basis {v1,...,v2,} for V satisfying b(v;,v,4;) = 1 for all
iel,n:={ieZ|1<i<n}and b(v;,v;) =0if i <jand j #n+i.

We turn to the classification of the isometry type of symmetric bilinear forms.
By Lemma 1.4, Corollary 1.7, and induction, we therefore have the following:

Corollary 1.9. Let b be a symmetric bilinear form on V. Then
b="0|raae L bly; L--- L by, Lblw

with V; a 1-dimensional subspace of V' and b|y, nondegenerate for all i € [1, n] and
blw a nondegenerate alternating subform on a subspace W of V.

If char F' # 2, then, in the corollary, b|y is symmetric and alternating hence
W = {0}. In particular, every symmetric bilinear form b has an orthogonal basis,
ie., a basis {v1,...,v,} for V; satisfying b(v;,v;) = 0 if ¢ # j. The form is
nondegenerate if and only if b(v;, v;) # 0 for all 4.

If char F = 2, by Proposition 1.8, the alternating form by in the corollary
above has a symplectic basis and satisfies b|y, ~ nH; for some n.

Let a € F. Denote the bilinear form on F given by b(v,w) = avw for all
v,w € F by {a), or simply (a). In particular, (a) ~ (b) if and only if a =b =0 or
aF*? = bF*? in F*/F*2. Denote

(a) L--- L{an) by {a1,...,an)p orsimply by (aj,...,a,).
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We call such a form a diagonal form. A symmetric bilinear form b isometric to a
diagonal form is called diagonalizable. Consequently, b is diagonalizable if and only
if b has an orthogonal basis. Note that det(ai,...,a,) = ay -+ a,F*? if a; € F*
for all 7. Corollary 1.9 says that every bilinear form b on V satisfies

b~r0) L {(ar,...,a,) LV
with r = dim(rad b) and b’ an alternating form and a; € F* for all i. In particular,
if char F' # 2, then every symmetric bilinear form is diagonalizable.

Example 1.10. Let a,b € F*. Then (1,a) ~ (1,b) if and only if aF*? =
det(1,a) = det(1,b) = bF*2.

1.B. Values and similarities of bilinear forms. We study the values that
a bilinear form can take as well as the similarity factors. We begin with some
notation.

Definition 1.11. Let b be a bilinear form on V over F. Let
D(b) := {b(v,v) | v € V with b(v,v) # 0},
the set on nonzero values of b and
G(b) :=={a € F* | ab ~ b},
a group called the group of similarity factors of b. Also set
D(b) := D(b) U {0}.
We say that elements in ﬁ(b) are represented by b.

For example, G(H;) = F*. A symmetric bilinear form is called round if G(b) =
D(b). In particular, if b is round, then D(b) is a group.

Remark 1.12. If b is a symmetric bilinear form and a € D(b), then b ~ (a) L ¢
for some symmetric bilinear form ¢ by Corollary 1.7.

Lemma 1.13. Let b be a bilinear form. Then
D(b) - G(b) C D(b).
In particular, if 1 € D(b), then G(b) C D(b).

PROOF. Let a € G(b) and b € D(b). Let A : b — ab be an isometry and v € Vj
satisfy b = b(v,v). Then b(A(v),\(v)) = ab(v,v) = ab. O

Example 1.14. Let K = F[t]/(t* — a) with a € F, where F[t] is the polynomial
ring over F. So K = F @ F as a vector space over F' where 6 denotes the class
of t in K. If z = x + y0 with x,y € I, write Z = x — yf. Let s : K — F be the
F-linear functional defined by s(z +y60) = x. Then b defined by b(z1, 22) = s(z1%2)
is a binary symmetric bilinear form on K. Let N(z) = 2z for z € K. Then
D(b)={N(2) #0|2z€ K} ={N(2) | z € K*}. If z € K, then )\, : K — K given
by w — zw is an F-linear isomorphism if and only if N(z) # 0. Suppose that A, is
an F-isomorphism. As

b(Az21, Aze) = b(z21, 222) = N(2)s(z1Z2) = N(z)b(z1, 22),
we have an isometry N(z)b ~ b for all z € K*. In particular, b is round. Comput-

ing b on the orthogonal basis {1,6} for K shows that b is isometric to the bilinear
form (1, —a). If a € F*, then b ~ (1, —a) is nondegenerate.
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Remark 1.15. (1) Let b be a binary symmetric bilinear form on V. Suppose there
exists a basis {v, w} for V satisfying b(v,v) = 0, b(v,w) =1, and b(w,w) = a # 0.
Then b is nondegenerate as the matrix corresponding to b in this basis, is invertible.
Moreover, {w, —av + w} is an orthogonal basis for V' and, using this basis, we see
that b ~ (a, —a).

(2) Suppose that char F' # 2. Let b = (a,—a) with a € F* and {e,g} an
orthogonal basis for V, satisfying a = b(e,e) = —b(f, f). Evaluating on the basis
{e+ f, 3 (e — )} shows that b ~ H;. In particular, (a, —a) ~ H; for all a € F*.
Moreover, {(a, —a) ~ H; is round and universal, where a nondegenerate symmetric
bilinear form b is called universal if D(b) = F*.

(3) Suppose that char FF = 2. As Hy = H_; is alternating while (a,a) is
not, {a,a) # Hy for any a € F*. Moreover, H; is not round since D(H;) = (.
As D({(a,a)) = D({a)) = aF*?, we have G({(a,a)) = F*? by Lemma 1.13. In
particular, (a,a) is round if and only if @ € F*2, and (a,a) =~ (b,b) if and only if
aF*2 ~ pF*2,

(4) Witt Cancellation holds if char F' # 2, i.e., if there exists an isometry of
symmetric bilinear forms b 1L ' ~ b L b” over F' with b nondegenerate, then
b’ ~ b”. (Cf. Theorem 8.4 below.) If char F = 2, this is false in general. For
example,

1,1,-1) ~ (1) L H,
over any field. Indeed if b is 3-dimensional on V and V has an orthogonal basis
{e, f,g} with b(e,e) =1 =0b(f, f) and b(g,g) = —1, then the right hand side arises
from the basis {e + f + g,e + g, —f — g}. But by (3), (1,—1) £ H, if char F = 2.
Multiplying the equation above by any a € F*, we also have

(1.16) (a,a,—a) ~ {(a) L Hj.

Proposition 1.17. Let b be a symmetric bilinear form. If D(b) # 0, then b is
diagonalizable. In particular, a nonzero symmetric bilinear form is diagonalizable
if and only if it is not alternating.

PRrROOF. If a € D(b), then
b~ {a) Lb;~{a) Lradb; L ¢ Ly

with b; a symmetric bilinear form by Corollary 1.7, and ¢; a nondegenerate diagonal
form, and ¢o a nondegenerate alternating form by Corollary 1.9. By the remarks
following Corollary 1.9, we have c¢o = 0 if char F' # 2 and ¢y = mH; for some integer
m if char FF = 2. By (1.16), we conclude that b is diagonalizable in either case.

If b is not alternating, then D(b) # (), hence b is diagonalizable. Conversely, if
b is diagonalizable, it cannot be alternating as it is not the zero form. [

Corollary 1.18. Let b be a symmetric bilinear form over F. Then b L (1) is
diagonalizable.

Let b be a symmetric bilinear form on V. A vector v € V is called anisotropic
if b(v,v) # 0 and isotropic if v # 0 and b(v,v) = 0. We call b anisotropic if there
are no isotropic vectors in V' and isotropic otherwise.

Corollary 1.19. Every anisotropic bilinear form is diagonalizable.

Note that an anisotropic symmetric bilinear form is nondegenerate as its radical
is trivial.
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Example 1.20. Let F be a quadratically closed field, i.e., every element in F'is a
square. Then, up to isometry, 0 and (1) are the only anisotropic forms over F. In
particular, this applies if F is algebraically closed.

An anisotropic form may not be anisotropic under base extension. However,
we do have:

Lemma 1.21. Let b be an anisotropic bilinear form over F. If K/F is purely
transcendental, then by is anisotropic.

PROOF. First suppose that K = F(¢), the field of rational functions over F' in
the variable ¢. Suppose that bg(;) is isotropic. Then there exist a vector 0 # v €
Vb (ry Such that by (v,v) = 0. Multiplying by an appropriate nonzero polynomial,
we may assume that v € F[t] @p V. Write v = vg +t @ v1 + -+ + t" ® v, with
V1,...,, €V and v, # 0. As the t?" coefficient b(v,,v,) of b(v,v) must vanish,
vy, is an isotropic vector of b, a contradiction.

If K/F is finitely generated, then the result follows by induction on the tran-
scendence degree of K over F. In the general case, if by is isotropic there exists a
finitely generated purely transcendental extension Ky of F'in K with by, isotropic,
a contradiction. O

1.C. Metabolic bilinear forms. Let b be a symmetric bilinear form on V.
A subspace W C V is called a totally isotropic subspace of b if blyy = 0, i.e.,
if W c W+, If b is isotropic, then it has a nonzero totally isotropic subspace.
Suppose that b is nondegenerate and W is a totally isotropic subspace. Then
dim W 4 dim W+ = dim V by Proposition 1.5, hence dim W < %dim V. We say
that W is a lagrangian for b if we have an equality dim W = % dim V, equivalently
WL = W. A nondegenerate symmetric bilinear form is called metabolic if it has
a lagrangian. In particular, every metabolic form is even-dimensional. Clearly, an
orthogonal sum of metabolic forms is metabolic.

Example 1.22. (1) Symmetric hyperbolic forms are metabolic.

(2) The form b L (—b) is metabolic if b is any nondegenerate symmetric bilinear
form.

(3) A 2-dimensional metabolic space is nothing but a nondegenerate isotropic
plane. A metabolic plane is therefore either isomorphic to {(a, —a) for some a € F*
or to the hyperbolic plane H; by Remark 1.15. In particular, the determinant of a
metabolic plane is —F*2. If char F # 2, then (a, —a) ~ H; by Remark 1.15, so in
this case, every metabolic plane is hyperbolic.

Lemma 1.23. Let b be an isotropic nondegenerate symmetric bilinear form over
V. Then every isotropic vector belongs to a 2-dimensional metabolic subform.

PROOF. Suppose that b(v,v) = 0 with v # 0. As b is nondegenerate, there
exists a w € V such that b(u,v) # 0. Then b|pyq . is metabolic. O
Corollary 1.24. Every metabolic form is an orthogonal sum of metabolic planes.
In particular, if b is a metabolic form over F, then detb = (—1)%FX2.

ProOF. We induct on the dimension of a metabolic form b. Let W C V =V,
be a lagrangian. By Lemma 1.23, a nonzero vector v € W belongs to a metabolic
plane P C V. It follows from Proposition 1.6 that b = b|p L b|p. and by dimension
count that W N P+ is a lagrangian of b| p. as W cannot lie in P*. By the induction
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hypothesis, b|p1 is an orthogonal sum of metabolic planes. The second statement
follows from Example 1.22(3). O

Corollary 1.25. If char F' # 2, the classes of metabolic and hyperbolic forms co-
incide. In particular, every isotropic mondegenerate symmetric bilinear form is
universal.

ProoF. This follows from Remark 1.15(2) and Lemma 1.23. O

Lemma 1.26. Let b and b’ be two symmetric bilinear forms. If b L b and b" are
both metabolic, then so is b.

Proor. By Corollary 1.24, we may assume that b’ is 2-dimensional. Let W
be a lagrangian for b L b’. Let p: W — Vs be the projection and Wy = Ker(p) =
W N Vg. Suppose that p is not surjective. Then dim Wy > dim W — 1, hence Wy is
a lagrangian of b and b is metabolic.

So we may assume that p is surjective. Then dimWy = dimW — 2. As b’
is metabolic, it is isotropic. Choose an isotropic vector v’ € Vi and a vector
w € W such that p(w) = ¢/, i.e., w = v+ v/ for some v € V,. In particular,
b(v,v) = (b L b)(w,w) — b'(v/,v") = 0. Since Wy C Vj, we have v’ is orthogonal
to Wy, hence v is also orthogonal to Wy. If we show that v ¢ W, then v ¢ Wy and
Wy @ Fv is a lagrangian of b and b is metabolic.

So suppose v/ € W. There exists v € Vi such that b'(v',v") # 0 as b’ is
nondegenerate. Since p is surjective, there exists w” € W with w” = u” + 0" for
some u"” € V. As W is totally isotropic,

0= (b L0, w)=(bLb)(,u +2")=0b" "),
a contradiction. O

1.D. Witt Theory. We have the following form of the classical Witt Decom-
position Theorem (cf. [139]) for symmetric bilinear forms over a field of arbitrary
characteristic.

Theorem 1.27 (Bilinear Witt Decomposition Theorem). Let b be a nondegene-
rate symmetric bilinear form on V. Then there exist subspaces Vi and Vo of V
such that b = bly, L bly, with bly, anisotropic and bly, metabolic. Moreover, bly,
18 unique up to isometry.

PROOF. We prove existence of the decomposition by induction on dimb. If b
is isotropic, there is a metabolic plane P C V by Lemma 1.23. As b =b|p L b|pus,
the proof of existence follows by applying the induction hypothesis to b|p. .

To prove uniqueness, assume that b; L by ~ b} L b) with by and b} both
anisotropic and bs and b}, both metabolic. We show that by ~ b]. The form

by L (—b}) L by~b) L (—b))Lb)

is metabolic, hence by L (—b)) is metabolic by Lemma 1.26. Let W be a lagrangian
of by L (—b}). Since by is anisotropic, the intersection WNVy, is trivial. Therefore,
the projection W — Vi is injective and dimW < dim b}. Sim