Иван Панин

20.10.2014

1 Основная теорема

Пусть X — гладкая схема над $k, Y \subseteq X$ — замкнутое подмножество. Тогда в \mathcal{O}_Y нет нильпотентов. Пусть $G_X = \mathcal{O}_X^*, G_Y = \mathcal{O}_Y^*$ — пучки обратимых функций на X и Y. Определим пучок $G_{X,Y} = \mathrm{Ker}(G_X \to i_*(G_Y))$. Пусть $G = \{f \in k(X)^* \mid f|_Y = 1\}$ — множество функций из $k(X)^*$, которые определены и равны 1 в каждой точке $y \in Y$.

Лемма 1.1. Если Y имеет в X некоторую аффинную окрестность, то точна последовательность абелевых групп

$$0 \to \Gamma(X, G_{X,Y}) \to G \to \operatorname{Div}(X, Y) \to \operatorname{Pic}(X, Y) \to 0$$

где отображение $G \to \operatorname{Div}(X,Y)$ устроено так: $f \mapsto \operatorname{div}(f)$. Опишем отображение $\operatorname{Div}(X,Y) \to \operatorname{Pic}(X,Y)$. Пусть $D \subseteq X$ — замкнутое неприводимое. Выберем сечение $s \colon \mathcal{O}_X \cong L(D)$ так, что $D = \{s = 0\}$, и $S|_Y \colon \mathcal{O}_Y \to L(D) \otimes_{\mathcal{O}_X} \mathcal{O}_Y$ — изоморфизм. Тогда сопоставим классу $[D] \in \operatorname{Div}(X,Y)$ пару $(L(D),s|_Y \colon \mathcal{O}_Y \to L(D)|_Y)$ в $\operatorname{Pic}(X,Y)$

Лемма 1.2. $\operatorname{Pic}(X,Y) \cong \operatorname{Pic}(X \times \mathbb{A}^1, Y \times \mathbb{A}^1)$.

$$\Gamma(X,\mathcal{O}_X^*) \xrightarrow{} \Gamma(Y,\mathcal{O}_Y^*) \xrightarrow{\partial} \operatorname{Pic}(X,Y) \xrightarrow{} \operatorname{Pic}(X) \xrightarrow{} \operatorname{Pic}(Y)$$

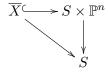
$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \downarrow \cong \qquad \downarrow \cong$$

$$\Gamma(X \times \mathbb{A}^1,\mathcal{O}_{X \times \mathbb{A}^1}^*) \xrightarrow{} \Gamma(Y \times \mathbb{A}^1,\mathcal{O}_{Y \times \mathbb{A}^1}^*) \xrightarrow{} \operatorname{Pic}(X \times \mathbb{A}^1,Y \times \mathbb{A}^1) \xrightarrow{} \operatorname{Pic}(X \times \mathbb{A}^1) \xrightarrow{} \operatorname{Pic}(Y \times \mathbb{A}^1)$$

Если в кольце R нет нильпотентов, то $R^* \cong R[t]^*$. Поэтому две отмеченных вертикальных стрелки слева являются изоморфизмами. В силу гладкости X и Y, две отмеченных вертикальных стрелки справа являются изоморфизмами. Поэтому и среднее вертикальное отображение — изоморфизм.

Если же теперь Y произвольное, то диаграмму все равно можно нарисовать, и рассмотрение ядер вертикальных стрелок показывает, что 5-лемма применима и в этом случае. \Box

Пусть S — гладкое аффинное многообразие над $k,Y\subseteq \overline{X}$ — гладкие, и морфизм $\overline{X}\to S$ проективный:



Пусть, кроме того,

$$\mathbb{A}^r \times S \longleftarrow X$$

1

Пусть морфизм $X \to S$ гладкий с неприводимыми слоями размерности 1. У нас будет

$$\mathbb{G}_m \times S \longrightarrow \mathbb{P}^1 \times S \longleftarrow \{0, \infty\} \times S$$

Пусть, наконец, S неприводимо. Потребуем, чтобы существовала аффинная окрестность V подмножества Y в \overline{X} . У нас будет $V = (\mathbb{P}^1 - \{1\}) \times S$.

Определение 1.3. Пусть $C_n(X/S)$ — свободная абелева группа, порожденная элементами [Z], где $Z \subseteq \Delta^n \times X$ — замкнутое неприводимое, и Z конечно сюръективно над $\Delta^n \times S$:

$$Z \xrightarrow{} \Delta^n \times X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Delta^n \times S$$

Рассмотрим комплекс $C_*(X/S)$ абелевых групп:

$$\cdots \to C_2(X/S) \xrightarrow{d_0^* - d_1^* + d_2^*} C_1(X/S) \xrightarrow{d_0^* - d_1^*} C_0(X/S).$$

Отображение d_i^* является пулбэком вдоль $d_i \colon \Delta^{n-1} \to \Delta^n$:

$$\Delta^{n} \times X \stackrel{\longleftarrow}{\longleftarrow} \Delta^{n-1} X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Z \stackrel{\longleftarrow}{\longleftarrow} d_{0}^{-1}(Z)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Delta^{n} \times S \stackrel{\longleftarrow}{\longleftarrow} \Delta^{n-1} \times S$$

Теорема 1.4. 1. $H_0(C_*(X/S)) = Pic(\overline{X}, Y);$

2.
$$H_i(C_*(X/S)) = 0$$
 при $i > 0$

Нас реально интересует частный случай: комплекс $C_*(\mathbb{G}_m \times S/S)$.

$$\cdots \to C_2(\mathbb{G}_m \times S/S) \xrightarrow{d_0^* - d_1^* + d_2^*} C_1(\mathbb{G}_m \times S/S) \xrightarrow{d_0^* - d_1^*} C_0(\mathbb{G}_m \times S/S).$$

Тогда $C_0(\mathbb{G}_m \times S/S) = \operatorname{Cor}(S, \mathbb{G}_m)$ (по определению). По тем же причинам $C_i(\mathbb{G}_m \times S/S) = \operatorname{Cor}(\Delta^i \times S, \mathbb{G}_m)$. Дифференциалы между Сог мы уже описали ранее. Поэтому мы получили комплекс, который нам уже известен.

Следствие 1.5. $H_0(\operatorname{Cor}(\Delta^{\bullet} \times S, \mathbb{G}_m)) = \operatorname{Pic}(\mathbb{P}^1 \times S, \{0, \infty\} \times S), H_i(\operatorname{Cor}(\Delta^{\bullet} \times S, \mathbb{G}_m)) = 0.$

Вспомним, что у нас есть точная последовательность

Ядро отображения $\mathrm{Pic}(\mathbb{P}^1 \times S) \to \mathrm{Pic}(\{0,\infty\} \times S), \ \mathcal{L} \mapsto \mathcal{L}|_{\{0,\infty\} \times S}$ равно \mathbb{Z} . Поэтому мы получили точную последовательность

$$0 \to \Gamma(S, \mathcal{O}^*) \to \operatorname{Pic}(\mathbb{P}^1 \times S, \{0, \infty\} \times S) \xrightarrow{\operatorname{deg}} \mathbb{Z} \to 0.$$

Поэтому $\Gamma(S,\mathcal{O}^*)\cong \operatorname{Pic}^0(\mathbb{P}^1\times S,\{0,\infty\}\times S)$. Отображение $\operatorname{Div}(\mathbb{P}^1\times S,\{0,\infty\}\times S)\to \mathbb{Z}$ переводит D в $\deg[D:S]$.

У нас есть отображение степени $\operatorname{Cor}(\Delta^i \times S, \mathbb{G}_m) \xrightarrow{\operatorname{deg}} \operatorname{Cor}(S, \operatorname{pt}) = \mathbb{Z}$. Обозначим его ядро через $\operatorname{Cor}(\Delta^i \times S, \mathbb{G}_m)^0$. Получим комплекс

$$\ldots \longrightarrow \operatorname{Cor}(\Delta^2 \times S, \mathbb{G}_m)^0 \longrightarrow \operatorname{Cor}(\Delta^1 \times S, \mathbb{G}_m)^0 \longrightarrow \operatorname{Cor}(S, \mathbb{G}_m)^0$$

Есть точная последовательность комплексов

$$0 \to \operatorname{Cor}(\Delta^{\bullet} \times S, \mathbb{G}_m)^0 \to \operatorname{Cor}(\Delta^{\bullet} \times S, \mathbb{G}_m) \xrightarrow{\operatorname{deg}} \mathbb{Z} \to 0,$$

где через \mathbb{Z} обозначен комплекс, у которого в каждой позиции стоит \mathbb{Z} , а в дифференциалах чередуются 0 и id. Из рассмотрения соответствющей длинной точной последовательности гомологий следует, что у комплекса $C_*(\Delta^{\bullet} \times S)^0$ единственная гомология стоит в позиции 0 и равна, с одной стороны, $\Gamma(S, \mathcal{O}_S^*)$, а с другой стороны, ядру отображения $\mathrm{Pic}(\mathbb{P}^1 \times S, \{0, \infty\} \times S) \xrightarrow{\deg} \mathbb{Z}$.

Следствие 1.6. 1. $H_0(\operatorname{Cor}^0(\Delta^{\bullet} \times S, \mathbb{G}_m)) = \Gamma(S, \mathcal{O}_S^*);$

2.
$$H_i(\operatorname{Cor}^0(\Delta^{\bullet} \times S, \mathbb{G}_m)) = 0.$$

Эквивалентная формулировка следствия 1.6: канонический морфизм комплексов $\mathrm{Cor}^0(\Delta^{\bullet} \times S, \mathbb{G}_m) \to \Gamma(S, \mathcal{O}_S^*)$, где $\Gamma(S, \mathcal{O}_S^*)$ рассматривается как комплекс, сконцентрированный в позиции 0, является квази-изоморфизмом комплексов абелевых групп.

2 Доказательство теоремы 1.4

Покажем, что $C_n(X/S) = \text{Div}(\Delta^n \times \overline{X}, \Delta^n \times Y)$.

Действительно, для каждого $Z\subseteq \Delta^n imes \overline{X}$ морфизм $Z\to \Delta^n imes \overline{X}\to \Delta^n imes S$ проективный (в силу проективности $\overline{X}\to S$:

Покажем, что он квазиконечный. Можно перейти к алгебраически замкнутому полю. Возьмем $(t,s)\in\Delta^n\times S$ и рассмотрим слой над ней:

При этом $Z_{(t,s)}$ содержится в $t \times X_s$, а это гладкая неприводимая кривая. Заметим, что $Z_{(t,s)} = Z \cap t \times \overline{X}_s$. Если $Z_{(t,s)}$ совпадает с $t \times X_s$, то (в силу замкнутости) было бы $Z_{(t,s)} = t \times \overline{X}_s$, противоречие.

Из проективности и квазиконечности морфизма $Z \to \Delta^n \times S$ следует конечность. При этом $\dim Z = n + \dim X - 1 = \dim(\Delta^n \times S)$, и поэтому этот морфизм сюръективен.

Мы показали, что $\mathrm{Div}(\Delta^n \times \overline{X}, \Delta^n \times Y)$ содержится в $C_n(X/S)$. Обратное включение очевилно.

Заметим, что $\Delta^n \times V$ аффинно, открыто в $\Delta^n \times X$ и содержит $\Delta^n \times Y$. Есть точная последовательность

$$G_{n}(\overline{X}) \qquad C_{n}(X/S)$$

$$\parallel \qquad \qquad \parallel$$

$$0 \to \Gamma(\Delta^{n} \times \overline{X}, G_{\Delta^{n} \times \overline{X}, \Delta^{n} \times Y}) \to G(\Delta^{n} \times \overline{X}) \to \text{Div}(\Delta^{n} \times \overline{X}, \Delta^{n} \times Y) \to \text{Pic}(\Delta^{n} \times \overline{X}, \Delta^{n} \times Y) \to 0$$

Поэтому есть точная последовательность комплексов

$$0 \to \Gamma(\Delta^{\bullet} \times \overline{X}, G_{\Delta^{\bullet} \times \overline{X}, \Delta^{\bullet} \times Y}) \to G_{*}(\overline{X}) \to C_{*}(X/S) \to \operatorname{Pic}(\Delta^{\bullet} \times \overline{X}, \Delta^{\bullet} \times Y) \to 0$$

Лемма 2.1. 1. Комплекс $\mathrm{Pic}(\Delta^{\bullet} \times \overline{X}, \Delta^{\bullet} \times Y)$ квази-изоморфен комплексу $\mathrm{Pic}(\overline{X}, Y)$, сконцентрированному в степени 0.

- 2. Для любого n группа $\Gamma(\Delta^n \times \overline{X}, G_{\Delta^n \times \overline{X}, \Delta^n \times Y})$ тривиальна.
- 3. Комплекс $G_*(\overline{X})$ ацикличен, то есть, все его гомологии нулевые.

Если лемма верна, то мы получаем короткую точную последовательность комплексов, из которой следует, что комплекс $C_*(X/S)$ квази-изоморфен комплексу $\mathrm{Pic}(\Delta^{\bullet} \times \overline{X}, \Delta^{\bullet} \times Y)$, гомологии которого нам известны. Отсюда следует теорема 1.4.

Первое утверждение леммы мы уже доказали (в силу гомотопической инвариантности Pic).

Второе утверждение тоже несложно. Напомним, что $G_{\overline{X},Y}=\mathrm{Ker}(G_{\overline{X}}\to i_*(G_Y)),$ и $G_{\overline{X}}=\mathcal{O}_{\overline{Y}}^*.$ Есть точная последовательность

$$0 \to \Gamma(\overline{X}, G_{\overline{X}, Y}) \to \Gamma(\overline{X}, \mathcal{O}_{\overline{X}}^*) \to \Gamma(\overline{X}, i_*(G_Y)).$$

При этом $\Gamma(\overline{X}, \mathcal{O}_{\overline{X}}^*) \cong \Gamma(S, \mathcal{O}_S^*)$, $\Gamma(\overline{X}, i_*(G_Y)) = \Gamma(Y, \mathcal{O}_Y^*)$. Если $f \in \Gamma(\overline{X}, G_{\overline{X}, Y})$, то $f|_{\overline{X}_s} =$ const, и эта константа равна 1. Поэтому она равна 1 везде. Такое же рассуждение проходит, если заменить \overline{X} на $\Delta^n \times \overline{X}$.

Осталось показать, что $G_*(\overline{X})$ ацикличен. Докажем сначала лемму общего характера.

Лемма 2.2. Пусть $A_{\bullet}: \Delta^{\text{op}} \to \text{Ab}$ — симплициальная абелева группа. Рассмотрим комплекс $(A_{\bullet}, \partial_n = \sum (-1)^i d_i)$. С другой стороны, есть нормализованный комплекс $(N(A_{\bullet}), \partial'_n = d_n|_{N(A_n)})$, где $N(A_n) = \bigcap_{i=0}^{n-1} \text{Ker}(d_i) \subseteq A_n$. Этот комплекс называется еще комплексом Мура. Тогда каноническое включение $i: N(A_{\bullet}) \to A_{\bullet}$ — квази-изоморфизм комплексов.

Заметим, что $N(A_0) = A_0$.

Пусть $A_* = G_*(\overline{X})$. Покажем, что $H_0(A_*) = 0$.

Возьмем элемент $f \in G_0(\overline{X})$; эта функция регулярна в каждой точке $y \in Y$, и f(y) = 1. Можно считать, что $f \in k[W]$ для некоторой окрестности $W \supseteq Y$, и $f|_Y = 1$. Мы желаем найти $f_1 \in k[W_1]$ такую, что $W_1 \supseteq \Delta^1 \times Y$, $f_1|_{\Delta^1 \times Y} = 1$, $d_0(f_1) = 1$, $d_1(f_1) = f$. Тогда $f_1 \in G_1(\overline{X})$. Заметим, что $d_0(f_1) = f_1|_{0 \times \overline{X}}$, $d_1(f_1) = f_1|_{1 \times \overline{X}}$. Положим $f_1 = sf + (1-s)$ для всех $s \in k[\Delta^1]$. Тогда $f_1|_{s=0} = 1$ и $f_1|_{s=1} = f$. Несложно проверить, что $f_1 \in G_1(\overline{X})$, взяв $W_1 = \Delta^1 \times W$.

В общем случае все аналогично: пусть $g \in N(G_1(\overline{X}))$ таков, что $d_0(g) = 1$ и $d_1(g) = 1$; желаем найти $\widetilde{g} \in N(G_2(\overline{X}))$ такой, что $d_2(\widetilde{g}) = g$. Это делается совершенно так же.