Исчисление корневых элементов для изотропных редуктивных групп

Анастасия Ставрова

Январь 2015

Содержание

T	Прелиминарии: топологии Гротендика	1
2	Расщепимые редуктивные группы: pinnings, параболические подгруппы, модули Шевалле	4
3	Системы относительных корней	6
4	Изотропные редуктивные группы	9
5	Относительные корневые подсхемы	12
6	Обобщенная коммутационная формула Шевалле и ее следствия	15
7	Лемма о замене параболической	17

1 Прелиминарии: топологии Гротендика

Материал этого раздела взят из [FGIKNV06].

Определение 1.1. Пусть \mathcal{C} — категория. Топология Гротендика τ на \mathcal{C} — это задание для каждого $U \in \mathrm{Ob}\,\mathcal{C}$ набора покрытий $\{U_i \to U\}_{i \in I}$ (где I — множество) такого, что

- 1. если $V \to U$ изоморфизм, то $\{V \to U\}$ покрытие;
- 2. для любого покрытия $\{U_i \to U\}$ и для любого $V \to U$ существуют произведения $U_i \times_U V$ и $\{U_i \times_U V \to V -$ покрытие.
- 3. если $\{U_i \to U\}, \, \{V_{ij} \to U_i\}$ покрытия, то $\{V_{ij} \to U_i \to U\}$ покрытие.

Пару (C, τ) еще называют **ситусом**.

Отметим, что в SGA4 это называют «предтопологией».

Пример 1.2. Пусть X — топологическое пространство, \mathcal{C} — категория открытых множеств $U\subseteq X$ с включениями в качестве морфизмов; τ — обычные покрытия. Заметим, что здесь $U_i\times_U V=U_i\cap V$.

Пример 1.3. Пусть C — категория топологических пространств. Набор $\{U_i \to U\}$ назовем покрытием, если $\bigcup f_i(U_i) = U$ и все f_i — открытые вложения (то есть, инъективные открытые непрерывные отображения).

Условие про объединение образов очень естественно, поэтому нам будет удобно пользоваться следующим определением.

Определение 1.4. Набор $\{f_i\colon U_i\to U \text{ называется совместно сюръективным (jointly surjective), если <math>\bigcup_i f_i(U_i)=U.$

Приведем теперь примеры топологий на категории схем. Пусть S — схема (например, Spec \mathbb{Z} , Spec k, где k — поле, или Spec R, где R — произвольное коммутативное кольцо). Рассмотрим категорию $\mathcal{C} = \operatorname{Sch}/S$ схем над S.

Пример 1.5. Пусть $\{U_i \to U\}$ — покрытие, если это совместно сюръективный набор открытых вложений. Получим **топологию Зариского** на Sch /S (мы будем обозначать ее через Zar).

Напомним, что открытое вложение локально выглядит как отображение из кольца в его локализацию.

Пример 1.6. Пусть $\{f_i \colon U_i \to U\}$ — покрытие, если это набор совместно сюръективных этальных и локально конечно представимых морфизмов.

Определение 1.7. Морфизм $f \colon X \to Y$ локально конечно представим, если локально в топологии Зариского он выглядит как $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$, где B/A- конечно представимая алгебра, то есть, $B \cong A[x_1,\ldots,x_n]/I$ для конечно порожденного идеала I.

Везде, произнося слово «локально» без явного указания топологии, мы подразумеваем «локально в топологии Зариского».

Пусть k, k' — поля, $\operatorname{Spec} k' \to \operatorname{Spec} k$ — морфизм. Тогда он является этальным покрытием, если k'/k — конечное сепарабельное расширение.

Пример 1.8 (fpqc-топология). Назовем набор $\{U_i \to U\}$ покрытием, если это совместно сюръективный набор морфизмов такой, что $\coprod U_i \to U$ является строго плоским морфизмом, и существует открытое покрытие U аффинными подсхемами Spec A и квази-компактные открытые $V \subseteq \coprod U_i$ такие, что $f(V) = \operatorname{Spec} A$.

Замечание 1.9. Напомним, что топологическое пространство называется квази-компактным, если из любого его открытого покрытия можно выбрать конечное подпокрытие. Любая аффинная схема квази-компактна. Поэтому схема квази-компактна тогда и только тогда, когда она покрывается конечным числом аффинным.

Имеют место включения

$$Zar \subseteq Nis \subseteq \acute{e}t \subseteq fppf \subseteq fpqc$$

(мы не знаем, что такое топология Нисневича Nis и fppf-топология, но это не страшно).

Замечание 1.10. Морфизм спектров полей $\operatorname{Spec} k' \to \operatorname{Spec} k$ всегда является fpqспокрытием.

Определение 1.11. Пусть $\mathcal C$ — ситус. Контравариантный функтор $F\colon \mathcal C\to \mathrm{Sets}$ называется предпучком. Предпучок F называется отделимым, если отображение $F(U)\to \prod F(U_i)$ инъективно для любого покрытия $\{U_i\to U\}$. Предпучок F называется пучком, если диаграмма

$$F(U) \longrightarrow \prod_i F(U_i) \Longrightarrow \prod_{i,j} F(U_i \times_U U_j)$$

является уравнителем.

Напомним, что отображение $f_i \colon \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ называется **строго плоским** морфизмом, если

- 1. f сюръективно («строгость»);
- 2. f плоский, то есть, модуль B является плоским A-модулем.

Например, проективный модуль является плоским.

Следующая теорема утверждает, что все введенные нами топологии на $\mathrm{Sch}\,/S$ являются субканоническими.

Теорема 1.12 (Гротендик). Для любой схемы X/S представимый функтор $\operatorname{Sch}/S \to \operatorname{Sets}, A \mapsto X(A) = \operatorname{Hom}_S(A, X)$ является пучком в топологии fpqc (а потому и в Zar, ét, . . .).

Лемма 1.13. Пусть $F \colon \operatorname{Sch}/S \to \operatorname{Sets}$ — предпучок, и для любой строго плоской алгебры B/A диаграмма

$$F(A) \longrightarrow F(B) \Longrightarrow F(B \otimes_A B)$$

является уравнителем. Тогда F — пучок.

Примеры 1.14. 1. Пусть G — группа Шевалле, R — коммутативное кольцо. Известно, что G задает функтор R-alg \to Groups, $A \mapsto G(A)$ (функтор точек). Тогда G — пучок в fpqc.

2. Функтор элементарной подгруппы

$$E \colon R\text{-alg} \to \text{Groups},$$

$$A \mapsto E(A) = \langle x_\alpha(\xi) \mid \alpha \in \Phi, \xi \in A \rangle$$

является отделимым предпучком. Однако, это не пучок ни в одной из наших топологий. Покажем, что это не пучок в топологии fpqc. Пусть $k\to \overline{k}$ — вложение поля в его алгебраическое замыкание. Тогда $\operatorname{Spec} \overline{k}\to \operatorname{Spec} k$ — покрытие в топологии fpqc. Пусть $G=G^{\operatorname{ad}}$ — присоединенная группа. Тогда известно, что $E(\overline{k})=G(\overline{k}),$ $E(k)\neq G(k)$. Диаграмма из определения пучка превращается в

$$E(k) \longrightarrow E(\overline{k}) \Longrightarrow E(\overline{k} \otimes_k \overline{k})$$

Заметим, что

$$E(\overline{k} \otimes_k \overline{k}) = G(\overline{k} \otimes_k \overline{k}) = G(\prod_{i \in \operatorname{Gal}(\overline{k}/k)} (\overline{k})_i) = \prod_{i \in \operatorname{Gal}(\overline{k}/k)} G((\overline{k})_i).$$

Кроме того, $G(\overline{k})=E(\overline{k}).$ Из этого бы следовало, что G(k)=E(k), а мы знаем, что это не так.

- 3. Пусть $\operatorname{rk} G \geq 2$, тогда $K_1^G(-) = G(-)/E(-)\colon R\text{-alg} \to \operatorname{Groups} \operatorname{предпучок}$, но не отделимый. Мы знаем, что $K_1^G(\overline{k}) = 1$, но $K_1^G(k) \neq 1$ для $G = G^{\operatorname{ad}}$. Зато $\operatorname{NK}_1^G(A) = \ker(K_1^G(A[x]) \to K_1^G(A))$ (где $x \mapsto 0$) отделим в топологии Зариского, так как $\operatorname{NK}_1^G(A) \to \prod_{\mathfrak{m} \in \operatorname{Max}(A)} \operatorname{NK}_1^G(A_{\mathfrak{m}})$ инъективно (лемма Квиллена-Суслина).
- 4. Большая клетка $\Omega = U^+LU^-,$ параболическая подгруппа $P^+ = P$ все это подпучки в G.

5. Пусть M — конечно порожденный проективный модуль над кольцом R. Он индуцирует функтор M: R-alg \to Ab, $A \mapsto M_A = A \otimes_R M$, который является пучком в топологии fpqc. На самом деле, это еще и npedcmasumuй функтор, то есть, M соответствует схеме W(M) над R. А именно, $W(M) = \operatorname{Spec}\operatorname{Sym}^{\bullet}(M^*)$, где $M^* = \operatorname{Hom}_{R-mod}(M,R)$. Грубо говоря, это просто многочлены от линейных функций на M.

Как мы будем применять введенные понятия? Есть два основных use-case'a.

1. Некоторые факты достаточно проверять «локально в топологии τ ». Что это значит? Например, пусть $g \in G(R)$, и мы хотим проверить, что $g \in P^+(R)$. Для этого достаточно проверить, что $g \in P^+(R)$ локально в топологии fpqс».

Еще пример: пусть $M_1 \subseteq M_2$ — конечно порожденные проективные R-модули. Тогда $M_1 = M_2$ равносильно тому, что « $M_1 = M_2$ локально в топологии fpqc (Zar)».

Неформальные утверждения в кавычках означают, что существует покрытие $\{U_i \to U\}$ (или, для аффинных схем, $\{R \to B_i\}$) такое, что $g \in P^+(B_i)$ (или, $M_1 \otimes_R B_i = M_2 \otimes_R B_i$, соответственно).

2. Некоторые объекты «строятся спуском в топологии τ », или «строятся локально в топологии τ ».

Например, пусть G — алгебраическая группа над полем k. Как доказывается, что у нее есть унипотентный радикал $R_u(G)$? Доказывается, что он есть над \overline{k} и $\mathrm{Gal}(\overline{k}/k)$ -инвариантен. (Для тех, кто знает, что такое строго плоский спуск, напомним, что спускаются только аффинные морфизмы)

Теорема 1.15 ([FGIKNV06, Cor. 4.34]). Пусть $X \to S$ — морфизм схем, $\{S_i \to S\}$ — fpqc-морфизм. Обозначим $X_i = X \times_S S_i$, $X_{ij} = X \times_S S_i \times_S S_j$. Пусть для любого i дана замкнутая S-подсхема $P_i \subseteq X_i$ так, что $P_i \times_{X_i} X_{ij} = P_j \times_{X_j} X_{ij}$ для всех i,j. Тогда существует единственная замкнутая S-подсхема $P \subseteq X$ такая, что $P_i \cong P \times_S S_i$ для всех i.

2 Расщепимые редуктивные группы: pinnings, параболические подгруппы, модули Шевалле

Определение 2.1. Пусть G/R — групповая схема, тогда G называется расщепимой редуктивной группой, если $G\cong (H\times S)/C$, где H — односвязная группа Шевалле, $S\cong (\mathbb{G}_m)^n$ — расщепимый тор, $C\leq H\times S$ — центральная подгруппа.

Определение 2.2. Корневые данные $(M, M^{\vee}, \Phi, \Phi^{\vee})$ — это два свободных двойственных \mathbb{Z} -модуля M и M^{\vee} , \langle, \rangle : $M^{\vee} \times M \to \mathbb{Z}$ — спаривание. и подмножества $\Phi \subseteq M$, $\Phi^{\vee} \subseteq M^{\vee}$ с биекцией $\Phi \to \Phi^{\vee}$, $\alpha \mapsto \alpha^{\vee}$ такие, что

- $\langle \alpha^{\vee}, \alpha \rangle = 2$ для всех $\alpha \in \Phi$;
- $w_{\alpha}(\Phi) = \Phi$, $w_{\alpha^{\vee}}(\Phi^{\vee}) = \Phi^{\vee}$ для всех α , где $w_{\alpha}(x) = x \langle \alpha^{\vee}, x \rangle \alpha$, $w_{\alpha^{\vee}}(x) = x \langle x, \alpha \rangle \alpha^{\vee}$.

При этом Φ является системой корней в $V = (\mathbb{Z}\Phi) \otimes_{\mathbb{Z}} \mathbb{Q}$ относительно скалярного произведения $(\alpha, \beta) = \langle \alpha^{\vee}, \beta \rangle$, а Φ^{\vee} — двойственная система.

Определение 2.3. Пусть G/R — расщепимая редуктивная группа, тогда *оснащение* (=pinning, épinglage) в G над R — это

1. $T \subseteq G$ — расщепимый максимальный тор;

- 2. корневые данные $G(M,M',\Phi,\Phi^{\vee})$ с изоморфизмом \mathbb{Z} -модулей $M\cong X^*(T)$ и разложением $\mathrm{Lie}(G)=\mathrm{Lie}(T)\oplus\bigoplus_{\alpha\in\Phi}\mathrm{Lie}(G)_{\alpha};$
- 3. выбор системы простых корней $\Pi \subseteq \Phi$ и для любого $\alpha \in \Pi$ выбор замкнутого вложения $x_{\alpha} \colon \mathbb{G}_{\alpha} \to G$ такого, что $x_{\alpha}(G_{\alpha}) = U_{\alpha} \le G$, и $\mathrm{Lie}(U_{\alpha}) = \mathrm{Lie}(G)_{\alpha}$.

Оснащение G может быть продолжено до cucmemu Шевалле: это набор замкнутых вложений $x_{\alpha} \colon \mathbb{G}_{\alpha} \to G, \, x_{\alpha}(\mathbb{G}_{\alpha}) = U_{\alpha} \subseteq G$ так, что для всех $\alpha, \beta \in \Phi$ и для любых R'/R (то есть, R' — коммутативная R-алгебра), $a \in (R')^*, \, b \in R'$, выполнено $^{w_{\alpha}(a)}x_{\beta}(b) = x_{w_{\alpha}(\beta)}(\eta_{\alpha\beta}a^{-\langle\beta^{\vee},\alpha\rangle}b)$. Здесь $\eta_{\alpha\beta} = \pm 1$ — некоторые константы (для них есть формула). Напомним, что $w_{\alpha}(a) = x_{\alpha}(a)x_{-\alpha}(-a^{-1})x_{\alpha}(a)$.

Из этого выводится

- коммутационная формула Шевалле;
- формула $h_{\alpha}(a)x_{\beta}(b) = x_{\beta}(a^{\langle \beta^{\vee}, \alpha \rangle}b)$, где $h_{\alpha}(a) = w_{\alpha}(a)w_{\alpha}(1)^{-1}$.

Пусть G — расщепимая редуктивная группа над коммутативным кольцом R с оснащением T (то есть, выбраны M, M', Φ , Φ^{\vee} , $\Pi \subseteq \Phi$, $\{x_{\alpha}\}_{\alpha \in \Pi}$). Пусть $J \subseteq \Pi$ — произвольное подмножество. Рассмотрим множества $\Delta = \langle \alpha \mid \alpha \in \Pi \setminus J \rangle_{\mathbb{Z}} \cap \Phi$ и $\Sigma = \Phi^+ \setminus \Delta = \{\alpha \in \Phi^+ \mid \sum_{\beta \in J} m_{\beta}(\alpha) > 0\}$.

Определение 2.4. Говорят, что $P = P_J -$ стандартная параболическая подгруппа типа J, если P - [единственная] гладкая замкнутая подгруппа в G такая, что $\text{Lie}(P) = \bigoplus_{\alpha \in \Delta \cup \Sigma} \text{Lie}(G)_{\alpha}$. Подмножество $\Delta \cup \Sigma$ мы будем обозначать через $\Phi(P)$.

Требование гладкости гарантирует, что на P выбрана редуцированная структура замкнутой подсхемы.

У параболической подгруппы есть **подгруппа Леви** L_P такая, что $\mathrm{Lie}(L_P) = \bigoplus_{\alpha \in \Delta} \mathrm{Lie}(G)_{\alpha}$. Также есть **унипотентный радикал** U_P : $U_P(R') = \langle x_{\alpha}(R') \mid \alpha \in \Sigma \rangle$ для каждой R-алгебры R'. Описать в аналогичном духе образующие $L_P(R')$ мы не можем, но по крайней мере $L_P(R')$ содержит T(R') и $\langle x_{\alpha}(R') \mid \alpha \in \Delta \rangle$.

Определение 2.5. Каждому корню $\alpha \in \Phi$ сопоставим вектор $\alpha_J = \sum_{\beta \in J} m_\beta(\alpha)\beta$, называемый шейпом (shape) корня α . Уровнем корня α назовем число level(α) = $\sum_{\beta \in J} m_\beta(\alpha)$ (см. [ABS90]).

Напомним, что $x_{\alpha}(\mathbb{G}_a) = U_{\alpha}$ — замкнутая подгруппа в G.

Пусть S — шейп, то есть, $S = (\alpha_0)_J$ для некоторого $\alpha_0 \in \Phi$. Положим $\Sigma_S = \{\alpha \in \Phi \mid \alpha_J = S\}$. Тогда $\Sigma = \coprod_{S \neq 0, S \in \mathbb{Z}_{\geq 0} \cdot J} \Sigma_S$. Уровень каждого корня из Σ_S равен одному и тому же целому числу, которое мы будем называть **уровнем** шейпа S и обозначать через level(S).

Определение 2.6. Для шейпа S положим $V_S = \prod_{\alpha \in \Sigma_S} U_\alpha \subseteq U_P^i/U_P^{i+1}$, где $U_P = R_u(P_J)$, а i = level(S). Это подгруппа в абелевой группе U_P^i/U_P^{i+1} , а на самом деле, конечно,

$$U_P^i/U_P^{i+1} \cong W(R^{\sum_{\text{level}(S)=i} |\Sigma_S|}),$$

и $V_S \cong W(R^{|\Sigma_S|})$. Такой модуль V_S называется **внутренним модулем Шевалле**. Это свободный модуль с действием L_P .

Лемма 2.7. Множество Σ_S содержит единственный корень α_S^{\max} максимальной высоты, и единственный корень α_S^{\min} минимальной высоты. Кроме того, для любых $m,n \geq 1$ выполнено $\alpha_{mS}^{\max} - \alpha_{nS}^{\max} \in \Phi \cup \{0\}$ (и то же самое выполнено для \min).

Доказательство. Докажем для тах. Заметим, что первая часть следует из второй подстановкой m=n. Разность $\alpha_{mS}^{\max}-\frac{m}{n}\alpha_{nS}^{\max}$ имеет нулевой шейп, поэтому представляется

в виде (рациональной) линейной комбинации корней из $\Pi \setminus J$. Сгруппируем отдельно те корни из $\Pi \setminus J$, коэффициент при которых в этой разности положителен, и те, коэффициент при которых отрицателен. Итак,

$$\alpha_{mS}^{\max} = \frac{m}{n} \alpha_{nS}^{\max} + \sum_{\alpha_i \in I_+} \lambda_i \alpha_i - \sum_{\beta_j \in I_-} \mu_j \beta_j,$$

где $I_+, I_- \subseteq \Pi \setminus J, I_+ \cap I_- = \varnothing$, и все коэффициенты λ_i, μ_j неотрицательны. Обозначим $\delta_1 = \sum \lambda_i \alpha_i, \ \delta_2 = \frac{m}{n} \alpha_{nS}^{\max} - \sum_{\mu_j \beta_j}$. Заметим, что $(\delta_1, \delta_2) \ge 0$. Действительно, $\alpha_{nS}^{\max} - \max$ максимальный корень своего шейпа, поэтому $(\alpha_{nS}^{\max}, \alpha_i) \ge 0$; кроме того, $(\alpha_i, \beta_j) \le 0$, поскольку это простые корни.

Поэтому $(\alpha_{mS}^{\max}, \delta_2) = (\delta_1 + \delta_2, \delta_2) > 0$. Отсюда

$$\frac{m}{n}(\alpha_{mS}^{\max}, \alpha_{nS}^{\max}) = (\alpha_{mS}^{\max}, \delta_2) + (\alpha_{mS}^{\max}, \sum \mu_j \beta_j),$$

где первое слагаемое положительно, а второе неотрицательно. Поэтому $\alpha_{mS}^{\max} - \alpha_{nS}^{\max} \in \Phi \cup \{0\}$.

Теорема 2.8 (из статьи [ABS90]). Пусть R = K — поле, в котором не меньше пяти элементов, и структурные константы Φ обратимы. Пусть система корней Φ неприводима. Тогда $V_S(K)$ — неприводимый $L_P(K)$ -модуль со старшим весом $-\alpha_S^{\min}$.

Лемма 2.9 ([ABS90, Lemma 1]). Группа $W(\Delta)$ действует транзитивно на корнях одинаковой длины в Σ_S для любого шейпа S по отношению к J.

3 Системы относительных корней

Пусть Φ — система корней, $\Pi \subseteq \Phi$ — простые корни, D — соответствующая диаграмма Дынкина, $J \subseteq \Pi$, $\Gamma \leq \operatorname{Aut}(D)$, и пусть множество J инвариантно относительно Γ .

Определение 3.1. Рассмотрим отображение

$$\pi_{J,\Gamma} \colon \mathbb{Z}\Phi \to \mathbb{Z}\Phi/\langle \Pi \setminus J; \alpha - \sigma(\alpha) \mid \alpha \in J, \sigma \in \Gamma \rangle_{\mathbb{Z}}.$$

Множество $\Phi_{J,\Gamma} = \pi_{J,\Gamma}(\Phi) \setminus \{0\}$ называется **системой относительных корней**.

Случай 1: группа Γ тривиальна. Тогда $\pi_{J,1}\colon \mathbb{Z}\Phi \to \mathbb{Z}\Phi/\langle \Pi\setminus J\rangle_{\mathbb{Z}}$, и образы простых корней в $\Phi_{J,1}$ биективно соответствуют J, а $\pi_{J,1}(\Phi)$ биективно соответствует J-шейпам.

Случай 2: группа Γ нетривиальна. Если при этом Φ — неприводимая система корней, то $\Phi = A_l$ ($l \geq 2$), D_l ($l \geq 5$), E_6 или D_4 . При этом если $\Phi = A_l$, D_l ($l \geq 5$) или E_6 , то обязательно $\Gamma = \{\mathrm{id}_D, \sigma\}$. В случае $\Phi = D_4$ может быть $\Gamma = \{\mathrm{id}_D, \sigma\}$, $\Gamma = \{\mathrm{id}_D, \sigma, \sigma^2\}$ или $\Gamma \cong S_3$. В любом случае (даже для приводимой системы Φ) отображение $\pi_{J,\Gamma}$ можно разложить в композицию

$$\mathbb{Z}\Phi \xrightarrow{\pi_{J,\Gamma}} Z\Phi/\langle \Pi \setminus J, \alpha - \sigma(\alpha) \mid \alpha \in J \rangle_{\mathbb{Z}}$$

$$Z\Phi/\langle \alpha - \sigma(\alpha) \mid \alpha \in \Pi \rangle_{\mathbb{Z}}$$

где $J' = \pi_{\Gamma}(J)$.

При этом $\Phi' = \pi_{\Gamma}(\Phi) \setminus \{0\}$ всегда является системой корней (и для неприводимой Φ имеет тип $\mathrm{BC}_{l/2},\,\mathrm{C}_{(l-1)/2}$ или $\mathrm{G}_2).$

Пример 3.2. Пусть $\Phi = A_5$, $J = \{\alpha_2, \alpha_4\}$, $\Gamma = \{id, \sigma\}$. Мы будем обводить на диаграмме Дынкина вершины, соответствующие корням из J, и указывать стрелочками действие группы Γ :

Получаем отображения $\mathbb{Z} A_5 \xrightarrow{\pi_{\Gamma}} \mathbb{Z} C_3 \xrightarrow{\pi_{\alpha_2}} \mathbb{Z} \cdot \pi_{J,\Gamma}(\alpha_2) = \mathbb{Z} \Phi_{J,\Gamma}$. При этом $\Phi_{\{\alpha_2,\alpha_4\},\Gamma} = \pi_{\{\alpha_2,\alpha_4\},\Gamma}(A_5) \setminus \{0\}$.

Вывод: относительные корни всегда соответствуют ненулевым шейпам для какой-то системы корней.

Пример 3.3. В случае $\Phi = A_6$, $J = \{\alpha_2, \alpha_5\}$ с нетривиальной Γ получаем $\Phi' = BC_3$:

Под равенством $\Phi' = BC_3$ мы здесь имеем в виду, что Φ' изоморфна BC_3 в смысле следующего определения.

Определение 3.4. Изоморфизм систем относительных корней — это биекция, сохраняющая [частично определенное] сложение.

Определение 3.5. Простые относительные корни — это элементы образа $\pi_{J,\Gamma}(\Pi)\setminus\{0\}.$

Очевидный факт: любой $\alpha \in \Phi_{J,\Gamma}$ является суммой $\alpha = \sum_{\beta_i \in \pi_{J,\Gamma}(\Pi) \setminus \{0\}} \lambda_i \beta_i$, где все коэффициенты $\lambda_i \in \mathbb{Z}$ и либо одновременно неотрицательны, либо одновременно неположительны.

Введем обозначения: $\Phi_{J,\Gamma}^+ = \pi_{J,\Gamma}(\Phi^+) \setminus \{0\}, \; \Phi_{J,\Gamma}^- = \pi_{J,\Gamma}(\Phi^-) \setminus \{0\}.$ Тогда $\Phi_{J,\Gamma} = \Phi_{J,\Gamma}^+ \coprod \Phi_{J,\Gamma}^-$.

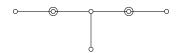
Определение 3.6. Система относительных корней $\Phi_{J,\Gamma}$ называется неприводимой, если Γ действует транзитивно на неприводимых компонентах Φ .

Определение 3.7. Будем говорить, что $\Phi_{J,\Gamma}$ — **система корней**, если $\Phi_{J,\Gamma}$ изоморфна системе корней в смысле Бурбаки.

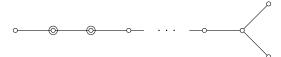
Пример 3.8. Пусть
$$\Phi = \mathbf{A}_n$$
. Тогда $\Phi_{J,1} \cong \mathbf{A}_{|J|}$, и $\Phi_{J,\{\mathrm{id},\sigma\}} \cong \begin{cases} \mathbf{C}_l, & |J| \text{ нечетно}, l = \frac{|J|+1}{2} \\ \mathbf{BC}_l, & |J| \text{ четно}, l = \frac{|J|}{2} \end{cases}$

Пример 3.9. $\Phi = \mathcal{E}_6, J = \{\alpha_2, \alpha_4\}$ — получается относительная система корней типа \mathcal{G}_2 :

Угадать ответ в этом случае (и в некоторых других) помогает следующее соображение. Коэффициенты в разложении максимального корня E_6 по простым корням равны 12321. Коэффициенты при вершинах из J оказались равны 3 и 2 — как и коэффициенты в разложении максимального корня системы типа G_2 . Однако, это правило не всегда работает. Например, если $J = \{\alpha_3, \alpha_5\}$, то получится все-таки не система корней типа BC_2 (хотя коэффициенты при корнях из J равны 2 и 2):



Пример 3.10. Пусть $\Phi = D_l$. Если $J = \{\alpha_2, \alpha_3\}$ — получается не BC_2 , а $\{\pm \alpha_2, \pm \alpha_3, \pm (\alpha_2 + \alpha_3), \pm (\alpha_2 + 2\alpha_3), \pm (2\alpha_2 + 2\alpha_3)\}$ — это вообще не система корней:



Если же $J = \{\alpha_2, \alpha_4\}$, то все-таки BC₂:

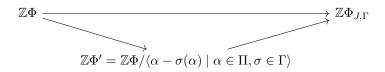
Лемма 3.11. Пусть Φ — любая система корней, $\alpha, \beta, \gamma \in \Phi$ такие, что $\alpha + \beta + \gamma \in \Phi$ и $\alpha + \beta + \gamma \neq \alpha, \beta, \gamma$. Тогда хотя бы две суммы из $\alpha + \beta, \alpha + \gamma, \beta + \gamma$ являются корнями.

Доказательство этой леммы совсем несложно.

Лемма 3.12. Пусть $A,B,C\in\Phi_{J,\Gamma}$ удовлетворяет A+B=C. Тогда для любого $\gamma\in\pi_{J,\Gamma}^{-1}(C)$ существуют $\alpha\in\pi_{J,\Gamma}^{-1}(A)$ и $\beta\in\pi_{J,\Gamma}^{-1}(B)$ такие, что $\alpha+\beta=\gamma.$

Доказательство. Обозначим для краткости $\pi=\pi_{J,\Gamma}$. Пусть сначала $\Gamma=1$. Пусть $\alpha_0\in\pi^{-1}(A)$ и $\beta_0\in\pi^{-1}(B)$ — любая пара корней. Тогда $\gamma=\alpha_0+\beta_0+\sum_{i=1}^n\delta_i$, где $\delta_i\in(\Pi\backslash J)\cup(-(\Pi\backslash J))$. Доказываем индукцией по n, что из этого следует существование α,β с суммой γ . При n=0 все доказано. Пусть теперь n>0. Из $(\gamma,\gamma)>0$ следует, что $(\gamma,\alpha_0)>0$ или $(\gamma,\beta_0)>0$ или $(\gamma,\delta_i)>0$ для какого-то i. Если $(\gamma,\alpha_0)>0$ или $(\gamma,\beta_0)>0$, то все доказано: берем разность. Если же $(\gamma,\delta_i)>0$, то $\gamma'=\gamma-\delta_i$ является корнем. По предположению индукции тогда $\gamma'=\alpha'+\beta'$, где $\alpha'\in\pi^{-1}(A),\,\beta'\in\pi^{-1}(B)$. Тогда $\alpha'+\beta'+\delta_i=\gamma$ — корень. По лемме 3.11 $\alpha'+\delta_i$ или $\beta'+\delta_i$ является корнем. Поэтому $\gamma=(\alpha'+\delta_i)+\beta'$ в первом случае, и что-то такое же во втором.

Теперь пусть $\Gamma \neq 1$. Тогда $\pi_{J,\Gamma}$ раскладывается в композицию



По условию A+B=C в $\Phi_{J,\Gamma}$. Поэтому есть $A',B',C'\in\Phi_{\Pi,\Gamma}=\Phi'$ такие, что A'+B'=C'. Осталось доказать утверждение для первой стрелки. Теперь можно считать, что $J=\Pi$. Например, в случае $\Phi=A_l$ все орбиты действия $\Gamma=\{\mathrm{id}_D,\sigma\}$ состоят из одного или из двух элементов. Пусть $\alpha_0\in\pi_{\Pi,\Gamma}^{-1}(A'),\ \beta_0\in\pi_{\Pi,\Gamma}^{-1}(B')$. Тогда $\alpha_0+\sigma(\alpha_0)+\beta_0+\sigma(\beta_0)=\gamma+\sigma(\gamma)$. Дальше смотрим на скалярное произведение: $(\gamma+\sigma(\gamma),\gamma+\sigma(\gamma))>0$, поэтому $(\gamma,\alpha)>0$ или $(\gamma,\beta)>0$ или $(\gamma,\sigma(\alpha))>0$ или $(\gamma,\sigma(\beta))>0$. Общий случай рассматривается аналогично: нужно рассматривать суммы выражений вида $g(\alpha)$ по всем элементам $g\in\Gamma$.

Лемма 3.13. Для любого $A \in \Phi_{J,\Gamma}$ имеем $\mathbb{Z}A \cap \Phi_{J,\Gamma} = \{\pm A, \pm 2A, \dots, \pm mA\}$ для какогото $m = m_A \geq 1$.

Доказательство. Если Γ тривиальна, то A является J-шейпом. По лемме 2.7 тогда $\alpha_{mS}^{\max} - \alpha_{nS}^{\min}$ лежит в Φ или равно нулю. Тогда $\alpha_{mS}^{\max} \in \pi^{-1}(mA)$ и $\alpha_{nS}^{\max} \in \pi^{-1}(nA)$. Если же $\Gamma \neq 1$, то A — это $\pi_{\Pi,\Gamma}(J)$ -шейп системы корней Φ' .

4 Изотропные редуктивные группы

Пусть R — коммутативное кольцо с единицей.

Определение 4.1. Групповая схема G/R называется редуктивной (полупростой), если выполнены следующие условия:

- 1. G аффинная, то есть, $G = \operatorname{Spec} A$, где A = R[G];
- 2. G плоская (то есть, A плоский R-модуль);
- 3. для любой точки $s \in \operatorname{Spec} R$ групповая схема $G_{\overline{k(s)}} = G \times_R \overline{\kappa(s)}$ является редуктивной (полупростой) в обычном смысле. Здесь $\kappa(s) = R_s/sR_s$ для простого идеала s, а $\overline{k(s)}$ алгебраическое замыкание поля $\kappa(s)$.

Замечание 4.2. Выполнение свойств (2) и (3) равносильно (3) + тому, что G гладкая над R.

Пример 4.3. $\operatorname{SL}_n(D)$, где D — центральная простая алгебра с делением над полем k. Это ядро приведенной нормы, а приведенная норма — это скрученная форма определителя. Заметим, что $D \otimes_k \overline{k}$ изоморфно $M_{m \times m}(\overline{k})$. Поэтому $\operatorname{SL}_n(D)$ является редуктивной группой.

Пример 4.4. GL(V), где V/R — конечно порожденный проективный R-модуль. Тогда GL(V) — редуктивная группа. Это множество обратимых элементов End(V)

Определение 4.5. [Алгебраический] тор T над R — это такая групповая схема, что локально в топологии fpqc T изоморфен расщепимому тору $(\mathbb{G}_m)^n$ (при этом n может быть разным для разных элементов покрытия).

Что такое группа автоморфизмов расщепимого тора? $\operatorname{Aut}((\mathbb{G}_m)^n) = \operatorname{GL}_n(\mathbb{Z})$. Расшифруем слова «fpqc-покрытие» для аффинной схемы Spec R.

Упражнение 4.6. Для любого fpqc-покрытия $\{U_i \to \operatorname{Spec} R\}$ существует конечное fpqc-покрытие $\{\operatorname{Spec} S_j \to \operatorname{Spec} R\}$ такое, что для любого j имеется открытое вложение $\operatorname{Spec} S_j \to U_i$ для некоторого i.

Другой вариант: у любой точки $s \in \operatorname{Spec} R$ есть открытая аффинная окрестность $\operatorname{Spec} R' \subseteq \operatorname{Spec} R$ и строго плоский гомоморфизм $R' \to S'$ такой, что $\operatorname{Spec} S' \subseteq U_i$ открытое вложение для какого-то i.

Если T — групповая схема конечного типа над R и тор, то T расщепляется (то есть, изоморфен расщепимому тору $(\mathbb{G}_m)^n$) локально в этальной топологии (теорема Гротендика, SGA3).

Пример 4.7. Рассмотрим схему $X = \operatorname{Spec}(\mathbb{R}[x,y]/(x^2+y^2=1))$. Это нерасщепимый одномерный тор над вещественными числами. Над \mathbb{C} он становится изоморфным \mathbb{G}_m .

Правильнее, конечно, писать $\mathbb{G}_{m,\mathbb{C}} = \operatorname{Spec}(\mathbb{C}[x,x^{-1}])$. Заметим, что тор — частный случай редуктивной группы.

Определение 4.8. Пусть G — групповая схема, $T\subseteq G$ — замкнутая R-подгруппа. Тогда T называется максимальным тором в G, если

- 1. T тор;
- 2. для любой точки $s\in \operatorname{Spec} R$ тор $T_{\overline{\kappa(s)}}$ максимальный тор в $G_{\overline{\kappa(s)}}.$

Замечание 4.9. Даже в полупростой группе G над кольцом $R = \mathbb{C}[x^{\pm 1}, y^{\pm 1}]$ может не быть максимального тора.

Любой максимальный тор в смысле этого определения действительно максимален по включению, но обратное может быть неверно (см. также [GP12]).

Лемма 4.10. (SGA 3) Пусть G/R — редуктивная группа. Тогда G имеет максимальный тор локально в топологии Зариского.

Теорема 4.11. Пусть R — коммутативное кольцо, G/R — редуктивная группа. Тогда G имеет оснащение (кратко: G расщепима) локально в топологии fpqc (на самом деле, в этальной).

Доказательство. Локально в топологии fpqc (на покрытии $\{U_i \to \operatorname{Spec} R\}$) группа Gсодержит расщепимый максимальный тор $T\cong (\mathbb{G}_m)^n$. Напомним, что $\mathrm{Lie}(G)(R)=$ $\mathrm{Ker}(G(R[arepsilon]) \xrightarrow{arepsilon \to 0} G(R))$. При этом $\mathrm{Lie}(G)$ — конечно порожденный проективный Rмодуль. На этом модуле действует тор T. Поэтому $\mathrm{Lie}(G)$ раскладывается в прямую сумму $\mathrm{Lie}(G) = \bigoplus_{\alpha \in X^*(T)} \mathrm{Lie}(G)_{\alpha}$, где $X^*(T) \cong \mathbb{Z}^n$. Пусть $U_i = \mathrm{Spec}\, S$. Перейдем от R к S. Над S_p для любой точки $p \in \operatorname{Spec} S$ модули $\operatorname{Lie}(G)_{\alpha} \otimes_S S_p$ являются одномерными свободными модулями. Поэтому для каждого α найдется $f \in S \setminus p$ такой, что $\operatorname{Lie}(G)_{\alpha} \otimes_{S} S_{f}$ — одномерный свободный. Заметим, что множество характеров α таких, что $\text{Lie}(G)_{\alpha} \neq 0$, конечно (и не превосходит ранга Lie(G)). Поэтому можно взять S_f так, что все $\mathrm{Lie}(G)_{\alpha}\otimes_{S}S_{f}$ одновременно станут одномерными свободными модулями (или нулевыми) над S_f . Переобозначим $R = S_f$. Пусть $\Phi = \{\alpha \in X^*(T) \mid \text{Lie}(G)_\alpha \neq 0, \alpha \neq 0\}$. Нужно доказать, что это система корней. Заметим, что $X^*(T) = \text{Hom}(T, \mathbb{G}_m)$, а есть еще кохарактеры $X_*(T)=\operatorname{Hom}(\mathbb{G}_m,T)$. Если $\alpha\colon T\to\mathbb{G}_m$ — корень, то есть единственный $\alpha^{\vee} \colon \mathbb{G}_m \to T$ такой, что $\alpha \circ \alpha^{\vee} = (-)^2$. При этом можно еще выбрать (даже единственным образом) замкнутое вложение $x_{\alpha} \colon \mathbb{G}_{a} \cong W(\mathrm{Lie}(G)_{\alpha}) \to G$ так, что $\operatorname{Lie}(x_{\alpha})$: $\operatorname{Lie}(G)_{\alpha} \to \operatorname{Lie}(G)$ — каноническое вложение, и так, что x_{α} является Tэквивариантным. Дальше строится редуктивная группа «простого ранга 1», выписываются формулы для $h_{\alpha}\colon \mathbf{G}_m \xrightarrow{\alpha^{\vee}} T \to G$ и $w_{\alpha}(t) \in \mathrm{Norm}_G(T)$. Тогда действие $w_{\alpha}(t) \in G$ на $\mathrm{Lie}(G)$ переставляет корневые подпространства. Отсюда будет следовать, что Φ система корней, а $(X^*(T), X_*(T), \Phi, \Phi^{\vee})$ — корневые данные.

Определение 4.12. Пусть G — редуктивная группа над R, $P \leq G$ — замкнутая подгруппа. Будем говорить, что P — **параболическая** (**борелевская**), если

- 1. P гладкая;
- 2. $P_{\overline{\kappa(s)}}$ параболическая (борелевская) в $G_{\overline{\kappa(s)}}$ для любой точки $s \in \operatorname{Spec} R$.

Определение 4.13. Пусть $\mathcal{E} = (T, (M, M^{\vee}, \Phi, \Phi^{\vee}), \Pi, \{x_{\alpha}\}_{\alpha \in \Pi})$ — оснащение редуктивной группы $G, P \subseteq G$ — параболическая подгруппа. Мы будем говорить, что \mathcal{E} согласовано с P, если P — стандартная (положительная) параболическая подгруппа.

Лемма 4.14. Пусть G/R — редуктивная группа, $P \subseteq G$ — параболическая подгруппа. Тогда

- 1. локально в топологии fpqc группа G обладает оснащением, согласованным с P;
- 2. P содержит единственную максимальную нормальную гладкую подгруппу U_P такую, что $(U_P)_{\overline{\kappa(s)}}$ унипотентный радикал в $P_{\overline{\kappa(s)}}$;
- 3. P содержит максимальную редуктивную подгруппу L_P такую, что $P \cong L_P \ltimes U_P$;
- 4. локально в топологии fpqc можно выбрать оснащение, согласованное с P и L_P (в частности, $L_P\supseteq T$);
- 5. если L_P и L_P' две подгруппы как в пункте (3), то существует $u \in U_P(R)$ такой, что $uL_Pu^{-1} = L_P'$.

Набросок доказательства. Есть такая лемма в SGA3: если $H \subseteq G$ — замкнутая гладкая подгруппа такая, что редуктивный ранг $H_{\overline{\kappa(s)}}$ равен редуктивному рангу $G_{\overline{\kappa(s)}}$ для любой точки $s \in \operatorname{Spec} R$, то fpqc-локально H содержит максимальный тор G локально в топологии fpqc.

- 1. Пусть теперь $P\supseteq T$ максимальный тор G локально в топологии fpqc. Можно его расщепить и достроить до оснащения.
- 2. Локально в топологии fpqc мы знаем, что $U_P = \prod U_\alpha$ по α из унипотентной части множества корней, соответствующего P. Можно показать, что $U_P \subseteq P$ единственная замкнутая подгруппа с соответствующим свойством, и тогда U_P спускается до подгруппы над R (по теореме из первой лекции).
- 3. Можно доказать, что фактор P/U_P представим и является редуктивной группой. Чтобы построить сечение $P/U_P \to P$, нужно использовать тот факт, что $H^1_{\mathrm{fpqc}}(R,U_P)$ тривиально, поскольку $U_P \cong W(\mathrm{Lie}(U_P))$ (как схема).
- 4. Понятно: выберем максимальный тор в L_P .
- 5. Используем то, что $\operatorname{Norm}_P(L) = L$ и $H^1_{\operatorname{fpqc}}(R, U_P)$ тривиально. Кроме того, подгруппа Леви в P это U_P -торсор.

Лемма 4.15. Пусть расщепимый R-тор S действует на G, где G — редуктивная группа над R. Положим $L = \operatorname{Cent}_G(S)$. Пусть $\Psi \subseteq X^*(S) \cong \mathbb{Z}^N$ — множество, замкнутое относительно сложения. Тогда

- 1. существует единственная гладкая связная подгруппа $U_{\Psi} \subseteq G$ такая, что $\text{Lie}(U_{\Psi}) = \bigoplus_{\alpha \in \Psi} U_{\alpha}$; более того, $L \subseteq U_{\Psi}$ в случае, если $0 \in \Psi$; L нормализует U_{Ψ} в случае, если $0 \notin \Psi$;
- 2. выполнено
 - $U_{\Psi} = L$, если $\Psi = \{0\}$;
 - U_{Ψ} редуктивна, если $\Psi = -\Psi$;
 - U_{Ψ} параболическая, если $\Psi \cup (-\Psi) = X^*(S)$, причем $U_{\Psi \setminus (-\Psi)}$ ее унипотентный радикал.

Лемма 4.16. Пусть G/R — расщепимая редуктивная группа, \mathcal{E} , \mathcal{E}' — два оснащения группы G. Положим $G^{\mathrm{ad}} = G/\operatorname{Cent}(G)$ (в схемном смысле). Тогда есть fpqc-покрытие $\coprod_{i=1}^{n} \operatorname{Spec} R_{i} \to \operatorname{Spec} R$ и $g_{i} \in G^{\mathrm{ad}}(R_{i})$ такие, что действие g_{i} на $G_{R_{i}}$ переводит \mathcal{E} в \mathcal{E}' . Более того, такие g_{i} единственны.

Набросок доказательства. Наличие оснащения \mathcal{E} гарантирует наличие тора T и содержащей его борелевской подгруппы $B\subseteq G$. Аналогично, в задании оснащения \mathcal{E}' содержится информация о торе T' и борелевской B' в G. Над локальным кольцом (T,B) и (T',B') сопряжены. Поэтому локально в топологии Зариского пары (T,B) и (T',B') сопряжены. Дальше нужно подогнать параметризации корневых подгрупп; это можно сделать локально в fpqc-топологии. Единственность по сути следует из того, что нормализатор B в G равен G, нормализатор G в G равен G равен G подобное.

5 Относительные корневые подсхемы

Теорема 5.1 (см. [PS09, § 2] и [Sta14, Lemma 3.6]). Пусть G/R — редуктивная группа, $P \leq G$ — параболическая подгруппа, L — ее подгруппа Леви. Тогда существует разложение $R = \prod_{i=1}^n R_i$, где R_i — коммутативные кольца (то есть, Spec $R = \coprod_{i=1}^n \operatorname{Spec} R_i$), такое, что для каждого $V = \operatorname{Spec} R_i$, $1 \leq i \leq m$, выполнено следующее:

- 1. для любого $s \in V$ диаграмма Дынкина системы корней Φ для $G_{\overline{k(s)}}$ одна и та же;
- 2. для любого $s \in V$ тип $L_{\overline{\kappa(s)}}$ один и тот же, и равен $D \setminus J$ (где $J \leq D$ тип подгруппы P);
- 3. для любого $s \in V$ можно выбрать нетерово связное кольцо $Q = Q_s$, морфизм $f \colon V \to \operatorname{Spec} Q_s = U_s$ и редуктивную группу G_s/Q_s , удовлетворяющую $G_V \cong G_s \times_{Q_s} V$ так, что группа $\pi_1^{\operatorname{\acute{e}t}}(U,\overline{\kappa(s)})$ *-действует на диаграмме Дынкина D (общей для $G_{\overline{\kappa(s)}}$ и $(G_s)_{\overline{\kappa(f(s))}}$) посредством одной и той же подгруппы в $\operatorname{Aut}(D)$.

Определение 5.2. Пусть G — редуктивная группа над R. Мы будем называть **ло-кальным оснащением** набор данных τ , состоящий из

- $U_{\tau} = \operatorname{Spec} R_{\tau} \subseteq \operatorname{Spec} R$,
- сторого плоской R_{τ} -алгебры S_{τ} ,
- \bullet оснащения $\mathcal{E}_{\tau} = (T_{\tau}, \dots)$ группы $G_{S_{\tau}} = G \times_R S_{\tau}$.

Доказательство. Если σ, τ — два локальных оснащения, то появляются два оснащения $\mathcal{E}_{\sigma}, \, \mathcal{E}_{\tau}$ на $G_{S_{\tau} \otimes_R S_{\sigma}}$. Мы уже знаем, что любые два оснащения сопряжены локально в fpqc-топологии. Поэтому имеется покрытие $\{\coprod_i \operatorname{Spec} Q_{\sigma \tau i} \to S_{\tau} \otimes_R S_{\sigma}\}$ и элементы $g_{\sigma \tau i} \in G^{\operatorname{ad}}(Q_{\sigma \tau i})$, переводящие \mathcal{E}_{σ} в \mathcal{E}_{τ} в $G_{Q_{\sigma \tau i}}$. Возьмем те локальные оснащения, которые согласованы с P и L (то есть, $T_{\tau} \subseteq L_{S_{\tau}}$). Тогда $g_{\sigma \tau i} \in \overline{L}(Q_{\sigma \tau i})$, где \overline{L} — образ L в G^{ad} .

Для каждого типа расщепимой группы, который встречается в этом наборе, зафиксируем «модельную» групповую схему Шевалле–Демазюра $G_0((M,M^\vee,\Phi,\Phi^\vee,\Pi))$. Любая G_{S_τ} изоморфна какой-то $G_0(\ldots)$; фиксируем такой изоморфизм (сохраняющий оснащение) для каждого τ , для которого тип (P_{S_τ},L_{S_τ}) один и тот же. В частности, это означает, что корни в Π_τ пронумерованы.

Теперь каждому $g_{\sigma\tau i}$ соответствует некоторый элемент $\gamma_{\sigma\tau i}\in \operatorname{Hom}(D_{\sigma},D_{\tau})$. Определим группоид \mathcal{D} : его объекты — D_{τ} , где τ — локальное оснащение, согласованное с P и L. Морфизмы $D_{\sigma}\to D_{\tau}$ — множество всевозможных $\gamma_{\sigma\tau i}\in \operatorname{Hom}(D_{\sigma},D_{\tau})$. Мы утверждаем, что D_{τ} , D_{σ} принадлежат одной компоненте связности группоида \mathcal{D} тогда и только тогда, когда существует последовательность $\tau=\tau_0,\tau_1,\ldots,\tau_n=\sigma$ такая, что $U_{\tau_i}\cap U_{\tau_{i+1}}\neq\varnothing$.

Пусть \mathcal{D}_{α} , $\alpha \in A$ — все компоненты связности группоида \mathcal{D} . Пусть $V_{\alpha} = \bigcup_{D_{\tau} \in \mathcal{D}_{0}} U_{\tau}$. Это открытое подмножество в Spec R. Понятно, что $\bigcup_{\alpha \in A} V_{\alpha} = \operatorname{Spec} R$. Выберем в нем конечное подпокрытие. С другой стороны, понятно, что это покрытие дизъюнктное; поэтому оно аффинно, то есть, имеются $V_{i} = \operatorname{Spec} R_{i}$ такие, что $\operatorname{Spec} R = \coprod_{i=1}^{m} \operatorname{Spec} R_{i}$. Оно удовлетворяет всем нужным свойствам: пусть $V = V_{i} = \operatorname{Spec} R_{i}$, где $1 \leq i \leq m$. Тогда у любого $s \in V$ существует окрестность $s \in U_{\tau} = \operatorname{Spec} R_{\tau} \subseteq \operatorname{Spec} R_{i}$ и локальное оснащение $\tau = (U_{\tau}, S_{\tau}, \mathcal{E}_{\tau})$. При этом ясно, что тип $G_{\overline{\kappa(s)}}$ и тип $G_{S_{\tau}}$ один и тот же. Действительно, имеется коммутативная диаграмма

$$R_{\tau} \longrightarrow S_{\tau}$$

$$\downarrow$$

$$\kappa(s) \longrightarrow \kappa(s')$$

Для любой другой \widetilde{s} в V тип $G_{S_{\widetilde{\tau}}}$ такой же, что и тип $G_{S_{\tau}} = D_{\tau}$.

Пункт (2) доказывается совершенно аналогично.

Пункт (3): в группоиде есть группа $\Gamma_{\sigma} = \operatorname{Aut}(D_{\sigma}) = \operatorname{Hom}_{\mathcal{D}}(D_{\sigma}, D_{\sigma}) \leq \operatorname{Aut}(D_{\sigma})$. Нам нужно показать, что для любой точки $s \in V$ и локального оснащения τ группа Γ_{τ} одна и та же.

Пусть S — расщепимый R-тор, который действует автоморфизмами на некоторой редуктивной группе G/R. Обозначим $\Phi(S,G)=\{\alpha\in X^*(S)\mid \alpha\neq 0, \mathrm{Lie}(G)_{\alpha}\neq 0\}$. Напомним, что $\mathrm{Lie}(G)=\bigoplus_{\alpha\in X^*(S)}\mathrm{Lie}(G)_{\alpha}$.

Замечание 5.3. Пусть V_1 , V_2 — конечно порожденные проективные R-модули. Тогда морфизм схем $f: W(V_1) \to W(V_2)$ — это то же самое, что элементы $\operatorname{Sym}^*(V_1^*) \otimes_R V_2$. Отображение f называется однородным степени i, если оно лежит в $\operatorname{Sym}^i(V_1^*) \otimes_R V_2$.

Теорема 5.4. В условиях теоремы 5.1 пусть \overline{L} — образ L в G^{ad} . По теореме 5.1 теперь $R = \prod_{i=1}^n R_i$; пусть теперь $R_0 = R_i$ для некоторого i. Тогда

- 1. существует единственный максимальный расшепимый тор $S\subseteq \operatorname{Cent}(\overline{L}_R)$ такой, что для любой R_0 -алгебры \widetilde{R} если $G_{\widetilde{R}}$ имеет оснащение, согласованное с P и L, и $T\subseteq \overline{L}_{\widetilde{R}}$ расшепимый максимальный тор, то ядро сюръективного отображения res: $X^*(T)\to X^*(S_{\widetilde{R}})$ порождается элементами $\alpha\in D\setminus J$ и $\alpha-\gamma(\alpha),\ \alpha\in J,\gamma\in\Gamma$. Таким образом, res = $\pi_{J,\Gamma}$, $\Phi(S,G)=\Phi_{J,\Gamma}$.
- 2. В ситуации пункта (1) для любого $A \in \Phi_{J,\Gamma} = \Phi(S,G)$ есть замкнутое S-эквивариантное вложение R_0 -схем $X_A \colon W(\mathrm{Lie}(G)_A \otimes_R R_0) \to G_{R_0}$ такое, что для любого $u = \sum_{\alpha \in \pi_{J,\Gamma}^{-1}(A)} c_\alpha e_\alpha \in \mathrm{Lie}(G)_A \otimes_R R_0 = \mathrm{Lie}(G_{R_0})_A$ выполнено

$$X_A(\sum_{\alpha \in \pi^{-1}(A)} c_{\alpha} e_{\alpha}) = \prod_{\alpha \in \pi^{-1}(A)} x_{\alpha}(c_{\alpha}) \cdot \prod_{i \ge 2} \prod_{\beta \in \pi^{-1}(iA)} x_{\beta}(P_{A,\beta,\widetilde{R}}^i(u)), \tag{1}$$

где $P_{A,\beta,\widetilde{R}}^i$: Lie $(G_{R_0})_A \to \widetilde{R}$ — однородные полиномиальные отображения степени i (для краткости мы пишем π вместо $\pi_{J,\Gamma}$).

Начиная с этого момента, считаем, что $R=R_0$ (после замены базы). Введем некоторые обозначения.

- $\Phi_P = \Phi_{J,\Gamma} = \Phi(S,G), \ \pi = \pi_{J,\Gamma} \colon \Phi \to \Phi_P \cup \{0\};$
- Каждому унипотентному множеству относительных корней (то есть, замкнутому относительно сложения и не содержащему двух противоположных = специальному) $\Psi \subseteq \Phi_P$ взаимно однозначно соответствует замкнутое относительно сложения подмножество $\mathbb{N}\Psi \subseteq X^*(S)$, не содержащее нуля. По такому множеству мы строили (лемма 4.15) подсхему $U_{\mathbb{N}\Psi} \subseteq G$. Ее мы будем обозначать просто через U_{Ψ} .
- Положим $(A) = \mathbb{N}A \cap \Phi_P$, $[A, B] = (\mathbb{N}A + \mathbb{N}B) \cap \Phi_P$.

Следствие 5.5 (см. [PS09, Lemma 6]). Пусть $\Psi \subseteq \Phi_P$ — унипотентное множество. Тогда морфизм

$$X_{\Psi} \colon W(\bigoplus_{A \in \Psi} V_A) \to U_{\Psi},$$

 $(v_A)_{A \in \Psi} \mapsto \prod_{A \in \Psi} X_A(v_A)$

является изоморфизмом R-схем (для любого фиксированного порядка множителей).

Доказательство. Заметим, что X_{Ψ} — действительно морфизм R-схем. Чтобы доказать, что X_{Ψ} — изоморфизм, достаточно это сделать локально в fpqc-топологии. То есть, можно перейти к R и использовать формулу (1). При этом $\Theta = \pi^{-1}(\Psi) \subseteq \Phi$ — тоже унипотентное множество корней, и $(U_{\Psi})_{\widetilde{R}} = U_{\Theta}$. Например, пусть $\Psi = (A)$. Тогда

$$X_{\Psi}\left(\sum_{\alpha \in \pi^{-1}(\Psi) = \Theta} c_{\alpha}e_{\alpha}\right)$$

$$= \prod_{\alpha \in \pi^{-1}(A)} x_{\alpha}(c_{\alpha}) \cdot \prod_{\beta \in \pi^{-1}(2A)} x_{\beta}(c_{\beta} + P_{\beta,R}^{2}(\dots)) \cdot \prod_{\gamma \in \pi^{-1}(3A)} x_{\gamma}(c_{\gamma} + P_{\gamma,R}^{3}(\dots) + \dots)$$

Видно, что такое преобразование обратимо.

Следствие 5.6 (см. [PS09, Thm 2, Lemma 9]). В ситуации Теоремы 5.4 предположим снова, что $R=R_0$. Тогда

1. есть однородные полиномиальные отображения $q_A^i\colon V_A\oplus V_A\to V_{iA}$ степени $i\ge 2$ такие, что для любого R'/R и для любых $v,w\in V_A\otimes_R R'$ выполнено

$$X_A(v)X_A(w) = X_A(v+w) \prod_{i\geq 2} X_{iA}(q_A^i(v,w));$$

2. для любого $g\in L(R)$ есть однородные полиномиальные отображения $\varphi^i_{g,A}\colon V_A\to V_{iA}$ степени $i\ge 1$ такие, что для любого R'/R и $v\in V_A\otimes_R R'$ выполнено

$$gX_A(v)g^{-1} = \prod_{i \ge 1} X_{iA}(\varphi_{g,A}^i(v));$$

3. выполнена обобщенная коммутационная формула Шевалле: пусть $A, B \in \Phi_P$ таковы, что $mA \neq -kB$ ни для каких $m, k \geq 1$. Тогда существуют однородные полиномиальные отображения $N_{ABij}\colon V_A \times V_B \to V_{iA+jB}$ степени (i,j), где i,j>0, такие, что для любых R'/R, $u \in V_A \otimes_R R'$, $v \in V_B \otimes_R R'$ выполнено

$$[X_A(u), X_B(v)] = \prod_{i,j>0} X_{iA+jB}(N_{ABij}(u,v)).$$

Доказательство. 1. У нас есть умножение $m\colon G\times G\to G$ и индуцированное им отображение $m_A\colon X_A(W(V_A))\times X_A(W(V_A))\to G$. Заметим, что образ m_A заведомо содержится в подгруппе $U_{(A)}$, которая изоморфна (как R-схема) схеме $\prod_{i\geq 1} X_{iA}(W(V_{iA}))$ (по следствию 5.5). Рассмотрим композицию с проекцией на i-й сомножитель $p_i\colon \prod_{i\geq 1} X_{iA}(W(V_{iA}))\to X_{iA}(W(V_{iA}))$. Построим диаграмму

$$W(V_A) \times W(V_A) \xrightarrow{X_A \times X_A} X_A(W(V_A)) \times X_A(W(V_A))$$

$$\downarrow^{\cong} \qquad \qquad \downarrow^{m_A}$$

$$W(V_A \oplus V_A) \qquad \qquad \downarrow^{p_i}$$

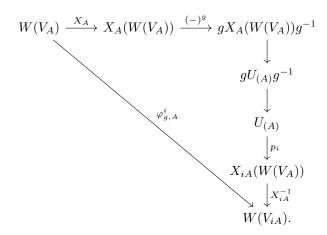
$$X_{iA}(W(V_{iA}))$$

$$\downarrow^{\cong}$$

$$W(V_{iA})$$

Мы получили морфизм схем, который дает нам полиномиальные отображения q_A^i . По формуле (1) локально в fpqc-топологии отображение q_A^i является однородным степени i, то есть, $q_A^i \in \mathrm{Sym}^i((V_A \oplus V_A)^*) \otimes_R V_{iA}$. Поэтому оно и глобально является таким (поскольку это тоже пучок в fpqc-топологии).

2. Рассмотрим диаграмму



Из нее видно, что $\varphi^i_{g,A}$ — морфизм схем, потому он полиномиален, и по формуле (1) он однороден степени i локально в fpqc-топологии, а потому и над базой.

3. Запишем $[X_A(u), X_B(v)] = X_A(u) X_B(v) X_A(u)^{-1} X_B(v)^{-1}$. Мы знаем, что $X_A(u)^{-1} = X_A(-u) \cdot \prod_i X_{iA}(\dots)$. Осталось вспомнить, что $[X_A(W(V_A)), X_B(W(V_B))] \subseteq U_{[A,B]}$, где $[A,B] = (\mathbb{N}A + \mathbb{N}B) \cap \Phi_P$.

6 Обобщенная коммутационная формула Шевалле и ее следствия

Мы уже сформулировали (и доказали) обобщенную коммутационную формулу Шевалле. На протяжении этого параграфа мы считаем, что даны редуктивная группа G, $P \subseteq G$, $L \subseteq P$, тип G постоянен и равен Φ , тип L — это $\Pi \setminus J$, где Π — система простых корней в Φ , зафиксирована подгруппа $\Gamma \le \operatorname{Aut}(\Phi)$ (все это как в теореме 5.1, но $R = R_i$ для какого-то i), $\pi = \pi_{J,\Gamma} \colon \Phi \to \Phi_P \cup \{0\}$, $\Phi_P = \Phi_{J,\Gamma}$. Для простоты предполагаем, что Φ неприводима (и тогда Φ_P тоже неприводима).

Лемма 6.1 (см. [PS09, Lemma 10] и [LS12, Lemma 2]). Пусть $A,B,A+B\in\Phi_P$ и $mA\neq -kB$ ни для каких $m,k\geq 1$. Тогда

- 1. Предположим, что выполнено хотя бы одно из следующих условий:
 - (a) структурные константы Φ обратимы в R;
 - (b) $A \neq B$ и $A B \notin \Phi_P$;
 - (c) $\Phi = B_l, C_l, F_4$ и существуют длинные корни $\alpha \in \pi^{-1}(A), \beta \in \pi^{-1}(B)$ такие, что $\alpha + \beta \in \Phi$;
 - (d) $\Phi = {\rm B}_l, {\rm C}_l, {\rm F}_4$ и $\pi^{-1}(A+B)$ состоит из коротких корней.

Тогда $\langle \text{Im} N_{AB11} \rangle = V_{A+B}$.

2. Если $A-B\in\Phi_P$ и $\Phi\neq\mathrm{G}_2,$ то

$$\langle \operatorname{Im} N_{AB11} \rangle + \langle \operatorname{Im} N_{A-B,2B,1,1} \rangle + \sum_{v \in V_B} \langle \operatorname{Im} (N_{A-B,B,1,2}(-,v)) \rangle = V_{A+B}.$$

(если $2B \notin \Phi_P$, то считаем, что $N_{A-B,2B,1,1} = 0$).

П

Доказательство. Отображение N_{AB11} : $V_A \times V_B \to V_{A+B}$; ему соответствует отображение N_{AB11} : $V_A \otimes V_B \to V_{A+B}$; достаточно доказать, что оно сюръективно. Это можно доказывать в fpqc-топологии, так как если дано fpqc-покрытие $R \to S = \prod_{i=1}^n S_i$, то f — строго плоский гомоморфизм. Поэтому сюръективность достаточно проверять над S, а значит, достаточно проверять над всеми S_i . Таким образом, можно считать, что G расщепима и даже имеет оснащение, согласованное с P и L. В частности, мы можем применять формулу 1.

Напомним, что $\mathrm{Lie}(G)_{A+B}=V_{A+B}$ порождено всеми e_γ , где $\gamma\in\pi^{-1}(A+B)$ (как R-модуль). Для любого $\gamma\in\pi^{-1}(A+B)$ найдутся $\alpha\in\pi^{-1}(A)$, $\beta\in\pi^{-1}(B)$ такие, что $\gamma=\alpha+\beta$. Тогда $\Lambda=[X_A(e_\alpha),X_B(e_\beta)]=[x_\alpha(1)\prod_{i\geq 2}X_{iA}(\dots),x_\beta(1)\prod_{i\geq 2}X_{iB}(\dots)].$ Мы знаем, что $\Lambda\in U_{[A,B]}$. Положим $\Psi=[A;B]\setminus\{A+B\}$; это унипотентное множество корней. Нетрудно убедиться, что $U_\Psi\unlhd U_{[A,B]}$ (по обобщенной коммутационной формуле Шевалле). По модулю U_Ψ получаем, что Λ равно $[x_\alpha(1),x_\beta(1)]=x_\gamma(N_{\alpha\beta11})\cdot\prod_{i,j>0,(i,j)\neq(1,1)}x_{i\alpha+j\beta}(N_{\alpha\beta ij})$, что (снова по модулю U_Ψ) равно $x_\gamma(N_{\alpha\beta11})$.

В случае (a) $N_{\alpha\beta11} \in R^*$. В случае (b) получаем $\alpha - \beta \notin \Phi$, поэтому $N_{\alpha\beta11} = \pm 1$. В случае (c) проблема только если γ длинный; W(L) действует транзитивно на корнях одной длины; поэтому *любой* длинный корень является суммой двух длинных, в том числе и γ . Поэтому $N_{\alpha\beta11} = \pm 1$. В случае (d) корень γ короткий, поэтому $N_{\alpha\beta11} = \pm 1$.

Значит, $\Lambda \in X_{A+B}(N_{\alpha\beta 11}e_{\gamma}) \cdot U_{\Psi}$. Поэтому $N_{AB11}(e_{\alpha},e_{\beta}) = N_{\alpha\beta 11} \cdot e_{\gamma}$. Итого, $e_{\gamma} \in \text{Im} N_{AB11}$.

Докажем вторую часть. Как и в первой, если $\gamma \in \pi^{-1}(A+B)$ — короткий корень, то $e_{\gamma} \in \langle \operatorname{Im} N_{AB11} \rangle$. То же выполнено, если γ длинный и сумма двух длинных из A и B. Если γ — длинный корень и сумма коротких, то $\gamma = \alpha + 2\beta$, где $\beta \in \pi^{-1}(B)$, $\alpha + \beta \in \pi^{-1}(A)$ — короткие ортогональные корни. Положим $\Psi = [A-B,B] \setminus \{A+B\}$. Посмотрим на $[X_{A-B}(e_{\alpha}),X_{B}(e_{\beta})]$ по модулю U_{Ψ} . Получим $x_{\gamma}(\pm 1) \cdot \prod_{\beta' \in \pi^{-1}(2B)} [x_{\alpha},x_{\beta'}(u_{\beta'})]$. Тогда $e_{\gamma} \in \langle \operatorname{Im} N_{A-B,B,1,2}(-,e_{\beta}) \rangle + \langle \operatorname{Im} N_{A-B,2B,1,1} \rangle$. Представим $e_{\beta} \in V_{B} \otimes_{R} S$ как сумму $e_{\beta} \sum a_{i}f_{i}$, где $f_{i} \in V_{B}$, $a_{i} \in S$. Тогда $[X_{A-B}(e_{\alpha}),X_{B}(e_{\beta})] = [X_{A-B}(e_{\alpha}),\prod_{i}X_{B}(a_{i}f_{i}) \cdot \prod_{j\geq 2}X_{jB}(\dots)]$. Мы утверждаем, что по модулю U_{Ψ} это равно $X_{A+B}(u)$, где $u \in \sum_{i}N_{A-B,B,1,2}(e_{\alpha},a_{i}f_{i}) + \langle \operatorname{Im} N_{AB11} \rangle + \langle \operatorname{Im} N_{A-B,2B,1,1} \rangle$. Первая сумма здесь равна $\sum_{i}N_{A-B,B,1,2}(a_{i}^{2}e_{\alpha},f_{i})$, и f_{i} уже определены над базой, что и требовалось.

Дополнение к следствию 5.6:

(4) для любого $A \in \Phi_P$ есть полиномиальное однородное отображение $r_A^i : V_A \to V_{iA}$ степени i такое, что для любого R'/R и для любого $v \in V_A \otimes_R R'$ выполнено $X_A(v)^{-1} = X_A(-v) \prod_{i \geq 2} X_{iA}(r_A^i(v))$.

Вопрос: верно ли, что все r_A^i равны нулю (для каких-то параметризаций)?

Лемма 6.2 (см. PS, Lemma 1). Пусть $A \in \Phi_P$, $\operatorname{rk} \Phi_P \geq 2$. Тогда существуют линейно независимые $B, C \in \Phi_P$ такие, что A = B + C. Если $\Phi = G_2$, то можно выбрать B, C так, что еще и $B - C \notin \Phi_P$.

Доказательство. Так как гк $\Phi_P \geq 2$, то из $\Phi = G_2$ следует, что $\Phi_P = \Phi$. Тогда можно считать, что $A = \alpha_1$ (короткий) или α_2 (длинный). В первом случае $B = \alpha_1 + \alpha_2$, $C = -\alpha_2$; во втором случае $B = 3\alpha_1 + 2\alpha_2$, $C = -(3\alpha_1 + \alpha_2)$. Пусть теперь $\Phi \neq G_2$. Не умаляя общности мы можем считать, что $A \in \Phi_P^+$.

- Случай 1: $A = k\pi(\alpha_r)$, где $\alpha_r \in \Pi \subseteq \Phi$, $k \ge 1$. Пусть $\alpha_s \in J \setminus (\Gamma \cdot \alpha_r)$ ближайший корень к α_r на диаграмме Дынкина D. Тогда для любого $\alpha \in \pi^{-1}(A)$ выполнено $m_{\alpha_s}(\alpha) = 0$. Положим $\beta = \alpha_s +$ сумма простых между α_s и α_r на диаграмме Дынкина, не включая α_r . Тогда можно взять $B = \pi(\beta + \alpha)$, $C = \pi(-\beta)$.
- Случай 2: $A \neq k\pi(\alpha_r)$ для всех $k \geq 1$, $\alpha_r \in J$. Пусть $\alpha \in \pi^{-1}(A)$. Тогда найдутся $\beta_1, \ldots, \beta_n \in \Pi$ такие, что $\alpha = \beta_1 + \beta_2 + \cdots + \beta_n$ и каждая частичная сумма $\beta_1 + \cdots + \beta_i$ является корнем (для всех $i = 1, \ldots, n$). Пусть i_0 это максимальный i такой, что

 $eta_i\in J$. Тогда $\pi(eta_1+\cdots+eta_{i_0})=\pi(lpha)=A$. Можно положить $B=\pi(eta_1+\cdots+eta_{i_0-1},$ $C=\pi(eta_{i_0})$.

Лемма 6.3 (PS, Lemma 11). Пусть $\operatorname{rk}\Phi_P \geq 2$. Тогда для любого $A \in \Phi_P$ и для любого $v \in V_A$ существуют $B_i, C_i \in \Phi_P$, линейно независимые с A, элементы $v_i \in V_{B_i}, u_i \in V_{c_i}$, числа $k_i, l_i > 0, \ n_i \geq 0 \ (1 \leq i \leq m)$ такие, что в G(R[X,Y]) выполнено $X_A(XY^2v) = \prod_{i=1}^m X_{B_i}(X^{k_i}Y^{n_i}v_i^{X_{c_i}(Y^{l_i}u_i)})$.

Доказательство. По лемме 6.2 существуют линейно независимые с A относительные корни $B,C\in\Phi_P$ такие, что A=B+C. Не умаляя общности можно считать, что $A\in\Phi_P^+$ и доказательство можно вести индукцией по высоте A. По коммутационной формуле Шевалле элемент $X_A(XY^2v)$ принадлежит подгруппе, порожденной элементами

- $[[X_B(xV_B), X_C(Y^2V_C)];$
- $X_{iB+jC}(X^iY^{2j}V_{iB+jC}), i, j > 0, (i, j) \neq (1, 1);$
- если $B-C \in \Phi_P$, то и $[X_{B-C}(XV_{B-C}), X_{2C}(Y^2V_{2C})]$, плюс все сомножители из него, как в (2);
- $[X_{B-C}(XV_{B-C}), X_C(YV_C)]$ плюс все сомножители из него, как в (2).

Все корневые элементы теперь имеют вид $X_F(\dots)$, где F — линейно независим с A; или $F=iA,\ i\geq 2$; применим индукцию по убыванию высоты относительного корня A.

Лемма 6.4. Для любого $A \in \Phi_P$, для любой R-алгебры \widetilde{R} такой, что G имеет над \widetilde{R} оснащение, согласованное с P и L_P , для любого $v \in V_A$ имеем

$$X_A(u) = \prod_{\alpha \in \pi^{-1}(A)} x_\alpha(v_\alpha) \cdot \prod_{i \ge 2} X_{iA} f_{A,\widetilde{R}}^i(v)),$$

где $v=\sum_{\alpha\in\pi^{-1}(A)}v_{\alpha}e_{\alpha},\ f_{A,\widetilde{R}}^{i}\colon \mathrm{Lie}(G)_{A}\otimes_{R}\widetilde{R}\to \mathrm{Lie}(G)_{iA}\otimes_{R}\widetilde{R},\ i\geq 2$ — однородные полиномиальные отображение степени i.

Доказательство. Индукция по высоте А. В формуле 1 были произведения вида

$$\prod_{\beta \in \pi^{-1}(iA)} x_{\beta}(P^{i}_{A,\beta,\widetilde{R}}(v)) = X_{iA}(\sum_{\beta} P^{i}_{A,\beta,\widetilde{R}}(v)e_{\beta}) \cdot \prod_{j \geq 2} X_{ijA}(f^{j}_{iA,\widetilde{R}}(\sum_{\beta} P^{i}_{A,\beta,\widetilde{R}}(v)e_{\beta})).$$

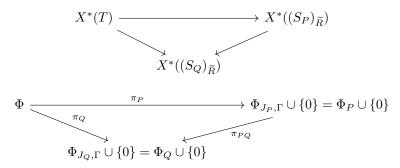
7 Лемма о замене параболической

Пусть G/R — редуктивная группа, $P \leq Q \leq G$ — две параболические подгруппы с подгруппами Леви $L_P \leq L_Q$ (тогда $U_P \geq U_Q$). По теореме 5.1 существует разбиение $R = \prod R_i$ для пары (P, L_P) . По теореме 5.1 существует разбиение $R_i = \prod R_{ij}$ для $(Q_{R_i}, (L_Q)_{R_i})$. Тогда над каждым R_{ij} постоянны:

- тип Φ группы G;
- тип $\Pi \setminus J_P$ и тип $\Pi \setminus J_Q$;
- *-действие $\pi_1^{\text{\'et}}(-, \overline{k(s)})$, соответствующее $\Gamma \leq \operatorname{Aut}(D)$.

По теореме 5.4 существуют $S_P \leq \operatorname{Cent}(L_P)$, $S_Q \leq \operatorname{Cent}(L_Q)$ и корневые подсхемы X_A , $A \in \Phi_P$, X_B , $B \in \Phi_Q$.

Есть ограничения характеров



Здесь π_{PQ} — фактор по $F \in \pi_P(\Pi \setminus J_Q) = \pi_P(J_P \setminus J_Q)$.

Лемма 7.1 (Лемма о замене параболической). Пусть G, P, Q — как выше, и $R = R_{ij}$ для некоторых i, j. Существует k > 0 такое, что для любых $A \in \Phi_P$ и $v \in V_A$ существуют $B_i, C_{ij} \in \Phi_Q, v_i \in V_{B_i}, u_{ij} \in V_{C_{ij}}$ и $k_i, n_i, l_{ij} > 0$ такие, что

$$X_A(XY^kv) = \prod_{i=1}^m X_{B_i}(X^{k_i}Y^{n_i}v_i)^{\prod_{j=1}^{n_i} X_{C_{ij}}(Y^{l_{ij}}u_{ij})}$$

в G(R[X,Y]).

Доказательство. Случай 1: $\pi_{PQ}(A)$ не равно 0 и равно некоторому $B \in \Phi_Q$. Тогда $U_{(A)}$ содержится в $U_{(B)}$, поскольку $\mathrm{Lie}(G)_{iA} \subseteq \mathrm{Lie}(G)_{iB}$ для всех $i \geq 1$. Поэтому существуют полиномиальные $\lambda_{A,B}^i \colon V_A \to V_{iB}$ такие, что $X_A(v) = \prod_{i \geq 1} X_{iB}(\lambda_{A,B}^i(v))$. На самом деле, $\lambda_{A,B}^i$ — однородные степени i.

Случай 2: $\pi_{PQ}(A)=0$ и $J_P\setminus J_Q$ состоит из одной Γ -орбиты. Из этого следует, что $A=\pm k\pi(\alpha_r)$ для некоторого $\alpha_r\in J_P\setminus J_Q$. Не умаляя общности считаем, что $A=k\pi(\alpha_r)$. Так как $J_Q\neq\varnothing$, то $\mathrm{rk}\,\Phi_P\geq 2$. В этом случае используем лемму 6.3: там все $B_i,C_i\in\Phi_P$ удовлетворяют $\pi_{PQ}(B_i)\neq 0$ и $\pi_{PQ}(C_i)\neq 0$, и можно к каждому корневому элементу применить результат случая 1.

Случай 3: $\pi_{PQ}(A) = 0$ и $J_P \setminus J_Q$ состоит из ≥ 2 Г-орбит. Пусть $O \subseteq J_P \setminus J_Q$. По лемме 4.15 есть параболическая $Q' \subseteq G$, для которой $\mathrm{Lie}(Q') = \bigoplus_{F \in \Psi} \mathrm{Lie}(G)_F$, $\Psi = \pi_P((\mathbb{N} \cdot J_{Q'} \cup \mathbb{Z} \cdot (\Pi \setminus J_{Q'}) \cap \Phi_P)$, где $J_{Q'} = O \cup J_Q$. Дальше — индукция.

Список литературы

[ABS90] H. Azad, M. Barry и G. M. Seitz. On the structure of parabolic subgroups. Comm. algebra, 18(2):551—562, 1990.

[FGIKNV06] Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven Kleiman, Nitin Nitsure и Angelo Vistoli. Fundamental algebraic geometry. *Mathematical surveys and monographs*, октябрь 2006. ISSN: 2331-7159. DOI: 10.1090/surv/123. URL: http://dx.doi.org/10.1090/surv/123.

[GP12] Philippe Gille и Arturo Pianzola. Torsors, reductive group schemes and extended affine lie algebras, февраль 2012. eprint: 1109.3405.

[LS12] A. Yu. Luzgarev и A. K. Stavrova. Elementary subgroup of an isotropic reductive group is perfect. St. Petersburg Mathematical Journal, 23(5):881—890, октябрь 2012. DOI: 10.1090/S1061-0022-2012-01221-5. URL: http://dx.doi.org/10.1090/S1061-0022-2012-01221-5.

- [PS09] V. Petrov и A. Stavrova. Elementary subgroups of isotropic reductive groups. St. Petersburg Mathematical Journal, 20(4):625—644, август 2009. DOI: 10. 1090/S1061-0022-09-01064-4. URL: http://dx.doi.org/10.1090/S1061-0022-09-01064-4.
- [Sta14] A. Stavrova. Non-stable K_1 -functors of multiloop groups, апрель 2014. arXiv: 1404.7587. eprint: 1404.7587.