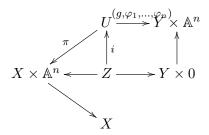
Framed motives

Иван Панин

25.09.2014

Ближайшая цель: построить категорию линейных оснащенных мотивов ('linear framed motives') $D_{\rm fr}^-(k)$ (здесь k — совершенное поле; категория происходит из ограниченных сверху комплексов). Замечание. Есть еще категория $D_{\rm fr}^{\rm eff}(k)$, состоящая из всех комплексов.

Напоминание: мы определили $\operatorname{Fr}_n(X,Y)$, где $X,Y\in\operatorname{Sm}/k$. Это множество состоит из данных $(n,Z,U\xrightarrow{(g,\varphi_1,\ldots,\varphi_n)}Y\times\mathbb{A}^n)$, где

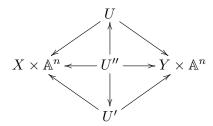


таких, что

- 1. Z замкнуто в $X \times \mathbb{A}^n$ и конечно над X;
- 2. U это этальная окрестность Z в $X \times \mathbb{A}^n$, то есть, π этально, i замкнутое вложение;
- 3. $Z = \{\varphi_1 = \cdots = \varphi_n = 0\} \subseteq U$ как множество.

На этих [предварительных] данных есть отношение эквивалентности: $(n, Z, U \xrightarrow{(g, \varphi_1, \dots, \varphi_n)} Y \times \mathbb{A}^n)$ эквивалентно $(n', Z', U' \xrightarrow{(g', \varphi'_1, \dots, \varphi'_n)} Y \times \mathbb{A}^n)$ тогда и только тогда, когда

- 1. n = n';
- 2. Z = Z';
- 3. ростки указанных отображений совпадают: существуют U'' $\xrightarrow{(g'',\varphi_1'',...,\varphi_n'')} Y \times \mathbb{A}^n$ и отображения $U'' \to U, \ U'' \to U'$ такие, что



При этом Z называется **носителем оснащенного соответствия**.

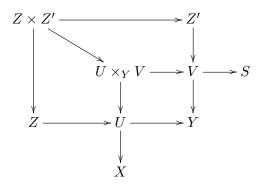
Замечание 0.1. Лемма Воеводского: $\operatorname{Fr}_n(X,Y) = \operatorname{Map}_{\operatorname{Sh}_{\operatorname{Nis}}}(X_+ \times (\mathbb{P}^1,\infty)^{\wedge n}, Y_+ \wedge T^{\wedge n}).$

1

Имеется композиция

$$\operatorname{Fr}_k(X,Y) \times \operatorname{Fr}_n(Y,S) \to \operatorname{Fr}_{k+n}(X,S),$$

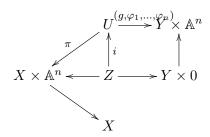
устроенная так:



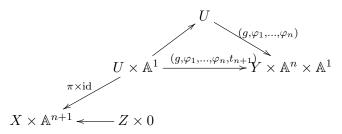
Эта композиция ассоциативна. Положим $\mathrm{Fr}_*(X,Y) = \coprod_{n>0} \mathrm{Fr}_n(X,Y)$.

Утверждение/определение: композиция \circ превращает ... в категорию $\operatorname{Fr}_*(k)$. Ее объекты — гладкие многообразия над k, морфизмы из X в Y — это $\operatorname{Fr}_*(X,Y)$.

Есть операция стабилизации $\operatorname{Fr}_n(X,Y) \xrightarrow{\sigma_Y} \operatorname{Fr}_{n+1}(X,Y)$. Она устроена так: данные



отправляются в



Замечание 0.2. $\operatorname{Fr}_k(X,Y) = \operatorname{Map}(X_+ \wedge (\mathbb{P}^1)^{\wedge k}, Y_+ \wedge T^{\wedge k}), \operatorname{Fr}_n(Y,S) = \operatorname{Map}(Y_+ \wedge (\mathbb{P}^1)^{\wedge n}, S_+ \wedge T^{\wedge n}),$ и композиция описывается с помощью этих отождествлений.

Имеется функтор $\operatorname{Fr}_*(k)$, сопоставляющий данным $(n, Z, (g, \varphi_1, \dots, \varphi_n) \colon U \to Y \times \mathbb{A}^n)$ соответствие $\sum m_i[Z_i'] \in \operatorname{Cor}(X,Y)$. Найдем Z_i (для простоты считаем, что Z неприводимо). Обозначим

$$U \xrightarrow{g} Y$$

$$\downarrow X \times \mathbb{A}^n \longleftarrow Z$$

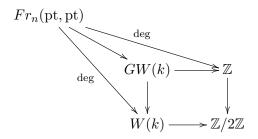
$$\downarrow p$$

$$X$$

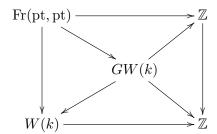
Тогда

$$Z \xrightarrow{(p,g)} X \times Y$$

Положим $Z_1' = (p,g)(Z) \subseteq X \times Y$. Припишем ему кратность $n_1 := [k(Z):k(Z_1')] \cdot \dim_{k(Z)}(\mathcal{O}_{U,Z}/(\varphi_1,\ldots,\varphi_n))$. Имеются морфизмы



и они согласованы со стабилизацией; поэтому



Лемма 0.3. Коуравнитель морфизмов $i_0^*, i_1^* \colon \operatorname{Fr}(\mathbb{A}^1, \operatorname{pt}) \to \operatorname{Fr}(\operatorname{pt}, \operatorname{pt})$ является абелевой полугруппой

Теорема 0.4 (Нешитов). Группа Гротендика этой полугруппы изоморфна GW(k)

Также должен быть функтор $\operatorname{Fr}_*(k) \to \operatorname{Wor}$.

Определение 0.5.
$$\mathbb{Z}F_n(X,Y) = \mathbb{Z}[\operatorname{Fr}_n(X,Y)]/(Z_1 \coprod Z_2 - Z_1 - Z_2)$$
, где " $Z_1 \coprod Z_2 - Z_1 - Z_2$ " $= (n, Z_1 \coprod Z_2, (g, \varphi_1, \dots, \varphi_n)) - (n, Z_1, (g, \varphi_1, \dots, \varphi_n)|_{U-Z_2}) - (n, Z_2, (g, \varphi_1, \dots, \varphi_n)|_{U-Z_2})$.

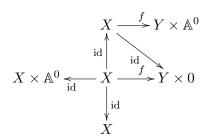
Лемма 0.6. $\mathbb{Z}F_n(X,Y)$ — это свободная абелева группа, порожденная $(n,Z,(g,\varphi_1,\ldots,\varphi_n))$ такими, что Z связно и непусто.

Выше определенная композиция $\operatorname{Fr}_n \times \operatorname{Fr}_k \to \operatorname{Fr}_{n+k}$ уважает введенные соотношения, поэтому имеется композиция $\mathbb{Z}F_n(X,Y) \times \mathbb{Z}F_k(Y,S) \to \mathbb{Z}F_{n+k}(X,S)$.

Определение 0.7. $\mathbb{Z}F_*(k)$ — категория, объекты которой — гладкие многообразия над k, а морфизмы из X в Y есть $\bigoplus_{n>0} \mathbb{Z}F_n(X,Y)$.

Определение 0.8. Предпучок абелевых групп с $\mathbb{Z}F_*(k)$ -трансферами — это функтор $\mathcal{F} \colon \mathbb{Z}F_*(k) \to \mathrm{Ab}$.

Замечание 0.9. Имеются функторы $\mathrm{Sm}/k \to \mathrm{Fr}_*(k) \to \mathbb{Z} F_*(k)$; их композиция i тождественна на объектах и морфизму $f\colon X\to Y$ сопоставляет данные



Пучок абелевых групп с $\mathbb{Z}F_*(k)$ -трансферами — это такой предпучок $\mathcal{F}\colon \mathbb{Z}F_*(k)\to \mathrm{Ab}$, что $\mathcal{F}\circ i\colon \mathrm{Sm}\,/k\to \mathrm{Ab}$ является пучком.

Лемма 0.10 (важная). Пусть \mathcal{F} — предпучок с $\mathbb{Z}F_*(k)$ -трансферами. Тогда $\widetilde{\mathcal{F}}_{\mathrm{Nis}}$ снабжается единственным образом структурой предпучка с $\mathbb{Z}F_*(k)$ -трансферами так, что канонический морфизм $\mathcal{F} \to \widetilde{\mathcal{F}}_{\mathrm{Nis}}$ — морфизм предпучков с трансферами.

Следствие 0.11. Категория $SN_{\rm fr}T$ является абелевой.

Доказательство. Если $\varphi \colon \mathcal{F} \to \mathcal{G}$ — морфизм пучков с трансферами, то $\ker \varphi$ — автоматически пучок с трансферами. Для коядра рассмотрим $\operatorname{Coker}(\varphi)$; по Лемме это пучок с трансферами.

Возьмем производную категорию $DNS_{\rm fr}T$ (неограниченных комплексов). Рассмотрим в ней полную подкатегорию $D_{\rm fr}^{\rm eff}(k)$, состоящую из комплексов A^{ullet} , которые обладают свойствами

- 1. $\underline{h}^i(A^{\bullet})$ гомотопически инвариантный пучок на Sm /k, то есть, $\underline{h}^i(A^{\bullet})(X) = \underline{h}^i(A^{\bullet})(X \times \mathbb{A}^1)$ для любого $X \in \text{Sm }/k$;
- 2. пучки $\underline{h}^i(A^{\bullet})$ квази-стабильны.

Эта категория называется категорией линейных frame (=оснащенных) мотивов

Лемма 0.12. Если $Y \in \text{Sm }/k$, то $\mathbb{Z}F_*(-,Y) \colon \mathbb{Z}F_*(k) \to \text{Ab}$ является пучком.

Определение 0.13. $\mathbb{Z}F(X,Y) = \varinjlim_{\sigma_Y} \mathbb{Z}F_n(X,Y)$.

Замечание 0.14. Пучок $\mathbb{Z}F(-,Y)$ квази-стабилен.

Лемма 0.15. Элемент $\tau_Y \in \operatorname{Fr}_1(Y,Y)$ задает отображение $\operatorname{Fr}_n(X,Y) \to \operatorname{Fr}_{n+1}(X,Y), \alpha \mapsto \tau_Y \circ \alpha$, которое совпадает с σ_Y

Определение 0.16. Напомним, что $\tau_U \in \operatorname{Fr}_1(U,U) \to \mathbb{Z}[\operatorname{Fr}_1(U,U)] \to (\mathbb{Z}F_1)(U,U)$. Предпучок $\mathcal{F} \colon \mathbb{Z}F_*(k) \to \operatorname{Ab}$ называется **квази-стабильным**, если для любого $U \in \operatorname{Sm}/k$ отображение $\mathcal{F}(U) \to \mathcal{F}(U)$, $\gamma \mapsto \gamma \circ \tau_U$ является изоморфизмом. \mathcal{F} называется **стабильным**, если для любого U морфизм $\tau_U \colon \mathcal{F}(U) \to \mathcal{F}(U)$ является тождественным.

Теорема 0.17 (?). Если k — совершенное поле, то $SH(k)\otimes \mathbb{Q}\cong D^{\mathrm{eff}}_{\mathrm{fr}}(k)\otimes Q$. Стрелочка слева направо задается отображением Гуревича.

Известно, что $H^n(k,\mathbb{Z}(n))=K_n^M(k)$. Теорема Нешитова: $H^n(k,\mathbb{Z}_F(n))=K_n^{MW}(k)$. Известно, что $H^{2n}(X,\mathbb{Z}(n))=\mathrm{CH}^n(X)$. Следует ожидать, что $H^{2n}(k,\mathbb{Z}_F(n))\cong\widetilde{\mathrm{CH}}^n(X)$.