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k is a base field, char k = 0, k ↪→ C. We have a category SptP1(k). An object here is a
gadget E = (E0, E1, . . . ) where En ∈ Spc•(k). En : Sm /k → Spc• (category of pointed spaces)
with εn : en ∧ P1 → En+1. SptP1(k) is a stable model category; sWEA1 are weak equivalences
(isomorphisms on the bi-graded A1-homotopy sheaves πA1

a,b for all a, b). Then we have SH(k) =
Ho(SptP1(k)); a triangulated ⊗-category. From our embedding k ↪→ C we get a realisation functor
<B : SH(k)→ SH = H0(SptS2).

For E ∈ SH(k) we have πn(E ,Z/N) = πn,0(E/N)(k), where E/N = cone(E ·N−→ E). Similarly,
if E ∈ SH, we get πn(E,Z/N) = πn(E/N). <B : πn(E ,Z/N) → πn(<BE ;Z/N). SHeff(k) is a
localising subcategory of SH(k) generated by Σ∞P1X+ for all X ∈ Sm /k.

Теорема 0.1. For E : SHeff(k) the realisation map <B : πn(E ,Z/N) → πn(<BE ,Z/N) is an
isomorphism.

Note that this is a generalisation of the Suslin–Voevodsky theorem:

Теорема 0.2 (Suslin–Voevodsky, 1994). If X is a finite type scheme over k = k ⊆ C, then

HSus
n (X;Z/N) ∼= Hsing

n (X(C);Z/N).

By definition the right hand side is Hn(CSus
∗ (X)⊗Z/N) = HomDMeff(k)(Z(0),M(X)/N [n]).

Recall that CSus
m (X) is a free abelian group spanned by the subschemes W ⊆ X × ∆m

such that W is integral, finite, and surjective over ∆n. It is made into a complex by the maps
∂ =

∑m
i=0(−1)idi : C

Sus
m (X)→ CSus

m−1(X).
Corollary (of Theorem): if X ∈ Sm /k, then πn(Σ∞P1X+;Z/N) ∼= πn(Σ∞X(C)+;Z/N).
Key ingredients:
0. Suslin–Voevodsky theorem;
1. Voevodsky’s slice tower
Consider in : Σn

P1 SHeff(k) ↪→ SH(k) for n ∈ Z. This inclusion map admits a right adjoint rn
(Neeman).

Let us define a truncation functor fn : SH(k) → SH(k) as fn = in ◦ rn → id. We have the
maps fn+1 → fn. Hence we get a ‘slice tower’: if E ∈ SH(k), then

. . . // fn+1E // fnE //

��

. . . // E

snE

Теорема 0.3 (Pelaez–Voevodsky,Röndigs–Østvær). There exists a unique πMn E ∈ DM(k)
EMA1−−−−→

SH(k) with a canonical isomorphism snE ∼= Σn
P1EMA1(πMn E).

snE is called the ‘nth slice’ of E .
This construction is a kind of analog of the classical Postnikov tower for SH. There you take

a spectrum E and define E〈n〉 — (n− 1)-connective cover of E which has zero homotopy groups
in degrees less than n. Again we have in : Σn SHeff ↪→ SH. In this case E〈n〉 = inrnE. Then we
define E〈n+ 1〉 → E〈n〉 → ΣnEM(πnE).
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Note that fn, sn are exact functors. Hence fnE/N = fn(E/N) and snE/N = sn(E/N).
Strategy for the proof: a) use Suslin–Voevodsky’s theorem to show that for q ≥ 0 we have

πn,0(sqE ;Z/N)(k) ∼= πn(<BsqE ,Z/N) (note that sqE is effective for q > 0);
show that the spectral sequences b)

Ep,q
2 (AH) = πp+q,0(s−qE ,Z/N)(k)⇒ πp+1,0(E ,Z/N)(k)

and c)
Ep,q

2 (ReAH) = πp+1(<Bs−1E ,Z/N)⇒ πp+q(<BE ;Z/N)

are convergent and bounded for E ∈ SHfin(k).
Part (a): we interpret Suslin–Voevodsky theorem to say that

πn,0(EMA1(M(X));Z/N) = HomDM(k)(Z(0), (M(X)/N)[n])(k) = Hsing
n (M(X);Z/N),

andHsing
n (M(X);Z/N)→ Hsing

n (X(C);Z/N) is iso by S–V. Then <B maps πn,0(EMA1(M(X));Z/N)
to

πn(<BEMA1(M(X));Z/N) ∼= Hsing
n (X(C),Z/N),

and this is an isomorphism. Note that DM eff(k) is generated as a localising category byM(X). It
follows that for allM ∈ DM eff the realisation map <B : πn,0(EMA1(M);Z/N)(k)→ πn(<BEMA1(M);Z/N)
is an isomorphism. Recall that sqE = EMA1(πMq E(q)[2q]), so we proved (a).

Part (c): if E is sufficiently connected (say, N -connected), then <B(fqE) is (q + const)-
connected ((q + N)-connected). If E is finite, then E = f−qE for some q large enough. So what
does it mean for E to be N -connected? We say that E is topologically N -connected if πm+q,qE = 0
for all m ≤ N , q ∈ Z.

Sketch of the proof: Morel’s connectedness theorem says ΣN+1
top SH(k) (full subcategory of

topologicallyN -connected objects) is generated by Sm∧Σ∞P1X+ form ≥ N+1. Hence Σ1
P1 SHeff(k)

is generated by Sa ∧ G∧mm ∧ ΣP1∞X+ for m ≥ q. Then fqE is going to be a cell complex build
out of Sq ∧ Gb

m ∧ Σ∞P1X+ for a ≥ N + 1, b ≥ q. Hence the realisaiton of it gives you something
like Sa+b ∧ Σ∞X(C)+ for a+ b ≥ q +N + 1.

Now take a finite spectrum E (we may assume that it is effective)

· · · → fqE → · · · → f1E → f0E = E .

Let us fix a field F finitely generated over k; we need F = k(X) for some variety X. We look at
πa,b(fqE)(F ); it is zero for sufficiently large q ≥ q(a, b, E , F ). We can always assume that b = 0
(by shifting). Assume also that E is topologically (−1)-connected. Necessary assumption: the
cohomological dimension of k is finite: n0 = c.d.(k) <∞. If tr.degkF = d, then c.d(F ) ≤ n0 + d.
If L/F is finite, then c.d(L) = c.d(F ).

Лемма 0.4. There is an integer d(E) such that πm+d,d(E)Q = 0 for all d > d(E) and all m ∈ Z.
For example, if E = ΣP1∞X+ for X/k smooth projective, then d(E) = dimkX.

Доказательство. Since E is finite, we reduce the problem to the case E = ΣP1∞X+ for X/k
a smooth projective variety of dimension d = dimkX. Here we use a theorem by Cisinski–
Deglise: c.d.(k) < ∞ implies SH(k)Q ∼= DM(k)Q. (Note that In/In+1 = Hn(k,Z/2), therefore
In/In+1 = 0 for n > c.d.(k). On the other hand,

⋂
n≥0 I

n = 0 by Arason–Pfister.) It follows that

πa+b,b,b(Σ
∞
P1X+)Q(k) = HomDM(k)(Z(b)[a],M(X))Q

= HomDM(k)(M(X)(−d)[−2d],Z(−b)[−a])Q

= HomDM(k)(M(X),Z(d− b)[2d− a])Q

= H2d−a(X,Q(d− b)),

and if d−b < 0, this equals zero. Then we pass from k to F , from X to XF , and work in DM(F ).
We showed that πa,b(Σ∞X)(F ) = 0 for b > dimkX.



We need a concrete model for fqE , E ∈ SHeff(k). Consider E = Ω∞P1E — a presheaf of spectra
on Sm /k. Take b ≥ 0. (πa,bE)(F ) is related to (πa,bE)(F ), which is the Nisnevich sheaf associated
to the presheaf U 7→ πa−b(E(U+ ∧G∧bm )). We have an inclusion functor Σn

P1 SHS1(k)→ SHS1(k),
its right adjoint rn, put fn = in ◦ rn, and get the slice tower

· · · → fn+1E → fnE → · · · → f0E = E.

It turns out than fnE = Ω∞P1fnE .
In fact, E satisfies two nice properties:

1. Nisnevich excision;

2. A1-homotopy invariance: E(X)→ E(X × A1) is iso.

Then we get a nice model for (f•E)(X): a homotopy coniveau tower fnE(X) = Tot(m 7→
E(n)(X,m)) (Bloch cycle complexes applied to a presheaf of spectra). Here Tot is a kind of
geometric realisation. What is E(n)(X,m)? TakeW ⊆ X×∆m and consider E(X×∆m) restricted
to X × ∆m \ W . The fiber of that is EW (X × ∆m). Now we take a colimit of those where
codimX×F (W ∩X × F ≥ n for any face F ⊆ ∆m, and get E(n)(X,m). For any map m′ → m in
the order category we get a map E(n)(X,m)→ E(n)(X,m′).

Take X = SpecF ; now we look at the closed subsets of ∆m. Suppose we have a simplicial
spectrum m 7→ Em. Then we have a spectral sequence

E1
a,b = πbEa ⇒ πa+b Tot(m 7→ Em).

In particular, in our case Em = E(n)(F,m) is 0 if m < n (then we have to take W ⊆ ∆m

with codimW = n > m, hence W = ∅, and its fiber is just a point). Hence we get a
surjection πbE

(n)(F, n) � Filnπb+nfnE(X) ⊆ πb+nfnE(X). We assumed the spectrum was
(−1)-connected, so essentially this filtration is going to be finite, and we can use induction.

Fix r ∈ Z and look at contributions to πrfnE(X) from πr−mE
(n)(F,m). Recall that πr−mE(n)(F,m)

is a colimit over good W ⊆ ∆m of πr−mEW (∆m
F ). For a fixed W we can pass to the direct sum

over all generic points Xi ∈ W such that codim∆m Xi = n of πr−nEXi(∆m
F ). This passage is an

inclusion map. Hence for a point x of codimension n we have πr−mEx(∆m) = πr−mHom(S2n,n
F (x), E) =

(πr−m+2n,nE)(F (x)). The degree here gets smaller as m gets bigger, and for minimum m = n we
have (πr+n,nE)(F (x)). This contributes to Filn(πrfnE)(F ), and the map

⊕
x(πr+n,nE)(F (x))→

Filn(πrfnE)(F ) is surjective. Let us map that to πrE(F ). Now we are going to construct
ρn : Filn(πrfnE)(F )→ πrE(F ).

The idea is to use that spectral sequence plus an explicit bound (depending on d(E), c.d.(F ),
r) such that Filn → 0 in πrE(F ); then replace E with fnE, etc., to show that Filn = 0.

Suppose α ∈ (πr+n,nE)(F (x)) for a closed point x = (x0, . . . , xn), xi ∈ F (x). Consider the
symbol [−x1/x0, . . . ,−xn/x0] ∈ KMW

n (F (x)) = π−n,−n(S)(F (x)). Cupping with this element
gives us a map (πr+n,nE)(F (x))

∪−→ (πr,0E)(F (x)). We have a canonically defined norm map
(πr,0E)(F (x))→ (πr,0E)(F ). The image of α here is exactly what we need.

Let us define

FilnMWπr,0E(F ) = im((πr+n,nE)(F (x))⊗KMW
n (F (x))→ (πr,0E)(F ))

(summing over all closed points x ∈ ∆n
F ). We’ve shown that

ρn(Filnsingπr,0fnE(F )) ⊆ FilnMWπr,0E(F ).

The task is to find a bound n0 so that FilnMWπrE(F ) = 0 for n > n0.
If n > d(E), we know that (πr+n,nE)(F (x)) is torsion, say,

(πr+n,nE)(F (x)) =
⋃
N

(πr+n,nE)(F (x))N−tors.



Consider an exact sequence

0→ In+1(F (x))→ KMW
n (F (x))→ KM

n (F (x))→ 0.

We know that In+1(F (x)) = 0 for n ≥ cd(F (x)) = cd(F ) = cd(k) + trdegkF .⋃
N (πr+n,nE)(F (x))⊗KM

n (F (x))/N → πr,0E(F ) factors through FilnMW (. . . ). We use Bloch–
Kato and get that the left-hand side is Hn(F (x), µ⊗nN ) = 0, so its image is zero.


