Framed motives

Иван Панин

11.12.2014

1

Теорема 1.1 (Морель). Пусть k — поле (бесконечное, совершенное), char $k \neq 2$. Тогда $\pi_{0,0}^s(S^0)(k) = \mathrm{GW}(k)$.

Нужно объяснить, что написано в двух частях равенства.

Пусть (V,φ) — квадратичное пространство над k, то есть задан изоморфизм $\varphi\colon V\to V^*$, совпадающий с $\varphi^*\colon V\to V^*$. Определим операцию $[V,\varphi]\oplus [V',\varphi']=[V\oplus V',\varphi\oplus\varphi']$. Множество пар $[V,\varphi]$ образует коммутативную полугруппу.

Определение 1.2. $\mathrm{GW}(k)$ — группа Гротендика этой полугруппы.

Замечание 1.3. $\mathrm{GW}(k)$ является кольцом: $[V,\varphi]\otimes [V',\varphi']=[V\otimes V',\varphi\otimes \varphi'].$

Пример 1.4. $\mathrm{GW}(\mathbb{C})=\mathbb{Z},\,\mathrm{GW}(\mathbb{R})=\mathbb{Z}\oplus\mathbb{Z}$ (размерность и сигнатура).

Поговорим про определение левой части. Положим

$$\pi_{0,0}^s(S^0)(k) = \pi_{0,0}^{\mathbb{A}^1}(\Sigma_{\mathbb{G}_m}^{\infty}\Sigma_{S^1}^{\infty}(S^0))(k).$$

Мы желаем определить пучки Нисневича групп $\pi_{i,j}^{\mathbb{A}^1}(\Sigma_{\mathbb{G}_m}^{\infty}\Sigma_{S^1}^{\infty}(X_+))$ для $X\in \mathrm{Sm}/k$. Рассмотрим категорию PreSp_{S^1} предпучков S_s^1 -спектров на Sm/k . Напомним, что $S^1=\Delta[1]/\partial(\Delta[1])$. Что такое S^1 -спектр? Это последовательность $(X_0,X_1,\ldots,X_n,\ldots)$, где X_i — пунктированные схемы над k, вместе с морфизмами $\sigma_i\colon X_i\wedge S^1\to X_{i+1}$.

Напомним, что предпучок множеств — это функтор $\mathrm{Sm}^{\mathrm{op}} \to \mathfrak{Sets}_{\bullet}$.

Определение 1.5. Предпучок симплициальных множеств — это функтор $\mathrm{Sm}^\mathrm{op} \to \mathfrak{SSets}_{\bullet}$ или, эквивалентно, функтор $\Delta^\mathrm{op} \to \mathrm{PreSets}_{\bullet}$.

Определение 1.6. Предпучок симплициальных спектров — это последовательность (E_0, E_1, E_2, \dots) , где E_i — предпучки симплициальных множеств, вместе с морфизмами $\sigma_i \colon E_i \wedge S^1 \to E_{i+1}$. Здесь S^1 — постоянный предпучок, значение которого на любом $U \in \operatorname{Sm}/k$ равно симплициальному множеству S^1 .

Определение 1.7. Морфизм S^1 -спектров $(X_0, X_1, \dots) \to (Y_0, Y_1, \dots)$ — это набор морфизмов $\varphi_i \colon X_i \to Y_i$, совместимых со связывающими отображениями:

$$X_i \wedge S^1 \longrightarrow X_{i+1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$Y_i \wedge S^1 \longrightarrow Y_{i+1}$$

Аналогично определяется, что такое морфизм предпучков симплициальных спектров $(E_0, E_1, \dots) \to (F_0, F_1, \dots)$: это набор морфизмов симплициальных предпучков $\varphi_i \colon E_i \to F_i$ такой, что диаграммы вида

$$E_i \wedge S^1 \longrightarrow E_{i+1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$F_i \wedge S^1 \longrightarrow F_{i+1}$$

коммутативны. В частности, для любого $U \in \operatorname{Sm}/k$ есть коммутативная диаграмма

$$E_{i}(U) \wedge S^{1} \longrightarrow E_{i+1}(U)$$

$$\downarrow \qquad \qquad \downarrow$$

$$F_{i}(U) \wedge S^{1} \longrightarrow F_{i+1}(U)$$

Обозначим через $\operatorname{PreSp}_{S^1}(k)$ категорию предпучков симплициальных спектров.

Введем слабые эквивалентности: морфизм $\varphi \colon E \to F$ называется слабой проективной эквивалентностью, если для любого $U \in \operatorname{Sm}/k$ морфизм $\varphi_U \colon E(U) \to F(U)$ является слабой эквивалентностью S^1 -спектров, то есть, для любого i морфизм $\pi_i(E(U)) \to \pi_i(F(U))$ является изоморфизмов.

Гомотопическая категория $\text{Ho}(\operatorname{PreSp}_{S^1}(k)$ триангулирована. Функтор сдвига в ней переводит E в $S^1 \wedge E$: если $E = (E_0, E_1, \dots)$, то $S^1 \wedge E = (S^1 \wedge E_0, S^1 \wedge E_1, \dots)$.

Морфизм $\varphi\colon E\to F$ называется локальной эквивалентностью, если для любого $X\in \mathrm{Sm}/k$ и любой точки $x\in X$ морфизм $\varphi_x\colon E_x\to F_x$ является слабой эквивалентностью S^1 -спектров. Здесь $E_x=E(U_x^h),\, F_x=F(U_x^h),\, \mathrm{где}\ U_x^h$ — это гензелизация X в точке x («пополнение» X в \mathfrak{m}_x). То есть, $E(U_x^h)=\varinjlim E(V),\, \mathrm{гдe}$ предел берется по всем окрестностям Нисневича V точки x. Таким образом, для локальной эквивалентности морфизмы $\pi_i(E_x)\to\pi_i(F_x)$ являются изоморфизмами.

Альтернативное определение: если задан $E \in \operatorname{PreSp}_{S^1}(k)$, то для каждого i задан предпучок абелевых групп $\pi_i(E) \colon U \mapsto \pi_i(E(U))$; если задан морфизм $\varphi \colon E \to F$ $(E, F \in \operatorname{PreSp}_{S^1}(k))$, то задан морфизм $\pi_i(\varphi) \colon \pi_i(E) \to \pi_i(F)$. Говорим, что φ — локальная эквивалентность, если $\pi_i(\varphi) \colon \pi_i(E) \to \pi_i(F)$ — изоморфизм на ростках. Это эквивалентно тому, что $\pi_i(\varphi)_{\operatorname{Nis}} \colon \pi_i(E)_{\operatorname{Nis}} \to \pi_i(F)_{\operatorname{Nis}}$ — изоморфизм.

Локализация по локальным эквивалентностям обозначается через $\operatorname{Ho^{loc}}(\operatorname{PreSp}_{S^1}(k))$. Обозначение покороче: $\operatorname{Ho^{loc}}(\operatorname{Sp}_{S^1}(k))$.

Если $X \in \operatorname{Sm}/k$, то в $\operatorname{PreSp}_{S^1}(k)$ есть объект (называемый **надстроечным спектром**) $\Sigma_{S^1}^{\infty}(X_+) = (X_+, X_+ \wedge S^1, X_+ \wedge S^1 \wedge S^1, \ldots)$ со связывающими морфизмами id: $(X_+ \wedge S^1) \wedge S^1 \to X_+ \wedge S^1 \wedge S^1$. Здесь X_+ — это симплициальный предпучок, постоянный в симплициальном направлении: каждому $[n] \in \Delta^{\operatorname{op}}$ сопоставляется предпучок X_+ . Этот предпучок устроен так: $U \mapsto \operatorname{Mor}(U, X) = \operatorname{Mor}(U, X \coprod \operatorname{Spec}(k))$.

Пусть $p_X: X \times \mathbb{A}^1 \to X$ — каноническая проекция. Имеется выделенный треугольник $\Sigma_{S^1}^{\infty}((X \times \mathbb{A}^1)_+) \to \Sigma_{S^1}^{\infty}(X_+) \to \operatorname{Cone}(p_X)$. Рассмотрим наименьшую триангулированную подкатегорию \mathcal{B} в $\operatorname{Ho}^{\operatorname{loc}}(\operatorname{Sp}_{S^1}(k))$, содержащую все объекты вида $\operatorname{Cone}(p_X)$ и замкнутую относительно прямых сумм.

Определение 1.8. $\operatorname{Ho}^{\mathbb{A}^1}(\operatorname{Sp}_{S^1}(k))$ — это локализация категории $\operatorname{Ho}^{\operatorname{loc}}(\operatorname{Sp}_{S^1}(k))$ по \mathcal{B} .

Замечание 1.9. Поэтому $\Sigma_{S^1}^{\infty}((X \times \mathbb{A}^1)_+) \to \Sigma_U^{\infty}(X_+)$ — изоморфизм.

Замечание 1.10. Подкатегория \mathcal{B} порождается (в том же смысле) объектами вида $\mathrm{Cone}(i_X)$, где $\mathfrak{B}_X \colon \Sigma^{\infty}_{S^1}(X_+) \to \Sigma^{\infty}((X \times \mathbb{A}^1)_+)$ получен из морфизма $i_X \colon X \to X \times \mathbb{A}^1$, $x \mapsto (x,0)$.

 $\operatorname{Ho}^{\mathbb{A}^1}(\operatorname{Sp}_{S^1}(k))$ — мотивная гомотопическая категория S^1 -спектров.

Замечание 1.11. Для любого $E\in \operatorname{PreSp}_{S^1}(k)$ и для любого i можно рассмотреть предпучок

$$i \colon U \mapsto \pi_i^{\mathbb{A}^1}(E)(U) = \operatorname{Hom}_{\operatorname{Ho}^{\mathbb{A}^1}(\operatorname{Sp}_{\leq 1}(k))}(\Sigma_{S^1}^{\infty}(U_+) \wedge S^i, E)$$

Целью было определить $\pi_{i,j}^{\mathbb{A}^1}(E)$.

Мы обсуждали мотивную стабильную гомотопическую категорию SH(k) Воеводского-Мореля. Один из вариантов ее построения использует биспектры ((\mathbb{G}_m, S^1)-спектры).

Определение 1.12. $\mathbb{G}_m = (\mathbb{A}^1 - 0, \{1\})$ (то есть, $\mathbb{A}^1 - 0$ с отмеченной точкой 1).

Определение 1.13. \mathbb{G}_m -спектр в категории $\operatorname{PreSp}_{S^1}(k)$ -спектров — это последовательность $(\mathcal{E}_0,\mathcal{E}_1,\mathcal{E}_2,\dots)$ с морфизмами $\mathbb{G}_m \wedge \mathcal{E}_j \to \mathcal{E}_{j+1}$. Заметим, что $\mathbb{G}_m \wedge \mathcal{E}$ — это снова S^1 -спектр: $(\mathbb{G}_m \wedge E_0, \mathbb{G}_m \wedge E_1,\dots)$

Обозначим для краткости $\mathrm{SH}^{\mathbb{A}^1}_{S^1}(k) = \mathrm{Ho}^{\mathbb{A}^1}(\mathrm{Sp}_{S^1}(k)).$

Пусть $\mathcal{E}_* = (\mathcal{E}_0, \mathcal{E}_1, \dots)$ — биспектр (то есть, \mathbb{G}_m спектр в категории S^1 -спектров предпучков). Для $U \in \mathrm{Sm}$ и числа j рассмотрим морфизм

$$\operatorname{Hom}_{\operatorname{SH}^{\mathbb{A}^{1}}_{S^{1}}(k)}(\Sigma^{\infty}_{S^{1}}(\mathbb{G}^{\wedge(j+k)}_{m} \wedge (U_{+})), \mathcal{E}_{k})$$

$$\downarrow^{\wedge \mathbb{G}_{m}}$$

$$\operatorname{Hom}_{\operatorname{SH}^{\mathbb{A}^{1}}_{S^{1}}(k)}(\Sigma^{\infty}_{S^{1}}(\mathbb{G}_{m} \wedge (\mathbb{G}^{\wedge(j+k)}_{m} \wedge (U_{+}))), \mathbb{G}_{m} \wedge \mathcal{E}_{k})$$

$$\downarrow$$

$$\operatorname{Hom}_{\operatorname{SH}^{\mathbb{A}^{1}}_{S^{1}}(k)}(\Sigma^{\infty}_{S^{1}}(\mathbb{G}^{\wedge(1+j+k)}_{m} \wedge (U_{+})), \mathcal{E}_{k+1})$$

Положим теперь

$$\pi_{0,j}^{\mathbb{A}^1}(\mathcal{E}_*)(U) = \varinjlim_{\tau} \mathrm{Hom}_{\mathrm{SH}_{S^1}^{\mathbb{A}^1}(k)}(\Sigma_{S^1}^{\infty}(\mathbb{G}_m^{\wedge (k+j)} \wedge (U_+)), \mathcal{E}_k).$$

Аналогично, определим

$$\pi_{i,j}^{\mathbb{A}^1}(\mathcal{E}_*)(U) = \varinjlim_{\tau} \operatorname{Hom}_{\operatorname{SH}_{S^1}^{\mathbb{A}^1}(k)}(\Sigma_{S^1}^{\infty}(\mathbb{G}_m^{\wedge (k+j)} \wedge (U_+)), \mathcal{E}_k[-i]).$$

Определение 1.14. Пусть $\varphi\colon \mathcal{E}'_* \to \mathcal{E}''_*$ — морфизм биспектров. Говорят, что φ — мотивная эквивалентность, если для всех $i,j\in \mathbb{Z}$ морфизм $\pi_{i,j}^{\mathbb{A}^1}(\varphi)\colon \pi_{i,j}^{\mathbb{A}^1}(\mathcal{E}'_*)_x \to \pi_{i,j}^{\mathbb{A}^1}(\mathcal{E}''_*)_x$ является изоморфизмом для любого $X\in \mathrm{Sm}/k$ и для любой точки $x\in X$.

Определение 1.15. Мотивная категория биспектров $\mathrm{SH}_{\mathbb{G}_m,S^1}(k)$ — это категория биспектров, локализованная по мотивным эквивалентностям.

Определение 1.16.
$$\pi_{i,j}(\mathcal{E}_*)(U) = \varinjlim \operatorname{Hom}_{\operatorname{SH}^{\operatorname{proj}}_{\mathrm{cl}}(k)}(\Sigma^{\infty}_{S^1}(\mathbb{G}_m^{(k+j)}) \wedge (U_+), \mathcal{E}_k[-i]).$$

 $\varphi\colon \mathcal{E}'_* o \mathcal{E}''_*$ называется **проективной эквивалентностью**, если для любого U морфизм $\pi_{i,j}(\mathcal{E}_*)(U) o \pi_{i,j}(\mathcal{E}''_*)(U)$ является изоморфизмом.

Определение 1.17. $\mathrm{Ho^{proj}}(\mathrm{Sp}_{\mathbb{G}_m,S^1})$ — это гомотопическая категория категории биспектров, локализованная по проективным эквивалентностям.

Предложение 1.18. Категория $\mathrm{Ho^{proj}}(\mathrm{Sp}_{\mathbb{G}_m,S^1})$ является триангулированной. Сдвиги в ней — это $S^1 \wedge -$.

Цель: определить объект $M_{\mathrm{fr}}(X)$ (frame-мотив X) в $\operatorname{PreSp}(k)$ для $X \in \operatorname{Sm}/k$. Положим

$$M_{\mathrm{fr}}(X)(U) = (\mathrm{Fr}(\Delta^{\bullet} \times U, X), \mathrm{Fr}(\Delta^{\bullet} \times U, X \otimes S^{1}), \mathrm{Fr}(\Delta^{\bullet} \times U, X \otimes S^{1} \otimes S^{1}), \ldots).$$

Теорема 1.19. Это $\Omega_{\mathbb{G}_m,S^1}$ -биспектр.

Небольшой обман: $\pi_{0,0}(\Sigma_{\mathbb{G}_m}^{\infty}\Sigma_{S^1}^{\infty}(S^0)) = \pi_0(\operatorname{Fr}(\Delta_k^{\bullet},\operatorname{Spec}(k)))^+ = \operatorname{GW}(k)$ (последнее равенство доказал Нешитов). Нуль-симплексы этого пространства — это множество $\operatorname{Fr}(\operatorname{Spec}(k),\operatorname{Spec}(k))$.