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p- ADIC PERIODS AND p- ADIC ETALE COHOMOLOGY

Jean-Marc Fontaine and William Messing1'
. Introduction

Classncally, the relation between the Betti and de Rham cohomology of a projective
and smooth variety defined over a number field is expressed in terms of the periods and
via Hodge theory. We shall present evidence indicating that, in a precise sense, there is
an analogous relation between étale and de Rham cohomology.

Let E be a number field , E an algebraic closure of E, and X be a proper smooth
variety defined over E. Fixa pnme number p and p (resp. §# ) a place of E (resp. E)
lying over p (resp. p). LetV = HR et (XE Qp) viewed as a representation of the
decomposition group associatedto ¢ and D = HDR X)® E?’ endowed with its Hodge
filtratign. In [31], Tate proved that, if m = 1 and X has good reduction at p, then setting
C= E? C ® V admits a Hodge-Tate decomposition; and conjectured that this holds
for all m without the good reduction hypothesis. Faltlngs has recently announced a proof
of this conjecture [9). -

Changing notation, we are led to consider K a charactenstlc zero, non- archnmednan'
local field of residue characteristic p and X a proper, smooth variety defined over K. We
continue to denote- by V (resp. D) the associated p -adic étale (resp. de Rham) -
cohomology of X. Using a basic result of Tate [31) and Dieudonné theory, Grothendieck
proved in [21] that, if X has good reduction, then, form = 1, V viewed as a representation
of Gal (K_ /K) determines D endowed with its Hodge filtration and its "Frobenius
_ structure” (coming from crystalline cohomology) and _conve'rsely, This mutual

determination was not direct or explicit (but rather used the intermediary of the
p- divisible -group associated- to the Albanese variety of X) and Grothendieck raised the
probl'en'l of finding an explicit recipe for passing between V and D as well as the problem
of obtaining similar results for m= 2. This is his problem of the mysterious functor. The
case m = 1 was resolved by one of us in [11,14] and a conjectural recipe in the case of m

2 2 was also given in [14].
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We summarize here the progress that has been made towards establishing the
"crystalline conjecture” of [14] and, in addition, indicate some applications. [ntuitively the
idea is that, just as p- divisible groups serve as the bridge connecting V and D when
m = 1, an appropriate "generalized p- divisible group” should'serve to connect them for
m 2 2 as well. In the following this intuition is not made explicit but rather we use the
concepts and techniques which have developed from it. .

The paper is divided into three sections.. In the first, we state our main results and
give both arithmetic-and geometric applications. In the second, we introduce the
syntomic topology and explain how to calculate crystalline cohomology using it, as well
as give an essentially complete proof of the main part of Theorem A (of partI). Inthe
third, we define certain sheaves S, for the syntomic (or syntomic-étale topology) which
intuitively can be thought of as an "intelligent version” of Symkypn and give an outline
of how our main result, (theorem B of part 1) is proved

1. Crystalline Representations and the Construction of p -Adic Etale
Cohomology

Throughout this paper, p is a fixed prime number, k a perfect field of characteristic
p, Wits ring of Witt vectors, K the fraction of field W, o the absolute Frobenius of K
(o(x) = xP) as well as (abusively) the induced automorphism of W (resp. K). Let Kbe
an algebraic closure of K, G = Gal (K/K), I the inertia subgroup; Q (1) the one
dimensional Qp-vector space Qp ®z, Hom (Qp/Zp, K*), x the cylotomlc character
giving the action of G on Qp(1)

1. Crystalline Representations

1.1. A p-adic representation is a topological Qp-vector space equipped with a
continuous linear action of G. The dimension of the representatlon is the dimension of
the underlying space.

A filtered module is a K-vector space'D equipped with
i) an exhaustive, separated decreasing filtration indexed by Z (i.e. a famlly of
K-subspaces Fil'D satisfying Fi'D > Fil'*1D, UFiI'D =D, NFil'D = 0),
i) a Frobenius, i.e. an injective 6-semilinear endomorphism

»D-D

2We assume that p=2in the third section. Interms of the "main case” of
th?orem B, namely when p > dim(X), this is not a restricition, because for
s the result is known.
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The dimension of the filtered module is the dimension of the underlying K-space. With
the obvious definition of morphism, the filtered modules form a cate'gory' which is additive
{but not abelian), Qp-linear, has direct sums, tensor products, kernels, cokernels and in
which the notion of short exact sequence can be defined. If D is a finite dimensional
filtered module, then the dual vector space is endowed with a natural structure of filtered
module, denoted DV.

1.2. EXAMPLE : Let X l;é a proper, smooth variety defined over K and let X = X ® K;
foreachme N, Hét (X, Qp) is a finite dimensional p- adic representation. We denote
the direct sum of these spaces by Hei(X) and (for brevity) the mth summand by Het {X).
We say that X has good reduction provided there exists a proper smooth -
W-scheme X such that X ® K= X. If Xy is the special fiber of X, then K® chs (X/W)

is endowed with a (bijective) Frobenius and is canonically isomorphic to HDH (X/K), and
thus is endowed, by transport of structure, with a filtration, the Hodge filtration. Thus, we
obtain a filtered module, Hg‘,is(X), which by [19], is independent of the choice of X. As
above, we denote the direct sum of these by Hs(X).

1.3. For any commutative ring A, Iet A,=A/p"A LetDi be the ring of integers of K
and DK beDk 4. Thering, n(O,z). of Witt vectors of length n wuth coefficients in
DK is endowed with an action of G and a Frobenius. We view W( BK ) asa

W, -algebra via the composite

Wi, > W, >Wo( B )

We define a surjective homomorphlsm of W,, -algebras
O’ wan) ——— Ok

bY 8 (@ e 8. 1) =8P" + ..+ p™1 82,

(where é] €Dk’ n is any lifting of a) Note 6, commutes wuth the action of G

Denote by WDP ©x) the dlwded power envelope of the ideal Ker (6p,)
(compatible with the natural divided powers on (p)) and by J, ( D) the correspondmg
divided power ideal. Thus we have an exact sequence

0 — Ju(Og) —WELP (aK)—>QK,,, —0
By functoriality G acts on this sequence and since ¢(Ker (6,)) < Ker (6) + p-Wn(ﬁi ),
it follows that ¢ extends to WEP(Bz) .

1.4. For any n 2 1 we have a commutative diagram of W-algebras
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- en+1 —
Wi 1Ok) — > Ok nst

W, (Bk) Ok n

where the right vertical arrow is reduction modulo p" and Vp(@ge--s @,) = (a8,...,ak. )
Note vy, extends to the divided power envelopes.
We define Bg;s =K ® lim WRP(Oj ); thisis a topological K-algebra endowed
w

with a continuous action of G and the structure of a filtered module. The filtration is
defined by

crge. . [Bans HrsO |
" { theimage of K@ fim JI®K) ifr>o0,

where JI (®; ) denotes the rth divided power of J, Og)-

15. Foranyn21,if ee upn(R) and % is its image in 6,‘(' , the element

[E]=( %.0,..0) € W,h(Bx ) belongsto 1 + J,, (Ox ) and hence log([ E] ) is an
element of WBP ( B ). This construction defines a homomorphism

on (K)—— WEP (©F ) and passing to the limit, we obtairi an embedding

Qp(1) —— Bgyg - We view Qp (1) as included in Bgris Vvia this map (whichis G
compatible) and, if t denotes any non-zero element of Qp, (1), we define By to be
Béris [t7). G acts on B, 6(t) =p~'-t~1. Finally, we extend the definition of the filtration
10 Byig by setting '

 Fif B = U tSFIMSBY; .
520

1.6. Let D be a finite dimensional filtered module. We say D is weakly admissible if
there is a lattice M in D such that Zp "¢(MNFi'D) = M. The category of weakly
admissible modules is stable under sub and quotient objects, extensions, tensor
products and taking_ duals; it is abelian and in fact a Qp-linear, neutral tannakian
category (cf. [12,24)).

If D is a weakly admissible fittered module, we set

V(D) ={ x & Fil%(Bgc ® D) [ $(x) =X} .
K
This is a p -adic representation of dimension at most thatof D. Wesay D is admissible

provided these dimensions are equal. Conjecturally, all weakly admissible modules aré
admissible. '
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If Vis a p -adic representation, we set
' D(V) = (Bis ® V)@

This is a filtered module of dimension at most that of V. We say V is a crystalline
representation if these dimensions are equal.

1.7. PROPOSITION ([12,13,18]): The category of admissible filtered modules (viewed
as a full subcategory of the category of weakly admissible modules ) is stable under sub
and quotient objects, tensor products, taking duals, extensions. Any weakly admissible
module whose filtration has length less than p (i.e. such that for some |, FillD =D,
Fil*PD = 0) is admissible. The functor V induces a ®-equivalence between the category
of admissible filtered modules and the category of crystalline representations. The
functor D is a quasi-inverse functor.

2 Crystalline Representations and Etale Cohomology

2.1. Let X be a proper, smooth K-variety having good reduction; we say X is
admissible it H.s(X) is admissible. We conjecture that any such X is admissible. One
has the following partial result.

2.2. THEOREM A: i) The product of two admissible varieties is admissible; the
standard cellular varieties (PN, Gry . --- ) @are admissible.
i) If X /s a variely having good reduction and if one of the

following conditions holds

a) p > dim(X),

b) X is a curve or an abelian variety, X

c) there is a proper smooth model X/W with torsion-free
Hodge cohomology and with ordinary [4] special fiber,
then X is admissible.

Statement i) is a consequence of the Kiinneth formula, the stability of admissible
modules under tensor product and the fact that certain "elementary” filtered modules
(e.9. S'=K with ¢ = p/- o, Fill = K, Fili*! = 0) are admissible. In cases b) and c) statement
ii) is established in {14;16). We shall indicate the proof in case a) inI1.2.7,2.8 (also see
[22] when X is projective).

2.3. The main interest of Theorem A derives from:
THEOREM B: There are defined on the category of admissible varieties
canonical and functorial isomorphisms (compatible with muttiplicative structure
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and cycle' classes) of p-adic representations (resp. filtered modules)

V(Hig(X)) = Hy(X)

D(H(X)) = Hgpi(X) -
and consequently Bgs ® Herg(X) = Brig ® He(X) .

K %
REMARK: If X has good reduction, then in fact the conclusion of the theorerﬁ is valid for
HM providedm<p.
We shall give the idea of the proof of theorem B in 111.6. Here are several

applications of theorems A and B.
3. "Arithmetical” Applications

a
3.1. Hodge-Tate Decomposition. LetC = K andforanyre Z set
Cn=C® Qp(1 )®". For any admissible X, we have canonical,'f'unctorial isomorphisms

compatible with ring structure and cycle classes

C@HM(X) = ® C(-j) ® Hm-i(x,nj(i :
=0 K i

This isomorphism is obtained by writing Qr°(Bcﬁs ®H ;';'(X)) = gr°(Bs ® Hgis(X))

and using the fact [12], that gr'B ;s = C(r) .

REMARK: This result was conjectured by Tate for all proper, smooth'varieties over K
and had been proved in many particular cases [1,4,5,7,15,22,31). Recently Faltings has

announced the result in the general case [9).

3.2. Action of Tame Inertia. Lst V be a G-stable lattice in H:,'(X) and V be the
semi-simplification of V/pV; with respect to the action of I. Then, if X is admissible, the
action of I (through its tame quotient) is given by characters of the form

xpy” o +Pit +-+P™ iny) where h2 1 and Xn i @ fundamental character of level h, i.e. a
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character of I with values in F;h which factors through Fy, (where Itame = im F;, F,
s

being the subfield of p elements of k) and extends to an isomorphism Fn 3 th. Then
the integers ij satisfy 0 < ij sm.

This follows from a general property of the crystalline representations associated to
filtered modules satisfying Fil°D = D, Fil™'D = 0, ¢t [13]. This result had been
conjectured by Serre [30] and proven by Raynaud for m = 1, [27], and Kato in a more
precise form provided dim (X) < p - 1 and the special fiber X is Hodge-Witt [22].

3.3. Bounds for the Discriminant. With the same notation as in 3.2, let H,, be the kemel
of the representatlon of G on V/p"V, L, = KHn and f)LD,K the correspondmg different.
Then, with the valuation v of L, normalized so that v(p) = 1, we conjecture that
v(f)._n,K) <n+ m/(p-1) For m = 1 this is proven in [17]. The general case should foliow
from theorem B because this inequality should hold for any crystalline representatlon
This is true at least when n = 1 and m < p-1, cf [18].

As a consequence, by using methods analogous to those which prove there is no
non-trivial abelian scheme over Z [17], one deduces the following result:

If X is a proper, smooth variety over Q which has good reduction everywhere, and if
ije Nandsatisfyi=j,i+] <3, then Hi(X,Q§ ) =0. In particular, if the dimension of X is at
most three, all its cohomology is algebraic [18].

3.4. Image of the Galois Group.
PROPOSITION: Let X be an admissible variety and let G be the Zariski
closure of the image of 1 in GLYM (x,.

i) The Image of 1is open in Go(Qp) (for its topology of p-adic Lie
group ); :
ii) Gy is a connected group.

The first property is a consequence of the fact that Het(X) isa Hodge-Tate
representation [29]. The second property holds for any crystalline representation. It
implies that if V is any I-stable subquotient of H::(X). then the action of I on the
determinant of V is via y™* for some r2>0. Form = 1 this was proven by Raynaud [27].
Note that the fact that H-;',‘(X) is Hodge-Tate implies this last result only up to
multiplication by a character of finite order.

4. Geometric Applications

4.1. Etale Cohomology of the Special Fiber. Let X be a proper smooth W-scheme such
that Xy= X is admissible. The specialization map induces an isomorphism:
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* - -~
Hei(Xie Qp)—— Het(X) .

This follows because the source is naturally identifled with the fixed points of ¢ in

Heris(X) ® Frac (W( k) and the isomorphism of theorem B transfbrms this into the target.
When m = 1, this holds even if K is not absolutely unramified and with Qp replaced by Zp.
Can it be proven for m 2 2 and K an arbitrary local field by "purely” étale cohomological
methods? What is the local analogue of this result?

4.2. The Crystalline Discriminant. Assume p # 2 and that k is algebraically closed. LetY
be a proper, smooth k-variety of even dimension d. Set Hgs(Y) = K ‘% Herig(Y/W).

In [25], Ogus defines an invariant, the crystaliine discriminant, to be the Legendre symbol
of the reduction mod p of p0Md<®%>.<q o> where « is a generator of the determinant of

cns(Y)( d/2) which is fixed by ¢. Further, he gives a conjectural formula for this in terms
of the {-adic Betti numbers of Y. '

Suppose now that Y admits a lifting to W whose generic fiber X is admissible. by
theorem B, a is then identified with an element of the determinant of Hg‘(X)(d/2) Itnow
follows immediately from the Hodge index theorem that Ogus' crystallme discriminant
conjecture is true for Y.

4.3. Absolute Hodge and Absolute Tate Cycles. Let X be a propef’smooth variety
defined over an algebraically closed field E of characteristic zero. Recall [25]), an
element § of Fil HZ§ (X) is said to be absolutely Tate provided there is a smooth
Z-algebra R C E, a proper, smooth model of X, Xg, defined over R, having locally-free
de Rham cohomology, an element £g ¢ HZEL (Xg) giving back £ and such that, for any
perfect field of finite characteristic k, and any homomorphism R —— W, the image of
&r.Ew € HZR (Xy) satisfies 0(Zy,) = p* &, Given such a &, fix R as above; then, for
almostall p, p > dim (X),and we may choose o to be an injection. Extending o to the
algebraic closure of Frac(R) in E and applying theorem B, we see that Ew defines an
element of H2 Xk, Q ()G , which by the proper base change theorem we may view
as an element §p of H2f(X, Qp(r)) Conjecturally, [25], there is an absolute Hodge
cycle y = (ypriyy) o pnme) such that § =ypp. It is reasonable to conjecture that y,, is equal
1(}4 S for all p for which §p is defined (and in particular that §p is independent of all
the choices made).

4.4. Transcendental Results. Let X be a proper, smooth W-scheme such that
dim (Xy) <p. The proof of theorem A (part ii a) cf. 11.2.6, in fact shows that Hpg(X) is an
obiect of the category MFy, [32], and that the Hodge to de Rham spectral sequence for X
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degenerates at E4. If X is projective, as a consequence of the hard Lefschetz theorem
for crystaliine cohomology, [23], one deduces its validity for the Hodge cohomology of
Xk (morphisms in MFy are strictly compatible with the filtrations). It follows that htl = il
for Xi. Now if X is any proper, smooth variety over a characteristic zero field E, we can
choose R,Xp, a:R—W (where p > dim X) as in 4.3 and immediately deduce the
degeneration of the Hodge to de Rham spectral sequence (for X) at E,, the hard
Lefschetz theorem for the Hodge (or de Rham) cohomology of X (assuming X is
projective) and, as Gabber suggested, using Hironaka, the Hodge symmetry even if X is
"only” proper. The proof of pan ii a of theorem A in fact gives the following result:if Y is a
smooth variety of dimension < p defined over k and Y is liftable to W, then there is a
canonical semi-linear quasi-isomorphism between & QM—H and Qy . Recently, Deligne
and lllusie, [8], have found an incredibly elementary explicit proof of this fact and
Raynaud has deduced from this a proof of the Kodaira-Nakano vanishing theorem for Y.
By using the same method as above, this gives an algebraic proof of the result, valid
for any X/E as above. : :

IL. p-Adic Hodge Structures
1. The Syntomic Site, Crystalline Cohomology and the Cartier Isomorphism

1.1. Recall, {35}, that a morphism f: X——— S of schemes is locally a complete
intersection provided, locally on X there is a regular closed immersion into a smooth -
S-scheme through which f factors. A morphism is said to be synfomic provided it is flat
and locally a complete intersection. This terminology is due to Mazur.

Let Y be a scheme. The big (resp. small) syntomic site Ygyy (resp. Ys-y,,) of Y
consists of the category of Y-schemes (resp. the full subcategory of the Y-schemes Z
such that Z—— Y is syntomic) endowed with the topology (cf. [33, exposé IV]) generated
by the surjective syntomic Y-morphisms of affine schemes. The big site is functorial in Y;
for the small site there is the "usual” difficulty, cf. [34] or [2]; nevertheless cohdmological
calculations can be made using either.

1.2, For any k-scheme Z we write DS™8(2) = HO((ZWp)eris: Ozrwn) -this is a commutative
W, -algebra endowed with a Frobenius endomorphism, ¢. :

1.3. PROPOSITION: The functor Z — DS(2) is a sheaf on the big syntomic site of

Spec(k). Forany k-scheme Y, H"(YSYN, egﬂS) is canonically isomorphic (compatibly

with Frobenius Jto  H*((YW,).is» Oyawn)- '
The first statement follows easily from the fact that given a divided power thickening



188 JEAN-MARC FONTAINE and WILLIAM MESSING

UC€—T and a syntomic morphism U'— U we can, locally on U, find a lifting to a
syntomic morphism T—-—T. The second statement follows easily from this plus the
explicit description of crystalline cohomology insterms of the de Rham complex of a
divided power envelope. -

1.4. REMARK: If A is a k-algebra, we denote by WDP (A) the divided power envelope
(compatible with the standard divided powers on V-W,,(A)) of the ideal formed of all
(8gs--s8n-1) € W(A) such that af = 0; this notation is consistent with that of 1.1.3 when
A= 5; Passing to the associated sheaf for the Zariski topology, we find a natural
homomorphism: WDBP(A) —— D28(A), defined exactly as in 1.1.3. One verifies that if
the Frobenius of A is surjective then WRP(A) —=— BS$(A) and this implies that the
associated sheaf for the syntomic topology, WOP, is isomorphic to BSs.

1.5. We now restrict attention to the small syntomic site of k. If n and n' are integers such
thatn2n'21,and n- n' = ¢, there is an epimorphism, denoted generically by v,

LTS sy B &S, which is induced by the map W,(A} —W,(A) given by

(ags-r8p.q) F— (ag",...,a,,._,pc )- Using some standard facts about divided power
envelopes of local complete intersections, it is shown that BS"s is flat as a Wy-algebra.
Thus, given integers n', n" 2 1, we find a short exact sequence '

i1

) ® . v . %
0—> DZ* — DL, —— D0

where x is defined by nx = p™- % if % is alifting of xin DS, .
1.6. Let D be the "structure sheaf” on Spec(k), i.e. B(Y)= l'(Y,Oy) for any k-scheme Y. ~
There is an epimorphism of syntomic sheaves aﬁ"s — D, and the kernel J, is a
divided power ideal. Foranyre N, let J,[tbe the rih divided power of Jy. The J 0 _forrri
a decreasing filtration of 95",

| Bis =J 05y, =45y @5
and their intersection is zero. By an elementary calculation of the divided power - -

envelopes of certain complete intersections, it is easy to check that forr < p-1 the
natural map Sym'(J,/ J,18) — J,1/y,I"*1lis an isomorphism, cf. 1.7.
For any integerr 21, let 'ff” be the kernel of the composite mapping

cris 5 [\ Cris \Bcns
r+l A ad ~r -

Set T°> =%, There are two homomorphisms of T<™>in DS
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(i) v, is the composite Ts> — peris » D§s _
(i) a o-semi-linear homomorphism, ?,, defined by ?,(x) =y if ¢(x) = n(y).
Let F* B = Imv,, F,BF"® =Im 1, and setF, BF* = 0.
One verifies that for all r e N, F" D™ o F™*1D§s and F, D™ < F, D™ and that
?, induces a c-semi-linear isomorphism:

1, T Qg [P Beis =, F 957/ F, O

1.7. PROPOSITION:

i) For all r, FFR§™= g1 .

i) U F, D5 = D5 .

Working locally for the syntomic topology, we are lead to consider a k-algebra A of
the following type. Let (Py,...,Py) be a regular sequence in a polynomial ring k[Xy,....Xm].
Let A be the quotient of the periection of this polynomial ring by the ideal generated by
- P1s...,Pg. If xjdenotes the image in A of the Pt root of Pjin K [X{,...Xm] » then one

checks that
O (A =WIP(A) = @ Ay (%) Vom () -
my,...Mye N
and that J,I(A) is the sub-A-module of B§" (A) generated by the ¥, (). Vi () With.
Im; 2 r, and that, if A = A/(x,,...,Ty) then

VLTNLEI R, (R1)..ty(g) -
i M+ My =

Let n'; be a p* root of 1:, f in A and let 1’:‘1 be the image of _
(T)ri0) € Wiy (A)in WEE  (A) = DET (A). As o( &) =pl, (&) we findthatifx e A
and Ke D (A)is alifting and £ mg=r, then = )?ym'( 1?1)...yn,d( #,) is a liting of
U = XYpy, (%9)...Ymg (g} in DFLF (A) which satisfies:

S = P (K MmN Tom, (B Yomy( o)
(where n,, = (pm)¥(p!)™m! is a p- adic unit).
This immediately gives statement ii). Using this calculétion one shows inductively that
F.O9*(A) = @ Aypm"(tr,,)... Yom, d(ﬂ:d) and this easily gives the proposition.

Z'JT,SI'
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2. Crystalline and de Rham Cohomology

2.1. Lets be aninteger > 1. Ifi: Spec(k)gyy —Spec(Ws)gyy then one verifies that
ix is exact. We shall (by abuse of notation) continue to write egﬁs foriy( B‘,’,"s) restricted to

Spec(Ws)syn. Denote by Dg the "structural sheaf” on Spec(Ws)syn and for any n < s set
On= Bs/p".Ds. There is a homomorphism of Wy,-algebras
OF*—0,
which, in terms 6f Witt vectors, is induced by the homomorphisnﬁ Wn(©1) — B given
by (8gs.-s8n.q) —> &P"+...+ p™1&2 . where &;is a lifting of a; to Bp,; this homomorphism
was considered in the special case of D , in 1.1.3. This is an epimorphism of
sheaves and its kernel J,, is a divided power ideal whose th divided power we denote by
Ji,
Forall n s we thus have a decreasing filtration -
s =Yooy =dllls.
and N JM = (0). Forn =1, the just defined J,W is the direct lmage by i of the J,1
of the preceding paragraph. ; _
One checks that the JI1 are flat as sheaves of Wn-modules andthusifn',n"e N and
n' +n" < s we have a short exact sequence
0—s JIt —ylrl . —ylrl—0 .
2.2. Let Yg be a smooth W¢-scheme of dimension d and (forn <s) set Y = Yg @ W,
and let DY ‘5 (resp. Jy, 7)) be the restriction to (Yg)gyn Of D& (resp. JIf). Denote by
o the ewdent morphism of sites
o Yg syr— Vs Zar -
PROPOSITION: There are canonical isomorphisms (for 1< n ss)
i) R, B ¥ s——qy .
ii) forr e N, Ra, Jynm;) Oy Q’Yn (where 6, Q'Yn =0-..-0-Q) -..)
and R, (Jy I1/9y I*1) —=— Qf [-1].
This is an easy consequence of the fact that crystailine cohomology can be

calculated using the syntomic site and (of course) Berthelot's fundamental comparison
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+

~ theorem between crystalline and de Rham cohomology, [2].

2.3. Since ¢(J4) = 0 it follows that ¢( Ji) c p™- P provided r< p -1. -Let r and n be two
integers which satisfy r s.-p -1 aﬁﬂ*n_»-.r;s. lfx e Jfland Xe JIfl is a lifting then
&= p"§ with ¥ € DS’ and the image of yin D2 is well-defined (indepehdent of the
choice of X and V). 'We thus obtain a c-semi-inear map

¢ JI—— Beris |
REMARK: Observe th;t forn =1, ¢J,I*" = 0 provided r<§-1 and since
Sym'(J, 1, 1) —=—s J;I0y, I+ we see that ¢, is determined by ¢, and thus may be
defined provided s 2 2." When r = p -1, this no longer applies, but nevertheless, we may

define a map J, 1/, IP — g directly using only 4.

2.4. Fix two integers t and n such thatt < p -1 and n+t <s. Let A}, be the cokernel of the
injective map

t t
& Jil—— o Jli
r=1 =0

given by (Xy,....X}) > (X4,Xp"P Xq,eee Xy Xy_1, <P Xp). SINCO ¢ 4(X) = po(x) if x € JI ,
the maps ¢, induce a semi-linear map
._ o Al— DS |
LEMMA: & (AY) = FOS® andthe kemelof § is isomomphicto J,1%1.
This is proved by induction on t, the case t = 0 being obvious. We have

1 ‘
Al =( Q;OJ1[71/J1['+1]) o J,l1

and it is clear that the following diagram commutes:

%

I ————F D

f . ,
I ——F T F BT
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ft+1<p,as ¢,(J,[‘+1]) = 0, we immediately find a short exact sequence
00— JI¥ A — F, B — 0

where J,[#1]— AY is the map x — ((0,...,0),x)). lft+ 1 =p, we still have

®(AR") =F,, BF* andif xe J,[P), one checks easily that there isay « D™ such that
0p-1(X) = &5 (y) and that the image of y in ©5'™ /J, is independent of the choicg ofy.
Denoting this image by B(x) we define a morphism J,Pl— AP by

x —— {(-B(x),...,0),x) and obtain as above the short exact sequence fort = p -1 also.

REMARK: Ift=p -1, we can also use the remark of 2.3 to define a map
P 9Pl — F  which lifts f, , and is defined in terms of ¢;. This gives an
isomorphism

oo, 1" | B

r=0

2.5. From now on by abuse of notation we will write HM(F) for H""(Ys syn,F) ifFisa
syntomlc sheaf on Yg. The exact sequence, deduced from 1.7,

0—s Fl-_,D‘i“s—e F, Bgis— J Lyt — 0
yields a long exact cohomology sequence and thus isomorphis'_ms
HM(F,., BF") —— HM(F; D) provided Hm'1(J1[H/J1U+‘1).: HMLI/,[) = 0.
By 2.2 this is equivalent to the vanishing of Hm‘1‘j(ﬂl,’) and_‘Hm'i (Q{G) and hence holds
provided j > inf(m,d). This condition insures that HM(F, ,05"€) = H™ (3¢). Similarly, if
we consider the short exact sequence of 2.4, we obtain sufficient conditions for the map

induced on cohomology by ¢ to be injective (resp. bijective). We summarize:

LEMMA: The mapping H™(AY} ) —HM(©$") induced by ®is injective if mstand
bijective if d<t. If t2inf(m,d), HM(FDS* ) —— HMO*).
As a consequence of this we see that if Y, is a smooth scheme over Wé of
d . -
dimension d < p, then the natural map 20.11[ Y4t — BF™ induced by oifd <p-1

(or as in the remark of 2.4 if d = p-1) is a quasi-isomorphism. This implieé:

COROLLARY: If X is a smooth k-scheme of dimension < p, which is liftable to
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Wo, then each choice of lifting defines in the deri\(ed category a
quasi-isormorphism :
® QJ[-i] —me .

If X is proper, then its Hodge to de Rham spectral sequencé degenerates at E;.

REMARK: A completely elementary and explicit proof of this last resuit has been given
by Deligne and lllusie [8], who in addition obtain interesting results about the liftability of

smooth varieties of dimension< p.

2.6. THEOREM: Lei‘i_Ys be a proper, smooth Wg-scheme whose special fiber has
dimension d. For all m20 and all pairs (t,n)e N2 which satisty
a) inf(m,d) <t < p-1
b)1<n<s-t
we have .
i) The mapping & induces a semi-linear isomomphism

HM(Ys syl ) —— HM(Yg gyn, O ) .
if) The exact sequence
_ t t
—oJl—eJdll— Al —0
rat - r=0

induces an exact sequence

1 t

0—> @& HMl) — & HM(YI) —HM(AY )—0 .
r=1 r=0
We prove this by induction on m (it being clearly true for m = -1). First, we show that

the map induced by ¢, H™(A!, ) —HM(©S"), is injective. To do this we use an -
induction on n, the case 'n = 1 having been established in the lemma of 2.5. Suppose n
> 2; the flatness of the Jli's as W,-modules implies that of A}, and thus we have a
commutative diagram with exact rows: - :

0 sAl, > AL >At~—> 0
s |17
0 » DS, — DCE— P — 0 ;

which induces another such diagram:
- HT AL s H(AL ) —— HM(A}) ——— HM(AY)

HM-1 (@5 — HMEZE,) — HMEZ) — HMETS) .

As the left hand vertical arrow is an isomorphism and the second and fourth \(ertical
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il

arrows are injective, it follows that the third vertical arrow is injective too.
Thus lgw HM (AL )<lgw HM (@), The induction hypothesis nmphes the

exactness of the sequence

0—> e HM(Jl) —-> e Hm(J!rl) —_ Hm(At)
r=1
Thus Igy, H™ O¢e) = lgw, HMP) < igy, H™ (A}) giving an equality between these
lengths and the two assertions of the theorem follow for m.

2.7. COROLLARY: Let seN U{w} and let Yg be a proper smooth (formal) scheme
on Wg (with the convention that W, = W) whose special fiber has dimension d.

i} If n (finite or not ) <s-inf(m,d) and if inf(m,d) <inf(p-1,s-1), then, forall r,
the mapping

H™(Yn,62r+1 Q.Yn) - Hm(Yn,cer.Yn)

is injective,

ii) under the same hypothesis, HDR(Yn) endowed with the filtration defined by
HM (Y, o>rQY ) and the mappings ¢, H™ (Y, °.>rQYn)—-> HDR(Yn) is an object of
the category Mth of [32].

iii)ff d<p-1and if n(finite or not) <s-d, the Hodge to de Rham spectral
sequence

E\M = HM(Y,, Q7 ) = Hpg(Yn)-

degenerates at E,.

Let t=inf(m,d). When s is finite statement i) follows from the injectivity of

eHm(J['l) —_— e Hm( Jit)
r=1
- and iii) follows from i). Assertion ii) is equivalent to the exactness of the sequence
0—)$Hm( J['])——)eHm( J[f])___) Hm(DCﬂS) >0 .
r=1

The case where n = s = = follows from this by passing to the limit.

2.8. REMARK: i) When Yg is projective this result was obtained by Kato {22].
ii) Asseruon ii) of 2.7 enables us to define a canonical splitting of the
" Hodge filttration of HDR(Y,-,) the Wintenberger splitting, [32]. Further, one may associate

to HDR(Yn) a representation of G, cf. [13]. When n = s = e we obtain the weak
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1 3

admissibility and hence, by [13] the admissibility of K % HQR(Y,,).

111. p -Adic Periods and the Syntomic-Etale Topology
1. The Sheaves g{,and Crystalline Cohomology

1.1.  We shall work in this paragraph on the site Spf(W),; gyn whose objects consist of
all W-schemes on which p is locally nilpotent, this category being endowed with the
syntomic topology. For‘any X in this category, we denote by Xp, its reduction modulo p”
and we recall that we have sheaves 3, DS, J,, JUi defined as follows:

0¥ =I(X,,0y,)
BT (X) = DF* (X;) = H(X:W,)eriss Oxymy,)
Jn=Ker (D% —0,)
J0 = M divided power of J,, .
Recall that ¢ is endowed with a o-semi-linear endomorphism ¢, the Frobeniué,'and

we define §;, as follows

~ -pf .
St = Ker (JI-2ZP_,pors)

Thus we have a short exact sequence (denoting by egﬁs-’ the image of ¢—p')

0—> Sf— Jl v, Qs 0 .
LEMMA: Dgis/ Bgrist is killed by  p".
This is proved by explicit (laborious) computations using the fact that
O¢rs = WDP (cf. 11.1.4) and that for an appropriate finite extension L of K, there is an
explicitly constructed element u e WRP(O)_ 4) such that u e JIPand ¢u = pP~ Tu.
(Viewing u in WOP(Dz), it is the reduction modulo p”? of tP1/p € HZ; (O /W), where t
is a generator for the Tate module Zp(1) inside this ring.)

1.2. Let X be a proper, smooth W-scheme and X = X ® O Using the factthat
syntomic morphisms can, locally, always be lifted modulo a nilpotent ideal, it follows that
H*( X, S5), HY( X o, ), H¥( X, D), HY( X, DS8*) are all independent of
the choice of m 2 n and we will denote them by H*( X , §:,) (resp...). Further, given any
projective system of sheaves of Z,-modules (?n),, >1 We will write

H*(R,?sz) = lim HY X&)
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TR - *
H (x,FQp)_op® H (x,sz)
zp ¢
1.3. PROPOSITION: i) H*( X, B¢") = WOP (B7) @ Hsa(Xn)
ii) H*( X, Dg;s )= Bis %HDR(XK)
Statement ii) follows immediately from i); statement i) is the Kiinneth formula for
Heie(Xn ® OK «/Wn) and is proved by an elementary computation usmg the de Rham

complex of a divided power envelope as weli as the fact that Spec(e,‘a has trivial
higher cohomology, [16].

1.4. LEMMA: i) H%(X, D"‘s N = H*X, 8"’5)
' ii) there is an integer j (lndependent of n)such that pl kills the
cokernel of H"‘(X,U’“';s ") —— H¥(X,DSrsr
The first statement follows immediately from the lemma of 1.1 while the second statement
follows from the fact that the cokemel of Hpg(X) — HBR(Xn) is killed by a power of p
independent of n, together with statement i) of the proposition of 1.3.

1.5. Denote by x the morphism X, — X, . One verifies directly ?hat RinJl1=0
forj> 0, and that one has a short exact sequence on X, o,

0— o Ji ® JHBEg)— e JiI e J @K ,,)—-> T () —0 .
j=r+1 W, w,
it
PROPOSITION: i) If the dimension of X, is strictly less than p, thenforany m
Filf(WBP( Bg) ® HpgiX,)) —— HM(X_Jl1) .
P .- r +* . m -~ m v rl
if) ful (Béis ® Hpr (X)) —— HM(X, J[_»,p)..
The first statement is an immediate consequence of the degeneration of the

Hodge to de Rham spectral sequence (for X,,) at E4 because then the long exact -
cohomology sequence associated to the above short exact sequence will decompose
into short exact sequences. The second statement is a consequence of the fact that
_® H™(x b @ Fill im WEP (B — & HM(XJL!) @ Fillim WRP(o)
i+l Hi=T
ip1
has its kernel killed by some power of p.

1.6. THEOREM: Assume X is admissible and let r2m. The sequence
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0— HMX,85 ) — HM(X, 31 ) — HM(X, BgTs) — 0
is exact. _
COROLLARY: With the above hypothesis we have (for r2m) an exact sequence
-~ -
0— HM(X, 8, ) — FilBy; @ HI (X)) —22 s HI (X ) — 0 .

The corollary follows immediately from the theorem and 1.3 and 1.5. Forthe proof
of the theorem we use the following:

LEMMA: If Xy is admissible and r2m then there is an s 20 such that the
e . =
cokernel of HM(XJir) P HM(XBgs) is killed by p*.

The lemma implies the theorem for m = 0 and thus, if m 2 1, it suffices to verify the
exactness of the sequence obtained by omitting the right hand zero.  Using the lemma
together with 1.4.ii) it is easy to check that there is an integer s' such that for any n the -
kernel of HM(X,SF) — HM(XJI) is killed by pS. Assuming this, an elementary and
standard argument gives the theorem.

2. An Indication of the Proof of the Lemma of 1.6

H -~ - i -~
2.1. LEMMA: For i 2 0 coker(Fili(im W2P (8z)) Ll N lim WEP (B)) is killed
by p'.
This follows from the lemma of 1.1 but may also be proved directly.
2.2. Recall we have defined in 1.1.6. "admissible fitered module ". If D is such a
module, then we have. B ® V(D) = B ® D (in a manner compatible with filtrations,

Frobenius and the action of G) .
2.3. PROPOSITION: If Dis adm)'ssible, then the map

Fil%(Bis ®D)—21 By ®D

is surjective.
This follows immediately from 2.1, and implies that for any i € Z,
0o |

Fil(B,g ® D)——— By ®D is surjective.

2.4. PROPOSITION: /f D is admissible and satisifies Fil°D =D, Fil+1D = 0, then
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¢-p

Fll'(Bcns ®D) ————> Beris ©
This is proved by a computation, using the basic property of

® D is surjective.

Biis that tB2is = {x € Bgsl ¢'x € Fil' B, V1}. In fact the proc}jf yields the fact that
V(D) ctiBl ®D. | '

2.5. Let D satisfy the hypothesis of 2.4 and choose (cf. [12,14]) a strongly divisible lattice
MinD.
PROPOSITION: There is an integer s 2 0 such that the cokernel of
Fili(li(r_'r] WoP@R) ® M)iﬁ'-) lim WPP(B) ®Mis killed by pS.

This is proved by a long involved computational argument, which we do not
attempt to elucidate here.

2.6.Let Mc HB‘R(X)/torsion be a strongly divisible lattice, chosen sufficiently small so
that the left hand vertical arrow in the following commutative diagram is defined:

~ el ~
Filflim WEPEg) ® M) —E— iim WEP(E) @M

Image of HT(X, Jlfl ) in—22P__, Hm(x, ogs Jiorsion
HMY(X, eg;s )Aorsion

As the upper horizontal and right hand vertical arrows both have cokemels killed by fixed
powers of p, the lemma of 1.6 follows.

2.7. REMARK: The proof actually shows that the results of 1.6 are valid provided
r 2 inf(m,length of the Hodge filtration of HQR(XK)).

3. The Sheaves S,

3.1. The natural epimorphism J{i} —s Jlinduces a map SF, ,-—-——} Sr . We denote its
image by S]. It follows easily from the lemma of 1.1 that for m > n+r this image coincides

with |m(S —_— S"). The following is obvious:
LEMMA: H*(XS ) —=— H*X.SL) .

Notice that we have natural maps S/, x Sf, — Si#¥ which endow ® S/ with the
: r20
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structure of an associative, commutative Z/p"Z-algebra with unit. We now define
amap ppn—> S} as follows: For any W-algebra A, we write A4 as a quotient of the

polynomial ring over W, and let D be the corresponding divided power envelope so
that we have an epimorphism D— A Let Te Doea lifting of an element of |
Po1(An,q). Then CP™™' e 1+ Jp, 1(A) and its logarithm log( §P™"") is well-defined. We
define in this way a homgmorphism Hpnst (A) —> p.pn+1(An +1)—>Jn,1{A) anditis clear
that the image is contained in §,‘, ,1(A), as well as that the image of Hp(A) is contained in
Ker ( §,§+, (A) — S,‘,(—_;A)). Passing to the associated sheaves, we thus obtain a map

.ppn—esg.

3.2. PROPOSITION: Iif Ais a p-adically separated and complete flat W-algebra , _
suchthat Ay is a syntomic k-algebra, then pgn(A) —— S} (A).
This may be proved by explicit calculations using the Artin-Hasse logarithm.

4. The Syntomic Etale Site

4.1. We will say that a morphism L — U of p -adic formal schemes over SpfW is
syntomic provided L, —— U, is syntomic for all n> 1. Recall that if L is a complete
non-archimedian valued field with ring of integers B, then we may associate to any
formal scheme of finite type over D, a rigid analytic space over L, its generic fiber, cf.
[28]. If & is any (finite type) formal O-scheme we define the syntomic -étale site of 3
denoted Jgyn ot as follows: Obijects are morphisms UL — & which are syntomic,
quasi-finite and have étale generic fiber (in the sense of rigid geometry). We shall be
primarily concerned with ti;g following situation. Given X our proper smooth W-scheme
and)—(=X®B§,let3=)-(=li_r_;l)_('n(sohereL=C). '

PROPOSITION: If for any n=21,idenotes the inclusion in - 3, then iy is
exact for the syntomic -étale topology. _

It suffices to show that, it CL is a p- adically complete W-algebra and Cl,— B is
synfomic and quasi-finite, then, locally, we may lift B to Bsuch that 4 —» Bis
syntomic, quasi-finite with étale generic fiber. If B = CLn[x1 v Xgl(fqoe.00fg). then we may |
replace B by B' = QL[Yq,...,Ygl(fy(X).....14(X)) where X; — Y?™ defines the map
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B——> B andwe it B'to B' = A {vq,....Ygh( FyP™) + pn.Y;), where Tiifis 1,
REMARK: By abuse of notation, we will write S', instead of i,S¥, wherei:Xp,.— 3

4.2 We introduce also the syntomic -étale site of X, where objects are morphisms
U— X which are syntomic, quasi-finite and with U ® K étale. We have then
2
morphisms (where = X))
i — i _

% y Xe XK
and these induce morphisms of topoi: j: Xig 4 —> Xsyneet: it Fsyn-et— Xsyn-et
The definition of j is obvious since the category of schemes étale over Xi is a full
sub-category of the category underlying the syntomic-étale site of X. - The definition of

iy is determined by |,.?(Spec(B)) ?F(Spf B) where Spec(B) is an affine object of the
syntomic-étale site of X and B = hm By, The definition of i* is more subtle and

requires some preliminary results.

4.3. PROPOSITION: Let Spec(A) be Zariski open in X, a%’leim A

and Ad—Borea syntomic, quasi-finite morphism (where Bis a p-adically
separated, complete algebra) with étale generic fiber. Then there I$ a syntomic,
quasi-finite morphism A —— B with étale generic fiber such that B B

itwe write B=Cl {Xq,-.. Xg}/(P4,...,Pg) where the Pj's are restricted power series
and if we take polynomials Qy,....Qq in A[Xy,...,.X4] which are congruent to the P's
modulo p’ for some r >> 0, then B = A[X;,.... X4l/(Q;.....Q) satisfies B =B [17). The
facts that B is finitely presented and Bis p -torsion-free imply that B is p -torsion-free.
If j is the jacobian, then forsome g € B, g = p”. If we write g = g' + p"*'g" with o' € B,
ge B. then 1g =p"(1 - pg") and 1 - pg" € B so replacing B by B[1/1 - pg"] we force the
generic fiber to be étale. It now follows that A-——— B is flat and hence this morphism
satisfies all the conditions of the proposition.

We refer to a B as in the above proposition as a decompletion of B

4.4. if B is as constructed in 4.3, then we denote its henselization with respect to p by
BP. Itis now easy to show, using the resuits of [26), that this ring depends only on Band
neither on the choice of K———a B nor on the choice of B. We define the inverse image
functor i*, applied to a 2] on Xsyn-ét by sheafiying the presheaf Bi— Z(BN) where
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this last term is defined as the (filtered) inductive limit, E)m E(B'), the limit taken over

R

B——B

all commutative diagrams:

where B—— B’ is étale.

Now notice that given a B' such as in the diagram, then the pair B' and B
 constitute a covering of B. This implies that the following diagram is cartesian for any
sheaf Al on Xsyn-ét

A i

"

. e . ks ek
Lyl ﬂw"*' 11l A

and hence, just as in the case of the étale topology, we deduce:

PROPOSITION: The functor ZI, — (i*,ll. j*ﬂ, o) establishes an equivalence of
categories between sheaves on >-<syn,ét and the category of triples (¥ R.a)
consisting of a sheaf ¥ on %syn_ét, a sheaf B on Xgge and a morphism
¥ —i*j,}. The functor i, is exact as is the functor j defined by
i) = (0,32.0). For any sheaf 1 we have an exact sequence

0—jirtd— Ad—sii*Ad—0 .
REMARK: It is useful to note that given X' — X a syntomic, quasi-finite morphism
with étale generic fiber, there is a canonical decomposition X' = X'y 11 X', where X', is p-
adically separated and on X', p is invertible. : '

5. Construction of the Sheaves ;&;

5.1. We construct sheaves, & on )?syn_ét such that i*&! =87,

j*:&;, = Z/p"Z(r). By 4.4 this is equivalent to defining a map a: Sf, — i*jx Z/p"Z(r).
Given A—— B, B and BN as in 4.3 and 4.4, it suffices to define a map

S, (B) —_ Z/p"Z(r)(Bh[1/p ]). i we descend A to an A, defined over J, L a finite

~ extension of K in K and we descend B also, then we may write B = lir_n’ B; where

B;=B, ®,, wnere L, runs through the finite extensions of L contained in K.
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Then Sf, (B) = s}, (B,,) = S}, (B,,,) = im S}, (B; n,,)- In addition, we have
Bh= lim BY and thus Z/p"Z(n)(BM[1/p)) = lim Z/p"Z(r)(BM[1/p]). Thus, we may "work

at finite level” and it suffices to define amap Sj, (B; ,,,) — Z/p"Z(r)( B [1/p)).

We change notation, and now write A for a smooth, p- adically separated D -algebra, B
for a p- adically separated syntomic, quasi-finite A-algebra Having étale generic fiber.
Further, we may assume that if n is a uniformizing parameter for O that A/rAis an
integral domain. Thus, A isAendowed with a valuation, v(a) = max{jla e =i A}, inducing its
p- adic topology. Let B=B.C = A. Because

no(Spec(BN1/p])) = mp(Spec( B1/p 1).[10], we may work with B. B{1/p]is an étale
G{Up J-algebra, and thus is a finite product of integral domains, each of which is regular
and hence normal. We write B[1/p] =B, x...xB;. EachB;is a Tate algebra,

]
and we denote by Bj the subring of elements whose spectral norm is at most equal to 1,
0
cf. [6]. Each Bj is integrally closed in Bj and hence is a p- adically separated normal

domain which contains the image of B in Bj. We have a natural map

t o
st(B,,)— 1 s; (B/p™").
J= H

Assume now without loss of generality, that L contains p,pn(R) so that
t . :
Zp"zBrip] = T (ugn RI®7 -
j= -
: . _
Thus, to define «, we must define amap S{, (B)—> Hph (K)®r,
5.2. Since Bj is a W[C ]-algebra, where L is a primitive p"th root of 1, we have a

natural map

- <] [+
ppn (KJBT— Sym'(pn(By)) — S}, (Byp™)
where the last map is induced from Hpn—— S}, ct. 3.1. We refer to this
homomorphism as the natural homomorphism .

THEOREM: Let C bea WI%)-algebra which is a normal domain and such that P
is not invertible in C. Set r=(p-1)a+bwith ab20,b<p-1and let
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c=a+vy(al). Then there is a functorial isomorphism of TR (K)®" onto

8t (C/p™) such that the natural homomorphism is p° times this isomorphism.
We indicate the deﬁnition of this isomorphism. Let ((;)»4 be a generator for the .

Tate module Zp(1)(l3") and lette HZ;, (Spec(ﬁlz)/W) be the corresponding element.

Consider the element u = tP-1/p e FilP-1 His (Spec(ﬁK')NV) and let t, (resp. u,,) be the

image in WOP (DR)- In fact, they belong to WOP(W[¢ J/p"). Then

toy,(u,) € SLWICVp™ ) andifal =p® @) &, thent!, = a' p°tdy, (u,). The

homomorphism (ﬁ')é”—> St (Clp™* -) is now defined by sending {2" to a'tby,(u,)

viewed as an element in S, (C/p™T ).

5.3. From the theorem, the definition of o is immediate. There is an alternative
procedure for defining a. Namely, in the notation of 5.1, we let E be the fraction field of A,
a discretely valued field, and C ve the completion of the algebraic closure of g For

eachj=1,...,t we choose an embedding of Frac(Bj) into C which induces an

embeddmg of B] into O¢. Thus we obtain a map from Sf( BJ V] iadd )to SH(B¢ nr)-
But the field C contains C = K and is completely analogous in the sense that, if

Bc,is is the ring associated to the perfect closure of k(X,), then C plays the role of C.
Thus, the results of [14] can be applied in this context, and they imply that

Sh( Oc oar) = Rpn (R)& -
8. Construction of p- Adic Etale Cohomology -

. 6.1, We shall indicate how the above results aliow us to prove theorem B of 1.2.3. Recall
Xisa propef. smooth W-scheme such that Xy is admissible. For any admissible filtered
module D and any integer i write V(D) for { x € B_;,® D | ¢(x) = P’ x, x e Fil}. Muitiplication
by tinduces an isomorphism V(D) ——s V,_,(D) which can be viewed intrinsically as a
canonical isomoprhism V{(D)(-i) — Vi, 1(D)(-i-1). Assume

D =Fil°D and Fil*'(D) = 0. Then, the proof of 2.4 gives the fact that

Vi(D) = { x € FilB;s ® D) | ¢x = p'x}. Applying this with D = HZ;S(XK) and taking

r 2 inf(m, length of the Hodge filtration) we obtain from 1.6 and 3.2 an isomorphism

(where we write V" (X) for V, (Hos(Xk))
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bvd m
H"(X, S5) = V[ (X) .

2d . _
Note that, since X is admissible, & V:: (X)(-m) is an anti-commutative graded algebra
m=0 .

which satisfies Poincaré duality, cf [12,14]. We wish to prove that for r and m as above
V(X) —=— Hg (XK, Q,(r)).

6.2. PROPOSITION: The natural map H*(S(.syn-et'g:i ) ——H" (L gyner Sh ) is an
isomorphism,

By 4.4 this is equivalent to the assertion that H*(jy Z/p"Z) = 0. But using the exact
sequence '

0—s j; ZP"Z— Zp"Z— i, ZIP"Z— 0
and recalling that i, is exact, we see that this is equivalent to the fact that
H* (Xgyn-ets Z/P"Z) —=— H*(J g n.er- Z/P"Z). Analysis of the proof of Grothendieck's
comparison theorem, [20], shows that we may replace syn-et by étale in this last
assertion. Now the proper base change theorem for étale cohomology yields the
desired conclusion. :
6.3. Using 6.1 and 4.1 we see that the map o constructed in 5 permnts us to define a map
B: V (X) — Het (Xg. Qu(r) -

PROPOSITION: The morphism B is an isomorphism.

Since source and target have the same dimension, it sufﬂces to show B is injective.
The morphisms 3 are compatible with the multiplicative structure. Thus, using Poincaré
duality on the source, it suffices to show that on V29(X), B is injective (here dim(X= d).
After replacing W by a finite unramified extension, we may assume that X has a
W-valued point, x. Its crystalline cohomology class satisfies ¢(cl(x)) = p? (cl(x)) and
cl(x) e FildH24(Xx). Thus it suffices to show B takes this crystaliine cycle class to the
corresponding étale cycle class. Let us blow up the point x in X to obtain X with
exceptional divisor equal to P‘&, 1. Observe that )?K is admissible and that the étale
cohomology of Xi¢ injects into that of i,‘(. Hence it suffices to prove that BY takes
the crystalline class of a point to the étale cycle class. Since the exceptional divisor has
self-intersection equal to - H, where H is a hyperplane in P31, it follows that the class of
a point in either theory is given by - ¢,(®% (1))9. Thus, it suffices to show B transforms
the crystalline Chern classes of a line bundie into its étale Chern class. To verify this, we
recalil that the crystalline Chern class (relative to Wy, is defined using the "exponential
sequence”:
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00—t +J,— DI — B — 0

log l

J,

while the étale Chern class ("modulo p” ") is defined using the Kummer sequencs:

: P

T 0— Mpn—> Gp; »G,, —0 .
But, working over Wp,, the Kummer sequence maps to the exponential sequence,
since there is the nétural map B}, — D** given by { — CP" where § (locally) lifts
{. Hence, the desired compatibility follows from the fact that S} = Uph.

6.4. REMARK: Combining our techniques with those of Kato, {22], we can prove, even it
K is no longer assumed absolutely unramified, that, if X is a proper and smooth
Ok-scheme, then, forr <p - 1 andi<r, we have

Hi(X, St) —=—Hi L(Xic Zp"Z(r)).  There remains though, the problem of relating the
source to crystalline cohomology. When e = 1 this has been done and thus, using [13],
we obtain the fact that, for m < p - 1, the invariant factors for Hg; (Xic: Z/p"Z) coincide
with those of HB‘R(X,,). and in particular that for m < p - 1 the invariant factors of the
torsion in H;? (Xj: Zp) depend only on the special fiber.
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