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and André homology 389
§3. Smoothing of algebras defined by linear homogeneous equations 396
§4. Smoothing of an isolated, almost complete intersection singularity with
no residue field extension 402
§5. Smoothing of an isolated singularity over a local ring
with no residue field extension 406
§6. Separability in field extensions 409
§7. Residue field extensions
induced by formally smooth homomorphisms 414
§8. Smoothing of an isolated singularity over a local ring 420
§9. Smoothing of ring homomorphisms 428
§10. Smoothing in the category of subalgebras 430
§11. Approximation theorems 437
Appendix. Regular homomorphisms which are not injective 442
References 444

§1. Introduction

In this paper we give a new proof, and some strengthenings of the following
theorem of D. Popescu:

Theorem 1.1 ([1], [13]–[16] and [18]). Let A σ−→ B be a homomorphism of noe-
therian rings. The homomorphism σ is regular if and only if B is a filtered inductive
limit of smooth A-algebras of finite type.
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(See [10, Chapter 11 and Chapter 13, (33.A), p. 249] for the definition of reg-
ular and smooth homomorphisms and §2 for a discussion of some of their main
properties.)

“If” is well known: see Popescu’s argument in [18, Lemma 1.4], or apply André’s
theorem (Property 2.8 and Corollary 2.9 below) and the fact that André homology
commutes with direct limits ([18, Lemma 3.2] and [2, Chapter III, Proposition 35]).
Our main interest is in proving “only if”.

Theorem 1.1 can be restated as follows. To say that B is a filtered inductive
limit of smooth finite type A-algebras is equivalent to saying that any commutative
diagram

A
σ //

τ

��

B

C

ρ

??
~
~
~
~
~
~
~

(1.1)

where C is a finitely generated A-algebra, can be extended to a commutative dia-
gram

A
σ //

τ

��

B

C

ρ

>>
~
~
~
~
~
~
~

φ
// D

ψ

OO
(1.2)

where D is a smooth finitely generated A-algebra. Theorem 1.1 asserts that such
an extension exists whenever σ is a regular homomorphism.

There are two refinements of Theorem 1.1, conjectured by M. Artin in [4] at the
same time with Theorem 1.1. The first [4, p. 225, Conjecture 2] is to require that
the map φ in the diagram (1.2) be smooth wherever possible (roughly speaking,
away from the non-smooth locus of C). In our proof, this requirement is satisfied
by construction. Thus, what we actually prove is the following stronger version of
Theorem 1.1.

For an A-algebra C of finite type, let HC/A denote the Jacobian ideal of C over
A (see Definition 2.11 for the definition of HC/A). The ideal HC/A defines the non-
smooth locus of C over A; in other words, for a prime ideal P of C, CP is smooth
over A if and only if HC/A 6⊂ P—see §2 for details.

Theorem 1.2. Consider a commutative diagram (1.1), where σ is a regular ho-
momorphism of noetherian rings. Then there exists a commutative diagram (1.2)
such that D is smooth of finite type over A and HC/AB ⊂

√
HD/CB.

This gives an affirmative answer to Conjecture 2 of [4].
The second direction in which Theorem 1.1 can be strengthened is

Problem 1.3 ([4, p. 224]). Assume that the homomorphism ρ in diagram (1.1) is
injective. Does there exist a diagram (1.2) with D smooth of finite type over A, such
that ψ is also injective? In other words, is B a filtered inductive limit of smooth
finitely generated A-subalgebras?

Note that Problem 1.3 makes sense even if σ itself is not injective. See the
Appendix for a discussion of non-injective regular homomorphisms.
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Problem 1.3 is stated in [4] in the case when A is a field and B = A[[x1, . . . , xn]] is
a formal power series ring over A. In fact, it turns out to have an affirmative answer
for a wide class of regular homomorphisms. Namely, in §10 we give an affirmative
solution to Problem 1.3 assuming that A is reduced and for any minimal prime Q
of B, B

Q has infinite transcendence degree over κ(Q ∩ A) (in particular, whenever
A is a reduced noetherian ring and B = A[[x1, . . . , xn]], or when A is reduced,
essentially of finite type over a field or Z and B is the completion of A along a non-
zero ideal—see §10 for details). We give an example to show that the assumption
of infinite transcendence degree is necessary. We also give an example of a diagram
(1.1) with ρ injective and A non-reduced, such that there does not exist a diagram
(1.2) with ψ injective and HC/AB ⊂

√
HD/CB. This shows that the hypothesis

that A is reduced is necessary, at least for this method of proof.
Two special cases of Theorem 1.1 are of particular interest for applications. The

first is the case when (A, I) is a Henselian pair such that the I-adic completion
homomorphism σ : A → Â is regular (this is the case whenever A is excellent
and, more generally, whenever A is a G-ring [10, (33.A) and (34.A)]). Applying
Theorem 1.1 to σ yields the general form of Artin approximation theorem (which
was already known to follow from D. Popescu’s theorem and is included here mainly
for completeness), as well as a generalized version of the nested approximation
theorem and B. Teissier’s nested smoothing theorem (see §11).

The second special case of interest is the case when B is a regular local ring and
A is a field or a Dedekind domain, contained in B, such that the inclusion map
A→ B is a regular homomorphism (if B is equicharacteristic, we may take A to be
the prime field of B). Theorem 1.1, applied in this case, yields a positive answer
to the Bass–Quillen conjecture in the equicharacteristic case, as well as to several
related conjectures on freeness of projective modules (see [18] for details).

Conventions. All the rings in this paper will be commutative with 1. We will
denote by N the set of positive integers, by N0 the set of non-negative integers.

For an ideal I,
√
I will denote the radical of I. Let σ : A → B be a homo-

morphism of rings. If I is an ideal of A, we write IB for σ(I)B. If P is a subset
of B, we write P ∩ A for σ−1(P ). The module of relative Kähler differentials of
B over A will be denoted by ΩB/A. An A-algebra B will be said to be of finite
type if it is finitely presented over A, essentially of finite type over A if B
is a localization of a finite type A-algebra. A free A-algebra is a polynomial ring
over A, on an arbitrary (not necessarily finite) set of generators. For a prime ideal
P in a ring A, κ(P ) will denote the residue field of AP . If A is a ring and M an
A-module, SAM will stand for the symmetric algebra over M . If S is a multi-
plicative subset of A, MS will denote the localization of M with respect to S, that
is, MS = M ⊗A AS . Similarly, if P is a prime ideal of A, we will write MP for

M ⊗A AP . If m is an ideal in a ring A, AnnAm∞ will stand for
∞⋃
i=1

AnnAm
i. Let

A be a ring and u = (u1, . . . , un) independent variables. Given r ∈ N0 and a subset
g = {g1, . . . , gr} ⊂ A[u], ∆g will denote the ideal of A[u] generated by all the r× r
minors of the matrix

(
∂g
∂u

)
≡
(
∂gi

∂uj

)
1≤i≤r
1≤j≤n

. If v is a subset of the variables u, ∆g,v

will stand for the ideal generated by all the r × r minors of the matrix
(
∂g
∂v

)
. If

g1, . . . , gr are linear homogeneous, we will denote by ∆0
g the ideal of A generated



384 MARK SPIVAKOVSKY

by the r × r minors of
(
∂gi

∂uj

)
1≤i≤r
1≤j≤n

. In the case r = 0, we adopt the convention

that the determinant of the empty matrix is 1.
We now outline the proof of Theorem 1.2. Our proof (as well as Popescu’s

original proof of Theorem 1.1) starts out with the following two observations, due
to D. Popescu. Consider a diagram (1.1).

Lemma 1.4. Suppose that HC/AB = B. Then there exists a diagram (1.2) with
D smooth of finite type over A and such that HC/AD = HD/C = D.

Proof. Let a1, . . . , an be a set of generators ofHC/A. Then there exist b1, . . . , bn ∈ B
with

n∑
i=1

ρ(ai)bi = 1. Let T1, . . . , Tn be new variables and let D = C[T1,..., Tn]

(∑n
i=1 aiTi−1) .

Define the map ψ : D → B by ψ(Ti) = bi, 1 ≤ i ≤ n. We obtain a commutative

diagram (1.2). Since D is defined over C by the single equation
n∑
i=1

aiTi − 1 = 0,

we have HD/C = (a1, . . . , an)D = D = HC/AD; in particular, D is smooth over C.
Also, for any prime P of D, the ideal P ∩C does not contain (a1, . . . , an) = HC/A,
hence CP∩C is smooth over A, and thus DP is smooth over A by the transitivity
of smoothness [10, Chapter 11, (28.E), p. 201]. Thus D is smooth over A and the
desired diagram (1.2) is constructed.

Thus, to prove Theorem 1.1 and Theorem 1.2 it is sufficient to construct a
diagram (1.2), withD an A-algebra of finite type, such thatHD/AB = B. Therefore
we may assume that HC/AB $ B in (1.1). Let P be a minimal prime of HC/AB.
The second observation is that to prove Theorem 1.1, it is sufficient to prove the
following theorem.

Theorem 1.5. There exists a diagram (1.2) such that:
(1)

√
HC/AB ⊂

√
HD/AB.

(2) HD/AB 6⊂ P .

Indeed, suppose Theorem 1.5 is known. Since HC/AB ⊂ P by definition of P ,
(1) and (2) of Theorem 1.5 imply that

√
HC/AB $

√
HD/AB. Apply Theorem

1.5 to the A-algebra D instead of C, and iterate the procedure. By noetherian
induction on

√
HC/AB, after finitely many steps we will arrive at the situation

when HD/AB = B, and Theorem 1.1 will follow from Lemma 1.4.
In this paper, the A-algebra D constructed in Theorem 1.5 will satisfy the addi-

tional condition √
HC/AB ⊂

√
HD/CB(1.3)

(in fact, (1.3) implies (1) of Theorem 1.5 by Property 2.16 below). Using this
stronger version of Theorem 1.5 in the above noetherian induction argument yields
Theorem 1.2.

Our original idea for the proof of Theorem 1.1 came from Lazard’s theorem
(recalled in §3), which says that an A-module is flat if and only if it is a filtered
inductive limit of free finitely generated A-modules, and the realization that The-
orem 1.1 is for A-algebras what Lazard’s theorem is for A-modules (the analogy
between regular homomorphisms A → B of rings and flat A-modules is discussed
in more detail in §2). In fact, this is more than an analogy: Lazard’s theorem is
used in a crucial way in the proof of Theorems 1.5 and 1.2. Namely, in §3 we use
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Lazard’s theorem to deduce Theorem 1.2 and Theorem 1.5 in the case when C is
defined over A by linear homogeneous equations by writing C = SAM , with M
a finite A-module (Proposition 3.4). Since B is A-flat, the existence of a diagram
(1.2) is given by Lazard’s theorem. Indeed, consider a presentation

L1
d1−→ L0

d0−→M → 0(1.4)

of M , where the Li are free of finite rank. Let d∗1 : L∗0 → L∗1 be the dual of d1.
Take a free A-module K which maps surjectively onto Ker(d∗1). We get an exact
sequence

K
α−→ L∗0

d∗1−→ L∗1.(1.5)

Since B is flat over A, the sequence K ⊗A B
α⊗B−−−→ L∗0 ⊗A B

d∗1⊗B−−−−→ L∗1 ⊗ B
obtained by tensoring (1.5) with B, is also exact. Let u ∈ L∗0 ⊗ B be the element
corresponding to ρ ◦ d0 under the identification L∗0 ⊗B ∼= HomA(L0, B). We have
u ∈ Ker(d∗1 ⊗B), hence

u ∈ Im(α⊗B).(1.6)

To construct a diagram (1.2) for the given A-algebra C, we need flatness of B over
A only to conclude (1.6). Thus (1.2) can be constructed even when B is not flat
over A, provided (1.6) holds. We prove Lazard’s theorem and Proposition 3.4 in
this slightly stronger form: in §§8–9 we will apply it in a situation when B is not
necessarily flat over A. We note that the diagram (1.2) which we construct satisfies
the condition (1.3).

With a view to Theorem 1.5, we also prove the following version of the linear
homogeneous case (Proposition 3.6). Write C = A[u]

(f) , f = (f1, . . . , fr). Let m be

a prime ideal of A such that mAm ⊂
√

∆0
fAm. Then there exists a diagram (1.2)

such that D ⊗A Am is smooth over A and mD ⊂ HD/C (in other words, we can
resolve the singularities at m by a map C → D which is smooth away from V (m)).
Finally, we push Proposition 3.6 even further to prove the following linearized
case of Theorem 1.5. §§4–9 are spent reducing the general case of Theorem 1.5 to
the linearized one, thus proving Theorem 1.5 in its full generality.

Proposition 1.6 (the linearized case of Theorem 1.5). Consider a diagram (1.1).
Assume that there exists a commutative diagram

A∗
σ∗

//

��

B

C ⊗A A∗ π∗
// C∗
N

ρ∗N

OO

C∗λ∗
oo

aaC
C
C
C
C
C
C
C

C∗
0

g∗
oo

hhQ
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

(1.7)

compatible with (1.1), where:
(1) A∗ is an A-algebra essentially of finite type, satisfying

P $
√
HA∗/AB.(1.8)

(2) Let m∗ = P ∩A∗. Then
√
m∗B = P.(1.9)
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(3)

P ⊂
√
HC∗N/(C⊗AA∗)B.(1.10)

(4) Let m = P ∩A and I = Ker λ∗. There is a positive integer N such that:

IP∩C∗ ⊂ (m∗)NC∗
P∩C∗ ,(1.11)

m∗C∗
P∩C∗ ⊂

√
(I2 : I)C∗

P∩C∗ and(1.12)

AnnAm(m∞Am) ∩mNAm = (0).(1.13)

(5) C∗
0 is defined over A∗ by linear homogeneous equations; write C∗

0 = SA∗M =
A∗[u]
(f) , f = (f1, . . . , fr).

(6) Condition (1.6) (with A replaced by A∗) holds for M .
(7) m∗A∗m∗ ⊂

√
∆0
fA

∗
m∗ .

(8)

HC∗/C∗0 6⊂ P ∩ C∗.(1.14)

Then the conclusion of Theorem 1.5 and (1.3) hold.

Proposition 1.6 is proved by applying Proposition 3.6 to the A∗-algebra C∗
0 . We

obtain a C∗
0 -algebra D0 mapping to B, such that

HD0/A∗ ∩ A∗ 6⊂ m∗ and(1.15)

m∗D0 ⊂ HD0/C∗0 .(1.16)

Put D := D0 ⊗C∗0 C∗
N . The algebra D maps to B; this gives a diagram (1.2). We

show that (1.8), (1.11)–(1.14) and (1.15) imply that DP∩D is smooth over A; this
gives (2) of Theorem 1.5. Moreover, from (1.8), (1.10), (1.16) and transitivity of
smoothness, we get (1.3) and hence Theorem 1.5 (1).

Note that if B is local with maximal ideal P , then, localizing by any element
x ∈ HD/A \ (P ∩D), we get that Dx is smooth over A, proving Theorem 1.2.

To prove Theorem 1.5 from Proposition 1.6, it remains to construct a diagram
(1.7) satisfying conditions (1)–(8). This is accomplished in §§4–9, first under some
additional assumptions about A and B and then in full generality. We now outline
the construction of (1.7) in §§4–9.

Definition 1.7. Let C be an A-algebra of finite type, M a prime ideal of C and
m = M ∩A. We say that C is an almost complete intersection over A at M if
the following conditions hold:

(1) mCM ⊂ HCM/A.
(2) There is a presentation C = A[u]

I such that the restriction of I
I2 to Spec CM \

V (mCM ) is a trivial vector bundle (here I denotes the coherent ideal sheaf
on Spec C, given by I).

(3) Let r = rk I
I2

∣∣
Spec CM\V (mCM)

. Then there exist f1, . . . , fr ∈ I whose natural

images in Γ
(
Spec CM \ V (mCM ), II2

)
generate I

I2

∣∣
Spec CM\V (mCM )

.

Note that (1)–(3) of Definition 1.7 are equivalent to saying that there exist
f1, . . . , fr ∈ I such that

mCM ⊂
√

∆fCM and(1.17)

mCM ⊂
√

(I2 + (f)) : I)CM ,(1.18)
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where f = (f1, . . . , fr) (see the definition of HC/A and Remark 2.15 below). Note
also that there are two special situations in which C is an almost complete intersec-
tion over A: one is when I

I2

∣∣
Spec CM\V (mCM )

= 0 and Definition 1.7 (1) holds, the
other when V (mCM ) = Spec CM , that is, when m is nilpotent. In both of these
cases, we will take r = 0 and f = ∅.

In §4, we construct the diagram (1.7) (proving Theorem 1.5 and Theorem 1.2)
in the following basic case. Let P be a prime ideal of B and let m = P ∩ A.

Proposition 1.8. Assume that:

(1) B is a local ring with maximal ideal P .
(2) The map σ : A→ B induces an isomorphism κ(m)→̃κ(P ).
(3) C = A[u]

I is an almost complete intersection over A at P ∩ C.
(4) σ is flat and mB = P .

Then there exists a diagram (1.7), satisfying conditions (1)–(8) of Proposition 1.6;
in particular, Theorem 1.2 holds.

We also show (Remark 4.6) that Theorem 1.2 holds whenever assumptions (1)–
(3) of Proposition 1.8 are satisfied and σ is formally smooth in the P -adic topology
(this condition is weaker than σ being regular — see §2 fore more details).

Our main technique here is a transformation C → C1, with C1 finitely generated
over C, called “generalized blowing up” along an ideal M ⊂ A (Definition 4.1).
Generalized blowing up of C along M depends on the presentation C = A[u1,..., un]

I
and the choice of generators of M , and is defined for any diagram (1.1) such that

ρ(ui) ∈ σ(A) +MB, 1 ≤ i ≤ n.(1.19)

For the purposes of Theorem 1.2 and conditions (1.3) and (1.10), we note that√
MC1 ⊂ HC1/C by definition of generalized blowing up, and that all the general-

ized blowings up in this paper will be along ideals M such that HC/AB ⊂
√
MB.

We prove Proposition 1.8 by constructing a diagram (1.7) satisfying conditions (1)–

(8) of Proposition 1.6, such that A∗ = Am and π∗ : C ⊗A A∗ → C∗
N =

A∗[u(N)]
IN

is a sequence of generalized blowings up along m∗ ≡ mAm. In the main part of
the proof of Proposition 1.8 (Lemma 4.4) we replace (4) by a slightly more general
hypothesis, in order to apply the result in §§8–9 in a situation where B will not
be flat over A. §§5–9 are devoted to gradually extending the construction of the
diagram (1.7) from the basic case to the general one. In §5 we consider a diagram
(1.1), such that (A,m) and (B,P ) are local,

A

m
∼= B

P
,

mB = P and

P =
√
HC/AB.

(1.20)

We show, under some additional assumptions, more general than flatness of B
over A (Lemma 5.4), that after a sequence C → CL of generalized blowings up,
CL is an almost complete intersection over A at P ∩ C. Combined with Propo-
sition 1.8, this yields a diagram (1.7), satisfying (1)–(8) of Proposition 1.6. This
proves Theorems 1.2 and 1.5 assuming that B is flat over A and conditions (1.20)
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hold. In §§6–7, in order to achieve (3) of Proposition 1.8, we prove the follow-
ing version of the Nica–Popescu theorem (see Corollary 7.9 for the original Nica–
Popescu theorem). Any formally smooth local homomorphism σ : (A,m, k) →
(B,P,K) of local noetherian rings, with B complete, has a factorization (A,m, k)→
(A•,m•, K) σ•−→ (B,P,K) such that A• is a local noetherian ring, smooth over
A, dimA• = dimA + dimK H1(k,K,K), the ring (B,P ) is formally smooth over
(A•,m•) and σ• induces an isomorphism of residue fields. By construction, A• will
be a filtered inductive limit of smooth finite type A-algebras. Furthermore, adjoin-
ing dimB − dimA• independent variables to A•, mapping them to elements of B
which induce a regular system of parameters of B

m•B and localizing, we obtain a
local noetherian ring (A′,m′, K), such that A′ is a filtered inductive limit of smooth
finite type A-algebras, (B,P ) is formally smooth over (A′,m′) and m′B = P . The
main interest and the main difficulty of the Nica–Popescu theorem is the case when
K is not separable over k. Incidentally, this is the only step in the proof of The-
orems 1.5 and 1.2 which uses the fact that the homomorphism σ is regular; only
flatness of B over A is used in §§4–5.

Now let B̂ denote the P -adic completion of BP and let m = P ∩ A. Applying
the results of §7 to the local homomorphism Am → B̂, we obtain a factorization
Am → A′ → B̂ as above. Applying the results of §§4–5 to C ⊗A A′ and then
replacing A′ by a suitable A-subalgebra A1 ⊂ A′, smooth of finite type over A, we
obtain the diagram

A1

��

σ // B̂

C ⊗A A1
π(L)

// CL

ρL

OO

π(N)
// CN+L

bbF
F
F
F
F
F
F
F
F

C̄
λoo

iiR
RR
RR
RR
RR
RR
R
RR
RR
RR

C0
g

oo

jjVVVVVVVVVVVVVVVVVVVVVVVVVV

(1.21)

satisfying (1)–(8) of Proposition 1.6. Now Proposition 1.6 yields Theorem 1.5 and
Theorem 1.2 in the case when B is a complete local ring with maximal ideal P . In
§8 we P -adically approximate (1.21) and obtain the diagram

Ã

��

// BP

C ⊗A Ã π̃ // C̃N+L

OO

C̃oo

aaD
D
D
D
D
D
D
D
D

C̃0
oo

hhP
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P

(1.22)

Here BP is not necessarily flat over Ã. The key point is to take a P -adic approxi-
mation close enough so that

(1) the hypotheses of Lemmas 4.4 and 5.4 hold, so that these lemmas still apply.
(2) (1.6) still holds for C̃0, so that Proposition 1.6 can be applied.

Applying Proposition 1.6 to the diagram (1.22) proves Theorem 1.5 in the case
when B is local with maximal ideal P . Finally, in §9 we lift (1.22) from BP to
B and obtain a diagram (1.7) satisfying (1)–(8) of Proposition 1.6. This proves
Theorem 1.5, (1.3) and thus Theorem 1.2 in its full generality. The lifting of the
diagram (1.22) to (1.7) will be referred to as “delocalization”. In §2 we recall some
basic definitions and facts about smoothness, regularity, the Jacobian ideal, André
homology and the relationships between them. We use Swan’s definition of the first
André homology and cohomology modules. André homology appears here for two
reasons. First, it is one of the main ingredients in the proof of the Nica–Popescu
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theorem: it provides a language ideally suited for measuring the inseparability of
residue field extensions, induced by regular homomorphisms. The second reason is
motivational: the characterization of smoothness and regularity by the vanishing of
André cohomology and homology, respectively, helps clarify the analogy between A-
algebras and A-modules (particularly, between regular homomorphisms A→ B and
flat A-modules M). From this point of view, the André homology and cohomology
modules, Hi(A,B,W ) and Hi(A,B,W ) can be viewed as the algebra analogues of
TorAi (M,W ) and ExtiA(M,W ), respectively.

Our motivation for considering generalized blowings up comes from the theory
of resolution of singularities. Namely, consider a diagram (1.1) where A is a field,
C a finitely generated A-algebra without zero divisors and B = Rν a valuation ring
of the field of fractions of C. Then the problem of constructing a diagram (1.2)
(with ψ injective) is nothing but the problem of local uniformization of Spec C
with respect to the valuation ν. Of course, the valuation ring Rν is not, in general,
noetherian. The intersection between the problems of Local Uniformization and
Néron desingularization is precisely the case when B is a discrete valuation ring. In
that case, Néron solved the problem by successively blowing up along the Jacobian
ideal. In that sense, our proof can be regarded as a generalization of Néron’s.

I would like to thank Michael Artin, Heisuke Hironaka, David Kazhdan, Arnfinn
Laudal, Pierre Milman, Cristel Rotthaus, Bernard Teissier, Angelo Vistoli and
Sylvia Wiegand for inspiring discussions. I thank Zach Robinson, Cristel Rotthaus
and all the referees for pointing out mistakes in the earlier versions of this paper.
I owe special thanks to Bernard Teissier for his careful reading of the manuscript
and his extremely detailed and constructive criticism.

§2. Formal smoothness, smoothness, Jacobian criterion

and André homology

In this section we recall some basic properties of formal smoothness, smoothness,
the Jacobian ideal and the first André homology and cohomology, used in the rest
of the paper.

André homology. Let σ : A → B be a homomorphism of rings and W a B-
module. Associated to this data, André [2] defines the homology and cohomology
modules Hi(A,B,W ) and H i(A,B,W ), i ∈ N0, which can be viewed as obstruc-
tions to regularity and smoothness of σ, respectively (see Properties 2.4 and 2.8
below). The definitions of André homology and cohomology, given in [2], are rather
technical. For the reader’s convenience, we recall Swan’s ad hoc definitions of
Hi(A,B,W ) and H i(A,B,W ), i ∈ {0, 1} (see Definition 2.1 below and [18, §3]),
which are sufficient for our purposes. It is not too hard to prove from scratch all the
facts about André homology needed in this paper, using these definitions. However,
we will refrain from doing so to save space, instead giving references to André [2]
and Swan [18]. The readers who are already familiar with André homology will
recognize that Swan’s ad hoc definitions are equivalent to those of André. We now
define Hi(A,B,W ) and H i(A,B,W ) for i ∈ {0, 1}, following Swan [18, §3]. Take
an exact sequence

0→ I → F
π−→ B → 0,(2.1)
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where F is a localization of a free A-algebra and I is a (not necessarily finitely
generated) ideal of F . (2.1) gives rise to the exact sequence

I

I2

d−→ ΩF/A ⊗F B → ΩB/A → 0(2.2)

(the second fundamental exact sequence for Kähler differentials [10, Chapter 10,
(26.I), Theorem 58, p. 187]). Tensoring (2.2) with W over B gives the exact se-
quence

I

I2
⊗B W d⊗W−−−→ ΩF/A ⊗F W → ΩB/A ⊗B W → 0.(2.3)

Taking B-homomorphisms into W in (2.2), we obtain the exact sequence

HomB

(
I

I2
,W

)
←−−
∂W

DerA(F,W )← DerA(B,W )← 0.(2.4)

Note that ΩF/A ⊗F B is a free B-module and DerA(F,B) is free whenever F is
finitely generated over B.

Definition 2.1 (Swan [18, §3]). André homology modules and cohomology mod-
ules, Hi(A,B,W ) and Hi(A,B,W ) for i ∈ {0, 1}, are defined as follows:

H0(A,B,W ) = ΩB/A ⊗B W ≡ Coker(d ⊗W ),

H1(A,B,W ) = Ker(d⊗W ),

H0(A,B,W ) = DerA(B,W ) ≡ Ker ∂W ,
H1(A,B,W ) = Coker ∂W .

It is immediate to show that for i ∈ {0, 1}, Hi(A,B,W ) and H i(A,B,W ) are
independent of the presentation (2.1), and also that Hi(A, ·,W ) and H i(A, ·,W )
are, respectively, a covariant and a contravariant functor of B (see [18, Part II,
Lemma 3.1]).

Property 2.2. Let σ : A → B be a surjective ring homomorphism, let I =
Ker σ and let W be a B-module. We have H0(A,B,W ) = H0(A,B,W ) = 0
and H1(A,B,W ) ∼= I

I2 ⊗B W .

Proof. The exact sequence 0 → I → A
σ−→ B → 0 gives a presentation of B as an

A-module. Since ΩA/A = 0, the result follows immediately from definitions.

Property 2.3 (the Jacobi–Zariski sequence). Let F → B be a homomorphism of
A-algebras and let W be a B-module. There are two natural exact sequences:

H1(A,F,W )→ H1(A,B,W )→ H1(F,B,W )→ H0(A,F,W )

→ H0(A,B,W )→ H0(F,B,W )→ 0
(2.5)

and

0→ H0(F,B,W )→ H0(A,B,W )→ H0(A,F,W )

→ H1(F,B,W )→ H1(A,B,W )→ H1(A,F,W ).
(2.6)

Proof. See [18, Part II, Theorem 3.3]. Again, Swan only proves the Jacobi-Zariski
sequence for homology with coefficients in B. To get (2.5), tensor everything in
Swan’s diagram (*) with W ; to get (2.6), take homomorphisms into W .
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Homological characterizations of smoothness and regularity. Let σ : A→
B be a homomorphism of rings.

Property 2.4. Consider the following conditions:
(1) B is smooth over A.
(2) The sequence

0→ I

I2

d−→ ΩF/A ⊗F B → ΩB/A → 0(2.7)

is split exact (this condition is sometimes expressed by saying that the homo-
morphism d has a left inverse).

(3) H1(A,B,B) = 0 and ΩB/A is a projective B-module.
(4) H1(A,B,W ) = 0 for all B-modules W .
(5) H1(A,B,B) = 0 and ΩB/A is a flat B-module.
(6) H1(A,B,W ) = 0 for all B-modules W .

We have the implications: (1)⇐⇒ (2)⇐⇒ (3)⇐⇒ (4) =⇒ (5)⇐⇒ (6). Suppose,
in addition, that either I

I2 or ΩB/A is a finitely generated B-module. Then we also
have (5) =⇒ (3), so that all the conditions (1)–(6) are equivalent. Finally, B is
étale over A if and only if H1 (A,B,B) = ΩB/A = 0.

Proof. The implications (3) ⇐⇒ (4) =⇒ (5) ⇐⇒ (6), as well as the equivalence
(3) ⇐⇒ (5) in case I

I2 or ΩB/A is a finitely generated B-module, are immediate
from definitions; for the rest, see [18, Theorem 3.4].

Note that (1), (3) and (4) of Property 2.4 do not depend on the choice of the
presentation (2.1). Thus, in particular, Property 2.4 says that if (2) holds for one
presentation (2.1), then it also holds for any other presentation.

Corollary 2.5. Let σ : A → B be a homomorphism of rings. Then B is smooth
over A if and only if BP is smooth over A for every prime ideal P of B.

Proof. Use the notation of (2.1). For a prime ideal P of B, 0→ IP∩F → FP∩F →
BP is a presentation of BP . The sequence (2.7) is split exact if and only if it is
split exact after tensoring with BP for all P ∈ Spec B, and the result follows.

Property 2.4 says that acyclicity in cohomology characterizes smoothness. On
the other hand, conditions (5) and (6) — acyclycity in homology — characterize
regular homomorphisms, as we now explain. We start with the case when A is a
field.

Proposition 2.6. ([8, EGA 0IV (22.5.8)], [10, (39.C), Theorem 93] and [2, Lemma
III.21, Corollary VII.27 and Proposition XVI.17]) Let (A,m, k) → (B,M,K) be a
local homomorphism of local noetherian rings. The following conditions are equiv-
alent:

(1) H1(A,B,K) = 0.
(2) B is formally smooth over A in the M -adic topology.

If A is a field, then (1) and (2) are also equivalent to saying that B is geometrically
regular over k.

Proposition 2.7. (Grothendieck [8, Theorem (19.7.1)], [2, Proposition XV.19, p.
211]) Let (A,m, k)→ (B,P,K) be a local homomorphism of local noetherian rings.
The following conditions are equivalent:
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(1) B is formally smooth over A in the P -adic topology.
(2) B is flat over A and B

mB is geometrically regular over k.

Property 2.8 (André’s theorem [2, Theorem 30, p. 331]). Let σ : A → B be a
homomorphism of noetherian rings. Then the following conditions are equivalent:

(1) σ is regular.
(2) (6) of Property 2.4 holds.
(3) H1(A,B, κ(P )) = 0 for any prime ideal P of B.
(4) For every prime ideal P ⊂ B, BP is formally smooth over A with respect to

the P -adic topology.

There are two situations in which acyclicity in homology and cohomology are
the same thing:

Corollary 2.9. Let σ : A → B be a homomorphism of noetherian rings. Assume
that either B is a field or B is essentially of finite type over A. Then B is smooth
over A if and only if σ is regular.

Proof. If B is a field, then ΩB/A is a B-vector space. If B is essentially of finite
type over A, then ΩB/A is a finite B-module. In either case, ΩB/A is projective if
and only if it is flat. Now the corollary follows from Properties 2.4 and 2.8.

Remark 2.10. Let A1
σ1−→ A2

σ2−→ A3 be ring homomorphisms and W an A3-module
such that H1(A1, A3,W ) = ΩA2/A1 ⊗A2 W = 0. Then H1(A2, A3,W ) = 0 (this
follows immediately from the Jacobi–Zariski sequence).

Assume that A1, A2 and A3 are noetherian, that σ2◦σ1 is a regular homomorpism
and that ΩA2/A1 = 0. Then σ2 is a regular homomorpism (this follows from the
above and the equivalence of (1)–(3) of Property 2.8).

The Jacobian criterion. Let A be a ring and C an A-algebra, essentially of finite
type over A. Fix a presentation

C =
A[u1, . . . , un]S

I
,(2.8)

where I is a finitely generated ideal of A[u1, . . . , un] and S a multiplicative subset
of A[u1, . . . , un], disjoint from I. Choose a base f = (f1, . . . , fl) of I.

Definition 2.11 (Elkik [7] and H. Hironaka). The Jacobian ideal of C over A,
denoted HC/A, is the ideal HC/A :=

√∑
g ∆g((g) : I)C, where g ranges over all

the subsets of {f1, . . . , fl}.
Remark 2.12. Apparently, the definition of HC/A depends on the presentation (2.8)
and on the choice of a base for I. Property 2.13 below says thatHC/A is the defining
ideal of the non-smooth locus of C over A and therefore depends only on C itself,
not on the particular presentation nor on the choice of f .

Property 2.13. The ideal HC/A defines the non-smooth locus of C over A. In
other words, for a prime ideal of P ⊂ C, CP is smooth over A if and only if
HC/A 6⊂ P . We have

HC/A = {x ∈ C | Cx is smooth over A}(2.9)

(remember that the zero ring is smooth over anything!). In particular, C is smooth
over A if and only if HC/A = C.
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Proof. Let F = A[u1, . . . , un]S in (2.8). We have ΩF/A ∼=
n⊕
i=1

Fdui and ΩF/A⊗FC ∼=
n⊕
i=1

Cdui. First, suppose that C is local with maximal ideal P and residue field K.

Lemma 2.14. C is smooth over A if and only if there exist g1, . . . , gr ∈ {f1, . . . , fl}
as above such that I = (g1, . . . , gr) and ∆gC = C.

Proof. By Property 2.4 (1)⇐⇒ (2), C is smooth over A if and only if the sequence

0→ I

I2

d−→
n⊕
i=1

Cdui → ΩC/A → 0(2.10)

is split exact. Since C is local, (2.10) is split exact if and only if it is a split
exact sequence of free modules. This happens if and only if there is a subset
g = {g1, . . . , gr} ⊂ {f1, . . . , fl} which freely generate I

I2 and such that dg1, . . . , dgr
are K-linearly independent modulo P . The latter condition says precisely that the
matrix

(
∂gi

∂uj

)
1≤i≤r
1≤j≤n

has rank r modulo P , that is, ∆gC = C. Now, if such a subset

g exists, then g1, . . . , gr generate I by Nakayama’s lemma. Conversely, if there is
a subset g = {g1, . . . , gr} ⊂ {f1, . . . , fl} such that

(
∂gi

∂uj

)
1≤i≤r
1≤j≤n

has rank r modulo

P and (g1, . . . , gr) = I, then it is immediate to check that the images of g1, . . . , gr
freely generate I

I2 . This completes the proof.

Now drop the hypothesis that C is local. Since we have not yet proved that
HC/A is independent of presentation, we will provisionally talk about HC/A with
respect to the given presentation. Because we are assuming that I is finitely gener-
ated, the operation : commutes with localization. Thus HC/A localizes well: take
any multiplicative subset S ⊂ C. Let R := S ∩ F and define HCS/A using the
presentation CS = FR

IFR
. We have a canonical isomorphism (HC/A)S ∼= HCS/A. For

a prime ideal P ⊂ C, apply Lemma 2.14 to the local ring CP (again, we use the
presentation of CP , obtained from (2.8) by localization). By Lemma 2.14, CP is
smooth over A if and only if there exists a subset g = {g1, . . . , gr} ⊂ {f1, . . . , fl}
such that

(g1, . . . , gr)FP∩F = IP∩F(2.11)

and

∆g 6⊂ P ∩ F.(2.12)

Now, (2.11) is equivalent to saying that ((g) : I)FP∩F = FP∩F , and also to

((g) : I)CP 6⊂ PCP .(2.13)

Combining (2.12) and (2.13) and using the fact that both the operation of taking
∆g and : commute with localization, we get that CP is smooth over A if and only
if ∆g((g) : I)C 6⊂ P for some g as above. Thus CP is smooth over A if and only if
HC/A 6⊂ P . This proves the first statement of Property 2.13.

Since HC/A is radical by definition, it equals the intersection of all the primes
P ⊂ B such that BP is not smooth over A. Now (2.9) follows from Corollary 2.5.
The last statement of Property 2.13 follows immediately.

Note, in particular, that HC/A is well defined, i.e. is independent of the choice
of presentation (2.8) and the generators fi.
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Remark 2.15. In the situation of Property 2.13, assume that F is noetherian. Sup-
pose that CP is smooth over A. Let Q be a minimal prime of I, contained in P ∩F .
We have IFQ = QFQ. Then (2.11) implies that g is a system of parameters (even
a regular system of parameters) for FQ. This shows that when F is noetherian, we
may let g in the definition of HC/A range only over those subsets {g1, . . . , gr} of
{f1, . . . , fl} which form a system of parameters in FQ, for some minimal prime Q
of I. In particular, if C is a complete intersection over A and f is a minimal set of
generators of I, then HC/A =

√
∆fC.

Consider homomorphisms A σ−→ B
φ−→ C of noetherian rings, where B is essen-

tially of finite type over A and C is essentially of finite type over B. The following
property describes the relationship between HB/A, HC/A and HB/C .

Property 2.16. We have
√
HC/BHB/AC =

√
HC/BHC/A.

Remark 2.17. Property 2.16 says that a prime ideal P ⊂ C, not containing HC/B,
contains HB/AC if and only if it contains HC/A. In view of Property 2.13, this can
be restated as follows. Take any prime ideal P ⊂ C, such that CP is smooth over
B. Then CP is smooth over A if and only if BP∩B is smooth over A.

Proof of Property 2.16. By Corollary 2.9, each of the homomorphisms σ, φ and
φ ◦ σ is regular if and only if it is smooth. Now Property 2.16 follows from [10,
(33.B)] and Proposition 2.7 (1) =⇒ (2).

Field extensions. Next, we discuss some standard results, which can be inter-
preted as a restriction of the above theory to homomorphisms of fields instead of
rings. A detailed study of extensions k → K with dimK H1(k,K,K) < ∞ will be
undertaken in §6. Let k → K be a field extension. Then ΩK/k and H1(k,K,K)
are K-vector spaces. If K is finitely generated over k, then ΩK/k and H1(k,K,K)
are finite-dimensional.

Property 2.18 ([18, Corollary 5.2]). Let k → L→ K be homomorphisms of fields.
The first map on the left in the Jacobi–Zariski sequence (2.5) is injective. In other
words, we have an exact sequence

0→ H1(k, L,K)→H1(k,K,K)→ H1(L,K,K)
→ ΩL/k ⊗L K → ΩK/k → ΩK/L → 0.

This result is stated in [18] with H1(k, L, L)⊗LK instead of H1(k, L,K). How-
ever, the two statements amount to the same thing since H1(k, L, L) ⊗L K ∼=
H1(k, L,K). In fact, we have the same exact sequence for homology with coeffi-
cients in any K-vector space W instead of K (tensor everything with W and use
that W is K-flat).

Property 2.19 ([18, Corollary 5.5]). K is separable over k ⇐⇒ K is smooth
over k ⇐⇒ H1(k,K,K) = 0 ⇐⇒ H1(k,K,W ) = 0 for any K-vector space W .

(The last two equivalences follow from Property 2.4.)
We end this section with the local criterion of flatness.

Proposition 2.20. (Local criterion of flatness, [10, (20.C), Theorem 49, p. 146]
or [18, Theorem 7.1]) Let σ : A → B be a homomorphism of noetherian rings, I
an ideal of A such that IB ⊂ Jac(B) and M a finitely generated B-module. The
following conditions are equivalent:
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(1) M is flat over A.
(2) M

IM is flat over A
I and

TorA1

(
M,

A

I

)
= 0.(2.14)

(3) M
IM is flat over A

I and for all n ∈ N, the canonical map In

In+1 ⊗A
I

M
IM → InM

In+1M

is an isomorphism.

Proposition 2.21. Let A be a ring, M an A-module and (x1, . . . , xn) a regular
sequence in A, which is also a regular sequence for M . Let I = (x1, . . . , xn). Then
TorA1

(
M, AI

)
= 0.

Proof. Straightforward induction on n. See [18, Lemma 7.5].

Corollary 2.22. Let (A,m, k) α−→ (A′,m′, k′) σ′−→ (B,P,K) be local homomor-
phisms of local noetherian rings. Assume that:

(1) Both A′ and B are flat over A.
(2) A′0 := A′

mA′ and B0 := B
mB are regular local rings.

(3) There exist elements x1, . . . , xa ∈ A′ which induce a regular system of param-
eters of A′0 and whose images in B0 can be extended to a regular system of
parameters of B0.

Then B is flat over A′ (hence faithfully flat, hence σ′ is injective).

Proof. Since B is flat over A, we have TorA1 (k,B) = 0. Since A′ is flat over A, we
obtain

TorA1 (A′0, B) ≡ TorA1 (k ⊗A A′, B) = TorA1 (k,B)⊗A A′ = 0.(2.15)

Let x̄ := x̄1, . . . , x̄a denote the images of x1, . . . , xa in A′0. By our assumptions, x̄ is
a regular sequence both for A′0 and for B0; moreover, A

′
0

(x̄) is a field. Thus B0 is flat
over A′0 by the local criterion of flatness, applied at the ideal (x̄)A′0. Combining
this with (2.15) and applying the local criterion of flatness once again, this time at
the ideal mA′, proves that B is flat over A′.

Remark 2.23. Let A→ B be a continuous, flat homomorphism of topological rings,
with topologies defined by ideals m ⊂ A and P ⊂ B. Let Â be the m-adic com-
pletion of A, B̂ the P -adic completion of B and B̃ the mB-adic completion of B.
Then B̃ is flat over Â by Proposition 2.20 (1)⇐⇒ (3), and B̂ is flat over B̃, being
the PB̃-adic completion of B̃. Thus B̂ is flat over Â.

Now let the notation and assumptions be as in Corollary 2.22 and consider the

induced homomorphisms Â α̂−→ Â′ σ̂′−→ B̂ between formal completions. The above
considerations show that α̂ and σ̂′ ◦ α̂ are flat, and hence the new triple satisfies
the assumptions of Corollary 2.22. Thus B̂ is flat (hence faithfully flat) over Â′; in
particular, σ̂′ is injective.

Remark 2.24. Let σ : A → B be a homomorphism of topological rings, with the
respective topologies defined by ideals P ⊂ B and m = P ∩ A. Let Â denote the
m-adic completion of A and B̂ the P -adic completion of B. Then B is formally
smooth over A if and only if B̂ is formally smooth over Â, if and only if B

Pn is
formally smooth over A

mn for all n ∈ N. In particular, B is formally smooth over
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A whenever Â ∼= B̂ via the natural homomorphism induced by σ (all of this is
immediate from definitions).

Corollary 2.25. Let the assumptions be as in Corollary 2.22. Assume, in addi-
tion, that B is formally smooth over A, that A′ = A[x1, . . . , xa]P∩A[x1,..., xa] and
that (m,x)B = P

B

P
∼= A

m
.(2.16)

Then B is formally smooth over A′.

Proof. By Remark 2.23 the induced map σ̂ : Â[[x]] → B̂ is injective. On the
other hand, since (m,x)B = P and in view of (2.16), σ̂ is surjective, hence an
isomorphism. The corollary follows from Remark 2.24 (this fact, even without the
assumption (2.16), also follows easily from the Jacobi–Zariski sequence for the triple
A→ A′ → B and the B-module K).

§3. Smoothing of algebras defined by linear homogeneous equations

In this section we prove Theorem 1.2 in the case when C is defined over A by
linear homogeneous equations. For that we do not need σ to be regular: it is
sufficient to assume that σ is flat (in fact, an even weaker hypothesis will do—see
Proposition 3.4). All of this is well known and is a consequence of Lazard’s theorem
[10, (3.A), Theorem 1 (6), p. 18] and [5, pp. 7–8]. We reproduce these results here
in order to go on and prove a stronger version of them (Proposition 1.6) which will
play a central role in the rest of the paper.

Let A be a ring and ρ : M → B a homomorphism of A-modules, with M finitely
generated. Consider a presentation

L1
d1−→ L0

d0−→M → 0(3.1)

of M , where the Li are free and L0 is of finite rank. Let d∗1 : L∗0 → L∗1 be the dual
of d1. Take a free A-module K which maps surjectively onto Ker(d∗1). We get an
exact sequence

K
α−→ L∗0

d∗1−→ L∗1.(3.2)

Consider the complex

K ⊗A B α⊗B−−−→ L∗0 ⊗A B
d∗1⊗B−−−−→ L∗1 ⊗B(3.3)

obtained by tensoring (3.2) with B. Let u ∈ L∗0 ⊗B be the element corresponding
to ρ ◦ d0 under the identification L∗0 ⊗B ∼= HomA(L0, B).

Remark 3.1. By construction, u ∈ Ker(d∗1 ⊗ B). If B is flat over A, then the
sequence (3.3) is exact, so that u ∈ Im(α ⊗B).

Proposition 3.2. Assume that u ∈ Im(α ⊗B). Then there exists a factorization

M
φ−→ F

ψ−→ B(3.4)

of ρ through a free finitely generated A-module F . If A is noetherian, we can choose
a factorization (3.4) with the following additional property. For any P ∈ Spec A
such that MP is a free AP -module, the map φP : MP → FP induced by φ has a left
inverse.
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Proof. Choose a free finitely generated submodule K0 of K such that u ∈
(α⊗B)(K0 ⊗B). Consider the complex

K0
α−→ L∗0

d∗1−→ L∗1.(3.5)

Put F := K∗
0 . Dualizing (3.5) and using the fact that L1 ⊂ L∗∗1 , we get a complex

L1
d1−→ L0

α∗−→ F . The homomorphism α∗ induces a homomorphism φ : M → F .
Take an element v ∈ K0⊗B such that (α⊗B)(v) = u. Let ψ ∈ HomA(F,B) be the
element corresponding to v under the identification HomA(F,B) ∼= K0 ⊗B. Then
ψ ◦ φ = ρ and (3.4) is constructed. Now assume that A is noetherian. Then K is
finitely generated, so we may take K0 = K in (3.5). Then F is finitely generated.
Take a prime P ⊂ A such that MP is a free AP -module. Then (d0)P : (L0)P →MP

has a right inverse, i.e. MP is a direct summand of (L0)P . Then M∗
P is a direct

summand of (L∗0)P , so αP induces a surjection of free modules KP → M∗
P . Hence

MP is a direct summand of FP = K∗
P , so φ has a left inverse.

Corollary 3.3 (Lazard’s theorem). Let A be a ring and ρ : M → B a homomor-
phism of A-modules, where B is flat and M finitely generated. There exists a fac-
torization (3.4) of ρ through a free finitely generated A-module F . In other words,
B is a filtered direct limit of free finitely generated A-modules. If A is noetherian,
we can choose (3.4) so that whenever P ∈ Spec A and MP is a free AP -module,
φP has a left inverse.

Proof. Immediate from Proposition 3.2 and Remark 3.1.

We pass to symmetric algebras in (3.4) to establish Theorem 1.2 in the case
when C is defined over A by linear homogeneous equations. Let σ : A → B be a
ring homomorphism. Consider a commutative diagram (1.1). Suppose C has the
form C = A[u1,..., un]

I , where I = (f1, . . . , fm) and each fj is a linear homogeneous
equation in the ui:

fj =
n∑
i=1

aijui, aij ∈ A.(3.6)

Then C = SAM , where M is the A-module with generators u1, . . . , un and relations
f1, . . . , fm. Consider a presentation (3.1) of M . Then ρ induces an A-module
homomorphism ρ|M : M → B. Let K and u ∈ Ker(d∗1 ⊗B) be as above.

Proposition 3.4. Assume that u ∈ Im(α⊗ B) in (3.3) (this holds, in particular,
whenever B is flat over A). Then there exists a commutative diagram (1.2) where
D is a polynomial ring in finitely many variables over A. If, in addition, A is
noetherian, there exists a diagram (1.2) such that

HC/AD ⊂ HD/C(3.7)

(remember that the Jacobian ideal HD/C is radical by definition!).

Remark 3.5. Since D is a polynomial ring over A, we have HD/A = D. Then by
Property 2.16, (3.7) is equivalent to saying that

√
HC/AD = HD/C .

Proof of Proposition 3.4. Let

M
φ1−→ F

ψ1−→ B(3.8)
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be the factorization of ρ|M , described in Proposition 3.2. Put D := SAF . (3.8)

induces maps C
φ−→ D

ψ−→ B of symmetric algebras with ρ = ψ ◦ φ and hence a
commutative diagram (1.2). Let P be a prime ideal of D such that HC/A 6⊂ P ∩C.
Let Q = P ∩ A. Since HC/A 6⊂ P ∩ C, there exists a subset of {f1, . . . , fm}, say
{f1, . . . , fr}, such that ∆0

(f1,..., fr) 6⊂ Q and ((f1, . . . , fr) : I)C 6⊂ P ∩ C. Then
AQ[u1,..., un]

(f1,..., fr) is isomorphic to a polynomial ring over AQ, hence all of its associated
primes are extended from AQ. Since ((f1, . . . , fr) : I)C 6⊂ P ∩ C, ((f1, . . . , fr) :
I)AQ[u1,..., un]

(f1,..., fr) cannot be contained in any proper ideal extended from AQ. Thus

((f1, . . . , fr) : I)AQ[u1, . . . , un] = AQ[u1, . . . , un], so that C ⊗A AQ = AQ[u1,..., un]
(f1,..., fr) ,

which implies that MQ is a free AQ-module. Now assume that A is noetherian. By
Proposition 3.2 we may choose (3.8) so that (φ1)Q has a left inverse, that is, MQ is
a direct summand of FQ. Then D ⊗A AQ is smooth over C ⊗A AQ, hence smooth
over C. Therefore DP ≡ (D⊗A AQ)(PD⊗AAQ) is smooth over C, so HD/A 6⊂ P , as
desired.

Next, we prove a variation of Proposition 3.4 which will be used in the proof of
Theorem 1.2. Consider a diagram (1.1) where C = A[u1,..., un]

(f1,..., fr) is defined by linear
homogeneous equations (3.6). Assume that A is noetherian. Let m be a prime
ideal of A such that mAm ⊂

√
∆0
fAm. The point of the following proposition is

that we can resolve the singularitites lying over m by a homomorphism φ : C → D,
smooth away from V (m), even though C itself might not be smooth over A away
from V (m).

Proposition 3.6. Let M , K and u ∈ Ker(d∗1 ⊗ B) be as in Proposition 3.4. As-
sume that u ∈ Im(α ⊗ B) in (3.3). There exists a commutative diagram (1.2)
such that D is defined by linear homogeneous equations over A, mD ⊂ HD/C and
HD/A ∩A 6⊂ m (i.e. D ⊗A Am is smooth over A).

Proof. Our strategy is first to factor τ as A → C′ → C, where C′ is an A-algebra
such that mC ′ ⊂ HC′/A, apply Proposition 3.4 to C′, and then take the base change
of the resulting homomorphism C′ → D′ by C. Let f denote the column r-vector
with entries fj , 1 ≤ j ≤ r, and ai the column r-vector with entries aij , 1 ≤ j ≤ r,

so that (3.6) can be written in the form f =
n∑
i=1

aiui.

Lemma 3.7. Let A be a ring and a1, . . . , an r-vectors with entries in A. Let ∆
denote the ideal generated by all the r × r minors of the r × n matrix formed by
a1, . . . , an (as usual, we take ∆ = 0 if n < r). Let J denote the submodule of Ar

generated by a1, . . . , an. Then ∆Ar ⊂ J .

Proof. For an r× r minor ∆1 of the matrix (aij)1≤i≤r
1≤j≤n

and an integer q, 1 ≤ q ≤ r,
let b(∆1, q) denote the r-vector whose qth entry is ∆1 and all the other entries 0.
By linear algebra, b(∆1, q) ∈ J for every ∆1 and q. Since ∆ is the ideal generated
by all the different minors ∆1, we have ∆Ar ⊂ J , as desired.

We come back to the proof of Proposition 3.6. Since mAm ⊂
√

∆0
fAm, by

Lemma 3.7 there exists N � 0 such that

mNArm ⊂ JArm.(3.9)
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Let y1, . . . , ys be a set of generators of mN . Define r-vectors bij , 1 ≤ i ≤ s,
1 ≤ j ≤ r, as follows. The only non-zero entry in bij is the jth one, and that is
equal to yi. Let vjk be new variables and define an A-module M ′ by

M ′ :=

(
n⊕
i=1

Aui

)
⊕
(⊕

1≤j≤s
1≤k≤r

Avjk

)
(

n∑
i=1

aiui +
∑
j,k

bjkvjk

) .(3.10)

We have a surjection π : M ′ → M defined by sending all the vjk to 0. Let
C ′ := SAM

′. The A-module homomorphism π induces an A-algebra homomor-
phism C′ → C which we also denote by π. Let ρ′ := ρ◦π. By (3.10), (y1, . . . , ys) ⊂
HC′/A ∩A, hence m =

√
(y1, . . . , ys) ⊂ HC′/A ∩ A.

(3.10) defines a presentation 0 → Ar → An+rs → M ′ → 0 which maps to (3.1)
in the obvious way. We may identify Ar with L1. Denoting An+rs by L′0, we get a
commutative diagram

0 −→ L1
d1−−−−→ L0

d0−−−−→ M −−−−→ 0xo π0

x xπ
0 −→ L1

d′1−−−−→ L′0
d′0−−−−→ M ′ −−−−→ 0

(3.11)

Since π0 is surjective, its dual π∗0 is injective. Hence there exists a free finitely
generated A-module G such that α : K � Ker d∗1 extends to a surjection K⊕G �
Ker(d′1)

∗. Let K ′ := K ⊕G. We obtain a commutative diagram

K
α−−−−→ L∗0

d∗1−−−−→ L∗1y π∗0

y yo
K ′ α′−−−−→ L′0

∗ d′1
∗

−−−−→ L∗1

(3.12)

Consider the commutative diagram obtained by tensoring (3.12) with B. Let u′ ∈
Ker(d′1

∗⊗B) denote the element corresponding to ρ′|M ′◦d′1. Then u′ = (π∗0⊗B)(u),
hence u′ ∈ (π∗0 ⊗B)((α⊗B)(L∗0)) ⊂ (α′ ⊗B)(K ′ ⊗B). Thus C′ and α′ satisfy the
hypotheses of Proposition 3.4. Hence there exists a commutative diagram

A
σ−−−−→ By xψ

C′ −−−−→
φ

D′

such that D′ is a polynomial ring in finitely many variables over A and

mD′ ⊂ HC′/AD ⊂ HD′/C′(3.13)

(cf. (3.7)). By construction, D′ = SAF
′, where F ′ := K ′∗. Define D := D′ ⊗C′ C.

Since smoothness is preserved by base change [10, Chapter 11, (28.E), p. 201], we
have

HD′/C′D ⊂ HD/C .(3.14)

Combining (3.13) and (3.14), we obtain mD ⊂ HD/C . By (3.9), πm : M ′
m → Mm

has a right inverse; in fact, M ′
m
∼= Mm ⊕ F1, where F1

∼= Arsm . Then (π0)m has a
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right inverse, so (π∗0)m has a left inverse. Hence, K ′
m
∼= K1 ⊕ F ∗

1 where K1 is a
free finite Am-module which surjects onto (π∗0)m(Ker(d∗1)m). Then F ′

m
∼= K∗

1 ⊕F1.
Since the map πm is just the quotient by F1, D ⊗A Am = D′⊗AAm

F1D′⊗AAm
= SAm(K∗

1 ),
so D ⊗A Am is smooth over Am. Therefore HD/A ∩ A 6⊂ m, as desired.

We end this section by proving Proposition 1.6.

Proof of Proposition 1.6. The first step is to reduce to the case when A∗ is of finite
type over A (we prove a slightly more general result for future use).

Lemma 3.8. Assume that A∗ = lim→
α
Aα, where {Aα} is a direct system of finite

type A-subalgebras, such that, for all α, A∗ is flat over Aα and

HA∗/AB ⊂ HAα/AB.(3.15)

Then there exists a finite type A-subalgebra A∗0 ⊂ A∗, such that all the homo-
morphisms in (1.7) are defined over A∗0, so that (1.7) descends to a commutative
diagram of finite type A∗0-algebras mapping to B, and such that conditions (1)–(8)
still hold for the descended diagram.

Proof. Let A∗0 be one of the Aα such that the diagram (1.7), Ker λ∗, the presenta-
tion of condition (5) and the presentation (1.4) of M are defined already over A∗0.
Then condition (5) of Proposition 1.6 holds for such an A∗0. It is clear that condi-
tions (2), (4), (6) and (7) of Proposition 1.6 hold for A∗0 if A∗0 is sufficiently large.
Condition (1) holds for A∗0 by (3.15). Moreover, choose A∗0 large enough so that
all the presentations used in the calculation of all the Jacobian ideals in conditions
(3) and (8), are defined already over A∗0. Let C∗

1 and C∗
10 be the A∗0-algebras such

that C∗ = C∗
1 ⊗A∗0 A∗ and C∗

0 = C∗
10 ⊗A∗0 A∗. Let C∗

1 = C∗10[V ]
J be a presentation

of C∗
1 over C∗

10, and g = (g1, . . . , gr) an r-tuple of elements of J . Since A∗ is flat
over A∗0, C

∗ is flat over C∗
1 , and hence ((g) : J)C∗ = ((g)C∗) : (JC∗). By definition

of A∗0, the ideal ∆g is the same whether computed in C∗
10[V ] or in C∗

0 [V ]. Thus
HC∗/C∗0 = HC∗1 /C∗10C

∗, hence condition (8) holds for A∗0. Condition (3) is proved
in exactly the same way. This proves Lemma 3.8.

Now, sinceA∗ is essentially of finite type overA, we may writeA∗ = A′S , whereA′

is of finite type over A and S is a multiplicative subset of A′. Let the direct system
{Aα} be {A′S′}, where S′ ranges over all the finite subsets of S. For each α, A∗ is
smooth over Aα; in particular, it is flat. We have HA∗/A = HAα/AA

∗ = HA′/AA
∗,

so (3.15) holds. Thus, Lemma 3.8 applies. Replacing A∗ by A∗0 of Lemma 3.8, we
may assume that A∗ is of finite type over A. Now, apply Proposition 3.6 to the
A∗-algebra C∗

0 . We obtain a commutative diagram

A∗ σ−−−−→ By xψ0

C∗
0 −−−−→ D0

(3.16)

where

HD0/A∗ ∩ A∗ 6⊂ m∗ and(3.17)

m∗D0 ⊂ HD0/C∗0 .(3.18)
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Put D∗ := D0 ⊗C∗0 C∗ and D := D0 ⊗C∗0 C∗
N . We get a commutative diagram

A∗

��

σ // B D
ψ

oo D∗γ
oo D0

oo

C ⊗A A∗ π∗
// C∗
N

ρ∗N

OO ==
|
|
|
|
|
|
|
|

C∗λ∗
oo

>>
|
|
|
|
|
|
|
|

C∗
0

g∗
oo

>>
|
|
|
|
|
|
|
|

(3.19)

extending (1.7), where ψ is the natural map coming from the tensor product; this
gives a diagram (1.2). We now show that this diagram (1.2) satisfies the conclusion
of Theorem 1.5 and (1.3). Since C∗

P∩C∗ is smooth over (C∗
0 )P∩C∗0 by (1.14), D∗

P∩D∗
is smooth over (D∗

0)P∩D∗0 by base change, and hence also over A∗ and A by (1.8),
(3.17) and transitivity of smoothness [10, Chapter 11, (28.E), p. 201]. Next, we
use (1.11)–(1.13) to show that the natural surjective map γP : D∗

P∩D∗ → DP∩D is
actually an isomorphism.

Lemma 3.9. Let A → D be a local homomorphism of local noetherian rings with
D smooth over A. Let m be an ideal of A. Let I be a proper ideal of D such that
I ∩A = (0) and

mD ⊂
√

(I2 : I)D.(3.20)

Then mD ⊂ √AnnDI.
Proof. Since A → D is local and D is smooth over A, the minimal primes of D
are precisely the extensions to D of the minimal primes of A. Let P0 be a minimal
prime of A; then P0D is a minimal prime of D. We claim that

mI ⊂ P0D.(3.21)

If m ⊂ P0, there is nothing to prove. Assume that m 6⊂ P0; take an element
x ∈ m \ P0. The inclusion (3.20) still holds after tensoring over A with Ax

P0Ax
; the

left hand side of (3.20) becomes the unit ideal, hence so does the right hand side.
We obtain

I
D

P0D
⊗A Ax ⊂ I2 D

P0D
⊗A Ax(3.22)

in the noetherian ring D
P0D
⊗A Ax without zero divisors. Moreover we claim that

I
D

P0D
⊗A Ax 6= D

P0D
⊗A Ax.(3.23)

Indeed, equality in (3.23) would mean that xT = ay + b, for some T ∈ N, a ∈ P0,
y ∈ D and b ∈ I. Let z be an element of A, contained in all the minimal primes
of A except P0. Then za is nilpotent. Then for S ∈ N sufficiently large, we have
(zxT )S = (azy + zb)S ∈ I ∩ A \ P0, which is a contradiction. (3.22) and (3.23)
prove that I D

P0D
⊗A Ax = (0); by the choice of x, I ⊂ P0D and (3.21) is proved.

Since this holds for every minimal prime P0, we obtain that mI is nilpotent. Say,
(mI)L = (0). By (3.20), there is an N ∈ N such that mNI ⊂ I2. Iterating this L−1
times, we obtain mNLI ⊂ mLIL = (0). We have found a power of m annihilating
I, as desired.

We continue with the proof of Proposition 1.6. Extending all the ideals in (1.11)–
(1.12) to D∗

P∩D∗ , we obtain

ID∗
P∩D∗ ⊂ (m∗)ND∗

P∩D∗(3.24)
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and m∗D∗
P∩D∗ ⊂

√
(I2 : I)D∗

P∩D∗ . By Lemma 3.9, applied to the smooth, local
A∗m∗ -algebra D∗

P∩D∗ , we have

m∗D∗
P∩D∗ ⊂

√
AnnD∗

P∩D∗ ID
∗
P∩D∗ .(3.25)

In other words, ID∗
P∩D∗ is annihilated by some power of m∗, so that

ID∗
P∩D∗ ⊂ AnnP∩D∗(m∗)∞D∗

P∩D∗ .(3.26)

Combining (3.24) and (3.26), we obtain

Ker γP ≡ ID∗
P∩D∗ ⊂ (AnnD∗

P∩D∗ (m
∗)∞D∗

P∩D∗) ∩ ((m∗)ND∗
P∩D∗)

=
(
(AnnA∗

m∗ (m
∗)∞A∗m∗) ∩ ((m∗)NA∗m∗)

)
D∗
P∩D∗ ,

(3.27)

where the last equality holds since D∗
P∩D∗ is faithfully flat over A∗m∗ (being smooth

and local). Now, A∗m∗ is smooth over Am by (1.8), hence fatithfully flat over it.
Then all the associated primes of A∗m∗ are extended from associated primes of Am,
in particular, are contained in mA∗m∗ . If m∗A∗m∗ 6⊂ mA∗m∗ , then it contains some
non-zero divisors, so that AnnA∗

m∗ (m
∗)∞A∗m∗ = (0) and so Ker γP = (0) by (3.27).

Assume that m∗A∗m∗ ⊂ mA∗m∗ ; the opposite inclusion is trivial by definitions, so
that mA∗m∗ = m∗A∗m∗ . Hence

(AnnA∗
m∗ (m∗)∞A∗m∗) ∩ ((m∗)NA∗m∗) = (AnnA∗

m∗m
∞A∗m∗) ∩mNA∗m∗

=
(
(AnnAmm

∞Am) ∩mNAm
)
A∗m∗ ,

(3.28)

where the last equality holds by faithful flatness of A∗m∗ over Am. Now, (1.13),
(3.27) and (3.28) prove that Ker γP = (0), so that γP is an isomorphism. Since
DP∩D ∼= D∗

P∩D∗ is smooth over A∗m∗ and A∗m∗ over A (1.8), DP∩D is smooth over
A. This gives (2) of Theorem 1.5.

Moreover, from (3.18) we get m∗D ⊂ HD/C∗N by base change. Combined with
(1.8)–(1.10), transitivity of smoothness and the fact that HA/A∗C ⊂ HC⊗AA∗/C
(base change), we get√

HC/AB ⊂ P ⊂
√
HD/CN

HCN/(C⊗AA∗)HA∗/AB ⊂
√
HD/CB,

which gives (1.3). (1) of Theorem 1.5 follows from (1.3) and Property 2.16.

Remark 3.10. If B is local with maximal ideal P , then, replacing D by Dx, where
x is any element of HD/A \ (P ∩ D), we get a diagram (1.2) with D smooth over
A, proving Theorem 1.2.

§4. Smoothing of an isolated, almost complete intersection

singularity with no residue field extension

In this section we prove a special case of of Theorem 1.2: Proposition 1.8. Ex-
tending the proof from this special case to the general one forms the technical part
of the paper and occupies §5–§9. Our main tool in proving Proposition 1.8 will be a
transformation of C called generalized blowing up. The map π∗, required in the
diagram (1.7), will be given as a composition of generalized blowings up. We start
by defining generalized blowing up and studying its basic properties. Consider a
diagram (1.1), with C of finite type over A. Let m be an ideal of A and z1, . . . , zk
a set of generators of m. Fix a presentation C = A[u]

I . Assume that

ρ(C) ⊂ σ(A) +mB(4.1)
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(note that (4.1) is satisfied in the situation of Proposition 1.8 by the conditions (2)
and (4)). We now define the generalized blowing up π : C → C1 of C along m. By
(4.1), there exist c1, . . . , cn ∈ A such that ρ(ui) − σ(ci) ∈ mB. Let vij , 1 ≤ i ≤ n,
1 ≤ j ≤ k be independent variables and consider the change of variables

ui − ci =
k∑
j=1

zjvij , 1 ≤ i ≤ n.(4.2)

Write v for {vij | 1 ≤ i ≤ n, 1 ≤ j ≤ k}. Equations (4.2) define a homomorphism
πz : A[u]→ A[v]. Put

C1 :=
A[v]
I1

,(4.3)

where I1 is the ideal of A[v] generated by the set {πz(f) | f ∈ I}. The homo-
morphism πz induces a homomorphism C → C1 which by abuse of notation we
shall also call πz . By definition of ci, there exists a homomorphism ρ1 : C1 → B
compatible with σ, τ and ρ.

Definition 4.1. The homomorphism πz is called a generalized blowing up of
C along m (with respect to z). We emphasize that the generalized blowing up
πz is a transformation which, given a finite type A-algebra C together with a fixed
presentation and a set of generators z of m, produces a finite type A-algebra C1

together with the presentation (4.3).

Remark 4.2. Note that even once we fix a presentation of C and the set z, the map
ρ1 : C1 → B is, in general, not unique. In the applications we always pick and fix
one such map ρ1. Note also that we allow the possibility m = (0) in Definition 4.1.
In this case, we have k = 0 and z = ∅ and the right hand side of (4.2) is 0.

An important property of generalized blowing up, which follows immediately
from (4.2), is that

m ⊂ HC1/C ∩ A;(4.4)

this will be used to deduce (3) of Proposition 1.6. The key idea in the proof of
Proposition 1.8 (and Theorems 1.2 and 1.5) is to study the behaviour of Jacobian
ideals under generalized blowing up. First, we consider the effect of the change
of variables (4.2) on an arbitrary column vector of elements of A[u]. Let r be a
positive integer. Let f be a column r-vector, whose entries are elements of A[u].
For 1 ≤ i ≤ n, let

(
∂f
∂ui

)
be the column r-vector with entries in A[u], obtained from

f by differentiating every entry with respect to ui. Write f =
∑
α aαu

α, where α
ranges over some finite subset of Nn0 and aα ∈ Ar. Let I(f) denote the A-submodule
of Ar generated by the aα. For a submodule J of Ar, we will denote by JBr the
image of J in Br under σ, and similarly for submodules of Cr. Our main tool will
be Taylor’s formula:

f = f(c) +
n∑
i=1

∂f

∂ui
(c)(ui − ci) + h,(4.5)

where h ∈ (u − c)2I(f)A[u]r. Let ρ
(
∂f
∂ui

)
denote the column r-vector with entries

in B, obtained from
(
∂f
∂ui

)
by mapping it to C by the natural map A[u]→ C and
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then applying ρ to every entry. Let J(f) denote the submodule of Br generated by
the r-vectors ρ

(
∂f
∂ui

)
, 1 ≤ i ≤ n. We have

J(f) ⊂ I(f)Br.(4.6)

Consider the generalized blowing up π : C → C1 given by (4.2). The key point is
to compare I(f) with I(π(f)) and J(f) with J(π(f)).

Lemma 4.3. Assume that the entries of the r-vector f belong to I. Then:

J(π(f)) = mJ(f),(4.7)

I(π(f))Br ⊂ mJ(f) +m2I(f)Br.(4.8)

Proof. (4.7) follows from (4.2) by the chain rule. To prove (4.8), substitute (4.2) in
(4.5). We obtain

π(f) = f(c) +
∑
i,j

∂f

∂ui
(c)zjvij + h1,(4.9)

where h1 ∈ m2(v)2I(f)A[v]r. Let J0(f) denote the submodule of Ar generated by
∂f
∂u1

(c), . . . , ∂f∂un
(c). Since for each i we have ∂f

∂ui
− ∂f

∂ui
(c) ∈ (u − c)I(f)A[u]r, we

have

J0(f)Br ⊂ J(f) +mI(f)Br.(4.10)

Applying ρ to (4.9), identifying f(c) with its image in B and using that f has
entries in I (and hence maps to 0 in Br), we obtain

f(c) ∈ (mJ0(f) +m2I(f))Br.(4.11)

By (4.9)–(4.11), I(π(f))Br ⊂ (mJ0(f)+m2I(f))Br = mJ(f)+m2I(f)Br. Lemma
4.3 is proved.

Now consider a sequence

C
π1−→ C1

π2−→ . . .
πN−−→ CN(4.12)

of N generalized blowings up along m. For each i, we have a homomorphism
ρi : Ci → B; the ρi commute with the πi in (4.12). Here we are assuming that

ρi(Ci) ⊂ σ(A) +mB(4.13)

for each i < N . Note that this assumption holds for any algebra Ci if mB = P and
(2) of Proposition 1.8 is satisfied. In the next lemma, assume that C = A[u]

I is an
almost complete intersection at P ∩ C. Let f be the column r-vector with entries
fi, and let J(f) be as above. By (1.17) and Lemma 3.7, we have

mNBr ⊂ J(f)(4.14)

for all N sufficiently large. Since A is assumed to be noetherian and since the
AnnAm

i form an ascending chain of ideals, AnnAm∞ = AnnAm
i for some i. Using

the Artin–Rees lemma, we obtain, for all N sufficiently large,

mN ∩ (AnnAm∞) = mN ∩ (AnnAmi) ⊂ miAnnAm
i = (0).(4.15)
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Lemma 4.4. Consider a diagram (1.1). Assume that A is local with maximal ideal
m, that (1) and (3) of Proposition 1.8 hold, that mB = P and that (4.13) holds for
all the A-algebras Ci appearing in (4.12), so that the sequence (4.12) is well defined
(note that the last condition holds automatically if we have (2) of Proposition 1.8).
Take N ∈ N in (4.12) to be sufficiently large so that both (4.14) and (4.15) hold
(again, if r = 0, we regard (4.14) as being vacuously true). Let π∗ := πN ◦ · · · ◦ π1.
Then the map π∗ : C → CN fits in a commutative diagram (1.7) (with A = A∗ and
m = m∗), satisfying (1)–(5) and (8) of Proposition 1.6. If, in addition,

m2N ⊂ I(f (N)),(4.16)

then (7) of Proposition 1.6 holds.

Proof. First, we construct the diagram (1.7). By definition of generalized blowing
up, each Ci comes together with a specific presentation (cf. (4.3)); let CN =
A[u(N)]
IN

be the given presentation of CN . Let f (N)
i := (πN ◦ · · · ◦ π2 ◦ π1)(fi) for

1 ≤ i ≤ r. By Lemma 4.3, (4.14) and induction on N , we have I(f (N))Br ⊂
mNJ(f) +m2NI(f)Br = mNJ(f) = J(f (N)), so

I(f (N))Br = J(f (N))(4.17)

by (4.6). Let (f (N)) denote the ideal of A[u(N)], generated by f (N)
1 , . . . , f

(N)
r . Put

C∗ := A[u(N)]

(f(N))
. We have natural homomorphisms λ∗ : C∗ → CN and ρ∗ : C∗ → B,

given by ρ∗ = ρN ◦ λ∗; note that Ker λ∗ = INC
∗. Let (a1, . . . , al) denote a

minimal set of generators of I(f (N)). Write f (N) =
l∑
i=1

aigi, where gi ∈ A[u(N)].

Let G1, . . . ,Gl be new variables. Let F1, . . . , Fr denote the entries of the r-vector
l∑
i=1

aiGi. We will write (F ) for (F1, . . . , Fr). Let C∗
0 := A[G1,..., Gl]

(F ) . Let g : C∗
0 → C∗

be the map which sends Gi to gi. This completes the construction of the diagram
(1.7). Again, note that we allow the possibility r = l = 0, (f (N)) = (F ) =
(0). Next, we show that the diagram (1.7) thus constructed satisfies (1)–(5) and
(8) of Proposition 1.6. (1) and (2) of Proposition 1.6 are trivial. (1.10) follows
immediately from (4.4) and Property 2.16 by induction on N . From (1.18) we
obtain mC∗

P∩C∗ ⊂
√

((I2
N ) : IN )C∗

P∩C∗ ; this gives (1.12). (1.13) is nothing but
(4.15). (5) of Proposition 1.6 is true by definition. It remains to prove (8).

Proof of (8). Let K = B
P . Let ∂g

∂u(N) denote the l × n matrix whose ijth entry is

∂gi

∂u
(N)
j

. Since J(f (N)) is generated by ρN

(
∂f(N)

∂u
(N)
i

)
=

l∑
j=1

ajρN

(
∂gj

∂u
(N)
i

)
, 1 ≤ i ≤ n,

and since, by (4.17) and Nakayama’s lemma, (a1, . . . , al) induces a minimal set of
generators of the K-vector space J(f(N))

PJ(f(N))
, we have

rk
(

∂g

∂u(N)

)
= l mod

(
P ∩ A[u(N)]

)
.(4.18)

Since C∗ is defined over C∗
0 by the equations gi = Gi, 1 ≤ i ≤ l, (4.18) implies that

C∗
P∩C∗ is smooth over C∗

0 , that is, HC∗/C∗0 6⊂ P ∩C∗, as desired. Again, the above
is trivially true if r = 0, for then C∗ = C∗

0 = A[u(N)].
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Finally, suppose (4.16) holds. By definitions, ∆0
F is the ideal generated by all

the r × r minors of the r × l matrix formed by a1, . . . , al, so (4.16) implies that
m ⊂√∆0

F , as desired. This completes the proof of Lemma 4.4.

Proof of Proposition 1.8. Put A∗ = Am. From now on, to simplify the notation,
we will replace A by A∗, C by C ⊗A A∗, and assume that A is local with maximal
ideal m (in particular, σ is faithfully flat). Under this assumption, we will construct
a diagram (1.7) with A = A∗. Take N as in Lemma 4.4 and consider the sequence
(4.12) of N generalized blowings up. By Lemma 4.4, (1)–(5) and (8) of Proposition
1.6 are satisfied. Proposition 1.6 (6) holds by Remark 3.1, since B is flat over A.
It remains to prove (4.16) to infer (7).

Lemma 4.5. If B is flat over A, then (4.16) holds.

Proof. We have m2NBr ⊂ J(f (N))Br by (4.7), (4.14), and induction on N . By
(4.17), this gives m2NBr ⊂ I(f (N))Br. (4.16) follows by faithful flatness of B over
A. This completes the proof of Proposition 1.8.

Remark 4.6. Suppose that assumption (4) in Proposition 1.8 is replaced by saying
that σ : A→ B is formally smooth in the P -adic topology (by Proposition 2.7, this
is weaker than being a regular homomorphism). Then the conclusion of Proposition
1.8 still holds: we have only to reduce to the situation when mB = P . This can
be done as follows. Let K := B

P
∼= Am

m and B0 := B
mB . The map K → B0

induced by σ is formally smooth in the PB0-adic topology (by base change: [10,
Chapter 11, (28.E), p. 201]), so B0 is a regular local ring (Proposition 2.6). Let
x1, . . . , xd be elements of B which induce a regular system of parameters of B0 and
let X1, . . . , Xd be independent variables. Write X for X1, . . . , Xd. Consider the
map σX : A[X ]P∩X → B which sends Xi to xi. The map σX is flat by Corollary
2.22. Now we can apply Proposition 1.8 to σX . This gives diagram (1.7) with
A∗ = A[X ]P∩A[X]. Since A[X ]m is smooth over A, (1.8) is satisfied and we are
done.

§5. Smoothing of an isolated singularity over a local ring

with no residue field extension

Consider a diagram (1.1). Let P be a minimal prime of HC/AB and let m :=
P ∩A. In this section we prove

Proposition 5.1. Assume that (1), (2) and (4) of Proposition 1.8 hold. Then
there exists a diagram (1.7) satisfying conditions (1)–(8) of Proposition 1.6 (and
hence the conclusion of Theorem 1.2 holds in this case).

With a view to §§8–9, we will start out working under more general hypothe-
ses than those of Proposition 5.1, and gradually impose more restrictions on our
diagram (1.1) as we go along. The idea is to show that ρ factors through a map
C → CL such that P ⊂ √

HCL/CB and CL is an almost complete intersection
over A at P ∩ CL. Once this is done, we will invoke Proposition 1.8 and the proof
will be complete. We start with any diagram (1.1) whatsoever of noetherian rings.
Let C = A[u1,..., un]

I be a presentation of C. Let I
I2 denote the coherent sheaf on

Spec C such that Γ
(
Spec C, II2

)
= I

I2 (in what follows we will adopt the following
convention: ideals and modules will be denoted by capital letters, and their sheafi-
cations by script capital letters). Restricted to the smooth locus of C over A, the
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sheaf I
I2

∣∣
SpecC\V (HC/A)

is nothing but the conormal bundle of SpecC \ V (HC/A)
in Spec A[u]. The first step of the proof is to achieve the situation when the vector
bundle I

I2

∣∣
SpecC\V (HC/A)

is trivial. This is given by Elkik’s lemma, which we now

invoke. Let C′ := SC( II2 ). Extend ρ to C′ by setting it to be (for example) the 0
map on the positive degree part of SC( II2 ).

Lemma 5.2 (Elkik [7, Lemma 3]). There exists a presentation C′ = A[u′]
I′ such

that the restriction I′
I′2
∣∣∣
SpecC′\V (HC′/A)

is the trivial vector bundle.

Since I
I2

∣∣
SpecC\V (HC/A)

is locally free, for any prime ideal Q ⊂ C′, C′
Q is smooth

over C whenever CQ∩C is smooth over A. Therefore

HC/AC
′ ⊂ HC′/C(5.1)

(this will be needed to prove (1.10)). Let P be as in Theorem 1.5 and let m =
P ∩ A. If HC′/AB 6⊂ P , we may take CL = D = C ′ and there is nothing more
to prove. If HC′/AB ⊂ P , then P is a minimal prime of HC′/AB by Property
2.16 and (5.1). In this case, replace C by C′. From now on, assume that the
vector bundle I

I2

∣∣
SpecC\V (HC/A)

is trivial. If V (mHC/ACP∩C) 6= Spec CP∩C , let

r := rk I
I2

∣∣
SpecC\V (HC/A)

and let f̄1, . . . , f̄r be global sections of I
I2

∣∣
SpecC\V (HC/A)

,

which generate I
I2

∣∣
SpecC\V (HC/A)

. If V (mHC/ACP∩C) = Spec CP∩C , set r = 0

and let {f̄1, . . . , f̄r} be the empty set. Let z1, . . . , zk be a set of generators of m.
To achieve the situation when C is an almost complete intersection at P ∩ C, we
iterate the generalized blowing up πz (see Definition 4.1). Consider a sequence

C
π1−→ C1

π2−→ . . .
πL−−→ CL

πL+1−−−→ · · ·(5.2)

of generalized blowings up (we are assuming that (4.13) holds for each i in (5.2), so

that (5.2) is well defined). Let Ci =
A[u

(i)
1 ,..., u(i)

ni
]

Ii
be the presentation of Ci obtained,

recursively, from the definition of generalized blowing-up (here ni+1 = kni; cf. (4.2)
and (4.3)). The purpose of the next several lemmas is to show that, under some
additional hypotheses, after a finite number L of such blowings up we can ensure
that there exist f1, . . . , fr ∈ IL such that for 1 ≤ i ≤ r, f̄i is the natural image of
fi, up to multiplication by an element of A[u(L)] \ (P ∩ A[u(L)]). This will mean
that CL is an almost complete intersection over A at P ∩ C and our proof will be
finished.

Lemma 5.3. For all i ∈ N, the vector bundle Ii

I2
i

∣∣∣
Spec Ci\V (mHC/ACi)

is trivial.

Proof. By definition,

Ii
I2
i

∼= Ii−1A[u(i)]
I2
i−1A[u(i)]

, i ∈ N.(5.3)

Since A[u(i)] is flat over A[u(i−1)] away from V (mA[u(i−1)]), away from that locus
(5.3) can be rewritten as

Ii
I2
i

∣∣∣∣
Spec Ci\V (mCi)

∼= π∗i

(Ii−1

I2
i−1

)∣∣∣∣
Spec Ci\V (mCi)

, i ∈ N,(5.4)

and the lemma follows immediately by induction on i.
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For each i, consider the exact sequence Ii

I2i

di−→ Cni

i
ωi−→ ΩCi/A of Ci-modules and

the corresponding exact sequence
Ii
I2
i

d̃i−→ Oni

Spec Ci

ω̃i−→ Ω1
Spec Ci/A

(5.5)

of sheaves of OSpec Ci-modules. First, let i = 0 in (5.5). Since f̄1, . . . , f̄r ∈
Γ(Spec C \ V (HC/A), II2 ), we have d̃0(f̄j) ∈ Γ(Spec C \ V (HC/A),OnSpec C), 1 ≤
j ≤ r, and hence

HL1
C/Ad̃0(f̄j) ∈ Γ

(
Spec C,OnSpec C

) ≡ Cn, 1 ≤ j ≤ r, for all L1 � 0.(5.6)

Lemma 5.4. Assume there is a positive integer L0 such that

mL0(CL0)P∩CL0
⊂ mHC/A(CL0)P∩CL0

.(5.7)

Let L1 be such that (5.6) holds and let L = L0L1. Then CL is an almost complete
intersection over A at P ∩ CL.

Proof. We have

m(CL)P∩CL ⊂ (HCL/A)P∩CL(5.8)

by Property 2.16, induction on L and (5.7). Combining Lemma 5.3, (5.4) and (5.7),
we see that the sections

(πL ◦ · · · ◦ π1)∗f̄1, . . . , (πL ◦ · · · ◦ π1)∗f̄r ∈ Γ
(

Spec(CL)P∩CL \V (m(CL)P∩CL),
IL
I2
L

)
freely generate IL

I2
L

∣∣∣
Spec(CL)P∩CL

\V (m(CL)P∩CL
)
. It remains to show (3) of Definition

1.7. This is given by the following lemma.

Lemma 5.5. There exist elements f (L)
1 , . . . , f

(L)
r ∈ IL whose natural images in

Γ(Spec(CL)P∩CL \V (m(CL)P∩CL), IL

I2
L
) are (πL ◦ · · · ◦π1)∗f̄1, . . . , (πL ◦ · · · ◦π1)∗f̄r,

respectively, up to multiplication by an element of CL \ P ∩ CL.

Proof. Consider the commutative diagram

I
I2

d̃0−−−−→ OnSpec C
ω̃0−−−−→ Ω1

Spec C/Ay zi

y y
Ii

I2
i

d̃i−−−−→ Oni

Spec Ci

ω̃i−−−−→ Ω1
Spec Ci/A

(5.9)

induced by the map A[u] → A[u(i)], given by iterating (4.2). First, let i = 1 in
(5.9). By (4.2) and the chain rule, z1 sends an n-vector with entries b1, . . . , bn ∈
Γ(U,OnSpec C) (where U is an open set of Spec C) to an (nk)-vector with entries
zjbl, 1 ≤ j ≤ k, 1 ≤ l ≤ n. Next, let i = L in (5.9). By induction on L, zL
sends (b1, . . . , bn) to an nL-vector all of whose components are of the form zαbl,
1 ≤ l ≤ n, where |α| = L. Combining this with (5.6)–(5.7) we obtain, after
localization at P ∩ CL, that d̃L((πL ◦ · · · ◦ π1)∗f̄j) extends to an element of

Γ(Spec(CL)P∩CL ,OnL

Spec(CL)P∩CL
) ≡ (CL)nL

P∩CL
(5.10)

for 1 ≤ j ≤ r. Since d̃L((πL ◦ · · · ◦ π1)∗f̄j) ∈ Ker ω̃L, by (5.9) there exist
f̄

(L)
1 , . . . , f̄

(L)
r ∈ IL

I2L
⊗CL (CL)P∩CL such that dL(f̄ (L)

j ) = d̃L((πL ◦ · · · ◦ π1)∗f̄j),
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1 ≤ j ≤ r, under the identification (5.10). Since d̃L is injective away from the non-
smooth locus V (HCL/A(CL)P∩CL) of (CL)P∩CL , by (5.8) it is injective away from

V (m(CL)P∩CL). Since the (πL◦· · ·◦π1)∗f̄j generate IL

I2
L

∣∣∣
Spec(CL)P∩CL

\V (m(CL)P∩CL

,

the elements f̄ (L)
j generate IL

I2
L
⊗CL (CL)P∩CL away from V (m(CL)P∩CL). Since

Spec A[u(L)]P∩A[u(L)] is affine, H1(Spec A[u(L)]P∩A[u(L)], I2
L) = 0, so f̄

(L)
1 , . . . ,

f̄
(L)
r can be lifted to f (L)

1 , . . . , f
(L)
r ∈ (IL)P∩A[u(L)] ≡ Γ(Spec A[u(L)]P∩A[u(L)], IL).

Multiplying f
(L)
1 , . . . , f

(L)
r by an element of A[u(L)] \ P ∩ A[u(L)], we may take

f
(L)
1 , . . . , f

(L)
r ∈ IL. This proves Lemma 5.5 and hence also Lemma 5.4.

Proof of Proposition 5.1. We want to apply Lemma 5.4. For that, we must show
that there exists L0 such that (5.7) holds. Since P =

√
HC/AB, there exists L0

such that

mL0B ≡ PL0B ⊂ HC/APB ≡ mHC/AB.(5.11)

We claim that (5.7) holds for this L0. Indeed, let h1, . . . , ht be a set of generators
of HC/A. Let h(i)

j denote the image of hj in Ci. By (4.2), (4.5) and induction on i,

h
(L)
j can be written as

h
(L)
j = g

(L)
j + q

(L)
j ,(5.12)

where g(L)
j ∈ A and q(L)

j ∈ mLCL. Let H ′
L := (g(L)

1 , . . . , g
(L)
t )A.

Lemma 5.6. Let Q be a module over a noetherian ring C and M an ideal of C
with M ⊂ Jac(C). Let H and H ′ be submodules of Q, with sets of generators
H = (h1, . . . , ht) and H ′ = (g1, . . . , gt). Assume that gj − hj ∈ MLQ, 1 ≤ j ≤ t,
and MLQ ⊂MH ′. Then H = H ′.

Proof. Since hj ∈ H ′ + MLQ, 1 ≤ j ≤ t, we have H ⊂ (H ′ + MLQ) = H ′ and
H ′ ⊂ H +MLQ ⊂ H +MH ′. The result follows by Nakayama’s lemma.

By (5.11)–(5.12) and Lemma 5.6, HC/AB = H ′
L0
B. Then (5.11) implies that

mL0B ⊂ mH ′
L0
B, hence mL0 ⊂ mH ′

L0
by faithful flatness of σ, hence mL0CL0 ⊂

mH ′
L0
CL0 . (5.7) follows from (5.12) and Lemma 5.6. Thus we may apply Lemma

5.4. By Lemma 5.4, CL is an almost complete intersection over A at P ∩ CL.
Apply Proposition 1.8 with C replaced by CL. We construct a diagram (1.7) (with
A∗ = Am). (1.10) follows from (5.1), (4.4) and Property 2.16. (1)–(2) and (4)–(8)
of Proposition 1.6 follow immediately by Proposition 1.8 and we are done.

§6. Separability in field extensions

Let σ : (A,m, k) → (B,P,K) be a regular homomorphism of local noetherian
rings. One of the difficulties in proving Theorem 1.2 comes from the fact that the
residue field extension k → K induced by σ need not be separable. However, as we
shall see in §7, we always have dimK H1(k,K,K) ≤ dimB − dimA < ∞. In this
section, preliminary to §7, we study field extensions with dimH1(k,K,K) <∞.
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Notation. If A → B is a ring extension with char A = p > 0, ABp will denote
the A-subalgebra of B, generated by the set Bp. Of course, if A and B are fields,
then ABp is a subfield of B since, in that case, if a ∈ ABp \ {0}, then a−1 =(
a−1

)p
ap−1 ∈ ABp.

We start with a general observation about Kähler differentials in field extensions
of positive characteristic. Let k → K be a field extension.

Proposition 6.1. Assume that char k = p > 0. Let a ∈ K; consider da ∈ ΩK/k.
We have da = 0 ⇐⇒ a ∈ kKp.

Proof. ⇐= is immediate.
=⇒ It is sufficient to consider the case whenK is finitely generated over k. From

the Jacobi–Zariski sequence for the triple k → kKp → K and from the fact that
ΩkKp/k ⊗kKp K → ΩK/k is the zero map, we get the isomorphism ΩK/kKp→̃ΩK/k.
Thus, replacing k by kKp does not change the problem, that is, we may assume,
in addition, that Kp ⊂ k. Then K can be written as K = k[x1,..., xn]

(xp
1−a1,..., x

p
n−an)

, ai ∈ k.
Moreover, if a /∈ k, then we may choose x1 = a and therefore da 6= 0.

Corollary 6.2. We have ΩK/k = 0 if and only if K = kKp. More generally,
consider a subset uΨ = {uψ | ψ ∈ Ψ} ⊂ K. The elements duψ, ψ ∈ Ψ form a
K-basis of ΩK/k if and only if uΨ is a minimal set of generators of K over kKp.

A set uΨ satisfying the equivalent conditions of Corollary 6.2 is called a p-basis
of K.

Remark 6.3. Let δ : k → K be a finitely generated extension of fields of charac-
teristic p > 0. A p-basis of K over k can be constructed as follows. Decompose δ
as k → Kt → Ks → K, where Kt is purely transcendental over k, Ks is separable
algebraic over Kt and K is algebraic and purely inseparable over Ks. Moreover,
choose this decomposition in such a way as to minimize dimK ΩK/Kt

. Let uΛ be
a minimal set of generators of Kt over k and vΦ a p-basis of K over Ks. Then it
is easy to see that uΛ ∪ vΦ forms a p-basis of K over k (indeed, duΛ ∪ dvΦ gen-
erate ΩK/k by definition; moreover, they are linearly independent: a non-trivial
K-linear dependence relation among duΛ ∪ dvΦ would imply that one of the wλ,
λ ∈ Λ can be removed and replaced by one of the vφ, which contradicts the min-
imality assumption on dimK ΩK/Kt

). In particular, ΩK/k = 0 if and only if K is
separable algebraic over k. If K is not finitely generated over k, then the extension
k ↪→ k

(
tp
−∞
)
≡ k

(
t, t

1
p , t

1
p2 , . . .

)
, where t is transcendental over k, provides a

counterexample to all these statements.

Let δ : k → K be any field extension (no assumptions on the characteristic). Let
{wλ}λ∈Λ be a maximal family of elements of K such that

(1) {wλ}λ∈Λ are algebraically independent over k.
(2) {dwλ}λ∈Λ are linearly independent over K in ΩK/k.

Write {wΛ} for {wλ}λ∈Λ. Let {vφ}φ∈Φ be a set of elements of K such that {dwΛ}∪
{dvΦ} form a basis for the K-vector space ΩK/k. Let KΛ := k(wΛ) and let KΦ

denote the subfield of K generated by vΦ over KΛ. We get a decomposition of the
extension k → K:

k
α−→ KΛ

β−→ KΦ
γ−→ K,(6.1)

where α is purely transcendental, β is an inseparable algebraic extension and γ is
unramified (i.e. ΩK/KΦ = 0).
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Remark 6.4. In the case when K is finitely generated over KΛ (in particular, when-
ever K is finitely generated over k), we have some extra information about the size
of Φ and ΩK/KΛ . First of all, in this case we have #Φ < ∞. Secondly, K must
be algebraic over KΛ, otherwise we could enlarge the set Λ (cf. Remark 6.3), and
this would contradict the fact that wΛ is the maximal set satisfying conditions (1)
and (2). If K is finitely generated over KΦ, then K is separable algebraic over KΦ,
since ΩK/KΦ = 0 (cf. Remark 6.3).

Next, we prove a generalization of the primitive element theorem, which deals
with the minimal number of generators of a finitely generated field extension.

Theorem 6.5. Let δ : k → K be a finitely generated field extension. Let d :=
dimK ΩK/k. Then the minimal number of generators of K over k is equal to d+ 1
if δ is separable but not pure transcendental, and to d otherwise.

Proof. Consider a decomposition (6.1) of δ. Let t := tr. deg K/k, so that t = #Λ
and d = t + #Φ (cf. Remark 6.3). First, suppose δ is separable. In this case
t = d. Then the minimal number of generators of K is at least d. If K can be
generated by exactly d elements, then it is pure transcendental over k. Otherwise
K is generated by one element over KΛ by the primitive element theorem, hence
the minimal number of generators of K over k is d+ 1. This proves the theorem in
the separable case.

Suppose δ is not separable. It is obvious that K cannot be generated by fewer
than d elements. Let us prove that d elements are enough. Since KΛ is generated
over k by t elements and dimK ΩK/KΛ = d− t, we may replace k by KΛ. In other
words, we may assume that K is algebraic over k. Our proof is by induction on d.
First, let d = 1. Let ks be the separable closure of k in K and let v be any element
of K such that dv generates ΩK/k ∼= ΩK/ks

. Then K = ks(v)Kp by Corollary 6.2,
hence K = ks(v)Kpn

for all n, so that K = ks(v). Now, it is well known and
easy to prove that a composition of a separable algebraic extension with a simple
algebraic extension is again simple [9, §VII.6, Theorem 14, p. 185 and Exercise 4,
p. 190]. The case d = 1 is proved.

Next, let d > 1. Let v1, . . . , vd be a set of elements of K which induce a basis
of ΩK/k. We have K = ks(v1, . . . , vd)Kp, hence K = ks(v1, . . . , vd)Kpn

for all n,
hence K = ks(v1, . . . , vd). Now, ks(v1) is a simple extension of k by the d = 1
case, and K = ks(v1, . . . , vd) is generated over ks(v1) by d − 1 elements, hence K
is generated over k by d elements, as desired.

Remark 6.6. Another way to phrase Theorem 6.5 is that if σ : k → K is an in-
separable finitely generated field extension, then the set vΦ of (6.1) can always be
chosen in such a way that K = KΦ. Indeed, if σ is inseparable and finitely gen-
erated, Theorem 6.5 says that the smallest number of generators of K over KΛ is
#Φ, hence we may choose vΦ so that K = KΦ ≡ KΛ(vΦ).

Let Vφ, φ ∈ Φ, be independent variables. Let I denote the kernel of the map
KΛ[VΦ]→ KΦ which sends Vφ to vφ. Choose a well-ordering of Φ. For an element
φ ∈ Φ, define Φφ := {φ′ ∈ Φ | φ′ < φ}. Let Kφ denote the subfield of KΦ generated
by vΦφ

overKΛ. Let gφ ∈ Kφ[Vφ] denote the (monic) minimal polynomial of vφ over
Kφ. Pick and fix a representative Gφ of gφ in KΛ[VΦφ

][Vφ]. Since KΛ[VΦ]
(GΦ) is a field,

the relations GΦ form a set of generators of I. By construction, the elements GΦ
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form a minimal set of generators of I, hence they induce a basis of the KΦ-vector
space I

I2 .

Lemma 6.7. We have a natural isomorphism H1(k,KΦ, KΦ) ∼= I
I2 . In particu-

lar, the set Φ has the same cardinality as any basis of the KΦ-vector space
H1(k,KΦ, KΦ).

Proof. By definition, the elements {dwΛ} ∪ {dvΦ} are K-linearly independent in
ΩK/k. Since there is a natural homomorphism ΩKΦ⊗KΦK → ΩK/k, {dwΛ}∪{dvΦ}
are also KΦ-linearly independent in ΩKΦ . Since {dwΛ} ∪ {dvΦ} generate KΦ as a
field over k, we have

ΩKΦ/k =

(⊕
λ∈Λ

KΦdwλ

)⊕⊕
φ∈Φ

KΦdvφ

 .(6.2)

The ring KΛ[VΦ] is a localization of a polynomial ring over k, hence

H1(k,KΛ[VΦ], KΦ) = 0.(6.3)

By (6.2), (6.3) and Property 2.2 (applied to the surjective map KΛ[VΦ]→ KΦ), the
Jacobi–Zariski sequence (2.5) for the triple k → KΛ[VΦ] s−→ KΦ takes the form

0→ H1(k,KΦ, KΦ)→ I

I2
→ ΩKΛ[VΦ]/k ⊗KΦ

ds−→
(⊕
λ∈Λ

KΦdwλ

)⊕⊕
φ∈Φ

KΦdvφ

→ 0.
(6.4)

Since ds is an isomorphism, (6.4) implies that H1(k,KΦ, KΦ) ∼= I
I2 , as desired.

Corollary 6.8. Let x1, . . . , xa be elements of I. The elements x1, . . . , xa form a
regular system of parameters of the regular local ring KΛ[VΦ]I if and only if the
natural images of x1, . . . , xa in H1(k,KΦ, KΦ) under the isomorphism of Lemma
6.7 form a basis of H1(k,KΦ, KΦ).

Lemma 6.9. There is a natural injection ι : H1(k,KΦ, K) → H1(k,K,K). If K
is separable over KΦ (cf. Remark 6.4), then ι is an isomorphism.

Proof. Immediate from the Jacobi–Zariski sequence for the triple k → KΦ → K
(Property 2.18): 0 → H1(k,KΦ, K) → H1(k,K,K) → H1(KΦ, K,K), and Prop-
erty 2.19.

Corollary 6.10. Keep the above notation. Suppose dimK H1(k,K,K) <∞. Then
Φ is a finite set and #Φ ≤ dimH1(k,K,K). If, in addition, K is separable over
KΦ, then #Φ = dimH1(k,K,K).

Proof. Immediate from Lemmas 6.7 and 6.9.

Lemma 6.11. Let k → K be a field extension. Assume that dimH1(k,K,K) <∞.
Then there exists a subfield L ⊂ K, containing k and finitely generated over k, such
that the natural map H1(k, L,K)→ H1(k,K,K) is an isomorphism. Fix one such
L. Then for any subfield K ′ ⊂ K with L ⊂ K ′, the natural map H1(k,K ′, K) →
H1(k,K,K) is an isomorphism. Finally, let K0 be an extension of k, contained in
K ′, such that the natural map ΩK0/k⊗K0 K → ΩK/k is injective. Then the natural
map H1(K0, K

′, K)→ H1(K0, K,K) is an isomorphism.
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Proof. Write K as a filtered inductive limit of its subfields which are finitely gener-
ated over k: K = lim

−→
i

Ki. Since André homology commutes with direct limits ([18,

Lemma 3.2] and [2, Chapter III, Proposition 35]), H1(k,K,K) = lim−→
i

H1(k,Ki, K).

Hence there exists a subfield L ⊂ K, finitely generated over k, with H1(k, L,K) ∼=
H1(k,K,K). For any field K ′ such that L ⊂ K ′ ⊂ K, the map H1(k, L,K) →
H1(k,K,K) factors through H1(k,K ′, K), so H1(k,K ′, K) → H1(k,K,K) is sur-
jective. The injectivity of H1(k,K ′, K) → H1(k,K,K) is given by the Jacobi–
Zariski sequence for k → K ′ → K (Property 2.18), so

H1(k,K ′, K) ∼= H1(k,K,K),(6.5)

as desired. To prove the last statement of the lemma we first note that the map
ΩK0/k ⊗K0 K → ΩK/k factors through ΩK′/k ⊗K′ K → ΩK/k ; this implies that
the map ΩK0/k ⊗K0 K → ΩK′/k ⊗K′ K is also injective. Now the last statement of
the lemma follows from (6.5) and the commutative diagram

H1(k,K0, K)→ H1(k,K ′, K)→ H1(K0, K
′, K)→ ΩK0/k ⊗K → ΩK′/k ⊗K

‖ o ‖ ↓ ‖ ↓
H1(k,K0, K)→ H1(k,K,K)→ H1(K0, K,K)→ ΩK0/k ⊗K → ΩK/k

(6.6)

given by the Jacobi–Zariski sequences for the triples k → K0 → K ′ and k→ K0 →
K, by the five lemma.

Lemma 6.12. Let k → K0 → K be a composition of field extensions. Assume
that the natural map ΩK0/k ⊗K0 K → ΩK/k is injective and the natural injection
H1(k,K0, K)→ H1(k,K,K) is an isomorphism. Then K is separable over K0.

Proof. Immediate from the Jacobi–Zariski sequence for the triple k → K0 → K
and Property 2.19.

Let σ : k → K be a field extension with dimH1(k,K,K) < ∞. Consider a
decomposition of σ of the form (6.1). Although K is unramified over KΦ, there
need not, in general, exist a finitely generated extension of KΦ, contained in K,
over which K is separable. For the proof of Theorem 1.2 we will need to find a
decomposition k → K̃ → K of σ such that K is separable over K̃ and such that
K̃ is the limit of an ascending sequence of finitely generated extensions of KΦ,
contained in K.

Proposition 6.13. Let σ : k → K be a field extension such that dimH1(k,K,K) <
∞. Consider a decomposition of σ of the form (6.1). There exists a sequence
K1 → K2 → · · · → Kn → · · · of finitely generated extensions of KΦ contained in
K, having the following properties.

(1) For each i ∈ N, the natural map H1(k,Ki, K) → H1(k,K,K) is an isomor-
phism.

(2) Let K̃ := lim
i→∞

Ki. Then K is étale over K̃.

Proof. If K is separable over KΦ, put Ki = K̃ = KΦ and there is nothing to prove.
Suppose K is not separable over KΦ (in particular, char k = p > 0). Let K1 be
a finitely generated extension of KΦ, contained in K, such that the natural map
H1(k,K1, K) → H1(k,K,K) is an isomorphism (K1 exists by Lemma 6.11). We
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define the Ki recursively as follows. Suppose Ki is defined. Since K is unramified
over KΦ we have K = KΦK

p (Corollary 6.2), so Ki ⊂ KΦK
p. Define Ki+1 to

be a finitely generated extension of Ki, contained in K, such that Ki ⊂ KΦK
p
i+1.

This defines Ki for all i ∈ N. Put K̃ = lim
i→∞

Ki. Now (1) holds by definition of

K1 and Lemma 6.11. Since KΦ ⊂ K̃, K is unramified over K̃. By construction,
K̃ = KΦK̃

p, so K̃ is unramified over KΦ (Corollary 6.2). Then the Jacobi–Zariski
sequence shows that the natural map ΩKΦ/k⊗KΦ K̃ → ΩK̃/k is surjective; hence so
is the map ΩKΦ/k⊗KΦK → ΩK̃/k⊗K̃K. Since the inclusion ΩKΦ/k⊗KΦK ↪→ ΩK/k
factors through ΩK̃/k⊗K̃K, the natural map ΩK̃/k⊗K̃K → ΩK/k is injective. The
map H1(k, K̃,K) → H1(k,K,K) is an isomorphism by Lemma 6.11. Thus K is
separable over K̃ by Lemma 6.12. Combining this with the fact thatK is unramified
over K̃, we get that K is étale over K̃ by Properties 2.4 and 2.19. This completes
the proof.

§7. Residue field extensions

induced by formally smooth homomorphisms

Let σ : (A,m, k) → (B,P,K) be a formally smooth local homomorphism of
local noetherian rings. Let B̂ denote the formal completion of B. In this section
we deal with the difficulties coming from the inseparability of the field extension
k → K, induced by σ, by proving the following version of the Nica–Popescu theorem
(see Corollary 7.9 for the original Nica–Popescu theorem). We construct a local
noetherian A-algebra A•, smooth over A, and a commutative diagram

A
σ−−−−→ By y

A• σ•−−−−→ B̂

such that σ• is formally smooth and induces an isomorphism of the residue field
of A• with K. We may take dim A• = dimA + dimK H1(k,K,K) (we will see
that any ring A• having the above properties must be at least of that dimension).
Let m• denote the maximal ideal of A• and let q := dim B̂

m•B̂
. If we adjoin q

independent variables to A• and send them to a set of q elements of B inducing
a regular system of parameters of B̂

m•B̂
, the resulting homomorphism will still be

formally smooth by Corollary 2.25. In other words, we can always enlarge A• so
that dim A• = dim B. By construction, A• will be a filtered inductive limit of
smooth A-algebras of finite type. The situation is greatly simplified in the special
case when the field extension k → K is finitely generated. We will point out what
happens in the finitely generated case in order to give the reader an appreciation
of the difficulties which arise when K is not finitely generated over k and the need
for the somewhat involved construction of A•, carried out in this section.

Acknowledgement. The results of this section are closely related to those of [12].
Since both our statements and proofs are somewhat different from those of Nica
and Popescu, we prefer to give an independent exposition.

Let B0 := B
mB and let P0 denote the maximal ideal of B0. Formal smoothness is

preserved by base change [10, Chapter 11, (28.E), p. 201]. Taking base change of σ
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by k = A
m , we see that the local ring (B0, P0, K) is formally smooth (equivalently,

geometrically regular—cf. Proposition 2.6) over k. This means that

H1(k,B0,W ) = 0 for any B0-module W(7.1)

(Proposition 2.6). Let d := dimB − dimA = dimB0.

Lemma 7.1. We have dimH1(k,K,K) ≤ d.
Proof. Immediate from the Jacobi–Zariski sequence (2.5) for the triple k → B0 →
K, Property 2.2 and (7.1) (with W = K): 0→ H1(k,K,K)→ P0

P 2
0
.

Consider the residue field extension k → K, induced by σ. Let KΛ and KΦ be
as in (6.1). Let K1 be a finitely generated extension of KΦ, contained in K, such
that the natural map

H1(k,K1, K)→ H1(k,K,K)(7.2)

is an isomorphism (K1 exists by Lemma 6.11). Pick a basis for ΩK1/k of the form
{dwΛ1}∪{dvΦ1} such that Λ1 ⊃ Λ, Φ1 ⊃ Φ, the sets Λ1\Λ and Φ1 are finite and wΛ1

are algebraically independent over k, while vΦ1 are algebraic over KΛ1 = k(wΛ1).
Note that if K is finitely generated over k, we may take K1 = KΦ = K, Λ1 = Λ
and Φ1 = Φ (cf. Remarks 6.4 and 6.6 and Lemma 6.9). We get a decomposition
(6.1) for the field extension k → K1: k → KΛ1 → KΦ1 → K1. Since K1 is finitely
generated over KΦ1 and since ΩK/KΦ1

= 0, K1 is separable over KΦ1 (cf. Remarks
6.3 and 6.4). By Lemma 6.9, we get an isomorphism

H1(k,KΦ1 , K1)→ H1(k,K1, K1).(7.3)

Let a = #Φ1. By Corollary 6.10, applied to the field extension k → K1, and
using the fact that K is flat over K1, we obtain a = dimK1 H1(k,K1, K1) =
dimK H1(k,K1, K) = dimK H1(k,K,K). Make the identification Φ1 = {1, . . . , a}.
For λ ∈ Λ1, let wλ be any representative of wλ in B; similarly for vi, i ∈ Φ1.
Let VΦ1 = (V1, . . . , Va) be independent variables. Write KΦ1

∼= KΛ1 [VΦ1 ]

I and let
(G1, . . . , Ga) be a base of I, constructed in §6 (with Φ replaced by Φ1), so that
Gi ∈ KΛ1 [V1, . . . , Vi]. Let Gi, 1 ≤ i ≤ a, be the representative of Gi in B[Vi] ob-
tained by replacing wλ by wλ and vj by vj , j < i. For 1 ≤ i ≤ a, let xi := Gi(vi).
Let A1 := A[WΛ1 , VΦ1 ]P∩A[WΛ1 ,VΦ1 ].

Theorem 7.2. (1) The elements x1, . . . , xa can be extended to a regular system
of parameters of B0.

(2) Let WΛ1 = {Wλ | λ ∈ Λ1} be independent variables and consider the map
A1 → B which sends Wλ to wλ and Vi to vi. This map is injective and flat.

Proof. (1) Consider the homomorphism between the triples k → KΛ1 [VΦ1 ]→ KΦ1

and k → B0 → K (the map KΛ1 [VΦ1 ] → B0 is given by sending Wλ to wλ and Vi
to vi). By functoriality of André homology, we obtain a commutative diagram of
the Jacobi–Zariski sequences:

0 −−−−→ H1(k,KΦ1 , K) α−−−−→ I
I2 ⊗KΦ1

Ky γ

y yδ
0 −−−−→ H1(k,K,K)

β−−−−→ P0
P 2

0
−−−−→ ΩB0/k

P0ΩB0/k
−−−−→ ΩK/k → 0

(7.4)
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(here the top row is a part of the Jacobi–Zariski sequence for the triple k →
KΛ1 [VΦ1 ]→ KΦ1 and the KΦ1-module K, and the bottom row is the Jacobi–Zariski
sequence for the triple k → B0 → K). Now, α is an isomorphism by Lemma 6.7.
The map γ is the composition of the isomorphism H1(k,KΦ1 , K) ∼= H1(k,K1, K)
(obtained from (7.3) by tensoring by K) with the isomorphism (7.2) (this follows
by the functoriality of André homology); thus γ is an isomorphism. Therefore δ is
injective. The elements δ(Gi) are nothing but the images of the xi in P0

P 2
0
. Since

G1, . . . , Ga are KΦ1-linearly independent in I
I2 , they are K-linearly independent

in I
I2 ⊗KΦ1

K, hence x1, . . . , xa are K-linearly independent in P0
P 2

0
. (1) is proved.

Now (2) follows from Corollary 6.8 and Corollary 2.22. This completes the proof
of Theorem 7.2.

Remark 7.3. Suppose that K is finitely generated over k. In that case, K = KΦ1

and we may take A• = A1; the A-algebra A• described in the beginning of this
section is already constructed (notice that A• is already in B; there is no need to
pass to completions).

We continue with our construction of A• in the general case.

Definition 7.4. Let A′ be a noetherian A1-subalgebra of B̂ such that dim A′ =
dim A + a. Let x1, . . . , xa be as in Theorem 7.2. We say that A′ is unramified
over A1 if A′ is flat over A and A′

mA′ is a regular local ring of dimension a with
regular parameters x1, . . . , xa.

If A′ is unramified over A1, then the inclusion A′ → B̂ is flat by Corollary 2.22.
Also, A1 is unramified over itself by definition of x1, . . . , xa.

Proposition 7.5. Let (A0, P0, K0) and (A2, P2, K2) be two local noetherian
A[WΛ, VΦ]P∩A[WΛ,VΦ]-subalgebras of B̂ such that A0 is formally smooth over A.
Assume that there exists a non-negative integer b ≤ a such that x1, . . . , xb induce
a regular system of parameters of A0

mA0
. Assume that the inclusion A0 → B̂ is

a formally smooth homomorphism of local rings and that A2 contains A1 and is
unramified over it (in particular, dim A2 = dim A + a). Assume that the map
ΩK0/k ⊗K0 K → ΩK/k is injective. Finally, assume that char K = p > 0, that K2

is either inseparable or purely transcendental over K0 and that A2 is a localization
of a polynomial ring over A0 (in finitely many variables). Then there exists a se-
quence A2 → A3 → · · · where each Ai is a localization of a polynomial ring over
A0 in finitely many variables, contained in B̂, with the following properties:

(1) dim Ai = dim A+ a for all i ≥ 2.
(2) Ai is unramified over A1 for all i ≥ 2.

(3) Ã :=
∞⋃
i=1

Ai is étale over A0 (in particular, smooth).

(4) The inclusion Ã→ B̂ is a formally smooth homomorphism of local rings and
the induced residue field extension is étale.

Proof. We construct the Ai recursively as follows. Suppose Ai is constructed. Let
Ki denote the residue field of Ai. Let K0 → KΛi → KΦi = Ki be the decomposition
(6.1) for the extension K0 → Ki, where we can choose KΦi = Ki by Theorem 6.5
and Remark 6.6. Here Λi and Φi are finite sets and #Φi = dimKi H1(K0, Ki, Ki) =
dimK H1(K0, Ki, K) = dimK H1(K0, K,K) is independent of i (by Lemma 6.11);
in fact, diagram (6.6) shows that #Φi = a− dimK0 H1(k,K0, K0). Let wΛi denote
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the generators of KΛi over K0 and vΦi the generators of Ki over KΛi . We will
assume, inductively, that Ai is the localization of the polynomial ring A0[WΛi , VΦi ]
at the prime ideal Pi which is, by definition, the kernel of the map A0[WΛi , VΦi ]→
Ki which maps A0 to K0, Wλ to wλ and Vφ to vφ. Since ΩK/K0 = 0, we have
{wΛi , vΦi} ⊂ KpK0 (Corollary 6.2). Let Ki+1 be a finitely generated extension of
K0, contained in K, such that

{wΛi , vΦi} ⊂ Kp
i+1K0.(7.5)

Consider the decomposition (6.1) K0 → KΛi+1 → KΦi+1 = Ki+1 of the exten-
sion K0 → Ki+1 (we may take KΦi+1 = Ki+1 by Theorem 6.5 and Remark
6.6). As usual, let wΛi+1 be a set of algebraically independent generators of
KΛi+1 and vΦi+1 a set of p-independent generators of KΦi+1 over KΛi+1 . Put
Ai+1 := A0[WΛi+1 , VΦi+1 ]Pi+1 . By (7.5), for λ ∈ Λi, there exists nλ ∈ N, ele-
ments aλj ∈ K0 and polynomials eλj , hλj ∈ K0[WΛi+1 , VΦi+1 ], 1 ≤ j ≤ nλ, such
that the inclusion Ki → Ki+1 is given by

wλ =
nλ∑
j=1

aλj

(
eλj(wΛi+1 , vΦi+1)
hλj(wΛi+1 , vΦi+1)

)p
, λ ∈ Λi(7.6)

(the existence of expressions (7.6) follows from (7.5) because the field Kp
i+1K0

equals the K0-subalgebra of Ki+1, generated by Kp
i+1). We also have the analogous

statement for vφ, φ ∈ Φi; elements aφj ∈ K0 and eφj, hφj ∈ K0[WΛi+1 , VΦi+1 ] for
φ ∈ Φi, are defined in the same way. Now the idea is to use the relations (7.6) to lift
the inclusion Ki → Ki+1 to an inclusion Ai → Ai+1. Pick and fix representatives
Eλj , Hλj ∈ A0[WΛi+1 , VΦi+1 ] of eλj and hλj and similiarly for Eφj and Hφj . Let
aλj be a representative of aλj in A0, similarly for aφj . By construction, Hλj , Hφj /∈
Pi+1. Define the homomorphism ιi : Ai → Ai+1 by

ιi(Wλ) =
nλ∑
j=1

aλj

(
Eλj
Hλj

)p
, λ ∈ Λi

ιi(Vφ) =
nφ∑
j=1

aφj

(
Eφj
Hφj

)p
, φ ∈ Φi.

(7.7)

Applying Theorem 7.2 (2) with Λ1, Φ1 and B replaced by Λi, Φi and B̂, respectively,
we see that Ai ⊂ B̂ and B̂ is flat (hence faithfully flat) over Ai for all i. This also
proves that all the maps Ai → Ai+1 are injective, and that Ã is an A-subalgebra
of B̂.

Lemma 7.6. The A0-algebra Ã :=
∞⋃
i=2

Ai is étale over A0.

Proof. Consider a commutative diagram

A0 −−−−→ Ãy y
E −−−−→ E

N

(7.8)

where E is an A0-algebra and N is an ideal of E such that N2 = 0. We want
to show that there is a unique lifting Ã → E which makes this diagram commu-
tative. It is sufficient to prove that for each i ≥ 2 there exists a unique lifting
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τi : Ai → E compatible with (7.8). To construct τi, take any homomorphism
τ ′i+1 : A0[WΛi+1 , VΦi+1 ]→ E, compatible with (7.8). Since

Ai ⊂ A0A
p
i+1(7.9)

by (7.7) and since Np = N2 = 0, τ ′i+1 determines a unique lifting τi : Ai → E.

Taking E = B
P j+1 andN = P j

P j+1 in (7.8) and passing to the limit as j →∞ shows
that there exists a unique extension of the homomorphism A0 → B̂ to Ã→ B̂. We
have ΩÃ/A0

= 0 by (7.9). The map A0 → B̂ is formally smooth, hence the inclusion
Ã → B̂ is formally smooth (by Proposition 2.6 and Remark 2.10). Let K̃ denote
the residue field of Ã. Since K1 ⊂ K̃, we have

H1(k, K̃,K) ∼= H1(k,K,K)(7.10)

by Lemma 6.11. By Lemma 6.12, K is separable over K̃. Since KΦ ⊂ K̃ and
ΩK/KΦ = 0, we have ΩK/K̃ = 0 by the Jacobi–Zariski sequence. Hence K is étale
over K̃ (Properties 2.4 and 2.19), as desired.

Next, we show that Ã is noetherian. Indeed, all the maps Ai → B̂ are faithfully
flat. Thus the noetherianity of Ã is given by the following lemma.

Lemma 7.7. Let {Ai} be an inductive system of noetherian rings together with a
faithfully flat map from each Ai to a fixed noetherian ring B. Then lim−→

i

Ai is again

noetherian.

Proof. Let Ij , j ∈ N be an ascending chain of ideals of Ã. Then the chain IjB
stabilizes, say for j ≥ j0. The ideal Ij0B is finitely generated, hence there exists i
sufficiently large so that Ij0B = (Ij0 ∩Ai)B. Then for any i′ > i and any j ≥ j0 we
have Ij ∩Ai′ ⊂ (IjB)∩Ai′ = (Ij0B)∩Ai′ = (Ij0 ∩Ai)B∩Ai′ ⊂ (Ij0 ∩Ai′)B∩Ai′ =
Ij0 ∩ Ai′ , where the last equality holds by faithful flatness of the map Ai′ → B.
Since this holds for all i′ > i, we have Ij = Ij0 for j ≥ j0, as desired.

Finally, it remains to check that each Ai is unramified over A1. Since the Ai are
localizations of polynomial rings over A0, they are flat over A0, hence also over A.
It remains to show that x1, . . . , xa induce a regular system of parameters of Ai

mAi
.

It is sufficient to prove that xb+1, . . . , xa induce a regular system of parameters of
Ai

m0Ai
. For each i, write Ai

m0Ai
= K0[WΛi

,VΦi
]

Ii
. We proceed by induction on i. For

i = 2, our statement is true because A2 was assumed to be unramified over A1.
Suppose the statement is true for i. Consider the commutative diagram

0 −−−−→ H1(K0, Ki, Ki+1)
αi−−−−→ Ii

I2i
⊗Ki Ki+1y βi

y y
0 −−−−→ H1(K0, Ki+1, Ki+1)

αi+1−−−−→ Ii+1

I2i+1

The maps αi and αi+1 are isomorphisms by Lemma 6.7, and βi is an isomorphism
by Lemma 6.11. By the induction assumption and Corollary 6.8, the natural im-
ages of xb+1, . . . , xa in H1(K0, Ki, Ki+1) ∼= H1(K0, Ki, Ki) ⊗Ki Ki+1 form a basis
of H1(K0, Ki, Ki+1). Hence their images in H1(K0, Ki+1, Ki+1) form a basis of
H1(K0, Ki+1, Ki+1). Therefore xb+1, . . . , xa induce a regular system of parameters
of Ai+1

m0Ai+1
, as desired. Proposition 7.5 is proved.
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We will now build up the A-algebra A• described at the beginning of this section
recursively, using transfinite induction on the set of generators of the residue field.
We will start with A0 = A[WΛ, VΦ]P∩A[WΛ,VΦ] and use Proposition 7.5 repeatedly,
until we arrive at the A-algebra A• whose residue field is K. But first, we must
check that A0 = A[WΛ, VΦ]P∩A[WΛ,VΦ] satisfies the hypotheses of Proposition 7.5.
Namely, we have to check that B̂ is formally smooth over A[WΛ, VΦ]P∩A[WΛ,VΦ].

Lemma 7.8. The ring B̂ is formally smooth over A[WΛ, VΦ]P∩A[WΛ,VΦ].

Proof. Since B̂ is formally smooth over B and B over A, B̂ is formally smooth over
A. Consider the Jacobi–Zariski sequence for the tripleA→ A[WΛ, VΦ]P∩A[WΛ,VΦ] →
B̂:

0→ H1(A[WΛ, VΦ]P∩A[WΛ,VΦ], B̂,K)

→
(⊕
λ∈Λ

KdWλ

)
⊕
⊕
φ∈Φ

KdWφ

→ ΩB̂/A ⊗K.(7.11)

Now, {dwλ}λ∈Λ and {wφ}φ∈Φ are all linearly independent in ΩB̂/A ⊗ K because
their natural images in ΩK/A ≡ ΩK/k are linearly independent by definition. Hence
the last arrow in (7.11) is injective, so H1(A[WΛ, VΦ]P∩A[WΛ,VΦ], B̂,K) = 0 and the
lemma is proved.

Corollary 7.9 (the Nica–Popescu theorem [12]). There exists an increasing se-
quence A′i of subrings of B̂, each of which is a localization of a polynomial ring
in finitely many variables over A, such that lim

i→∞
A′i is a local noetherian ring of

the same dimension as B, the inclusion lim
i→∞

A′i → B̂ is formally smooth and the

induced residue field extension is separable.

Proof. Let A0 = A[WΛ, VΦ]P∩A[WΛ,VΦ] in Proposition 7.5. Choose an increasing
sequence ∆i of finite subsets of Λ such that for each φ ∈ Φi, vφ is algebraic over
k(w∆i , vΦ, wΛi). Put

A′′i := A[W∆i , VΦ,WΛi , VΦi ]PB̂∩A[W∆i
,VΦ,WΛi

,VΦi
].

Extend x1, . . . , xa to a set x1, . . . , xd which induces a regular system of parameters
of B

mB and let A′i := A′′i [xa+1, . . . , xd]PB̂∩A′′i [xa+1,..., xd]. Then dim A′i = dim B.
The other conclusions are given by Proposition 7.5.

Theorem 7.10. There exists a smooth local noetherian A[WΛ, VΦ]P∩A[WΛ,VΦ]-
algebra A•, mapping to B̂, such that:

(1) A• is étale over A[WΛ, VΦ]P∩A[WΛ,VΦ].
(2) The homomorphism A• → B̂ is formally smooth and the induced map

A•

P ∩ A• →
B

P

of residue fields is an isomorphism.
(3) dim A• = dimA+ a.
(4) A• is a filtered inductive limit of smooth local A[WΛ, VΦ]P∩A[WΛ,VΦ]-algebras

Ā essentially of finite type, over which B̂ is flat; the elements x1, . . . , xa form
a regular system of parameters for each of the Ā

m .
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Proof. We construct A• by transfinite induction, using Proposition 7.5. Let A
denote the set of local noetherian subalgebras Ã of B̂ such that:

(1) A[WΛ, VΦ]P∩A[WΛ,VΦ] ⊂ Ã.
(2) Ã is étale over A[WΛ, VΦ]P∩A[WΛ,VΦ].
(3) Ã is a filtered inductive limit of smooth A-algebras Ā essentially of finite

type, such that each Ā
mĀ

is a regular a-dimensional local ring with regular
parameters x1, . . . , xa.

(4) The map Ã → B is formally smooth and the induced residue field extension
is étale.

A is partially ordered by inclusion; A 6= ∅ by Proposition 7.5, applied to

A0 = A[WΛ, VΦ]P∩A[WΛ,VΦ] and
A2 = A1.

Given a subset {Aδ | δ ∈ ∆} ⊂ A, which is totally ordered by inclusion,
⋃
δ∈∆

Aδ ∈ A
(again, since each Aδ comes with a faithfully flat map to the noetherian ring B̂,
noetherianity of

⋃
δ∈∆

Aδ is given by Lemma 7.7). By Zorn’s lemma, A contains a

maximal element (A•,m•, K•). It remains to prove that K• ∼= K. Suppose not.
Take an element t ∈ K \K•. By assumption, K is separable over K•. Hence t is
either transcendental or separable algebraic over K•.
Case 1. t is separable algebraic over K•. Let h denote the minimal polynomial of
t over K• and let H be any lifting of h to a polynomial over A•. Put Ã := A•[T ]

(H) .

Since H is separable, the inclusion A• → B̂ extends in a unique way to a map
Ã → B̂ (by the implicit function theorem). It is immediate to verify that Ã ∈ A,
which contradicts the maximality of A•.
Case 2. t is transcendental over K•. Let t be any representative of t in B.
Then t is transcendental over A• by Corollary 2.22, applied to the triple A• →
A•[t]P∩A•[t] → B̂. Let A2 := A•[t]P∩A•[t].

The homomorphism A• → A2 satisfies the hypotheses of Proposition 7.5, so
there exists an A•-algebra Ã ∈ A, containing A2. This is a contradiction, hence
K• = K.

Corollary 7.11. There exists a local noetherian A-algebra (A′,m′), contained in
B̂, smooth over A, such that:

(1) A′ is a filtered inductive limit of smooth finite type A-algebras.
(2) B̂ is formally smooth over A′.
(3) m′B = P (in particular, dim A′ = dim B).
(4) A′

m′
∼= K.

Proof. Extend x1, . . . , xa to a set x1, . . . , xd which induces a regular system of
parameters of B0. Put A′ := A•[xa+1, . . . , xd]P∩A•[xa+1,..., xd]. The inclusion σ• :
A• → B̂ extends to an inclusion σ′ : A′ → B̂; B̂ is formally smooth over A′ by
Corollary 2.25. Let m′ denote the maximal ideal of A′. Then m′B̂ = PB̂.

§8. Smoothing of an isolated singularity over a local ring

Let the notation be as in Theorem 1.5 and let B̂ denote the P -adic completion
of BP . Combining the results of §§4–7, we obtain a commutative diagram (1.7),
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satisfying (1)–(8) of Proposition 1.6, with B replaced by B̂ (this is explained in
more detail below; it proves Theorems 1.5 and 1.2 in the case when (B,P ) is local
and P -adically complete). In this section we show how to replace B̂ by BP (by
P -adic approximation) and in §9—how to descend from BP to B (delocalization).
We start with two observations pertaining to both this and the next section.

Remark 8.1. Suppose P = (0). Then BP is a field. Then AP∩A and ρP (CP∩C) are
domains. Letting D = ρ(C), we get that HD/A 6= (0), so D satisfies the conclusion
of Theorem 1.5 and (1.3). From now on, we will assume that P 6= (0), both in this
and the next section.

Let S = SC( II2 ). As before, we will assume that HS/A ⊂ P ∩ S (otherwise we
put D = S and Theorem 1.5 and (1.3) are proved (cf. (5.1)). Then, by (5.1),
HS/AB is a minimal prime of P . From now on, to simplify the notation, we will
replace C by S and assume that there is a presentation C = A[u1,..., un]

I such that
I
I2

∣∣
Spec C\V (HC/A)

is the trivial vector bundle (cf. Lemma 5.2), both in this section
and the next. Note that because of (5.1) and Property 2.16, replacing C by S does
not affect condition (3) of Proposition 1.6.

Let m = P ∩ A. In both this and the next section, we will assume that the
homomorphism σP : Am → BP is formally smooth in the P -adic topology. This is
weaker than being regular by Proposition 2.7.

We now state and prove the main result of this section:

Proposition 8.2. Assume that B is local with maximal ideal P (in particular,
P =

√
HC/AB). Then there exists a diagram (1.7) satisfying (1)–(8) of Proposition

1.6 (in particular, Theorems 1.5 and 1.2 hold in this case).

Proof. Let f̄1, . . . , f̄r ∈ Γ(Spec C \ V (HC/A)) be sections which freely generate
I
I2

∣∣
Spec C\V (HC/A)

. Note that this property is preserved after a change of base of

the form ⊗AĀ, where Ā is essentially of finite type over A.
Let (A′,m′) be the ring whose existence is asserted in Corollary 7.11 (applied

to the formally smooth homomorphism σP ). Apply Proposition 5.1 to the flat
homomorphism σ′ : A′ → B̂ and the finite type A′-algebra C ⊗A A′. We get a
commutative diagram (1.7), with B replaced by B̂, satisfying (1)–(8) of Proposition
1.6. Moreover, since A′ is a filtered inductive limit of local A-algebras Ā, smooth
and essentially of finite type, over which both A′ and B̂ are flat (by Corollary 2.22),
by Lemma 3.8 we may choose one such A-subalgebra (Ā, m̄) such that our diagram
(1.7) descends to a diagram of Ā-algebras, m̄B = P and (4.13) holds for all the
generalized blowings up Ci of C ⊗A Ā involved in the construction. We obtain a
commutative diagram

Ā

��

σ̄ // B̂

C ⊗A Ā π(L)
// CL

ρL

OO

π(N)
// CN+L

bbF
F
F
F
F
F
F
F
F

C̄
λoo

hhRR
RR
R
RR
RR
R
RR
R
RR
RR
R

C0
ḡ

oo

ρ0

jjVVVVVVVVVVVVVVVVVVVVVVVVVV

(8.1)

satisfying (1)–(8) of Proposition 1.6. The idea is to approximate (8.1) in the P -adic
topology to get a diagram (1.7) with B instead of B̂. To do this, we will use the
following facts, which were proved in the course of the construction of (8.1).



422 MARK SPIVAKOVSKY

Properties 8.3. (1) The map π(L) is the composition of L generalized blowings
up along m̄. Here L = L0L1, where L0 is a positive integer such that

m̄L0B ⊂ m̄HC/AB(8.2)

and L1 ∈ N is such that (5.6) holds.
(2) The algebra CL is an almost complete intersection over Ā. Let CL = Ā[u(L)]

IL

be the given presentation of CL and let f (L)
1 , . . . , f

(L)
r ∈ IL be as in Definition

1.7. The elements f (L)
1 , . . . , f

(L)
r can be chosen so that their respective images

in Γ
(
Spec CL \ V (mCL), IL

I2
L

)
are y(π(L))∗f̄1, . . . , y(π(L))∗f̄r, for some y ∈

CL \ (P ∩ CL) (Lemmas 5.4 and 5.5).
(3) The map π(N) is a composition of N generalized blowings up along m̄, where

N satisfies (1.13) and

m̄NBr ⊂ J(f (L)).(8.3)

(4) Write

C0 =
Ā[G1, . . . ,Gl]

(F )
,(8.4)

where F = (F1, . . . , Fr) are linear homogeneous equations over Ā. Write

Fj =
l∑
i=1

aijGi and let aj denote the column r-vector with entries aij. Let

I(F ) be the submodule of Ar generated by a1, . . . , al. Then

m̄2N ⊂ I(F )(8.5)

(Lemma 4.5).
(5) Let KĀ denote the kernel of the Ā-linear map Āl → Ār given by the matrix

(aij), KB̂ the kernel of the B̂-linear map B̂l → B̂r given by the same matrix.
Let gi = ρ0(Gi) ∈ B̂ and let g denote the l-vector with entries gi, 1 ≤ i ≤ l.
Condition (6) of Proposition 1.6 is equivalent to saying that

g ∈ KĀB̂
l.(8.6)

We now P -adically approximate the diagram (8.1). Namely, we will construct a
new sequence of generalized blowings up

C ⊗A Ã π̃1−→ C̃1
π̃2−→ . . .

π̃N+L−−−−→ C̃N+L(8.7)

and

C̃0
g̃−→ C̃

λ̃−→ C̃N+L(8.8)

along m̃, where Ã is, in the sense defined below, a P -adic approximation to Ā, and
(8.7)–(8.8) are P -adic approximations to the corresponding maps in (8.1). Let J
denote the Ā-submodule of Ār generated by a1, . . . , al. By (8.5) and Lemma 3.7,
m̄tĀr ⊂ J for t� 0. Take t ∈ N such that

(1) P tB̂l ∩KB̂ ⊂ PKB̂.
(2) t > 2N .

Next, choose t′ ∈ N such that
(3) t′ > L+ 2t.
(4) m̄t′CnL

L ∩ Im(dL) ⊂ m̄2tIm(dL)
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(in the notation of (5.5)). Here (1) and (4) can be achieved by the Artin–Rees
lemma. We will now approximate (8.1) to within P t

′
. Condition (1) will be needed

to deduce (6) of Proposition 1.6. Condition (2) will be needed to ensure that the
hypotheses of Lemma 4.4 hold for the sequence (8.7), and also to prove (7) of
Proposition 1.6. (3) will be needed to ensure the hypotheses of Lemma 5.4 and (4)
to approximate the elements f (L)

1 , . . . , f
(L)
r ∈ IL to within 2t.

Let z1, . . . , zk be a set of generators of m̄. Since Ā is a local smooth A-algebra,
we may take Ā to be of the form Ā = A[V ]P∩A[V ]

(h) , where V = (V1, . . . , Vs), h =
(h1, . . . , hq) and

det
∣∣∣∣ ∂hi∂Vj

∣∣∣∣
1≤i,j≤q

Ā = Ā.(8.9)

Let vi = σ̄(Vi) (cf. (8.1)). For each i, 1 ≤ i ≤ k, let βi(V ) ∈ A[V ]P∩A[V ] be a
representative of zi. Without loss of generality, we may assume that βi(V ) ∈ A[V ].
Let Ṽ = (Ṽ1, . . . , Ṽs) be an s-tuple of independent variables. For each i, 1 ≤ i ≤ s,
define z̃i := βi(Ṽ ). Let y = {y1, . . . , ya} ⊂ B be a set of generators of P . Let
U = {Uij | 1 ≤ i ≤ a, 1 ≤ j ≤ k}, W = {Wij | 1 ≤ i, j ≤ a}, and X = {Xiα | 1 ≤
i ≤ q, α ∈ Na0 , |α| = t′} be independent variables.

Let Ã1 denote the A-algebra with generators Y , Ṽ , U , W , X , and relations

Qi =
k∑
j=1

Uij z̃j −
a∑
p=1

WipYp, 1 ≤ i ≤ a,

Hi = hi(Ṽ1, . . . , Ṽs) +
∑
|α|=t′

Y αXiα 1 ≤ i ≤ q,
(8.10)

and let Ã := (Ã1)P∩Ã1
. Define the map σ̃ : Ã→ B as follows. For each i, 1 ≤ i ≤ s,

choose an element ṽi ∈ (vi + P t
′
B̂) ∩ B. Put σ̃(Yi) = yi and σ̃(Ṽi) = ṽi. Since

hi(ṽ) ∈ P t′ , σ̃ extends to a homomorphism σ̃ : A[Y,Ṽ ,X]
(H) → B, which agrees with σ̄

mod P t
′
. Finally, m̄B̂ = PB̂ by the choice of Ā, hence (z̃)B̂ = PB̂ by Lemma 5.6

(since (z)B̂ = m̄B̂ = PB̂ and σ̄(zi)− σ̃(z̃i) ∈ P t′B̂). Hence

(z̃)B = P(8.11)

by faithful flatness of B̂ over B. Put σ̃(Wii) = 1. By (8.10)–(8.11), σ̃ can be
extended to a map σ̃ : Ã → B (for example, we may take σ̃(Wij) = 0 for i 6= j).
Let m̃ := P ∩ Ã. By construction,

(Y )Ã ⊂ (z̃)Ã(8.12)

(since one can solve for Y in the system of linear equations Q1, . . . , Qa). On the
other hand, Ã

(Y,z̃)
∼= A[V ]P∩A[V ]

(h,β1(V ),..., βk(V ))
∼= Ā

m̄ which is a field. Thus

(z̃)Ã = (z̃, Y )Ã = m̃.(8.13)

We have

(Y ) ⊂ ∆(Q,H),(W,X);(8.14)

in particular,

(Y ) ⊂ HÃ/A.(8.15)
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On the other hand, after localization at m̃ the equations (8.10) become smooth in
view of (8.9), so that HÃ/A 6⊂ m̃. Together with (8.15) this means that

HÃ/AB = B.(8.16)

Let C ′ = Ã[ũ1,..., ũñ]

Ĩ
be an Ã-algebra. Consider a generalized blowing up πz,Y α :

C ′ → C′
1 of C ′ along m̃, with generators z̃1, . . . , z̃k, {Y α | α ∈ Na0 , |α| = t′}. By

definition, such a blowing up is described by the equations

Ri = ũi − c̃i −
k∑
j=1

z̃j ũ
(1)
ij −

∑
|α|=t′

Y αX
(1)
iα = 0.(8.17)

The key property of this transformation needed below is the fact that the Ri are
linear in X(1) and that

(Y ) ⊂ ∆R,X(1)(8.18)

(immediate from definitions).
Consider the A-subalgebra A[Ṽ1, . . . , Ṽs] ⊂ Ã (using (8.10), the map γ defined

in (8.19) right below and the fact that a 6= 0 by Remark 8.1, it is easy to see that
the Ṽ satisfy no algebraic relations over A in Ã). Define the map

γ : A[Ṽ1, . . . , Ṽs]→ Ā by

γ(Ṽi) = Vi.
(8.19)

The homomorphisms σ̃ and σ̄ ◦ γ agree mod P t
′
. Let Ã0 = A[Ṽ ]

(h(Ṽ ),(z̃)t′ )
, Ā0 = Ā

m̄t′ .

From the equations (8.10), we see that Ã0 is a subalgebra of Ã
m̃t′ and that Ã

m̃t′ is a
free Ã0-module. We have a commutative diagram

Ā0
σ̄⊗ĀĀ0−−−−−→ B

P t′xγ⊗ĀĀ0

xσ̃⊗ÃÃ0

Ã0 −−−−→ Ã
m̃t′

(8.20)

where γ ⊗Ā Ā0 is an isomorphism.

Definition 8.4. Let t be a positive integer. Assume that we are given an Ā-algebra
C1 and an Ã-algebra C̃1, with maps ρ̄1 : C1 → B and ρ̃1 : C̃1 → B. We say that
C̃1 t-approximates C1 if we have a commutative diagram

C1
m̄t

ρ̄1⊗ĀĀ0−−−−−→ B
P txγ1 xρ̃1⊗ÃÃ0

C̃01
ι−−−−→ C̃1

m̃t

(8.21)

compatible with (8.20), where C̃01 is an Ã0-algebra and γ1 is an isomorphism.
Suppose that C̃1 t-approximates C1. We say that a C̃1-module M̃ t-approximates
a C1-module M if there are Ã0-modules M̃0 and M̃1 and homomorphisms M

m̄t

γM←−−
M̃0

ιM−−→ M̃1
∼= M̃0 ⊗C̃01

C̃1
m̃t , compatible with (8.21), where γM is an isomorphism,

ιM identifies M̃0 with M̃0 ⊗C̃01
1, and M̃1 is a direct summand of M̃

m̃t . Suppose M̃
approximates M and let f ∈ M , f̃ ∈ M̃ . We say that f̃ t-approximates f if the
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natural image f̃0 of f̃ in M̃
m̃t lies in ιM (M̃0) and (γM ◦ι−1

M )(f̃0) is the image of f in M
m̄t .

Consider submodules M ′ ⊂ M , M̃ ′ ⊂ M̃ . We say that M̃ ′ t-approximates M ′ (as
submodules of M̃ and M , respectively) if there exist sets of generators (f1, . . . , fr)
of M ′ + m̄tM mod m̄tM and (f̃1, . . . , f̃r) of M̃ ′ + m̃tM̃ mod m̃tM̃ such that f̃j
t-approximates fj , 1 ≤ j ≤ r. A homomorphism φ̃ : M̃ → M̃ ′ of C̃1-modules
t-approximates a homomorphism φ : M →M ′ of C1-modules if M̃ t-approximates
M , M̃ ′ t-approximates M ′, φ̃1(M̃1) ⊂ M̃ ′

1 and φ and φ̃ are compatible with the
maps γM , ιM , γM ′ and ιM ′ .

Lemma 8.5. Let φ̃ : M̃ → M̃ ′ be a surjective homomorphism of C̃1-modules t-
approximating a homomorphism φ : M → M ′ of C1-modules. If f ∈ M, f̃ ′ ∈
M̃ ′ are such that f̃ ′ t-approximates φ(f), then there exists f̃ ∈ φ̃−1(f̃ ′) which t-
approximates f .

Proof. Straightforward diagram chasing.

Lemma 8.6. Let C̃1 be an Ã-algebra essentially of finite type, t′-approximating an
Ā-algebra C1 essentially of finite type.

(1) If ρ1(C1) ⊂ σ̄(Ā) + m̄B, then ρ̃1(C̃1) ⊂ σ̃(Ã) + m̃B.
(2) Let πz : C1 → C2 be a generalized blowing up along m̄ with generators

z1, . . . , zk, as in (4.2), and πz̃,Y α : C̃1 → C̃2 a generalized blowing up along m̃
with generators z̃1, . . . , z̃k, Y α, |α| = t′, as in (8.17). Choose πz and πz̃,Y α in
such a way that for each i, 1 ≤ i ≤ n1, the element c̃i of (8.17) t′-approximates
ci of (4.2) (in this case, we will say that πz̃,Y α t′-approximates πz). Then C̃2

t′-approximates C2.
(3) Let

π′z : Ā[u(1)]→ Ā[u(2)] and

π̃′ : Ã[ũ(1), X(1)]→ Ã[ũ(2), X(2)]
(8.22)

be the maps which induce πz and πz̃,Y α , respectively. If an element f̃ ∈
Ã[ũ(1), X(1)] t′-approximates f ∈ Ā[u(1)], then π̃′(f̃) t′-approximates π′z(f)
(in other words, the relation of t′-approximation is preserved by generalized
blowings up which approximate each other). The same statement is true for
an element of C̃1 t

′-approximating an element of C1, and also an element of
a free C̃1-module M̃ , t′-approximating an element of a free C1-module M , t′-
approximated by M̃ ; ditto for a submodule of M̃ t′-approximating a submodule
of M .

Proof. Immediate from definitions.

Let L and N be as in (8.1) and Properties 8.3. Let (8.7) be a sequence of N +L

generalized blowings up of C ⊗A Ã along m̃, with generators z̃1, . . . , z̃k, {Y α}. In
view of (8.19), the Ã-algebra C ⊗A Ã t′-approximates the Ā-algebra C ⊗A Ā. By
Lemma 8.6 (1) and induction on N + L, we have that ρ̃i(C̃i) ⊂ σ̃(Ã) + m̃B for
all i < N + L, so that such a sequence (8.7) is well defined. Moreover, by Lemma
8.6 (2) and induction on N + L, the sequence (8.7) t′-approximates the sequence
π(N) ◦ π(L) of (8.1).
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Lemma 8.7. Let t ∈ N. Let C1 be an Ā-algebra with m̄ ⊂ Jac(C1) and C̃1 an Ã-
algebra with m̃ ⊂ Jac(C̃1), t-approximating C1. Let M̃ be a finitely generated C̃1-
module t-approximating a finitely generated Ā-module M and J̃ ⊂ M̃ a submodule
t-approximating a submodule J ⊂ M . Assume that M̃1 = M̃

m̃t (in the notation of
Definition 8.4). Let s be a positive integer such that

s < t.(8.23)

If

m̄sM ⊂ J,(8.24)

then m̃sM̃ ⊂ J̃ .

Proof. Let M̃0 be as in Definition 8.4. By definition of approximation, there exist
generators f̃1, . . . , f̃r of J̃

J̃∩m̃tM̃
t-approximating generators f1, . . . , fr of J

J∩m̄tM . By
definition of approximation, f̃j ∈ M̃0. By (8.23)–(8.24), m̄sM

m̄tM ⊂ J
m̄tM . Applying

the isomorphism γM of Definition 8.4, we get (z̃)sM̃0 ⊂ (f̃1, . . . , f̃r)M̃0, so that
(z̃)sM̃

(z̃)tM̃
≡ m̃sM̃

m̃tM̃
⊂ (f̃1, . . . , f̃r) M̃

m̃tM̃
(here we are using that M̃1 = M̃

m̃t , so that M̃
m̃t
∼=

M̃0 ⊗C̃01

C̃1
m̃t ). By (8.23) and Nakayama’s Lemma, m̃sM̃ ⊂ J̃ , as desired.

Next, we apply the results of §5 to (8.7). By Lemma 8.6 (3) and induction on
L, m̃L0HC/A(C̃L0)P∩C̃L0

t′-approximates m̄L0HC/A(CL0)P∩CL0
(as submodules of

(C̃L0)P∩C̃L0
and (CL0)P∩CL0

, respectively). By the choice of L0 and Lemma 8.7,

m̃L0(C̃L0)P∩C̃L0
⊂ m̃HC/A(C̃L0)P∩C̃L0

. Thus the hypotheses of Lemma 5.4 are

satisfied for π̃L0 ◦ · · · ◦ π̃1, and so C̃L is an almost complete intersection at P ∩ C̃L.
Pick and fix a set w1, . . . , wb of generators of HL1

C/A. Write

C̃i =
Ã[ũ(i)

1 , . . . , ũ
(i)
ni , X

(i)]
Ĩi

,(8.25)

where ũ(i)
j t′-approximates u(i)

j , 1 ≤ j ≤ ni. Let ki be the number of the X(i)

variables. Applying Lemma 8.6 (and induction on L) to each wsd̃0(f̄j) ∈ Cn, we
get that its image in C̃nL t

′-approximates its image in CnL. By the choice of L1, this
implies that z̃αd̃0(f̄j) ∈ C̃nL, where |α| = L, t′-approximates zαd̃0(f̄j) ∈ CnL. Hence
d̃L((π̃(L))∗f̄j) ∈ C̃nL+kL

L t′-approximates dL((π(L))∗f̄j) ∈ C̄nL

L (note that mod m̃t′

the last kL components of d̃L((π̃(L))∗f̄j) in C̃nL+kL

L are 0). Moreover, this property
does not change after multiplying, respectively, by an element y ∈ C̄L \ (P ∩ C̄L)
and ỹ ∈ C̃L \ (P ∩ C̃L), t′-approximating y. By condition (4) in the definition
of t′, d̃L((π̃(L))∗f̄j) as an element of d̃L

(
ĨL

Ĩ2L

)
(2t)-approximates dL((π(L))∗f̄j)

as an element of dL
(
IL

I2L

)
. By Lemma 8.5, applied to the C̃L-module homo-

morphism ĨL

Ĩ2L
→ d̃L

(
ĨL

Ĩ2L

)
, (2t)-approximating the CL-module homomorphism

IL

I2L
→ dL

(
IL

I2L

)
, the inverse image ˜̄f (L)

j of d̃L((π̃(L))∗f̄j) in ĨL

Ĩ2L
can be chosen to

(2t)-approximate f̄ (L)
j ∈ IL

I2L
. Next, apply Lemma 8.5 to the C̃L-module homo-

morphism ĨL → ĨL

Ĩ2L
, (2t)-approximating the CL-module homomorphism IL → IL

I2L
.

By Lemma 8.5, the elements f̃ (L)
1 , . . . , f̃

(L)
r ∈ ĨL of Lemma 5.5 can be chosen
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to (2t)-approximate f (L)
1 , . . . , f

(L)
r ∈ IL of (8.1). Hence f̃ (N+L)

1 , . . . , f̃
(N+L)
r (2t)-

approximate f (N+L)
1 , . . . , f

(N+L)
r . By (8.3) and Lemma 8.7 (applied to B viewed

both as an Ā-algebra and an Ã-algebra), m̃NBr ⊂ J(f̃ (L)). Also, I(f̃ (L)) (2t)-
approximates I(f (L)). By (8.5) and Lemma 8.7,

m̃2N ⊂ I(f̃ (N+L)).(8.26)

Thus, the hypotheses of Lemma 4.4 hold for C̃L+N , including (4.16). Applying
Lemma 4.4, we get a diagram (1.7), satisfying (1)–(5) and (7)–(8) of Proposition
1.6. It remains to prove (6) of Proposition 1.6. This is given by the following
lemma.

Since I(f̃ (N+L)) (2t)-approximates I(f (N+L)), they have the same minimal num-
ber of generators in view of (8.5) and Nakayama’s Lemma. Let ã1, . . . , ãl be genera-
tors of I(f̃ (N+L)), (2t)-approximating a1, . . . , al of (8.4). View f̃ (N+L) as a column
r-vector and write f̃ (N+L) =

∑l
i=1 ãig̃i, gi ∈ Ã[ũ(N+L), X(N+L)]. Let KÃ (resp.

KB) denote the kernel of the map Ãl → Ãr (resp. Bl → Br) given by the matrix
(ã1, . . . , ãl). Let KĀ (resp. KB̂) be the kernel of the map Āl → Ār (resp. B̂l → B̂r)
given by (a1, . . . , al). Let g̃i denote the image of g̃i in B and let g̃ be the column
l-vector with entries gj . By construction, g̃ ∈ KB.

Lemma 8.8. We have KB = KÃB
l. In particular, g̃ ∈ KÃB

l.

Proof. Of course, KÃB
l ⊂ KB. It remains to prove the opposite inclusion. Since

σ̄(ai)− σ̃(ãi) ∈ P 2tB̂r and since P tB̂r ⊂ I(f̃ (N+L))Br by (8.11), (8.13), (8.26) and
the choice of t, there exists an l× l invertible matrix U with entries in B̂ such that

(σ′(a1), . . . , σ′(al))U = (σ̃(ã1), . . . , σ̃(ãl)).(8.27)

Moreover, we may take U congruent to the identity matrix mod P t. (8.27) implies
that KĀB̂

l + P tB̂l = KÃB̂
l + P tB̂l and that KBB̂

l ⊂ KB̂ + P tB̂l. Since B̂ is flat
over Ā, KĀB̂

l = KB̂. We obtain

KBB̂
l ⊂ KĀB̂

l + P tB̂l = KÃB̂
l + P tB̂l.(8.28)

Since KÃB̂
l ⊂ KBB̂

l, (8.28) implies that

KBB̂
l ⊂ KÃB̂

l + (P tB̂l ∩KBB̂
l).(8.29)

Since KBB̂
l and KB̂ are isomorphic as B̂-modules (by (8.27)) and by the choice of

t, we have (P tB̂l)∩ (KBB̂
l) ⊂ PKBB̂

l. Together with (8.29) this implies KBB̂
l ⊂

KÃB̂
l +PKBB̂

l, so KBB̂
l = KÃB̂

l by Nakayama’s lemma. Since the map B → B̂

is faithfully flat, this implies KB = KÃB
l, as desired. This completes the proof of

Lemma 8.8 and Proposition 8.2.

Remark 8.9. Let Ã1 be as in (8.10). By definitions, the sequence (8.7) is actually
defined over Ã1. Multiplying all the f̃ (N+L)

j and the ãi by an element of Ã1\(P∩Ã1)
does not affect the proof or the result. Hence the diagram (1.7) of Proposition 8.2
descends to a diagram of Ã1-algebras, satisfying (1)–(8) of Proposition 1.6.
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§9. Smoothing of ring homomorphisms

In this section we prove

Proposition 9.1. Let the notation be as in Theorem 1.5. Then there exists a
commutative diagram (1.7) satisfying (1)–(8) of Proposition 1.6.

This will complete the proof of Theorem 1.5 and (1.3).

Proof of Proposition 9.1. By Proposition 8.2 and Remark 8.9, we have a diagram
(1.7) of Ã1-algebras, with B replaced by BP . In order to descend from BP to B, we
need the following delocalization lemma. Let Y = (Y1, . . . , Ya), U = (U1, . . . , Us)
and X = (X1, . . . , Xp) be sets of independent variables, Fj ∈ C[Y, U,X ], and
F = (F1, . . . , Fq).

Lemma 9.2. Consider a commutative diagram

A

��

σ // B
β

// BP

C[Y ] //

ρY

99
r
r
r
r
r
r
r
r
r
r
r
r

C̃ = C[Y,U,X]
(F )

ρ̃

99
s
s
s
s
s
s
s
s
s
s

(9.1)

where (ρY (Y1), . . . , ρY (Ya)) = P . Assume that the Fi are linear in X, that the
coefficients of the Xj in Fi do not depend on U and that

(Y )C̃ ⊂
√

∆F,XC̃.(9.2)

Let E be an independent variable and let U∗
j = EUj. For a positive integer L, put

X∗
i (L) = ELXi. Let F ∗

i (L) = ELFi, where we view F ∗
i (L) as a polynomial in U∗,

X∗(L) and E over C[Y ]. Let C∗(L) := C[Y,U∗,X∗(L),E]
(F∗(L)) ; we have the obvious map

δ : C∗(L)→ C̃[E]. Then:
(1) C∗(L)E ∼= C̃[E]E.
(2) (Y )C∗(L) ⊂ HC∗(L)/C.
(3) For L sufficiently large, there exists a map ρ∗ : C∗(L) → B, compatible with

(9.1), such that e := ρ∗(E) /∈ P .

Proof. (1) is obvious. Since the relations F are linear in X , we have ∆F,X ≡
∆F∗,X∗(L) viewed as ideals in C[Y ]. Since (Y )C̃ ⊂

√
∆F,XC̃, we have (Y )C∗(L) ⊂√

∆F∗(L),X∗(L)C∗(L) ⊂ HC∗(L)/C ; this proves (2). To prove (3), choose e ∈ B \ P
such that β(e)ρ̃(U), β(e)ρ̃(X) ⊂ β(B) and

eKer β = 0.(9.3)

For each L ∈ N, pick u∗i , x
∗
j (L) ∈ B, 1 ≤ i ≤ s, 1 ≤ j ≤ p, such that β(u∗i ) =

β(e)ρ̃(Ui) and β(x∗j (L)) = β(e)Lρ̃(Xj). (9.3) implies that

ex∗j (L − 1) = x∗j (L)(9.4)

for all L ≥ 2 and 1 ≤ j ≤ p. Let γi denote the degree of Fi viewed as a polynomial
in U , 1 ≤ i ≤ q. Take L ∈ N such that L ≥ 2 and L > γi for 1 ≤ i ≤ q.
Define the map ρ∗ : C∗(L) → B by setting ρ∗(E) = e, ρ∗(U∗

i ) = u∗i , ρ
∗(X∗

j (L)) =
x∗j (L). We have β(F ∗

i (L − 1)(u∗, x∗(L − 1))) = β(eL−1)Fi(ρ̃(U), ρ̃(X)) = 0, so
that F ∗

i (L − 1)(u∗, x∗(L − 1))) ∈ Ker β. Then, using (9.4), F ∗
i (L)(u∗, x∗(L))) =
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eF ∗
i (L − 1)(u∗, x∗(L − 1))) ∈ e Ker β = (0). This shows that ρ∗ : C∗(L) → B is

well defined. Lemma 9.2 is proved.

Remark 9.3. If A is reduced, the above argument can be modified so that e is not
a zero divisor in B. This will be important in §10 where we investigate injectivity
of the map ψ : D → B. Indeed, suppose A is reduced. Then so is B. Let Q be
the intersection of the minimal primes of B contained in P . Then Q = Ker β. Let

P1, . . . , Ph be the minimal primes of B not contained in P and let R =
h⋂
i=1

Pi (if

h = 0, we adopt the convention R = B). Then R = Ann(Ker β). In the proof

of Lemma 9.2, we chose e ∈ R \ P . Since Q 6⊂ Pi for 1 ≤ i ≤ h, Q 6⊂
h⋃
i=1

Pi for

1 ≤ i ≤ h. Hence there exists b ∈ Q such that b /∈ Pi for 1 ≤ i ≤ h. Replacing e by
e + b, we may assume that e is not a zero divisor and that eN Ker β ⊂ QN ⊂ PN

for all N ∈ N. Since (Y ) ⊂√∆F,X , there exists N ∈ N such that

PNBq ≡ (Y )NBq ⊂
(
∂F

∂X1
, . . . ,

∂F

∂Xp

)
(9.5)

(where we view the ∂F
∂Xp

as q-vectors). Choosing L > γi+N in the proof of Lemma
8.2, we get a map C∗ → B

PN compatible with (9.1). Using (9.5) and the fact that
the Fi are linear in the Xj, we lift this map to ρ∗ : C∗ → B as desired.

We come back to the proof of Proposition 9.1. First, note that the only require-
ment on the elements y1, . . . , ya ∈ BP in the proof of Proposition 8.2 was that they
generate PBP . Thus, without loss of generality, we may assume that y1, . . . , ya ∈ B
and that (y1, . . . , ya)B = P . Let the notation be as in (8.10), (8.17) and (8.25).
Write C̃N+L = C[Y,Ṽ ,U,W,X,X(1),..., X(N+L),ũ]

(Q,H,R) . Let X̄ = (X(1), . . . , X(N+L)). Let

(W,X, X̄) play the role of X and (U, Ṽ ) the role of U in Lemma 9.2. (8.14) and
(8.18) imply that the hypothesis (9.2) of Lemma 9.2 is satisfied. By Lemma 9.2, we
obtain a C[Y ]-algebra C∗

N+L = C[Y,V ∗,U∗,W∗,X∗,X̄∗,u∗,E]
(Q∗,H∗,R∗) together with homomor-

phism δ : C∗
N+L → C̃N+L[E], which becomes an isomorphism after localization by

E. Let A∗ = A[Y,V ∗,U∗,W∗,X∗,E]
(Q∗,H∗) . The algebra A∗ is nothing but the result of the

application of Lemma 9.2 to the A-algebra homomorphism A[Y ] → A[Y,Ṽ ,U,W,X]
(Q,H) .

In paritcular, we have a map α : A∗ → Ã1 which induces an isomorphism

A∗E ∼= Ã1[E]E ; moreover,(9.6)

(Y )A∗ ⊂ HA∗/A.(9.7)

Next, we delocalize the sequence C̃0
g̃−→ C̃

λ̃−→ C̃N+L. Namely, choose a positive
integer S sufficiently large so that there exist a∗i ∈ A∗r and g∗i ∈ A∗[u∗, X̄∗] such
that α(a∗i ) = ES ãi, δ(g∗i ) = ES g̃i and

∑l
i=1 a

∗
i g
∗
i = 0 in C∗

N+L. Let g∗ denote the
column l-vector whose ith entry is the image of g̃i in B, multiplied by eS . Since the
matrices (a∗1, . . . , a

∗
l ) and (ã1, . . . , ãl) differ by a factor of the form ET , T ∈ N0,

we have KA∗B
l
P = KÃB

l
P . By Lemma 8.8, g̃ ∈ KÃB

l
P . Hence by choosing S

sufficiently large, we can ensure that

g∗ ∈ KA∗B.(9.8)
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Put G∗
i := ESG̃i, C∗

0 := A∗[G∗]
(∑l

i=1 a
∗
iG

∗
i )

and C∗ := A∗[u∗,X∗]
(∑l

i=1 a
∗
i g
∗
i )

. We have the obvious

maps : C∗
0

g∗−→ C∗ λ∗−→ C∗
N+L. We claim that the resulting diagram (1.7) satisfies

(1)–(8) of Proposition 1.6. Indeed, (1) follows from (9.7). (2) holds because Yi ∈ m∗,
by definition of Y . (3) is given by (9.7), Lemma 9.2 (2), the definition of Y and
the transitivity and base change properties of smoothness. (5) is trivial and (6)
is nothing but (9.8). Finally, (4), (7) and (8) are statements about localizations
C∗
P∩C∗ and A∗m∗ and hence follow from Lemma 9.2 (1), (9.6) and the corresponding

properties of the diagram given by Proposition 8.2. This completes the proof of
Proposition 9.1 and with it Theorems 1.5 and 1.2.

§10. Smoothing in the category of subalgebras

In this section we give an affirmative answer to Problem 1.3 when A is reduced
and B

Q has infinite transcendence degree over κ(A ∩ Q) for any minimal prime
Q of B. We give two counterexamples. The first shows that the hypothesis of
infinite transcendence degree is necessary. The second shows that the hypothesis
that A is reduced is necessary for the existence of (1.2) such that ψ is injective and
HC/AB ⊂

√
HD/CB.

Theorem 10.1. Assume that one of the following holds.
(1) dim A = dim B = 0.
(2) A is reduced and for each minimal prime Q of B, there exist infinitely many

elements T1, . . . , Tn, . . . in B
Q , algebraically independent over κ(A ∩Q).

Consider a diagram (1.1) with ρ injective. Then there exists a diagram (1.2) such
that ψ is injective and HC/AB ⊂

√
HD/CB.

Remark 10.2. There are two special cases in which the hypotheses of (2) are sat-
isfied. One is when B = A[[x1, . . . , xn]], with xi independent variables, the other
when A is essentially of finite type over a field k or Z and B is the completion with
respect to a non-zero ideal I ⊂ A. To see this in the first case, let A0 be the subring
of A generated by 1. Then A0[[x1, . . . , xn]] has cardinality continuum, hence has
uncountable transcendence degree over A0. Since A0[[x1, . . . , xn]]⊗A0A ⊂ B, B has
uncountable transcendence degree over A. The proof in the second case is similar,
except we let A0 be an essentially finite type algebra over a countable subfield k0

of k, satisfying A = A0⊗k0 k. This raises the question, suggested by B. Teissier, of
describing B explicitly as a direct limit of its smooth subalgebras of finite type.

Proof of Theorem 10.1. Case (1). Since both A and B can be written as direct
products of local artinian rings, it is sufficient to consider the case when B is local.
Then B is a complete local ring and Theorem 10.1 follows from Theorem 7.10, since,
in this case, the algebra A∗ of Theorem 7.10 is isomorphic to B and is a filtered
inductive limit of smooth local A-subalgebras of B, essentially of finite type over a
polynomial ring over A.

Case (2). Let the notation be as in Theorem 1.5. We wish to prove that if ρ is
injective, we may choose D to be a subalgebra of B in Theorem 1.5. The idea is
that in §§9–10 D is obtained from C by a composition of two kinds of operations:
adjoining algebraically independent elements and taking a finitely generated algebra
defined by linear (not necessarily homogeneous) equations. Since A is reduced, so
are B and C. Let P1, . . . , Pk denote the minimal primes of B. Let Qi := Pi ∩ C.
Renumbering the Pi, we may assume that Q1, . . . , Qh are the minimal elements
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among the Q1, . . . , Qk, h ≤ k. Then (0) =
h⋂
i=1

Qi, so that Q1, . . . , Qh are precisely

the minimal primes of C. Let K denote the total ring of fractions of C; K is a
direct product of fields.

First, suppose P is a minimal prime of B. Since C is reduced, it is non-singular
at its generic points. In this case, P ∩A is a minimal prime of A, and κ(P ) is smooth
(i.e. separable) over κ(P ∩A). Hence κ(P ∩C) is also separable over κ(P ∩ A). If
P ∩ C were a minimal prime of C, this would mean that C is smooth over A at
P ∩C, which contradicts the fact that HC/A ⊂ P ∩C. Thus P ∩C is not a minimal
prime of C. In the above notation, we may take P = Pk and h < k. Pick an element

t ∈
k−1⋂
i=1

Pi such that t is algebraically independent over C mod P . Let x1, . . . , xl

be a set of generators of the ideal P ∩C. Let T be an independent variable and let
D := C[T ]

(x1T ,..., xlT ) . Define ψ : D → B by ψ(T ) = t. The algebraic independence of t
mod P implies that ψ is injective. We have

√
HC/AD ⊂ (P ∩C)D = HD/C . Since

DP∩D ∼= CP∩C

(x)CP∩C
(T ) = CP∩C

(P∩C)CP∩C
(T ) = κ(P ∩ C)(T ), and since κ(P ∩ C) ⊂ κ(P )

are separable over κ(P ∩ A), we have HD/A 6⊂ P ∩D. Replace C by D. Iterating
this procedure finitely many times, we may assume that HC/A is not contained in
any minimal prime of B (hence also in no minimal prime of C).

Lemma 10.3. Under the assumptions of Theorem 10.1 (2), consider a commuta-
tive diagram

A
σ //

τ

��

B

C

ρ
>>
|
|
|
|
|
|
|
| α // C∗

ρ∗

OO

where C∗ = C[U1,..., Us]
(F1,..., Fq) and the Fi are linear in U1, . . . , Us. Let P be a non-minimal

prime ideal of B, such that P ∩ C is not a minimal prime of C, and let t ∈ N.
Assume that ρ is injective. Then there exists an ideal J , contained in the C-torsion
submodule of C∗, and an injective homomorphism ρ1 : C

∗
J → B such that, letting

π denote the natural map C∗ → C∗
J , we have

(1) ρ = ρ1 ◦ π ◦ α.
(2) ρ∗(Ui)− ρ1(Ui) ∈ P t for 1 ≤ i ≤ s.

Furthermore, HC∗/C ⊂
√
AnnC∗J .

Proof. Write Fi =
s∑
j=1

bijUj − bi0. Consider the linear map b : Ks → Kq given

by the q × s matrix bij , j 6= 0. For 1 ≤ j ≤ h, let Kj = κ(Qj). Let rj =
rk(bil)1≤i≤q

1≤l≤s
mod Qj. Let ρ∗j denote the map C∗ ⊗C Kj → B ⊗C Kj induced by

ρ∗. Let bB denote the map Ks ⊗C B → Kq ⊗C B induced by b. We will show that
there exists v = (v1, . . . , vs) ∈ (Ker bB) ∩ P tBs such that

tr. deg(Kj [ρ∗j (U1) + v1, . . . , ρ
∗
j (Us) + vs]/Kj) = s− rj

for 1 ≤ j ≤ h. We construct (v1, . . . , vs) as follows. By definition of rj , there exists
a subset Sj ⊂ {1, . . . , s}, of cardinality s − rj , such that, fixing s − rj arbitrary

elements v(j)
i ∈ B, i ∈ Sj , the system of equations

s∑
m=1

bmv
(j)
m = 0 in the unknowns
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v
(j)
m , m /∈ Sj has a unique solution in B ⊗C Kj . Choose v(j)

i ∈ B, i ∈ Sj , such
that the extension of Kj which they generate in B⊗CKj has transcendence degree

s− rj over ρ∗j (C
∗ ⊗Kj). For i /∈ Sj , let v(j)

i be defined by
s∑
i=1

biv
(j)
i = 0. Let v(j)

denote the s-vector whose ith entry is v(j)
i . Multiplying v(j) by a suitable element

of C, we may assume that v(j)
i ∈ B for all i, 1 ≤ i ≤ s. For each j, 1 ≤ j ≤ h, pick

an element xj ∈ (P t∩C)∩ (
⋂

1≤i≤h
i6=j

Qi \Qj). Define v =
h∑
j=1

xjv
(j) ∈ Ker bB ∩P tBs.

Define ρ1 : C∗ → B by ρ1(Ui) = ρ∗(Ui) + vi. For each 1 ≤ j ≤ h, the map
ρ1j : C∗ ⊗C Kj → B ⊗C Kj, induced by ρ1, is injective. Let J = Ker ρ1. Then
AnnCJ is not contained in any minimal prime of C, i.e. J is contained in the
C-torsion submodule of C∗. Take a prime ideal Q ⊂ C∗ such that HC∗/C 6⊂ Q.
Then C∗

Q is smooth over C, hence has no C-torsion. Therefore J is annihilated by
some element of C∗ \Q, i.e. AnnC∗J 6⊂ Q. This proves that HC∗/C ⊂

√
AnnC∗J .

Lemma 10.3 is proved.

We go through the proof of Theorem 1.2 step by step and study the injectivity of
all the maps to B which appear along the way. Let C = A[u1,..., un]

I be a presentation
of C. Consider a diagram (1.1). The first step is to replace C by the symmetric
algebra S = SC( II2 ) (Lemma 5.2). By Lemma 10.3 there exists an ideal J contained
in the C-torsion submodule of S and an injective map S

J → B compatible with ρ.
Let S̃ = S

J . By Elkik’s Lemma (Lemma 5.2), S has a presentation such that the
conormal bundle is globally trivial above the smooth locus of S. Since

HC/AS ⊂ HS/C ⊂
√
AnnSJ,(10.1)

S and S̃ are isomorphic above the smooth locus of S over C and HC/AS̃ ⊂ HS̃/C .
Then HC/AS̃ ⊂ HS̃/A by transitivity of smoothness. If HS̃/AB 6⊂ P , we may take
D = S̃ and there is nothing more to do. Assume that HS̃/AB ⊂ P ; then P is
a minimal prime of HS̃/AB. Hence we may replace S by S̃ in all the subsequent
arguments (note: we are not claiming that the conormal bundle of S̃ is free over
the smooth locus of S̃; however, by (10.1), it is free away from the locus defined
by the ideal H := HC/AS̃, which has the property that

√
HBP = P—this is what

we actually used in the proof of Theorem 1.2). From now on assume that I
I2 is

globally free away from the locus defined by an ideal H , such that
√
HBP = P .

By Propositions 9.1 and 1.6 (and by the proof of Proposition 9.1), there exists a
commutative diagram

A

��

σ // B

C // C[Y ]

ρy

OO

// C[Y, Ṽ , E]

ρv

eeK
K
K
K
K
K
K
K
K
K

ι // C∗
N+L

ρ∗N+L

jjUUUUUUUUUUUUUUUUUUUUUUU
φ∗

// D

kkXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

(10.2)

such that C[Y, Ṽ , E] is pure transcendental over C (in particular, C[Y, Ṽ , E] is
defined by zero linear equations over C[Y ]), C∗

N+L is defined by linear equations



A NEW PROOF OF D. POPESCU’S THEOREM 433

over C[Y, Ṽ , E], D by linear equations over C∗
N+L,

(Y ) ⊂ HC∗N+L/C[Y,Ṽ ,E],(10.3)

(Y ) ⊂ HD/C∗N+L
and(10.4)

HD/AB 6⊂ P.(10.5)

We want to show that D can be chosen so that the map D → B is injective.
First, we show that the map ρy : C[Y ] → B can be chosen to be injective. In
other words, we have to show that there exists a set (y1, . . . , ya) of generators of
P algebraically independent over C. Take a set (y1, . . . , ya) of generators of P .
Suppose tr. deg(C[y])/C) = b < a. Say, y1, . . . , yb are algebraically independent
over C and yb+1, . . . , ya are algebraic over C[y1, . . . , yb]. For each i, 1 ≤ i ≤ h, take
an element xi ∈ B, transcendental over C[y] mod Pi. It is easy to construct a C[y]-
linear combination x of the xi, which is transcendental over C[y] mod Pi for each

i, 1 ≤ i ≤ h. If b = 0, pick w ∈ (P \ (
h⋃
i=1

Pi)) ∩ ρ(C) and define ya+1 := wx; then

ya+1 ∈ P is transcendental over C. Next, assume b ≥ 1. Let y′b+1 := yb+1 + xy1.
Replacing yb+1 by y′b+1, we increase tr. deg(C[y]/C) by 1. By induction on b, there
exists a choice of generators (y1, . . . , ya) which are algebraically independent over
C. That is, we may assume that ρy is injective. Applying Lemma 10.2 successively
to the homomorphisms C[Y ] → C[Y, Ṽ , E], ρv(C[Y, Ṽ , E]) → C∗N+L

(Ker ρv)C∗N+L
and

ρ∗N+L(C∗
N+L)→ D

(Ker ρ∗N+L)D , we get a commutative diagram

A −−−−→ By ψ

x
C −−−−→ D

Let J = Ker ψ. Using (10.3)–(10.4), the fact that smoothness is preserved by base
change and the last statement of Lemma 10.3, we have

(Y )D ⊂ HD/C and(10.6)

(Y )D ⊂
√
AnnDJ.(10.7)

Let D1 := D
J . By (10.6) and (10.7),

(Y )D1 ⊂ HD1/C .(10.8)

Let R1, . . . , Rl denote the minimal primes of A, contained in P . Then R1Am, . . . ,
RlAm are precisely the minimal primes of Am. By regularity of σ, R1BP , . . . , RlBP
are precisely the minimal primes of BP . Similarly, since DP∩D is smooth over A,
R1DP∩D, . . . , RlDP∩D are the minimal primes of DP∩D. Since (y)B = P is not
a minimal prime of B, ρy(Y ) 6⊂ RiBP for any i. Then (Y )DP∩D 6⊂ RiDP∩D for
any i, 1 ≤ i ≤ l. Since (Y )DP∩D is not contained in any minimal prime of DP∩D,
(10.7) implies that JDP∩D = 0. Hence DP∩D = (D1)P∩D1 so HD1/AB 6⊂ P by
(10.5) and Lemma 10.3 (2). We have constructed a C-algebra D1 together with
an injective map ψ1 : D1 → B, such that

√
HC/AB ⊂ HD1/CB (cf. (10.8)) and

HD1/AB 6⊂ P (hence
√
HC/AB $ HD1/AB), as desired.

The next example shows that Theorem 10.1 may fail if A is not reduced.
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Example 10.4. Let k be a field and let A := k[x,y,z](x,y,z)

(x2,xy,xz) . Let B := A[[T ]]. Let

C := A[u]
(xu) and define the map ρ : C → B by ρ(u) = yT . We want to show

that there does not exist a commutative diagram (1.2) such that ψ is injective
and (x, y, z)B ⊂ √

HD/CB. Suppose such a diagram (1.2) exists. Since xu =
0 in D and since AnnDx = (AnnAx)D by flatness, we have φ(u) ∈ (x, y, z)D.
Write φ(u) = xv1 + yv2 + znv3 in D, where either v3 /∈ (x, y, z)D or v3 = 0.
We have ψ(xv1) ∈ (y, z)B ∩ (x)B = ((y, z) ∩ (x))B = (0), so xv1 = 0 in D by
the injectivity of ψ. Hence φ(u) = yv2 + znv3. We claim that v3 = 0. Indeed,
we have yT = yψ(v2) + znψ(v3). Hence znψ(v3) ∈ (y)B ∩ (zn)B = (yzn)B,
so that ψ(v3) ∈ (x, y)B. Then ψ(xv3) = xψ(v3) = 0, so xv3 = 0 and hence
v3 ∈ (x, y, z)D, which implies v3 = 0. We have shown that φ(u) ∈ (y)D. Therefore
for any prime P ⊂ D with HD/C 6⊂ P , we have u ∈ (y)CP∩C , which implies that

AnnC
(u,y)
(y) 6⊂ P ∩ C. This means that HD/C ⊂

√
(AnnC

(u,y)
(y) )D =

√
(x, y)D, so

that
√
HD/CB ⊂ (x, y)B, which contradicts (x, y, z)B ⊂√HD/CB.

The next example shows that if B does not have infinite transcendence degree
over A, then Theorem 10.1 may fail, even when A is regular. First, consider the
analogous question for modules in Lazard’s theorem. By an argument similar to
that of Lemma 10.3, one shows that for a reduced ring A, a flat module M which
has infinite rank over the residue field at every minimal prime of A, is an inductive
limit of free finitely generated A-submodules. We give an example showing that this
is not so without the infinite rank assumption. We then use it to give an example
of a regular homomorphism of noetherian rings σ : A → B such that B is not a
direct limit of smooth A-subalgebras of finite type.

Example 10.5. Let k0 be a field and aij , bij , cij , j ∈ N, 1 ≤ i ≤ 3, independent
variables. Let k be the pure transcendental extension of k0 with the generators
aij , bij , cij , j ∈ N, 1 ≤ i ≤ 3. Let A := k[x, y, z](x,y,z), with x, y z independent
variables. We define the following inductive system:

M1
φ1−→M2

φ2−→ . . .
φn−1−−−→Mn

φn−→ · · ·(10.9)

of free finitely generated A-modules. Put Mi = A3 for all i ∈ N. Let fi, gi, hi
denote the generators of Mi. Let

lij := aijx+ bijy + cijz,(10.10)

1 ≤ i ≤ 3, j ∈ N. Define the homomorphism φi by φi(fi) = l1ifi+1 + l2igi+1,
φi(gi) = −l3ifi+1+l2ihi+1, φi(hi) = −l3igi+1−l1ihi+1 for i ∈ N. Let M := lim

i→∞
Mi.

M is an inductive limit of free A-modules, hence flat. We want to show that M
is not an inductive limit of free finitely generated A-submodules. Suppose the
contrary. Since rk M = 2, any free submodule of M can have rank at most 2.
Hence there exists a constant n ∈ N such that, in the notation of (10.9), M is also
the limit of the inductive system

M1
ψ−→ A2 λ−→Mn+1 → A2 →M2n+1 → · · · .(10.11)

Represent ψ and λ, respectively, by a 2 × 3 and a 3 × 2 matrix with entries in A;
denote these matrices by Ψ and Λ. Similarly, represent each φi by a 3 × 3 matrix
Φi with entries in A. By construction, ΛΨ = ΦnΦn−1 · · ·Φ1. Consider the 2 × 2
submatrix Φ of (ΦnΦn−1 · · ·Φ1), obtained by deleting the third row and the third
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column of (ΦnΦn−1 · · ·Φ1). To get a contradiction, it remains to prove that Φ
is not a product of two non-invertible 2 × 2 matrices with entries in A (we may
assume that the first matrix is not invertible because Im(ΛΨ) is not contained in
ΛΨ(Af1 +Ag1), and the second because Im(ΛΨ) is not contained in a submodule
of the form A(f2 + bh2) + A(g2 + ch2)). It is sufficient to prove that det Φ is
an irreducible polynomial in k[x, y, z]. The polynomial det Φ is homogeneous in
x, y and z of degree 2n. Moreover, the coefficients of det Φ are homogeneous
polynomials in aij , bij and cij of degree 2n, quadratic in the variables aij , bij , cij
for each fixed j. For each i ∈ N, let ki denote the pure transcendental extension of
k0 generated by x, y, z, alj , blj , clj , where j ∈ N, j 6= i and 1 ≤ l ≤ 3.

Lemma 10.6. The polynomial det Φ, viewed as a polynomial over ki, is an irre-
ducible quadratic form in the nine variables aji, bji, cji, 1 ≤ j ≤ 3.

Proof. The polynomial detΦ is a quadratic form over ki in aji, bji, cji, 1 ≤ j ≤ 3.
Let Φ̄1 denote the 3 × 2 matrix given by the first two columns of Φ1 and Φ̄n the
2× 3 matrix given by the first two rows of Φn.

Lemma 10.7. Let 2 < i < n − 1. Write Φ̄nΦn−1 · · ·Φi+1 =
(
φ11 φ12 φ13

φ21 φ22 φ23

)
,

Φi−1 · · ·Φ2Φ̄1 =

ψ11 ψ12

ψ21 ψ22

ψ31 ψ32

. Then φlj, ψlj, ali, bli, cli, x, y, z are all alge-

braically independent over k0.

Proof. Since each matrix Φt involves a different set of variables alt, blt, clt, it is
sufficient to prove that each of the sets {φlj} and {ψlj} separately is algebraically
independent over k0(x, y, z). This is proved by straightforward induction on n − i
and i, respectively.

We have

Φ =
(
φ11 φ12 φ13

φ21 φ22 φ23

)l1i −l3i 0
l2i 0 −l3i
0 l2i −l1i

ψ11 ψ12

ψ21 ψ22

ψ31 ψ32

 .(10.12)

Lemma 10.6 follows by a direct calculation.

By Lemma 10.6, if detΦ = fg is a factorization of detΦ, then for each i, 1 ≤ i ≤
n, either f or g is independent of ali, bli, cli. In other words, there is a partition
{1, . . . , n} = Λf

∐
Λg, such that f depends only on x, y, z and ali, bli, cli for i ∈ Λf

(and is a quadratic form in these nine variables for each fixed i) and similarly for g.

Say, 1 ∈ Λf . Let Φ̃ := Φ̄nΦn−1 · · ·Φ2, and write Φ̃ =
(
α β γ
δ ε χ

)
. By definition,

Φ̄1 =

l11 −l31
l21 0
0 l21

. Hence Φ =
(
αl11 + βl21 −αl31 + γl21
εl21 + δl11 −δl31 + χl21

)
. Viewing detΦ as a

polynomial in ai1, bi1 and ci1 over k1[x, y, z], the coefficient of a21a31 is x2(αε−βδ).
By induction on n, αε − βδ is an irreducible polynomial in k[x, y, z]. By (10.12)
and Lemma 10.7, detΦ is not divisible by x, hence g is not divisible by x. Thus
g = αε − βδ and f depends only on ai1, bi1, ci1 and x, y, z. By symmetry we can
make the same argument for n instead of 1. This proves that g depends only on
ain, bin, cin and x, y, z. Then n = 2, in which case detΦ is clearly irreducible.
This proves that M is not a direct limit of its free finitely generated submodules.
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Remark 10.8. In Example 10.5, rk M = 2. Since A is a UFD, any flat rank 1
A-module is a direct limit of free finitely generated submodules. However, there
exists a normal local ring A which is not a UFD, and an A-module M of rank 1,
which is not a direct limit of free A-submodules. Namely, let k0 be a field. Let
x, y, z be independent variables. Consider an infinite number of variables aj , bj
and cj , j ∈ N. For each j, let rj and sj denote the roots of the quadratic equation
(ajX + bj)2 − c2jX = 0. Let k denote the extension of k0 generated by aj , bj, cj ,

rj , sj , j ∈ N. Let A := k[x,y,z](x,y,z)

(z2−xy) . We define the following inductive system:

M1
φ1−→M2

φ2−→ · · · φn−1−−−→Mn
φn−→ · · ·

of free finitely generated A-modules. Put Mi := A2 for all i ∈ N. Let fi, gi denote
the generators of Mi. Let l1j = ajx+ bjy+ cjz, l2j = aj(x− rjy), l3j = aj(x−sjy),
l4j := ajx+bjy−cjz. Define φi by φi(fi) = l1ifi+1+l2igi+1, φi(gi) = l3ifi+1+l4igi+1

for i ∈ N. Let M := lim
i→∞

Mi. The module M is an inductive limit of free modules,
hence flat. Since l1il4i = l2il3i by construction, we have rk M = 1. To prove that
M is not a direct limit of free submodules, represent the homomorphisms φi by
2×2 matrices Φi. If M is a direct limit of free submodules, these submodules must
necessarily be of rank 1. Then for some n we can write Φn · · ·Φ1 = ΛΨ, where Λ
and Ψ are a column 2-vector and a row 2-vector, respectively. Let φ denote the left
uppermost entry of the matrix Φn · · ·Φ1. It is sufficient to prove that φ cannot be
written as a product of two elements of A in a non-trivial way. Suppose φ = fg.
Since, for each i ∈ {1, . . . , n}, φ is a linear homogeneous polynomial in aj , bj , cj ,
rj , sj , there exists a partition {1, . . . , n} = Λf

∐
Λg such that f depends only on

x, y, z and aj , bj, cj , rj , sj for j ∈ Λf and similarly for g. Then one uses induction
on n to show that #Λf ,#Λg ≤ 1, which easily leads to a contradiction.

Next we show how Example 10.5 and the example of Remark 10.8 can be used
to construct regular homomorphisms σ : A→ B such that B is not a direct limit of
smooth A-subalgebras of finite type. In the first example we will have tr. degAB =
2, in the second tr. degAB = 1.

Example 10.9. Let k0 be a field and let k = k0(a, b, c, d), where a = {aij} j∈N
1≤i≤3

and similarly for b, c and d. Let A = k[x, y, z](x,y,z). Let lij be as in (10.10) and
let B denote the ring generated over A by the symbols {fj, gj , hj}j∈N with the
relations

fi − d1i = l1ifi+1 + l2igi+1,

gi − d2i = −l3ifi+1 + l2ihi+1,

hi − d3i = −l3igi+1 − l1ihi+1,

(10.13)

localized at the maximal ideal generated by (x, y, z). There is a natural homomor-
phism ι : B → k[[x, y, z]]. Indeed, we can use the relations (10.13) recursively in i to
construct homomorphisms B → k[x,y,z]

(x,y,z)i . By (10.13), B is contained in a pure tran-
scendental extension of k(x, y, z) of degree 2, generated by f1 and g1. Since f1 and
g1 are mapped to elements of k[[x, y, z]] algebraically independent over k(x, y, z), ι
is injective.

Claim. The ring B is noetherian.
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Proof of Claim. For i ∈ N, let Bi := A[fi,gi,hi](x,y,z)

(l3i(fi−d1i)+l1i(gi−d2i)+l2i(hi−d3i))
, so that B =

lim
i→∞

Bi and Bi ⊂ B for all i ∈ N. By (10.13) all the Bi are birational to each other

(and hence also to B). Let m := (x, y, z)B. By construction, for every n ∈ N,
B
mn
∼= k[x,y,z]

(x,y,z)n , so that k[[x, y, z]] is the m-adic completion of B. It is sufficient to
prove that every prime ideal of B is finitely generated. Let I be a prime ideal of
B and put Ii := I ∩Bi. Since m is finitely generated, we may assume that I $ m.
Since Bi is noetherian, Ii is finitely generated. Hence it is sufficient to prove that
for i sufficiently large

IiBi+1 = Ii+1.(10.14)

Let λij : Bi → Bj denote the birational map between Bi and Bj . There exist

elements v0ij , v1ij , v2ij , v3ij ∈ Bi such that Bj = Bi

[
v1ij

v0ij
,
v2ij

v0ij
,
v3ij

v0ij

]
. If v0ij /∈ I for

all j > i, (10.14) holds since in that case all the λij become isomorphisms after
localization by the multiplicative system S generated by the v0ij , j > i, so IiBi+1 =
Ii(Bi+1)S∩Bi+1 = Ii+1(Bi+1)S∩Bi+1 = Ii+1. Now we compute v0ij explicitly from
(10.13) and show that we can choose i sufficiently large so that v0ij /∈ I. By (10.10)
and the identity l3,i+1(fi+1−d1,i+1)+l1,i+1(gi+1−d2,i+1)+l2,i+1(hi+1−d3,i+1) = 0,
we have v0i,i+1 = l1il1,i+1− l2il3,i+1− l3il2,i+1, which is a non-degenerate quadratic
form in x, y and z. Since I $ m, there are at most two distinct values of i for
which v0i,i+1 ∈ I. The Claim is proved.

Since B is noetherian, it is a regular 3-dimensional local ring with residue field
k; hence the inclusion homomorphism A → B is regular. By (10.13), ΩB/A is
exactly the module M ⊗A B, where M is the module of Example 10.5. If B is a
direct limit of smooth A-subalgebrasAλ of finite type, these subalgebras would have
transcendence degree two over A. Now assume, in addition, that char k = 0. Then
the modules of Kähler differentials Ω(Aλ)m∩Aλ

/A ⊗Aλ
k[[x, y, z]] are free k[[x, y, z]]-

modules, injecting into ΩB/A ⊗B k[[x, y, z]]. This is impossible by Example 10.5
(replace k[x, y, z](x,y,z) in Example 10.5 by k[[x, y, z]]). Thus B is not a direct limit
of smooth A-subalgebras of finite type.

Similarly, one can use the example of Remark 10.8 to construct a regular homo-
morphism k[x,y,z](x,y,z)

(z2−xy) → B, where B is a noetherian A-algebra of transcendence
degree 1 over A which is not a direct limit of smooth A-subalgebras of finite type.

§11. Approximation theorems

In this section, we use Theorem 1.1 to deduce the Artin approximation theorem
for Henselian pairs, as well as the nested smoothing and nested Artin approximation
theorem. First, we use Elkik’s Lemma to strengthen Theorem 1.1 (under some
additional hypotheses) by requiring that the smooth A-algebra D of (1.2) be étale
over a polynomial ring A[v1, . . . , vk].

Definition 11.1 (D. Popescu). Let A be a ring andD a smooth A-algebra of finite
type over A. Let

D =
A[u]
(f)

,(11.1)

where u = (u1, . . . , un) and f = (f1, . . . , fr), be a presentation. We say that
(11.1) is standard if D is a complete intersection (that is, ht (f) = r) and after
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renumbering the fi and the uj, det
∣∣∣ ∂fi

∂uj

∣∣∣
1≤i,j≤r

is invertible in D. If D admits a

standard presentation over A, we will say that D is standard over A.

Note: if D is standard, then it is étale over the polynomial ring A[ur+1, . . . , un].

Proposition 11.2. Let σ : A→ B be a ring homomorphism and D a smooth finite
type A-algebra together with an A-algebra homomorphism ψ : D → B. Let J be an
ideal of A such that

ψ(D) ⊂ σ(A) + JB(11.2)

and every element of (1+JB)∩ψ(D) is a unit of B. Then there exists a finite rank
projective D-module M , an element x ∈ D′ := SDM and an A-algebra homomor-
phism D′

x → B, compatible with ψ, such that D′
x is standard over A. Given any

presentation D = A[u]
I , M can be chosen to be the direct sum of I

I2 with a finite
rank free D-module.

Proof. Let D = A[u1,..., un]
I be a presentation of D. First, consider the D-algebra

SD
I
I2 . By Lemma 5.2, SD I

I2 has a presentation in which the conormal bundle is
globally trivial, that is, SD I

I2 is a complete intersection. Replacing D by SD
I
I2 ,

we may assume that D is a complete intersection, that is, in the new notation,
I = (f1, . . . , fr), where r = ht I. Under this assumption, we will show that M can
be chosen to be a free finite rank D-module.

Let ∂f
∂u stand for the r × n matrix

(
∂fi

∂uj

)
. Since D is smooth over A, we have

∆fD = D. Then there exists an n × r matrix G = (gij)1≤i≤n
1≤j≤r

with entries in D

such that

∂f

∂u
G = Idr(11.3)

(where Idr stands for the r × r identity matrix). Let t = (t1, . . . , tr) be new
variables and put D′ = D[t]. Extend ψ to a map ψ′ : D′ → B in an arbitrary way,
for example, by sending all the tj to 0.

Now, for each (i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ r, pick an element aij ∈ A such that

σ(aij) ≡ ψ(gij) mod JB(11.4)

(this is possible by (11.2)). Let G0 denote the n × r matrix (aij)1≤i≤n
1≤j≤r

. By (11.3)

and (11.4), we have

ψ

(
∂f

∂u

)
σ(G0) ≡ Idr mod JB,(11.5)

so det(ψ(∂f∂u )σ(G0)) ≡ 1 mod JB and is therefore invertible. Let x = det(∂f∂uG0).
Since ψ(x) is invertible, ψ′ extends to a map D′

x → B. It remains to show that D′
x

is standard.
Consider the change of variables

ũi = ui −
r∑
j=1

aijtj , 1 ≤ i ≤ n.(11.6)
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Let f̃i(ũ1, . . . , ũn) := fi(u1(ũ), . . . , un(ũ)), 1 ≤ i ≤ r. By (11.6) and the chain rule,

det

∣∣∣∣∣∂f̃i∂tj

∣∣∣∣∣
l≤i,j≤r

= det
(
∂f

∂u
G0

)
= x,

which is invertible in D′
x. Thus the Jacobian matrix of f̃1, . . . , f̃r has an r × r

invertible minor, hence D′
x is standard over A. This completes the proof.

Now let (A, I) be a Henselian pair and let Â denote the I-adic completion of
A. Assume that the natural homomorphism σ : A → Â is regular. This condition
holds, for example, whenever A is an excellent ring or, more generally, a G-ring.
If A is a local ring, then the requirement that σ be regular is the definition of a
G-ring. If A is local and Henselian, σ is regular if and only if A is excellent. We
obtain the following general form of the Artin approximation theorem.

Theorem 11.3. The approximation property holds for the pair (A, I). That is,
for a system of algebraic equations with coefficients in A, any solution in Â can be
approximated by a solution in A arbitrarily closely in the I-adic topology.

Proof. Consider a system of algebraic equations over A. This means that we are
given unknowns u1, . . . , un and a set of equations which we may regard as an ideal
J ⊂ A[u1, . . . , un]. Consider the finitely generated A-algebra C = A[u1,..., un]

J .
Consider a formal solution, that is, a homomorphism ρ̂ : C → Â. We want to show
that there exists a true solution, i.e. a homomorphism ρ : C → A which agrees with
ρ̂ mod IN , where N is an arbitrarily fixed positive integer. By Theorem 1.1 and
Proposition 11.2, we may assume that C is an étale extension of the polynomial
ring A[ur+1, . . . , un] (where r = ht J). We define the desired solution ρ : C → A

as follows. For each i, r < i ≤ n, pick xi ∈ A such that ρ̂(ui) − xi ∈ IN Â. Put
ρ(ui) = xi. Now, C

(ur+1−xr+1,..., un−xn) is an étale extension of A having a section
in A

IN , hence it has a section in A by the Henselian property of (A, I).

A further generalization of Artin approximation is the nested approximation
theorem. The nested version is useful for studying deformations of singularities, as,
for example, in the work of Mostowski and Teissier on algebraization of singularities
by deformation. We give two different proofs of the nested approximation. In one
of them, we follow Bernard Teissier [19] in that we first prove Teissier’s “nested
smoothing” theorem and then deduce nested approximation as an easy corollary.

Theorem 11.4 (B. Teissier). Consider a commutative diagram

A1
α1−−−−→ A2

α2−−−−→ . . .
αm−1−−−−→ Am = A

τ1

y τ2

y y yτm

C1
δ1−−−−→ C2

δ2−−−−→ . . .
δm−1−−−−→ Cm = C

ρ̂1

y ρ̂2

y y yρ̂m

B1
β1−−−−→ B2

β2−−−−→ . . .
βm−1−−−−→ Bm = B

(11.7)

of homomorphisms between noetherian rings, where Ci is of finite type over Ai,
1 ≤ i ≤ m. Let A′i := Ai ⊗Ai−1 Bi−1 (A′1 = A1 by convention). Assume that A′i
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is noetherian for all i. Assume that the induced homomorphism σi : A′i → Bi is
regular for each i. Then (11.7) can be extended to a commutative diagram

A1
α1−−−−→ A2

α2−−−−→ . . .
αm−1−−−−→ Am = A

τ1

y τ2

y y yτm

C1
δ1−−−−→ C2

δ2−−−−→ . . .
δm−1−−−−→ Cm = C

φ1

y φ2

y y yφm

D1
γ1−−−−→ D2

γ2−−−−→ . . .
γm−1−−−−→ Dm = D

ψ1

y ψ2

y y yψm

B12
β1−−−−→ B2

β2−−−−→ . . . 2
βm−1−−−−→ Bm = B

(11.8)

such that for each i, 1 ≤ i ≤ m, Di is smooth of finite type over Di−1 ⊗Ai−1 Ai
(for i = 1, this condition should read “smooth over A1”). Let I be an ideal of A
and Ii := I ∩ Ai, 1 ≤ i ≤ m. Assume that for each i every element of 1 + IiBi
is a unit of Bi and that Ai

Ii

∼= Bi

IiBi
. Then Di can be chosen to be standard over

Di−1 ⊗Ai−1 Ai.

Proof. We proceed by induction onm. Form = 1 the result is nothing but Theorem
1.1 together with Proposition 11.2. Assume m > 1. First, apply Theorem 1.1 and

Proposition 11.2 to the maps A′m
τ ′m−−→ C ⊗Am−1 Bm−1

ρ̂′m−−→ B, where σ′m = ρ̂′m ◦ τ ′m
is regular by assumption and C ⊗Am−1 Bm−1 is of finite type over A′m. We obtain
a factorization

A′m → C ⊗Am−1 Bm−1 → D′ → B(11.9)

of ρ̂′m, where D′ is a smooth (resp. standard) A′m-algebra. Next, let C′
m−1 be a

finite type ρ̂m−1(Cm−1)-subalgebra of Bm−1 such that the first two homomorphisms
in (11.9) are actually defined over C ′

m−1, so that the first two maps in (11.9) are
obtained from a sequence

Am ⊗Am−1 C
′
m−1 → C ⊗Am−1 C

′
m−1 → D̄ → B,(11.10)

where D̄ is a smooth (resp. standard) (A ⊗Am−1 C
′
m−1)-algebra of finite type, by

tensoring with Bm−1 over C′
m−1. Consider the following commutative diagram:

A1
α1−−−−→ . . .

αm−3−−−−→ Am−2
αm−2−−−−→ Am−1

τ1

y y y yτm−1

C1
δ1−−−−→ . . .

δm−2−−−−→ Cm−2 −−−−→ C′
m−1

ρ̂1

y y yρ̂m−2

y
B1

β1−−−−→ . . .
βm−2−−−−→ Bm−2

βm−1−−−−→ Bm−1

(11.11)



A NEW PROOF OF D. POPESCU’S THEOREM 441

Apply the induction hypothesis to (11.11). We obtain a commutative diagram

A1
α1−−−−→ . . .

αm−3−−−−→ Am−2
αm−2−−−−→ Am−1

τ1

y y y yτm−1

C1
δ1−−−−→ . . .

δm−3−−−−→ Cm−2 −−−−→ C′
m−1

φ1

y y yφm−2

y
D1

γ1−−−−→ . . .
γm−3−−−−→ Dm−2

γm−2−−−−→ Dm−1

ψ1

y y yψm−2

yψm−1

B1
β1−−−−→ . . .

βm−3−−−−→ Bm−2
βm−2−−−−→ Bm−1

(11.12)

with Di is smooth of finite type (resp. standard) over Di−1⊗Ai−1Ai, i ≤ m−1. Put
D := D̄ ⊗C′m−1

Dm−1. Since D̄ is smooth (resp. standard) over A⊗Am−1 C
′
m−1, D

is smooth (resp. standard) over A⊗Am−1 Dm−1. We have the map D → B coming
from the tensor product; the map C → D is the composition C → C⊗Am−1C

′
m−1 →

D̄ → D = D̄ ⊗C′m−1
Dm−1, where the first and last maps are given by x → x ⊗ 1.

This completes the construction of (11.8).

Theorem 11.5. Consider a diagram (11.7). Let the assumptions be as in Theorem
11.4. Let I be an ideal of A and let Ii := I∩Ai. Let Âi denote the Ii-adic completion
of Ai, B̂i the IiBi-adic completion of Bi. Assume that

Âi = B̂i for all i, 1 ≤ i ≤ m,(11.13)

and that (Ai, Ii) is a Henselian pair for all i. Then there exists a homomorphism
ρ : C → A such that for each j, 1 ≤ j ≤ m − 1, ρ(Cj) ⊂ Aj. The homomorphism
ρ can be chosen to agree with ρ̂ up to an arbitrarily specified power of I.

Remarks 11.6. (1) The algebras Ci in the diagram (11.7) can be regarded as
nested systems of algebraic equations over Ai with solutions in Bi, which we
want to approximate by solutions in Ai.

(2) Let { } denote convergent power series and 〈 〉 Henselization. The special
cases of interest in Theorem 11.5 are Aj = A1〈x1, . . . , xj〉 and Bj = Âj or
Bj = A1{x1, . . . , xj}, where A1 is equipped with a multiplicative norm in the
sense of [11, §45].

(3) If all the A′i and Bi are G-rings, as in (2) of this remark, the condition that
the σi be regular homomorphisms is a consequence of (11.13), so it does not
need to be specified separately.

First proof of Theorem 11.5. By Theorem 11.4 we may, replacing the Ci by the Di,
assume that each Ci is standard over Ai⊗Ai−1Ci−1. Fix an integer N ∈ N. We will
denote by ρi the restriction to Ci of the hypothetical homomorphism ρ which we
want to construct. We will construct the maps ρi : Ci → Ai recursively in i. For
i = 1, C1 is standard over A1 and the map ρ1 is constructed exactly as in Theorem
11.3. Suppose that ρi−1 has been constructed. Consider the decomposition

(Ci−1 ⊗Ai−1 Ai)→ (Ci−1 ⊗Ai−1 Ai)[v1, . . . , vt]
ε−→ Ci,

where the vj are algebraically independent over Ci−1 ⊗Ai−1 Ai and ε is étale. The
map (αi−1 ◦ ρi) : Ci−1 → Ai induces a map Ci−1 ⊗Ai−1 Ai → Ai. We extend
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it to a map ρi : Ci → Ai in the usual way: first, let ρi(vj) be any element of
(ρ̂i(vj) + INi Bi) ∩Ai, then extend ρi to Ci by definition of Henselian.

We give another proof of Theorem 11.5, under the additional assumption that
the homomorphisms αi are flat.

Second proof of the Nested Approximation Theorem, assuming that the αi are flat.
Again, we use induction onm. Again, consider the homomorphismsA′m → C⊗Am−1

Bm−1 → B. Since (A, I) is a Henselian pair with I-adic completion B̂, so is
(A′m, IA′m). Applying Theorem 11.3, we obtain a homomorphism ρ′ : C ⊗Am−1

Bm−1 → A′m which agrees with ρ̂ mod IN . We may regard C as a (Cm−1⊗Am−1A)-

algebra; let C =
(Cm−1⊗Am−1A)[v1,..., vl]

(g1,..., gs) be a presentation of C over Cm−1⊗Am−1 A.

For each vi, write ρ′(vi) =
ki∑
j=1

(aij ⊗ bij) with aij ∈ A and bij ∈ Bm−1. Let

w = {wij | 1 ≤ i ≤ l, 1 ≤ j ≤ ki} be new variables. Let
∑
j

(aj ⊗ bj) stand for

the collection
{ ki∑
j=1

(aij ⊗ bij)
∣∣ 1 ≤ i ≤ l

}
and similarly for

{∑
j

(ajwj)
} ⊂ A[w].

For each q, 1 ≤ q ≤ s, let hq(w) := gq
(∑
j

(ajwj)
) ∈ (Cm−1 ⊗Am−1 A)[w]. Take

a finitely generated Cm−1-submodule M ⊂ Cm−1 ⊗Am−1 A which contains all
the coefficients of all the polynomials hq. Since A is assumed flat over Am−1,
Cm−1 ⊗Am−1 A is flat over Cm−1. Thus the inclusion M ⊂ Cm−1 ⊗Am−1 A can be
factored through a free Cm−1-module F ∼= Crm−1. Let {e1, . . . , er} be a Cm−1-basis

of F . For 1 ≤ q ≤ s, write hq(w) =
r∑
p=1

h̄qp(w)ep, where h̄qp(w) ∈ Cm−1[w]. Let

h̄ := {hqp | 1 ≤ q ≤ s, 1 ≤ p ≤ r}. Put C̄m−1 := Cm−1[w]

(h̄)
. Define a homomorphism

ρ̄ : C̄m−1 → Bm−1 by setting ρ̄(wij) := bij . We get a commutative diagram

A1
α1−−−−→ . . .

αm−3−−−−→ Am−2
αm−2−−−−→ Am−1

τ1

y y y y
C1

δ1−−−−→ . . .
δm−3−−−−→ Cm−2 −−−−→ C̄m−1

ρ̂1

y y yρ̂m−2

yρ̄m−1

B1
β1−−−−→ . . .

βm−3−−−−→ Bm−2
βm−2−−−−→ Bm−1

(11.14)

By the induction assumption, there exists a homomorphism ρm−1 : C̄m−1 → Am−1

which agrees with ρ̄m−1 modulo INm−1 and such that ρm−1(Ci) ⊂ Ai, 1 ≤ i ≤ m−1.
Now, letting ρ(vi) :=

∑ki

j=1 aijρm−1(wij) defines a map ρ : C → A which agrees
with ρ̂ modulo IN . This completes the proof.

Appendix. Regular homomorphisms which are not injective

Let σ : A → B be a homomorphism of noetherian rings and let I denote the
kernel of σ. The purpose of this Appendix is to show that σ is regular if and only
if Ann(I)B = B and the induced homomorphism A

I → B is regular.
Let Ā := A

I and let π : A→ Ā be the natural map.
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Theorem A.1. Let A be a noetherian ring and I ⊂ A an ideal. Let Ā := A
I and

let C be an Ā-algebra. The following two conditions are equivalent:

(1) C is regular over A.
(2) C is regular over Ā and AnnA(I)C = C.

Note that both (1) and (2) imply that I is contained in a minimal prime of A.

Proof. There is a 1-1 correspondence between the primes of Ā and the primes of A
containing I. For any prime P ⊂ Ā,

κ

(
Ā

P

)
= κ

(
A

π−1(P )

)
,

so B
PB is geometrically regular over one of these fields if and only if it is geometrically

regular over the other. For a prime P of A not containing I, κ(AP )⊗ C is the zero
ring, hence geometrically regular over κ(AP ) by definition. Hence, to prove Theorem
A.1, it is sufficient to prove

Lemma A.2. Let A be a ring and I ⊂ A an ideal. Let Ā := A
I and let M be an

Ā-module. The following two conditions are equivalent:

(1) M is A-flat.
(2) M is Ā-flat and AnnA(I)M = M .

Note that if A is noetherian, both (1) and (2) imply that I is contained in a
minimal prime of A.

Proof. (1) =⇒ (2). Since M is A-flat, it is a direct limit of free A-modules. For
each of the free A-modules An → M mapping to M , tensoring both sides with Ā
over A, we get that M is a direct limit of free Ā-modules. Hence M is Ā-flat.

Since M is an Ā-module, every element in M annihilates I. Thus to complete
the proof of (1) =⇒ (2) it remains to prove

Sublemma A.3. Let A be a ring, I an ideal of A and M a flat A-module. Then
the set of elements in M annihilating I (which we denote by AnnM (I)) is equal to
AnnA(I)M .

Proof. Let aλ, λ ∈ Λ, be a set of generators of I. Consider the exact sequence

0→ Ann(I)→ A→ AΛ,(A.1)

where AΛ stands for the product of the (possibly infinite) set of copies of A indexed
by Λ and the last map in (A.1) sends x to {aλx}λ∈Λ. Tensor (A.1) with M and
apply flatness. This completes the proof of (1) =⇒ (2).

(2) =⇒ (1). Now, assume that M = AnnA(I)M and that M is Ā-flat. Then M
can be written as a direct limit of free finitely generated Ā-modules. We want to
deduce that M can also be written as a direct limit of free A-modules. For that it is
sufficient to prove that any map Ā→M can be factored through a free A-module:

Ā→ An →M

for some n ∈ N. Giving a map ρ : Ā→M is the same as giving an element x ∈M
(where x = ρ(1)). Since M = AnnA(I)M , there exist y1, . . . , yn ∈ AnnA(I) and
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x1, . . . , xn ∈M such that

x =
n∑
i=1

yixi.(A.2)

Then ρ factors through An, where the map Ā→ An is given by sending 1 to
n∑
i=1

yiXi

(the Xi being the generators of An) and An →M sends Xi to xi.
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nique Fédérale de Lausanne, 1992.
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