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§1. INTRODUCTION

In this paper we give a new proof, and some strengthenings of the following
theorem of D. Popescu:

Theorem 1.1 ([1], [13]-[16] and [18]). Let A % B be a homomorphism of noe-
therian rings. The homomorphism o is regular if and only if B is a filtered inductive
limit of smooth A-algebras of finite type.
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(See [10, Chapter 11 and Chapter 13, (33.A), p. 249] for the definition of reg-
ular and smooth homomorphisms and §2 for a discussion of some of their main
properties.)

“If” is well known: see Popescu’s argument in [18, Lemma 1.4], or apply André’s
theorem (Property 2.8 and Corollary 2.9 below) and the fact that André homology
commutes with direct limits ([18, Lemma 3.2] and [2, Chapter III, Proposition 35]).
Our main interest is in proving “only if”.

Theorem 1.1 can be restated as follows. To say that B is a filtered inductive
limit of smooth finite type A-algebras is equivalent to saying that any commutative
diagram

(L.1) A——B
C
where C is a finitely generated A-algebra, can be extended to a commutative dia-
gram
(1.2) i

A—— B
1A
C 7 D

where D is a smooth finitely generated A-algebra. Theorem 1.1 asserts that such
an extension exists whenever ¢ is a regular homomorphism.

There are two refinements of Theorem 1.1, conjectured by M. Artin in [4] at the
same time with Theorem 1.1. The first [4, p. 225, Conjecture 2] is to require that
the map ¢ in the diagram (1.2) be smooth wherever possible (roughly speaking,
away from the non-smooth locus of C'). In our proof, this requirement is satisfied
by construction. Thus, what we actually prove is the following stronger version of
Theorem 1.1.

For an A-algebra C of finite type, let Hc 4 denote the Jacobian ideal of C' over
A (see Definition 2.11 for the definition of H¢)4). The ideal He) 4 defines the non-
smooth locus of C' over A; in other words, for a prime ideal P of C, Cp is smooth
over A if and only if Ho/a ¢ P—see §2 for details.

Theorem 1.2. Consider a commutative diagram (1.1), where o is a reqular ho-
momorphism of noetherian rings. Then there erists a commutative diagram (1.2)
such that D is smooth of finite type over A and Ho/aB C \/Hp,cB.

This gives an affirmative answer to Conjecture 2 of [4].
The second direction in which Theorem 1.1 can be strengthened is

Problem 1.3 ([4, p. 224]). Assume that the homomorphism p in diagram (1.1) is
injective. Does there exist a diagram (1.2) with D smooth of finite type over A, such
that v is also injective? In other words, is B a filtered inductive limit of smooth
finitely generated A-subalgebras?

Note that Problem 1.3 makes sense even if ¢ itself is not injective. See the
Appendix for a discussion of non-injective regular homomorphisms.
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Problem 1.3 is stated in [4] in the case when A is a field and B = A[[z1, ..., x,]] is
a formal power series ring over A. In fact, it turns out to have an affirmative answer
for a wide class of regular homomorphisms. Namely, in §10 we give an affirmative
solution to Problem 1.3 assuming that A is reduced and for any minimal prime @
of B, & has infinite transcendence degree over x(Q N A) (in particular, whenever
A is a reduced noetherian ring and B = A[[x1,...,2,]], or when A is reduced,
essentially of finite type over a field or Z and B is the completion of A along a non-
zero ideal—see §10 for details). We give an example to show that the assumption
of infinite transcendence degree is necessary. We also give an example of a diagram
(1.1) with p injective and A non-reduced, such that there does not exist a diagram
(1.2) with 9 injective and HeyaB C \/HpjcB. This shows that the hypothesis
that A is reduced is necessary, at least for this method of proof.

Two special cases of Theorem 1.1 are of particular interest for applications. The
first is the case when (A, I) is a Henselian pair such that the I-adic completion
homomorphism o : A — A is regular (this is the case whenever A is excellent
and, more generally, whenever A is a G-ring [10, (33.A) and (34.A)]). Applying
Theorem 1.1 to o yields the general form of Artin approximation theorem (which
was already known to follow from D. Popescu’s theorem and is included here mainly
for completeness), as well as a generalized version of the nested approximation
theorem and B. Teissier’s nested smoothing theorem (see §11).

The second special case of interest is the case when B is a regular local ring and
A is a field or a Dedekind domain, contained in B, such that the inclusion map
A — B is a regular homomorphism (if B is equicharacteristic, we may take A to be
the prime field of B). Theorem 1.1, applied in this case, yields a positive answer
to the Bass—Quillen conjecture in the equicharacteristic case, as well as to several
related conjectures on freeness of projective modules (see [18] for details).

Conventions. All the rings in this paper will be commutative with 1. We will
denote by N the set of positive integers, by Ny the set of non-negative integers.
For an ideal I, v/T will denote the radical of I. Let 0 : A — B be a homo-
morphism of rings. If I is an ideal of A, we write IB for o(I)B. If P is a subset
of B, we write PN A for 0=1(P). The module of relative Kihler differentials of
B over A will be denoted by /4. An A-algebra B will be said to be of finite
type if it is finitely presented over A, essentially of finite type over A if B
is a localization of a finite type A-algebra. A free A-algebra is a polynomial ring
over A, on an arbitrary (not necessarily finite) set of generators. For a prime ideal
P in a ring A, x(P) will denote the residue field of Ap. If A is a ring and M an
A-module, SyM will stand for the symmetric algebra over M. If S is a multi-
plicative subset of A, Mg will denote the localization of M with respect to S, that
is, Mg = M ®4 Ag. Similarly, if P is a prime ideal of A, we will write Mp for
M ®4 Ap. If m is an ideal in a ring A, Annam> will stand for |J Annam!. Let
i=1
A be aring and u = (uq,...,u,) independent variables. Given r € Ny and a subset
g={g1,...,9-} C Alu], Ay will denote the ideal of Afu] generated by all the r x r

minors of the matrix (%) = (% . If v is a subset of the variables u, A,

Ouj ) 1<i<r
15j<n

will stand for the ideal generated by all the r x r minors of the matrix (%%). If

g1, - -, gr are linear homogeneous, we will denote by Ag the ideal of A generated
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by the r X r minors of (%%) In the case r = 0, we adopt the convention

1<i<r
15j<n
that the determinant of the empty matrix is 1.

We now outline the proof of Theorem 1.2. Our proof (as well as Popescu’s
original proof of Theorem 1.1) starts out with the following two observations, due

to D. Popescu. Consider a diagram (1.1).

Lemma 1.4. Suppose that HcyaB = B. Then there exists a diagram (1.2) with
D smooth of finite type over A and such that Hc/aD = Hp,c = D.
Proof. Let ay, ..., an beaset of generators of Ho 4. Then there exist by,...,b, € B
with > p(a;)b; = 1. Let T1,...,T, be new variables and let D = %
i=1 i=1 diti—
Define the map ¢ : D — B by ¢(T;) = b;, 1 < i < n. We obtain a commutative
diagram (1.2). Since D is defined over C' by the single equation > a;T; — 1 = 0,
i=1
we have Hp /o = (a1, ..., an)D =D = HeyaDj in particular, D is smooth over C.
Also, for any prime P of D, the ideal PN C does not contain (a1, ...,a,) = Heya,
hence Cpn¢ is smooth over A, and thus Dp is smooth over A by the transitivity
of smoothness [10, Chapter 11, (28.E), p. 201]. Thus D is smooth over A and the
desired diagram (1.2) is constructed. |

Thus, to prove Theorem 1.1 and Theorem 1.2 it is sufficient to construct a
diagram (1.2), with D an A-algebra of finite type, such that Hp 4 B = B. Therefore
we may assume that Ho/4B G B in (1.1). Let P be a minimal prime of He /4 B.
The second observation is that to prove Theorem 1.1, it is sufficient to prove the
following theorem.

Theorem 1.5. There exists a diagram (1.2) such that:

(1) \/HC/AB C \/HD/AB,
(2) Hp/aB ¢ P.

Indeed, suppose Theorem 1.5 is known. Since Hg 4B C P by definition of P,
(1) and (2) of Theorem 1.5 imply that \/HcjaB G \/HpjaB. Apply Theorem
1.5 to the A-algebra D instead of C, and iterate the procedure. By noetherian
induction on /Hg 4B, after finitely many steps we will arrive at the situation
when Hp,4 B = B, and Theorem 1.1 will follow from Lemma 1.4.

In this paper, the A-algebra D constructed in Theorem 1.5 will satisfy the addi-
tional condition

(1.3) VH@MBc:¢HQmB

(in fact, (1.3) implies (1) of Theorem 1.5 by Property 2.16 below). Using this
stronger version of Theorem 1.5 in the above noetherian induction argument yields
Theorem 1.2.

Our original idea for the proof of Theorem 1.1 came from Lazard’s theorem
(recalled in §3), which says that an A-module is flat if and only if it is a filtered
inductive limit of free finitely generated A-modules, and the realization that The-
orem 1.1 is for A-algebras what Lazard’s theorem is for A-modules (the analogy
between regular homomorphisms A — B of rings and flat A-modules is discussed
in more detail in §2). In fact, this is more than an analogy: Lazard’s theorem is
used in a crucial way in the proof of Theorems 1.5 and 1.2. Namely, in §3 we use
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Lazard’s theorem to deduce Theorem 1.2 and Theorem 1.5 in the case when C' is
defined over A by linear homogeneous equations by writing C' = Sa M, with M
a finite A-module (Proposition 3.4). Since B is A-flat, the existence of a diagram
(1.2) is given by Lazard’s theorem. Indeed, consider a presentation

(1.4) i 5o m—o

of M, where the L; are free of finite rank. Let dj : Lj — L7 be the dual of d;.
Take a free A-module K which maps surjectively onto Ker(d;). We get an exact
sequence

(1.5) K2y
Since B is flat over A, the sequence K ® 4 B %8, Ly ®a B —— HeB Ly ® B

obtained by tensoring (1.5) with B, is also exact. Let u € L ® B be the element
corresponding to p o dp under the identification L ® B = Hom (Lo, B). We have
u € Ker(df ® B), hence

(1.6) u € Im(a® B).

To construct a diagram (1.2) for the given A-algebra C, we need flatness of B over
A only to conclude (1.6). Thus (1.2) can be constructed even when B is not flat
over A, provided (1.6) holds. We prove Lazard’s theorem and Proposition 3.4 in
this slightly stronger form: in §§8-9 we will apply it in a situation when B is not
necessarily flat over A. We note that the diagram (1.2) which we construct satisfies
the condition (1.3).

With a view to Theorem 1.5, we also prove the following version of the linear
homogeneous case (Proposition 3.6). Write C' = AE};], f=1,.--,fr). Let m be

a prime ideal of A such that mA,, C /A}A,,. Then there exists a diagram (1.2)

such that D ®4 A, is smooth over A and mD C Hp,c (in other words, we can
resolve the singularities at m by a map C' — D which is smooth away from V(m)).
Finally, we push Proposition 3.6 even further to prove the following linearized
case of Theorem 1.5. §§4-9 are spent reducing the general case of Theorem 1.5 to
the linearized one, thus proving Theorem 1.5 in its full generality.

Proposition 1.6 (the linearized case of Theorem 1.5). Consider a diagram (1.1).
Assume that there exists a commutative diagram

T%B\\

C®y A* il

compatible with (1.1), where:
(1) A* is an A-algebra essentially of finite type, satisfying

(1.8) P S \/Ha aB.
(2) Let m* = PN A*. Then
(1.9) m*B = P.
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3)

(110) PcC 1/HC]’(,/(C®AA*)B'

(4) Let m=PNA and I = Ker \*. There is a positive integer N such that:

(1.11) Ipnc- € (M) NChaons
(1.12) m*Chace C /(T2 : 1)Ches and
(1.13) Anna, (m™Ay,) NmY A, = (0).

(5) Cp is defined over A* by linear homogeneous equations; write C§ = SaxM =

= (frees £
(6) Condition (1.6) (with A replaced by A*) holds for M.

)
(7) m* AL, C JAYAL,..
)

(8
(1.14) Heeyos ¢ PNC™.
Then the conclusion of Theorem 1.5 and (1.3) hold.

Proposition 1.6 is proved by applying Proposition 3.6 to the A*-algebra C5. We
obtain a Cj-algebra Dy mapping to B, such that

(1.15) Hpy/a- NA* ¢ m*  and
(116) m*D() C HDO/CS'

Put D := Dy ®c; Cy. The algebra D maps to B; this gives a diagram (1.2). We
show that (1.8), (1.11)—(1.14) and (1.15) imply that Dpnp is smooth over A; this
gives (2) of Theorem 1.5. Moreover, from (1.8), (1.10), (1.16) and transitivity of
smoothness, we get (1.3) and hence Theorem 1.5 (1).

Note that if B is local with maximal ideal P, then, localizing by any element
x € Hpsa \ (PN D), we get that D, is smooth over A, proving Theorem 1.2.

To prove Theorem 1.5 from Proposition 1.6, it remains to construct a diagram
(1.7) satisfying conditions (1)—(8). This is accomplished in §§4-9, first under some
additional assumptions about A and B and then in full generality. We now outline
the construction of (1.7) in §§4-9.

Definition 1.7. Let C be an A-algebra of finite type, M a prime ideal of C' and
m = M N A. We say that C is an almost complete intersection over A at M if
the following conditions hold:
(1) mCyr C HCM/A-
(2) There is a presentation C = # such that the restriction of % to Spec Ci \
V(mChr) is a trivial vector bundle (here Z denotes the coherent ideal sheaf
on Spec C, given by I).
—rk L
(3) Let r =k 72 |Spec Cyp\V(mCar)
images in I' (Spec Cps \ V(mChy), &) generate

. Then there exist f1,..., f € I whose natural

Spec Cp\V(mCun)®

Note that (1)—(3) of Definition 1.7 are equivalent to saying that there exist
flv"'vf’r‘ GIsuChthat

(1.17) mCuy C /AfCur and
(1.18) mCyr € /(124 (f)) : I)Chr,
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where f = (f1,..., fr) (see the definition of Ho 4 and Remark 2.15 below). Note

also that there are two special situations in which C'is an almost complete intersec-

tion over A: one is when %|S = 0 and Definition 1.7 (1) holds, the
pec Cp\V(mCar)

other when V(mCys) = Spec Cyy, that is, when m is nilpotent. In both of these
cases, we will take r = 0 and f = 0.

In §4, we construct the diagram (1.7) (proving Theorem 1.5 and Theorem 1.2)
in the following basic case. Let P be a prime ideal of B and let m = PN A.

Proposition 1.8. Assume that:

(1) B is a local ring with mazimal ideal P.

(2) The map o : A — B induces an isomorphism k(m)=k(P).
(3) C= # is an almost complete intersection over A at PN C.
(4) o is flat and mB = P.

Then there exists a diagram (1.7), satisfying conditions (1)—(8) of Proposition 1.6;
in particular, Theorem 1.2 holds.

We also show (Remark 4.6) that Theorem 1.2 holds whenever assumptions (1)—
(3) of Proposition 1.8 are satisfied and o is formally smooth in the P-adic topology
(this condition is weaker than o being regular — see §2 fore more details).

Our main technique here is a transformation C' — C7, with C; finitely generated
over C, called “generalized blowing up” along an ideal M C A (Definition 4.1).
Generalized blowing up of C' along M depends on the presentation C' = M
and the choice of generators of M, and is defined for any diagram (1.1) such that

(1.19) p(u;) €o(A)+ MB, 1 <i<n.

For the purposes of Theorem 1.2 and conditions (1.3) and (1.10), we note that
VMCy C He, o by definition of generalized blowing up, and that all the general-
ized blowings up in this paper will be along ideals M such that HoyqaB C v M B.
We prove Proposition 1.8 by constructing a diagram (1.7) satisfying conditions (1)—

* N
(8) of Proposition 1.6, such that A* = A,,, and 7* : C ®4 A* — C} = 4 [IUN( i
is a sequence of generalized blowings up along m* = mA,,. In the main part of
the proof of Proposition 1.8 (Lemma 4.4) we replace (4) by a slightly more general
hypothesis, in order to apply the result in §§8-9 in a situation where B will not
be flat over A. §§5-9 are devoted to gradually extending the construction of the
diagram (1.7) from the basic case to the general one. In §5 we consider a diagram

(1.1), such that (A, m) and (B, P) are local,

A_B
m P’
(1.20) mB =P and

We show, under some additional assumptions, more general than flatness of B
over A (Lemma 5.4), that after a sequence C' — Cp, of generalized blowings up,
Cp is an almost complete intersection over A at P N C. Combined with Propo-
sition 1.8, this yields a diagram (1.7), satisfying (1)—(8) of Proposition 1.6. This
proves Theorems 1.2 and 1.5 assuming that B is flat over A and conditions (1.20)
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hold. In §§6-7, in order to achieve (3) of Proposition 1.8, we prove the follow-
ing version of the Nica—Popescu theorem (see Corollary 7.9 for the original Nica—
Popescu theorem). Any formally smooth local homomorphism o : (A,m,k) —
(B, P, K) of local noetherian rings, with B complete, has a factorization (A, m, k) —

(A*,m*, K) <, (B, P,K) such that A® is a local noetherian ring, smooth over
A, dim A* = dim A + dimg Hq(k, K, K), the ring (B, P) is formally smooth over
(A®,m®) and o® induces an isomorphism of residue fields. By construction, A® will
be a filtered inductive limit of smooth finite type A-algebras. Furthermore, adjoin-
ing dim B — dim A® independent variables to A®, mapping them to elements of B
which induce a regular system of parameters of m’? 5 and localizing, we obtain a
local noetherian ring (A’, m’, K), such that A’ is a filtered inductive limit of smooth
finite type A-algebras, (B, P) is formally smooth over (A’,m’) and m’B = P. The
main interest and the main difficulty of the Nica—Popescu theorem is the case when
K is not separable over k. Incidentally, this is the only step in the proof of The-
orems 1.5 and 1.2 which uses the fact that the homomorphism o is regular; only
flatness of B over A is used in §§4-5.

Now let B denote the P-adic completion of Bp and let m = PN A. Applying
the results of §7 to the local homomorphism A,, — B, we obtain a factorization
A,, — A" — B as above. Applying the results of §§4-5 to C' ®4 A’ and then
replacing A’ by a suitable A-subalgebra A; C A’, smooth of finite type over A, we

obtain the diagram

(1.21) A —7— B

RN

C@ady T Cp " Cnar &— 02—
satisfying (1)—(8) of Proposition 1.6. Now Proposition 1.6 yields Theorem 1.5 and
Theorem 1.2 in the case when B is a complete local ring with maximal ideal P. In
88 we P-adically approximate (1.21) and obtain the diagram

N AN

C@AAW_>CN+L<—C'<—OO

Here Bp is not necessarily flat over A. The key point is to take a P-adic approxi-
mation close enough so that

(1) the hypotheses of Lemmas 4.4 and 5.4 hold, so that these lemmas still apply.
(2) (1.6) still holds for Cj, so that Proposition 1.6 can be applied.

Applying Proposition 1.6 to the diagram (1.22) proves Theorem 1.5 in the case
when B is local with maximal ideal P. Finally, in §9 we lift (1.22) from Bp to
B and obtain a diagram (1.7) satisfying (1)—(8) of Proposition 1.6. This proves
Theorem 1.5, (1.3) and thus Theorem 1.2 in its full generality. The lifting of the
diagram (1.22) to (1.7) will be referred to as “delocalization”. In §2 we recall some
basic definitions and facts about smoothness, regularity, the Jacobian ideal, André
homology and the relationships between them. We use Swan’s definition of the first
André homology and cohomology modules. André homology appears here for two
reasons. First, it is one of the main ingredients in the proof of the Nica—Popescu
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theorem: it provides a language ideally suited for measuring the inseparability of
residue field extensions, induced by regular homomorphisms. The second reason is
motivational: the characterization of smoothness and regularity by the vanishing of
André cohomology and homology, respectively, helps clarify the analogy between A-
algebras and A-modules (particularly, between regular homomorphisms A — B and
flat A-modules M). From this point of view, the André homology and cohomology
modules, H;(A, B,W) and H*(A, B,W) can be viewed as the algebra analogues of
Tor (M, W) and Ext',(M, W), respectively.

Our motivation for considering generalized blowings up comes from the theory
of resolution of singularities. Namely, consider a diagram (1.1) where A is a field,
C a finitely generated A-algebra without zero divisors and B = R, a valuation ring
of the field of fractions of C. Then the problem of constructing a diagram (1.2)
(with v injective) is nothing but the problem of local uniformization of Spec C
with respect to the valuation v. Of course, the valuation ring R, is not, in general,
noetherian. The intersection between the problems of Local Uniformization and
Néron desingularization is precisely the case when B is a discrete valuation ring. In
that case, Néron solved the problem by successively blowing up along the Jacobian
ideal. In that sense, our proof can be regarded as a generalization of Néron’s.

I would like to thank Michael Artin, Heisuke Hironaka, David Kazhdan, Arnfinn
Laudal, Pierre Milman, Cristel Rotthaus, Bernard Teissier, Angelo Vistoli and
Sylvia Wiegand for inspiring discussions. I thank Zach Robinson, Cristel Rotthaus
and all the referees for pointing out mistakes in the earlier versions of this paper.
I owe special thanks to Bernard Teissier for his careful reading of the manuscript
and his extremely detailed and constructive criticism.

§2. FORMAL SMOOTHNESS, SMOOTHNESS, JACOBIAN CRITERION
AND ANDRE HOMOLOGY

In this section we recall some basic properties of formal smoothness, smoothness,
the Jacobian ideal and the first André homology and cohomology, used in the rest
of the paper.

André homology. Let 0 : A — B be a homomorphism of rings and W a B-
module. Associated to this data, André [2] defines the homology and cohomology
modules H;(A, B,W) and H* (A, B,W), i € Ny, which can be viewed as obstruc-
tions to regularity and smoothness of o, respectively (see Properties 2.4 and 2.8
below). The definitions of André homology and cohomology, given in [2], are rather
technical. For the reader’s convenience, we recall Swan’s ad hoc definitions of
H;(A,B,W) and H'(A, B,W), i € {0,1} (see Definition 2.1 below and [18, §3]),
which are sufficient for our purposes. It is not too hard to prove from scratch all the
facts about André homology needed in this paper, using these definitions. However,
we will refrain from doing so to save space, instead giving references to André [2]
and Swan [18]. The readers who are already familiar with André homology will
recognize that Swan’s ad hoc definitions are equivalent to those of André. We now
define H;(A, B,W) and H'(A, B,W) for i € {0,1}, following Swan [18, §3]. Take
an exact sequence

(2.1) 0—-1—-FZL B0,
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where F' is a localization of a free A-algebra and I is a (not necessarily finitely
generated) ideal of F. (2.1) gives rise to the exact sequence

I q
(2.2) I_Q_’QF/A(X)FB_)QB/A_)O
(the second fundamental exact sequence for Kéhler differentials [10, Chapter 10,
(26.1), Theorem 58, p. 187]). Tensoring (2.2) with W over B gives the exact se-

quence
I
(23) I_2®BWM’QF/A®FW_’QB/A K W — 0.

Taking B-homomorphisms into W in (2.2), we obtain the exact sequence
1
(2.4) Homp (ﬁ’W) - Dera(F,W) « Ders(B,W) « 0.
w

Note that Qp/4 ®F B is a free B-module and Dera(F, B) is free whenever F is
finitely generated over B.

Definition 2.1 (Swan [18, §3]). André homology modules and cohomology mod-
ules, H;(A, B,W) and H'(A, B,W) for i € {0, 1}, are defined as follows:
Ho(A,B,W) = QB/A R W = Coker(d@ W),
Hi(A,B,W) = Ker(d® W),
H°(A,B,W) = Dera(B,W) = Ker oy,
H'(A,B,W) = Coker .
It is immediate to show that for i € {0,1}, H;(A, B,W) and H'(A, B,W) are
independent of the presentation (2.1), and also that H;(A,-, W) and H*(A,-, W)

are, respectively, a covariant and a contravariant functor of B (see [18, Part II,
Lemma 3.1]).

Property 2.2. Let ¢ : A — B be a surjective ring homomorphism, let I =
Ker o and let W be a B-module. We have Hyo(A,B,W) = H°(A,B,W) = 0
and Hl(A,B,W) = I% R W.

Proof. The exact sequence 0 — I — A % B — 0 gives a presentation of B as an
A-module. Since 24,4 = 0, the result follows immediately from definitions. O

Property 2.3 (the Jacobi—Zariski sequence). Let F' — B be a homomorphism of
A-algebras and let W be a B-module. There are two natural exact sequences:

Hl(AaFaw) _)Hl(Avaw) - Hl(Fvaw) _>H0(A7F7W)

2.5

(2.5) — Ho(A,B,W) — Ho(F,B,W) —0
and

26) 0— H°F,B,W) — H°(A,B,W) — H°(A, F,W)

— HY(F,B,W) — H' (A, B,W) — H"(A, F,W).

Proof. See [18, Part II, Theorem 3.3]. Again, Swan only proves the Jacobi-Zariski
sequence for homology with coefficients in B. To get (2.5), tensor everything in
Swan’s diagram (*) with W; to get (2.6), take homomorphisms into W. |



A NEW PROOF OF D. POPESCU’S THEOREM 391

Homological characterizations of smoothness and regularity. Let 0 : A —
B be a homomorphism of rings.

Property 2.4. Consider the following conditions:

(1) B is smooth over A.
(2) The sequence

I
(27) O_’I_QiQF/A@)FB_’QB/A—)O

is split exact (this condition is sometimes expressed by saying that the homo-
morphism d has a left inverse).
3) Hi(A,B,B) =0 and Qp /4 is a projective B-module.
) (A, B,W) =0 for all B-modules W.

) Hi(A,B,B) =0 and Qp/4 is a flat B-module.

) Hi(A,B,W) =0 for all B-modules W .

We have the implications: (1) <= (2) < (3) <= (4) = (5) < (6). Suppose,
in addition, that either Iiz or Qg4 is a finitely generated B-module. Then we also
have (5) = (8), so that all the conditions (1)—(6) are equivalent. Finally, B is
étale over A if and only if Hy (A, B,B) = Qp/s = 0.

(
(4) H
(5) H,
(6) H,

Proof. The implications (3) < (4) = (5) <= (6), as well as the equivalence
(3) <= (5) in case % or Qp/4 is a finitely generated B-module, are immediate
from definitions; for the rest, see [18, Theorem 3.4]. O

Note that (1), (3) and (4) of Property 2.4 do not depend on the choice of the
presentation (2.1). Thus, in particular, Property 2.4 says that if (2) holds for one
presentation (2.1), then it also holds for any other presentation.

Corollary 2.5. Let 0 : A — B be a homomorphism of rings. Then B is smooth
over A if and only if Bp is smooth over A for every prime ideal P of B.

Proof. Use the notation of (2.1). For a prime ideal P of B, 0 — Ipnp — Fpap —
Bp is a presentation of Bp. The sequence (2.7) is split exact if and only if it is
split exact after tensoring with Bp for all P € Spec B, and the result follows. [

Property 2.4 says that acyclicity in cohomology characterizes smoothness. On
the other hand, conditions (5) and (6) — acyclycity in homology — characterize
regular homomorphisms, as we now explain. We start with the case when A is a
field.

Proposition 2.6. ([8, EGA 01y (22.5.8)], [10, (39.C), Theorem 93] and [2, Lemma
I11.21, Corollary VII.27 and Proposition XVI.17]) Let (A, m,k) — (B, M,K) be a
local homomorphism of local noetherian rings. The following conditions are equiv-
alent:

(2) B is formally smooth over A in the M-adic topology.
If A is a field, then (1) and (2) are also equivalent to saying that B is geometrically
reqular over k.

Proposition 2.7. (Grothendieck [8, Theorem (19.7.1)], [2, Proposition XV.19, p.
211)) Let (A, m,k) — (B, P, K) be a local homomorphism of local noetherian rings.
The following conditions are equivalent:
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(1) B is formally smooth over A in the P-adic topology.
(2) B is flat over A and % is geometrically regular over k.

Property 2.8 (André’s theorem [2, Theorem 30, p. 331]). Let 0 : A — B be a
homomorphism of noetherian rings. Then the following conditions are equivalent:
(1) o is regular.
(2) (6) of Property 2.4 holds.
(3) H1(4, B,k(P)) =0 for any prime ideal P of B.
(4) For every prime ideal P C B, Bp is formally smooth over A with respect to
the P-adic topology.

There are two situations in which acyclicity in homology and cohomology are
the same thing:

Corollary 2.9. Let 0 : A — B be a homomorphism of noetherian rings. Assume
that either B is a field or B is essentially of finite type over A. Then B is smooth
over A if and only if o is regular.

Proof. If B is a field, then Qp/4 is a B-vector space. If B is essentially of finite
type over A, then (2p,4 is a finite B-module. In either case, {1p,4 is projective if
and only if it is flat. Now the corollary follows from Properties 2.4 and 2.8. O

Remark 2.10. Let A1 25 Ay 25 As be ring homomorphisms and W an As-module
such that Hl(Al,Ag,W) = QAz/Al ®A2 W = 0. Then Hl(AQ,Ag,W) =0 (thlS
follows immediately from the Jacobi-Zariski sequence).

Assume that A1, As and Az are noetherian, that o007 is a regular homomorpism
and that Q4,/4, = 0. Then oy is a regular homomorpism (this follows from the
above and the equivalence of (1)—(3) of Property 2.8).

The Jacobian criterion. Let A be a ring and C an A-algebra, essentially of finite
type over A. Fix a presentation
Alug, ... upls

I )
where I is a finitely generated ideal of Afuq,...,u,] and S a multiplicative subset
of Aluy,...,uy], disjoint from I. Choose a base f = (f1,..., fi) of I.
Definition 2.11 (Elkik [7] and H. Hironaka). The Jacobian ideal of C over A4,
denoted Heyy, is the ideal Heyy = \/Zg Ag((g) : I)C, where g ranges over all
the subsets of {f1,..., fi}.

(2.8) C =

Remark 2.12. Apparently, the definition of H¢ /4 depends on the presentation (2.8)
and on the choice of a base for I. Property 2.13 below says that Hc, 4 is the defining
ideal of the non-smooth locus of C' over A and therefore depends only on C' itself,
not on the particular presentation nor on the choice of f.

Property 2.13. The ideal Hcya defines the non-smooth locus of C over A. In
other words, for a prime ideal of P C C, Cp is smooth over A if and only if
Heya & P. We have

(2.9) Heja ={z € C | C; is smooth over A}

(remember that the zero ring is smooth over anything!). In particular, C is smooth
over A if and only if Hoya = C.
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Proof. Let F' = Aluy, ..., up|s in (2.8). Wehave Qp 4 = @ Fdu; and Qp s @pC =
i=1

P Cdu,. First, suppose that C is local with maximal ideal P and residue field K.
i=1

Lemma 2.14. C is smooth over A if and only if there exist g1,...,9- € {f1,..., fi}
as above such that I = (g1,...,9r) and A;C =C.

Proof. By Property 2.4 (1) <= (2), C' is smooth over A if and only if the sequence

I 4 i
(2.10) O—>I—2—>@Odui—>QC/A—>O
i=1
is split exact. Since C is local, (2.10) is split exact if and only if it is a split
exact sequence of free modules. This happens if and only if there is a subset
g=191,---,9-} C{f1,..., fi} which freely generate Iiz and such that dgi,...,dg.
are K-linearly independent modulo P. The latter condition says precisely that the

matrix (g%) 1<i<, has rank r modulo P, that is, A,C' = C. Now, if such a subset
J == £

1<3n
g exists, then g¢1,..., g, generate I by Nakayama’s lemma. Conversely, if there is
_ 9gi
a subset ¢ = {g1,...,9-} C {f1,-.., fi} such that (557)11?? has rank r modulo
<i<n
P and (¢1,...,9-) = I, then it is immediate to check that the images of g1,..., g,
freely generate Iiz This completes the proof. O

Now drop the hypothesis that C is local. Since we have not yet proved that
Hcya is independent of presentation, we will provisionally talk about Hg s with
respect to the given presentation. Because we are assuming that [ is finitely gener-
ated, the operation : commutes with localization. Thus H¢,4 localizes well: take
any multiplicative subset S C C. Let R := SN F and define Hgg 4 using the
presentation C'g = ILFPI; We have a canonical isomorphism (Hgy4)s = Hegya. For
a prime ideal P C C, apply Lemma 2.14 to the local ring Cp (again, we use the
presentation of Cp, obtained from (2.8) by localization). By Lemma 2.14, Cp is
smooth over A if and only if there exists a subset g = {g1,...,9-} C {f1,--., 1}
such that

(2.11) (915597 )Fpar = Ipar

and

(2.12) A, ¢ PNF

Now, (2.11) is equivalent to saying that ((g) : I[)Fpnr = Fpnr, and also to
(2.13) ((4) : )Cp & PCp.

Combining (2.12) and (2.13) and using the fact that both the operation of taking
Ay and : commute with localization, we get that Cp is smooth over A if and only
if Ag((g) : I)C ¢ P for some g as above. Thus Cp is smooth over A if and only if
Hegya ¢ P. This proves the first statement of Property 2.13.

Since Hcy4 is radical by definition, it equals the intersection of all the primes
P C B such that Bp is not smooth over A. Now (2.9) follows from Corollary 2.5.
The last statement of Property 2.13 follows immediately. O

Note, in particular, that Hg /4 is well defined, i.e. is independent of the choice
of presentation (2.8) and the generators f;.
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Remark 2.15. In the situation of Property 2.13, assume that F' is noetherian. Sup-
pose that Cp is smooth over A. Let (Q be a minimal prime of I, contained in PN F.
We have IFg = QFg. Then (2.11) implies that g is a system of parameters (even
a regular system of parameters) for Fiy. This shows that when F' is noetherian, we
may let g in the definition of Hc 4 range only over those subsets {g1,..., g} of
{f1,..., fi} which form a system of parameters in F(, for some minimal prime @
of I. In particular, if C' is a complete intersection over A and f is a minimal set of
generators of I, then He/q = \/AsC.

Consider homomorphisms A = B 2, C of noetherian rings, where B is essen-
tially of finite type over A and C' is essentially of finite type over B. The following
property describes the relationship between Hp 4, Hcya and Hp o

Property 2.16. We have \/Ho/pHp/aC = \/Hc/pHeya-

Remark 2.17. Property 2.16 says that a prime ideal P C C, not containing H¢/p,
contains Hp/4C' if and only if it contains Heo 4. In view of Property 2.13, this can
be restated as follows. Take any prime ideal P C C, such that Cp is smooth over
B. Then Cp is smooth over A if and only if Bpnp is smooth over A.

Proof of Property 2.16. By Corollary 2.9, each of the homomorphisms o, ¢ and
¢ o o is regular if and only if it is smooth. Now Property 2.16 follows from [10,
(33.B)] and Proposition 2.7 (1) = (2). |

Field extensions. Next, we discuss some standard results, which can be inter-
preted as a restriction of the above theory to homomorphisms of fields instead of
rings. A detailed study of extensions k — K with dimg H;(k, K, K) < oo will be
undertaken in §6. Let k — K be a field extension. Then Qg , and Hi(k, K, K)
are K-vector spaces. If K is finitely generated over k, then Q) and Hy(k, K, K)
are finite-dimensional.

Property 2.18 ([18, Corollary 5.2]). Letk — L — K be homomorphisms of fields.
The first map on the left in the Jacobi—Zariski sequence (2.5) is injective. In other
words, we have an exract sequence

0— Hy(k,L,K) —H(k,K,K) — H\(L, K, K)
— QL/k ®L K — QK/k: — QK/L — 0

This result is stated in [18] with Hy(k, L, L) ®1, K instead of Hy(k, L, K). How-
ever, the two statements amount to the same thing since Hi(k,L,L) @ K =
Hy(k,L,K). In fact, we have the same exact sequence for homology with coeffi-

cients in any K-vector space W instead of K (tensor everything with W and use
that W is K-flat).

Property 2.19 ([18, Corollary 5.5]). K is separable over k <= K is smooth
overk < Hy(k,K,K)=0 < Hy(k,K,W) =0 for any K-vector space W.

(The last two equivalences follow from Property 2.4.)
We end this section with the local criterion of flatness.

Proposition 2.20. (Local criterion of flatness, [10, (20.C), Theorem 49, p. 146]
or [18, Theorem 7.1]) Let o : A — B be a homomorphism of noetherian rings, I
an ideal of A such that IB C Jac(B) and M a finitely generated B-module. The
following conditions are equivalent:
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(1) M is flat over A.
(2) AL is flat over % and

(2.14) Tors! (M, ?) =0.

(3) % is flat over % and for alln € N, the canonical map Iiﬁ@)% T3 — TTFIAT
18 an isomorphism.

Proposition 2.21. Let A be a ring, M an A-module and (x1,...,x,) a regular
sequence in A, which is also a regular sequence for M. Let I = (x1,...,xy,). Then
Tor{' (M, 4) =0.
Proof. Straightforward induction on n. See [18, Lemma 7.5]. O
Corollary 2.22. Let (A,m,k) = (A", m/ k') <, (B,P,K) be local homomor-
phisms of local noetherian rings. Assume that:

(1) Both A’ and B are flat over A.

(2) Aj = mLf;’ and By := 2= are regular local rings.

(3) There exist elements x1,...,xq € A" which induce a regular system of param-

eters of Al and whose images in By can be extended to a regular system of
parameters of By.

Then B is flat over A" (hence faithfully flat, hence o’ is injective).

Proof. Since B is flat over A, we have T'or{(k, B) = 0. Since A’ is flat over A, we
obtain

(2.15) Tor (A}, B) = Tori{(k @4 A', B) = Tor{*(k, B) @4 A’ = 0.

Let T := Z1, ..., T, denote the images of x1,...,z, in Aj. By our assumptions, Z is
a regular sequence both for Aj and for By; moreover, % is a field. Thus By is flat
over A{, by the local criterion of flatness, applied at the ideal (Z)Af. Combining
this with (2.15) and applying the local criterion of flatness once again, this time at
the ideal mA’, proves that B is flat over A’. |

Remark 2.23. Let A — B be a continuous, flat homomorphism of topological rings,
with topologies defined by ideals m C A and P C B. Let A be the m-adic com-
pletion of A, B the P-adic completion of B and B the mB-adic completion of B.
Then B is flat over A by Proposition 2.20 (1) <= (3), and B is flat over B, being
the PB-adic completion of B. Thus B is flat over A.

Now let the notation and assumptions be as in Corollary 2.22 and consider the

induced homomorphisms A% A 2z, B between formal completions. The above
considerations show that & and 6’ o & are flat, and hence the new triple satisfies
the assumptions of Corollary 2.22. Thus B is flat (hence faithfully flat) over A’; in
particular, 6’ is injective.

Remark 2.24. Let 0 : A — B be a homomorphism of topological rings, with the
respective topologies defined by ideals P C B and m = PN A. Let A denote the
m-adic completion of A and B the P-adic completion of B. Then B is formally
smooth over A if and only if B is formally smooth over A, if and only if % is
formally smooth over % for all n € N. In particular, B is formally smooth over
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A whenever A & B via the natural homomorphism induced by o (all of this is
immediate from definitions).

Corollary 2.25. Let the assumptions be as in Corollary 2.22. Assume, in addi-
tion, that B is formally smooth over A, that A" = Alx1,...,24|pPnAfes,..., 2. and
that (m,z)B = P
(2.16)

m

gl

Then B is formally smooth over A’.

Proof. By Remark 2.23 the induced map 6 : A[[z]] — B is injective. On the
other hand, since (m,x)B = P and in view of (2.16), & is surjective, hence an
isomorphism. The corollary follows from Remark 2.24 (this fact, even without the

assumption (2.16), also follows easily from the Jacobi-Zariski sequence for the triple
A — A’ — B and the B-module K). O

§3. SMOOTHING OF ALGEBRAS DEFINED BY LINEAR HOMOGENEOUS EQUATIONS

In this section we prove Theorem 1.2 in the case when C' is defined over A by
linear homogeneous equations. For that we do not need o to be regular: it is
sufficient to assume that o is flat (in fact, an even weaker hypothesis will do—see
Proposition 3.4). All of this is well known and is a consequence of Lazard’s theorem
[10, (3.A), Theorem 1 (6), p. 18] and [5, pp. 7-8]. We reproduce these results here
in order to go on and prove a stronger version of them (Proposition 1.6) which will
play a central role in the rest of the paper.

Let A be a ring and p : M — B a homomorphism of A-modules, with M finitely
generated. Consider a presentation

(3.1) L%y -0

of M, where the L; are free and Lo is of finite rank. Let d} : L§ — L be the dual
of di. Take a free A-module K which maps surjectively onto Ker(d}). We get an
exact sequence

(3.2) K-rs
Consider the complex

(3.3) KoaB225 o, 2% 1o B

obtained by tensoring (3.2) with B. Let u € L§ ® B be the element corresponding
to p o do under the identification L§ ® B = Homa (Lo, B).

Remark 3.1. By construction, u € Ker(di ® B). If B is flat over A, then the
sequence (3.3) is exact, so that u € Im(a ® B).

Proposition 3.2. Assume that u € Im(a ® B). Then there exists a factorization
(3.4) ML FYB

of p through a free finitely generated A-module F. If A is noetherian, we can choose
a factorization (3.4) with the following additional property. For any P € Spec A
such that Mp is a free Ap-module, the map ¢pp : Mp — Fp induced by ¢ has a left
inverse.
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Proof. Choose a free finitely generated submodule Ky of K such that u €
(o ® B)(Ko ® B). Consider the complex

(3.5) Ko % Lp 1,

Put F := K. Dualizing (3.5) and using the fact that Ly C L}*, we get a complex

Ly &, Lo =5 F. The homomorphism «* induces a homomorphism ¢ : M — F.
Take an element v € K(® B such that (a® B)(v) = u. Let ¢ € Hom 4(F, B) be the
element corresponding to v under the identification Hom 4 (F, B) & Ky ® B. Then
Yoo =pand (3.4) is constructed. Now assume that A is noetherian. Then K is
finitely generated, so we may take Ko = K in (3.5). Then F is finitely generated.
Take a prime P C A such that Mp is a free Ap-module. Then (do)p : (Lo)p — Mp
has a right inverse, i.e. Mp is a direct summand of (Lg)p. Then M} is a direct
summand of (L§)p, so ap induces a surjection of free modules Kp — M5. Hence
Mp is a direct summand of Fp = K}, so ¢ has a left inverse. O

Corollary 3.3 (Lazard’s theorem). Let A be a ring and p : M — B a homomor-
phism of A-modules, where B is flat and M finitely generated. There exists a fac-
torization (8.4) of p through a free finitely generated A-module F. In other words,
B is a filtered direct limit of free finitely generated A-modules. If A is noetherian,
we can choose (3.4) so that whenever P € Spec A and Mp s a free Ap-module,
o¢p has a left inverse.

Proof. Immediate from Proposition 3.2 and Remark 3.1. O

We pass to symmetric algebras in (3.4) to establish Theorem 1.2 in the case
when C' is defined over A by linear homogeneous equations. Let 0 : A — B be a
ring homomorphism. Consider a commutative diagram (1.1). Suppose C' has the

form C = M, where I = (f1,..., fm) and each f; is a linear homogeneous
equation in the u;:
n
(36) fj = Zaijui, aij € A.
i=1
Then C' = Sp M, where M is the A-module with generators uq, ..., u, and relations

fi,--+, fm. Consider a presentation (3.1) of M. Then p induces an A-module
homomorphism p|ys : M — B. Let K and u € Ker(dj ® B) be as above.

Proposition 3.4. Assume that u € Im(a ® B) in (3.3) (this holds, in particular,
whenever B is flat over A). Then there exists a commutative diagram (1.2) where
D is a polynomial ring in finitely many variables over A. If, in addition, A is
noetherian, there exists a diagram (1.2) such that

(3.7) HeyaD C Hp o
(remember that the Jacobian ideal Hp o is radical by definition!).

Remark 3.5. Since D is a polynomial ring over A, we have Hp,4 = D. Then by
Property 2.16, (3.7) is equivalent to saying that \/Hc/aD = Hpc.

Proof of Proposition 3.4. Let

(3.8) M2 E B
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be the factorization of p|ys, described in Proposition 3.2. Put D := SuF. (3.8)

induces maps C 2D % Bof symmetric algebras with p = 1 o ¢ and hence a
commutative diagram (1.2). Let P be a prime ideal of D such that Ho a4 ¢ PNC.
Let Q = PN A. Since Hgya ¢ PN C, there exists a subset of {f1,..., fm}, say
{fi,---. fr}, such that A, ¢ Q and ((fi,..-, f) : [)C ¢ PNC. Then

W is isomorphic to a polynomial ring over Ag, hence all of its associated

primes are extended from Ag. Since ((fi,...,fr) : [)C ¢ PNC, ((f1,...,fr) :

AQlut,..., un
1Al
((fiy--os fr) s DAg[ua, ... un] = Aglut, ..., up], so that C ®4 Ag = W,
which implies that Mg is a free Ag-module. Now assume that A is noetherian. By
Proposition 3.2 we may choose (3.8) so that (¢1)¢g has a left inverse, that is, Mg is
a direct summand of Fig. Then D ® 4 Ag is smooth over C ® 4 Ag, hence smooth
over C. Therefore Dp = (D ®4 AQ)PDwAAp) 15 smooth over C, so Hp 4 ¢ P, as

desired. (|

.....

cannot be contained in any proper ideal extended from Ag. Thus

Next, we prove a variation of Proposition 3.4 which will be used in the proof of
Aluy,..., upn

Theorem 1.2. Consider a diagram (1.1) where C = ﬁ is defined by linear
homogeneous equations (3.6). Assume that A is noetherian. Let m be a prime

ideal of A such that mA,, C 1/A(}Am. The point of the following proposition is

that we can resolve the singularitites lying over m by a homomorphism ¢ : C' — D,
smooth away from V(m), even though C itself might not be smooth over A away
from V(m).

Proposition 3.6. Let M, K and u € Ker(d} ® B) be as in Proposition 8.4. As-
sume that uw € Im(a ® B) in (8.8). There exists a commutative diagram (1.2)
such that D is defined by linear homogeneous equations over A, mD C Hp,c and
HpaNAgm (ie. D®j Ay, is smooth over A).

Proof. Our strategy is first to factor 7 as A — C/ — C, where C’ is an A-algebra
such that mC” C Herya, apply Proposition 3.4 to C’, and then take the base change
of the resulting homomorphism ¢’ — D’ by C. Let f denote the column r-vector
with entries f;, 1 < j <r, and a; the column r-vector with entries a;;, 1 < j <,
n
so that (3.6) can be written in the form f = Y a;u;.
i=1
Lemma 3.7. Let A be a ring and ay,...,a, T-vectors with entries in A. Let A
denote the ideal generated by all the v X r minors of the r X n matriz formed by
a,...,an (as usual, we take A =0 if n < r). Let J denote the submodule of A"
generated by ay,...,a,. Then AA™ C J.
Proof. For an r x r minor A; of the matrix (a;;)1<i<r and an integer ¢, 1 < ¢ <,
1<j<n
let b(Aq,q) denote the r-vector whose gth entry is A; and all the other entries 0.
By linear algebra, b(Aq,q) € J for every A; and ¢. Since A is the ideal generated
by all the different minors A, we have AA™ C J, as desired. O

We come back to the proof of Proposition 3.6. Since mA,, C 1/A(}Am, by
Lemma 3.7 there exists N > 0 such that

(3.9) mN AT C JAT.
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Let y1,...,ys be a set of generators of m”. Define r-vectors bij, 1 < i < s,
1 < j <, as follows. The only non-zero entry in b;; is the jth one, and that is
equal to y;. Let v;, be new variables and define an A-module M’ by

(@ Aui> @ <@15j55 Avjk>
(3.10) M= =l 1<k .
<E a;u; + Z bjkvjk>

i=1 gk

We have a surjection m : M’ — M defined by sending all the v;, to 0. Let
C" := SyM’. The A-module homomorphism 7 induces an A-algebra homomor-
phism ¢’ — C which we also denote by 7. Let p' := pom. By (3.10), (y1,...,¥ys) C
HC’/A N A, hence m = V (y1,---,ys) C HC’/A N A.

(3.10) defines a presentation 0 — A" — A"*"$ — M’ — 0 which maps to (3.1)
in the obvious way. We may identify A” with L;. Denoting A"*"* by L, we get a
commutative diagram

0L - g -2 v — 0
(3.11) Tz wOT Tﬂ
di , do )

0— Ly Ly M —— 0

Since mp is surjective, its dual 7 is injective. Hence there exists a free finitely
generated A-module G such that o : K — Ker di extends to a surjection K & G —
Ker(d))*. Let K' := K & G. We obtain a commutative diagram

di

K —%— L} Lx
(3.12) l ﬁgl lz
K A

Consider the commutative diagram obtained by tensoring (3.12) with B. Let v’ €
Ker(dy"®B) denote the element corresponding to p’| - 0d). Then v’ = (7§ ® B)(u),
hence v’ € (7} @ B)((a ® B)(L§)) C (¢ ® B)(K' ® B). Thus C’ and o' satisfy the
hypotheses of Proposition 3.4. Hence there exists a commutative diagram

A—2 . B

L

¢ —— D

¢
such that D’ is a polynomial ring in finitely many variables over A and
(313) mD' C HC’/AD C HD’/C’

(cf. (3.7)). By construction, D’ = Sy F’, where F’ := K'*. Define D := D’ ®¢: C.
Since smoothness is preserved by base change [10, Chapter 11, (28.E), p. 201], we
have

Combining (3.13) and (3.14), we obtain mD C Hp,c. By (3.9), mp : M), — M,
has a right inverse; in fact, M/, = M,, & Fy, where F; = A”S. Then (7)., has a
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right inverse, so (7)), has a left inverse. Hence, K|, = K1 ® F; where K7 is a
free finite A,,-module which surjects onto (7)., (Ker(dj)m). Then F/ = K;® F}.
Since the map 7, is just the quotient by Fi, D ®4 A, = ﬁﬁ = Sa,, (K7),
so D ®4 Ay, is smooth over A,,. Therefore Hp/4 N A ¢ m, as desired. O

We end this section by proving Proposition 1.6.

Proof of Proposition 1.6. The first step is to reduce to the case when A* is of finite
type over A (we prove a slightly more general result for future use).

Lemma 3.8. Assume that A* = lim Ao, where {Aa} is a direct system of finite
type A-subalgebras, such that, for all o, A* is flat over A, and
(315) HA*/ABCHAQ/AB.

Then there exists a finite type A-subalgebra A5 C A*, such that all the homo-
morphisms in (1.7) are defined over A, so that (1.7) descends to a commutative
diagram of finite type A{-algebras mapping to B, and such that conditions (1)-(8)
still hold for the descended diagram.

Proof. Let A§ be one of the A, such that the diagram (1.7), Ker \*, the presenta-
tion of condition (5) and the presentation (1.4) of M are defined already over Ag.
Then condition (5) of Proposition 1.6 holds for such an A§. It is clear that condi-
tions (2), (4), (6) and (7) of Proposition 1.6 hold for Af if Af is sufficiently large.
Condition (1) holds for A§ by (3.15). Moreover, choose Af large enough so that
all the presentations used in the calculation of all the Jacobian ideals in conditions
(3) and (8), are defined already over Aj. Let C} and Cf, be the Aj-algebras such
that C* = CT ®a; A* and Cj = Cfy ®az A*. Let C7 = % be a presentation
of Cf over Cfy, and g = (¢1,...,9-) an r-tuple of elements of J. Since A* is flat
over Af, C* is flat over CY, and hence ((g) : J)C* = ((g)C*) : (JC*). By definition
of A, the ideal A, is the same whether computed in Cf,[V] or in C§[V]. Thus
Heg- oy = Heyyor, O, hence condition (8) holds for Af. Condition (3) is proved
in exactly the same way. This proves Lemma 3.8. O

Now, since A* is essentially of finite type over A, we may write A* = A’y, where A’
is of finite type over A and S is a multiplicative subset of A’. Let the direct system
{A.} be {A, }, where S’ ranges over all the finite subsets of S. For each a, A* is
smooth over A,; in particular, it is flat. We have Hy. /g = Hg,ja A" = Hpya A7,
so (3.15) holds. Thus, Lemma 3.8 applies. Replacing A* by Aj of Lemma 3.8, we
may assume that A* is of finite type over A. Now, apply Proposition 3.6 to the
A*-algebra Cj. We obtain a commutative diagram

A* -2 B
(3.16) l T”’“

Cy —— Do
where

(3.17) Hp,ja-NA* ¢ m* and
(318) m*D() C HDO/CS'
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Put D* := Dy @cy C* and D := Dy ®c; Cy. We get a commutative diagram

(3.19) Ar —2

Bt pel pr Do
l ”ﬁ / / /
i N e o

C@q A"~ Cf 4

extending (1.7), where 9 is the natural map coming from the tensor product; this
gives a diagram (1.2). We now show that this diagram (1.2) satisfies the conclusion
of Theorem 1.5 and (1.3). Since Cp . is smooth over (Cf)pncg by (1.14), Dpnp.
is smooth over (Dg)pnp; by base change, and hence also over A* and A by (1.8),
(3.17) and transitivity of smoothness [10, Chapter 11, (28.E), p. 201]. Next, we
use (1.11)—(1.13) to show that the natural surjective map vp : Djrp« — Dpnp is
actually an isomorphism.

Lemma 3.9. Let A — D be a local homomorphism of local noetherian rings with
D smooth over A. Let m be an ideal of A. Let I be a proper ideal of D such that
INA=(0) and

(3.20) mD C /(1% :I)D.
Then mD C v/Annpl.
Proof. Since A — D is local and D is smooth over A, the minimal primes of D

are precisely the extensions to D of the minimal primes of A. Let Py be a minimal
prime of A; then PyD is a minimal prime of D. We claim that

(3.21) ml C PyD.
If m C Py, there is nothing to prove. Assume that m ¢ Pp; take an element
x € m\ Fy. The inclusion (3.20) still holds after tensoring over A with %; the

left hand side of (3.20) becomes the unit ideal, hence so does the right hand side.
We obtain

D D

3.22 [—— @4 A, CI°—— @4 A,

(3.22) oD CAfe S @4

in the noetherian ring I')OLD ® 4 Ap without zero divisors. Moreover we claim that
D D

3.23 I—— Ay #+£ —— A,

(3.23) BoD ®4 Az # 7D ®A

Indeed, equality in (3.23) would mean that 7 = ay + b, for some T' € N, a € P,
y € D and b € I. Let z be an element of A, contained in all the minimal primes
of A except Py. Then za is nilpotent. Then for S € N sufficiently large, we have
(z2T)¥ = (azy + 2b)® € I N A\ Py, which is a contradiction. (3.22) and (3.23)
prove that IPO% ®a Az = (0); by the choice of z, I C PyD and (3.21) is proved.
Since this holds for every minimal prime Py, we obtain that mI is nilpotent. Say,
(mI)* = (0). By (3.20), there is an N € N such that m~ I C I?. Iterating this L—1
times, we obtain m™~*I C m”I* = (0). We have found a power of m annihilating
I, as desired. O

We continue with the proof of Proposition 1.6. Extending all the ideals in (1.11)—
(1.12) to Dpnp-, We obtain

(3.24) IDpnp- € (m*)N Dpnp-
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and m*Dpqp. C \/(I?: I)Dpp.. By Lemma 3.9, applied to the smooth, local
A}, .-algebra Dy -, we have

(3.25) m* Db e C \/AnnD;mD*ID};ﬂD*.

In other words, IDpp. is annihilated by some power of m*, so that

(3.26) IDpAp- C Annpap=(m*)*° Dpqpe-

Combining (3.24) and (3.26), we obtain

Ker 7p = IDppp. © (Annps,_ (") Dpppe) 0 ((m*) Dipyp-)
= ((Anna;, . (m")* A7) 0 (M) Y A7) Dpep,

where the last equality holds since D}, . is faithfully flat over A},. (being smooth
and local). Now, A¥ . is smooth over A, by (1.8), hence fatithfully flat over it.
Then all the associated primes of AY . are extended from associated primes of A,,,
in particular, are contained in mA?, .. If m*A¥ . ¢ mA? ., then it contains some
non-zero divisors, so that Anna-  (m*)*Ay,. = (0) and so Ker vp = (0) by (3.27).
Assume that m*A . C mA? .; the opposite inclusion is trivial by definitions, so
that mA}, . =m*A} .. Hence

(Annas . (m=)> A% ) 0 (mx)N ALL) = (Annas m™ A% ) nmN AL

= ((Anna,, m>A,) N mNAm) A

where the last equality holds by faithful flatness of A} . over A,,. Now, (1.13),
(3.27) and (3.28) prove that Ker yvp = (0), so that vp is an isomorphism. Since
Dpnp = Dpnp- is smooth over A% . and A7 . over A (1.8), Dpnp is smooth over
A. This gives (2) of Theorem 1.5.

Moreover, from (3.18) we get m*D C Hp,cs, by base change. Combined with
(1.8)-(1.10), transitivity of smoothness and the fact that Hy/4-C C Hog,a+/c
(base change), we get

\/Hc/jaB C P C \/HD/CNHCN/(C®AA*)HA*/AB C \/HD/CBa
which gives (1.3). (1) of Theorem 1.5 follows from (1.3) and Property 2.16. O

(3.27)

(3.28)

Remark 3.10. If B is local with maximal ideal P, then, replacing D by D,, where
x is any element of Hp,4 \ (P N D), we get a diagram (1.2) with D smooth over
A, proving Theorem 1.2.

§4. SMOOTHING OF AN ISOLATED, ALMOST COMPLETE INTERSECTION
SINGULARITY WITH NO RESIDUE FIELD EXTENSION

In this section we prove a special case of of Theorem 1.2: Proposition 1.8. Ex-
tending the proof from this special case to the general one forms the technical part
of the paper and occupies §5-§9. Our main tool in proving Proposition 1.8 will be a
transformation of C' called generalized blowing up. The map 7*, required in the
diagram (1.7), will be given as a composition of generalized blowings up. We start
by defining generalized blowing up and studying its basic properties. Consider a
diagram (1.1), with C of finite type over A. Let m be an ideal of A and z1,..., 2

a set of generators of m. Fix a presentation C' = #. Assume that

(4.1) p(C) C o(A) +mB
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(note that (4.1) is satisfied in the situation of Proposition 1.8 by the conditions (2)
and (4)). We now define the generalized blowing up 7 : C' — C; of C along m. By
(4.1), there exist ¢1,...,c, € A such that p(u;) — o(c;) € mB. Let v;5, 1 <i < n,
1 < j <k be independent variables and consider the change of variables

k
(42) U; — C; = ZZj’Uij, 1 S 7 S n.
7j=1

Write v for {v;; | 1 <i<mn,1<j <k} Equations (4.2) define a homomorphism
7y Alu] — Afv]. Put

(43) Cl =

where I is the ideal of Afv] generated by the set {m,(f) | f € I}. The homo-
morphism 7, induces a homomorphism C — C; which by abuse of notation we
shall also call 7,. By definition of ¢;, there exists a homomorphism p; : C1 — B
compatible with o, 7 and p.

Definition 4.1. The homomorphism 7, is called a generalized blowing up of
C along m (with respect to z). We emphasize that the generalized blowing up
7, is a transformation which, given a finite type A-algebra C' together with a fixed
presentation and a set of generators z of m, produces a finite type A-algebra C
together with the presentation (4.3).

Remark 4.2. Note that even once we fix a presentation of C' and the set z, the map
p1: C1 — B is, in general, not unique. In the applications we always pick and fix
one such map p;. Note also that we allow the possibility m = (0) in Definition 4.1.
In this case, we have k = 0 and z = ) and the right hand side of (4.2) is 0.

An important property of generalized blowing up, which follows immediately
from (4.2), is that

(4.4) m C HCl/C N A;

this will be used to deduce (3) of Proposition 1.6. The key idea in the proof of
Proposition 1.8 (and Theorems 1.2 and 1.5) is to study the behaviour of Jacobian
ideals under generalized blowing up. First, we consider the effect of the change
of variables (4.2) on an arbitrary column vector of elements of A[u]. Let r be a
positive integer. Let f be a column r-vector, whose entries are elements of Afu).

For1 <i<n,let (g—i) be the column r-vector with entries in Afu], obtained from
f by differentiating every entry with respect to u;. Write f = " aqu®, where «
ranges over some finite subset of Ni} and a,, € A”. Let I(f) denote the A-submodule
of A" generated by the a,. For a submodule J of A", we will denote by JB" the
image of J in B” under o, and similarly for submodules of C”. Our main tool will
be Taylor’s formula:

(4.5) £= 10+ Y 2w )+

where h € (u — ¢)?I(f)Afu]". Let p (88_1{1») denote the column r-vector with entries

in B, obtained from (88_1{7:) by mapping it to C' by the natural map A[u] — C and
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then applying p to every entry. Let J(f) denote the submodule of B" generated by
the r-vectors p (aan)v 1 <¢<n. We have
(4.6) J(f) C I(f)B".

Consider the generalized blowing up 7 : C — C; given by (4.2). The key point is
to compare I(f) with I(w(f)) and J(f) with J(7(f)).

Lemma 4.3. Assume that the entries of the r-vector f belong to I. Then:
(4.7) J(7(f)) =mJ(f),
(4.8) I(m(f))B" Cc mJ(f) +m*I(f)B".

Proof. (4.7) follows from (4.2) by the chain rule. To prove (4.8), substitute (4.2) in
(4.5). We obtain

of
(4.9) m(f)=flo)+ ) o, ()70 + ha,
i3 ¢
where hy € m2(v)2I(f)A[v]". Let Jo(f) denote the submodule of A™ generated by
%(c), e %(c). Since for each i we have aa—ué - g—ufi(c) € (u—c)I(f)A[u]", we
have
(4.10) Jo(f)B" € J(f) +mI(f)B".

Applying p to (4.9), identifying f(c) with its image in B and using that f has
entries in I (and hence maps to 0 in B"), we obtain

(4.11) f(e) € (mJo(f) +m>I(f))B".
By (4.9)-(4.11), I(n(f))B" C (mJo(f)+m2I(f))B" = mJ(f)+m?I(f)B". Lemma
4.3 is proved. O

Now consider a sequence
(4.12) cLo = 2 O

of N generalized blowings up along m. For each ¢, we have a homomorphism
pi : C; — B; the p; commute with the 7; in (4.12). Here we are assuming that

(4.13) pi(C;) C o(A) +mB

for each i < N. Note that this assumption holds for any algebra C; if mB = P and
(2) of Proposition 1.8 is satisfied. In the next lemma, assume that C = # is an
almost complete intersection at P N C. Let f be the column r-vector with entries
fi, and let J(f) be as above. By (1.17) and Lemma 3.7, we have

(4.14) m™NB" C J(f)

for all N sufficiently large. Since A is assumed to be noetherian and since the
Ann am' form an ascending chain of ideals, Annam> = Annam’® for some i. Using
the Artin—Rees lemma, we obtain, for all N sufficiently large,

(4.15) mY N (Annam™) = mY N (Annam®) € m* Annam® = (0).
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Lemma 4.4. Consider a diagram (1.1). Assume that A is local with mazimal ideal
m, that (1) and (3) of Proposition 1.8 hold, that mB = P and that (4.13) holds for
all the A-algebras C; appearing in (4.12), so that the sequence (4.12) is well defined
(note that the last condition holds automatically if we have (2) of Proposition 1.8).
Take N € N in (4.12) to be sufficiently large so that both (4.14) and (4.15) hold
(again, if r = 0, we regard (4.14) as being vacuously true). Let 7* :=wy o---omy.
Then the map m* : C — Cy fits in a commutative diagram (1.7) (with A = A* and
m =m"*), satisfying (1)-(5) and (8) of Proposition 1.6. If, in addition,

(4.16) m2N < I1(fM),
then (7) of Proposition 1.6 holds.

Proof. First, we construct the diagram (1.7). By definition of generalized blowing
up, each C; comes together with a specific presentation (cf. (4.3)); let Cny =
A[}L—;N)] be the given presentation of Cy. Let fi(N) = (my o---omom)(fi) for
1 < i < r. By Lemma 4.3, (4.14) and induction on N, we have I(fN))B" C

mNJ(f) +m*NI(F)BT = mNJ(f) = J(fO), so
(4.17) I(f)B" = J(f™)

by (4.6). Let (fOV)) denote the ideal of A[u™)], generated by ™), ... f™). Put

C* = ’?E}é—x\;;]. We have natural homomorphisms \* : C* — Cx and p* : C* — B,

given by p* = pny o A*; note that Ker \* = INC* Let (ai,...,a;) denote a

minimal set of generators of I(f(N)). Write f(V) = Z a;igi, where g; € Alu™)].
=1
Let G1,...,G; be new variables. Let Fi,..., F, denote the entries of the r-vector

1
Z; a;G;. We will write (F') for (Fy,..., F,). Let C§ := w Letg: Cf — C*
be the map which sends G; to g;. This completes the construction of the diagram
(1.7). Again, note that we allow the possibility r = I = 0, (fN)) = (F) =
(0). Next, we show that the diagram (1.7) thus constructed satisfies (1)—(5) and
(8) of Proposition 1.6. (1) and (2) of Proposition 1.6 are trivial. (1.10) follows
immediately from (4.4) and Property 2.16 by induction on N. From (1.18) we
obtain mCprc- C /((I%) : IN)Cprc-; this gives (1.12). (1.13) is nothing but
(4.15). (5) of Proposition 1.6 is true by definition. It remains to prove (8).

Proof of (8). Let K = . Let 3 (N) denote the [ x n matrix whose ijth entry is
. FN .
ooty Since J(fO0) is generated by o (Z <N>) Z ajpn <a m) 1<i<n,
and since, by (4.17) and Nakayama’s lemma, (aq,...,q;) induces a minimal set of
generators of the K-vector space %, we have
(4.18) k(=22 )21 mod (Pm A[u<N>])
' OuN) '

Since C* is defined over C by the equations g; = G, 1 < i <[, (4.18) implies that
Chnc- 1s smooth over Cf, that is, Ho«/c: ¢ PN C*, as desired. Again, the above
is trivially true if r = 0, for then C* = C} = A[u™)]. O
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Finally, suppose (4.16) holds. By definitions, AY% is the ideal generated by all
the r x 7 minors of the r x [ matrix formed by ai,...,a;, so (4.16) implies that
m C /AY., as desired. This completes the proof of Lemma 4.4. O

Proof of Proposition 1.8. Put A* = A,,. From now on, to simplify the notation,
we will replace A by A*, C by C ® 4 A*, and assume that A is local with maximal
ideal m (in particular, o is faithfully flat). Under this assumption, we will construct
a diagram (1.7) with A = A*. Take N as in Lemma 4.4 and consider the sequence
(4.12) of N generalized blowings up. By Lemma 4.4, (1)—(5) and (8) of Proposition
1.6 are satisfied. Proposition 1.6 (6) holds by Remark 3.1, since B is flat over A.
It remains to prove (4.16) to infer (7). O

Lemma 4.5. If B is flat over A, then (4.16) holds.

Proof. We have m?NB" C J(f™"))B" by (4.7), (4.14), and induction on N. By
(4.17), this gives m*N B"  I(f™"))B". (4.16) follows by faithful flatness of B over
A. This completes the proof of Proposition 1.8. O

Remark 4.6. Suppose that assumption (4) in Proposition 1.8 is replaced by saying
that o : A — B is formally smooth in the P-adic topology (by Proposition 2.7, this
is weaker than being a regular homomorphism). Then the conclusion of Proposition
1.8 still holds: we have only to reduce to the situation when mB = P. This can
be done as follows. Let K := % = % and By := %. The map K — By
induced by o is formally smooth in the PBy-adic topology (by base change: [10,
Chapter 11, (28.E), p. 201]), so By is a regular local ring (Proposition 2.6). Let
T1,...,Tq be elements of B which induce a regular system of parameters of By and
let Xq,..., X4 be independent variables. Write X for X;,..., X;. Consider the
map oy : A[X]pnx — B which sends X; to ;. The map oy is flat by Corollary
2.22. Now we can apply Proposition 1.8 to ox. This gives diagram (1.7) with
A* = A[X]pnajx). Since A[X],, is smooth over A, (1.8) is satisfied and we are
done.

§5 SMOOTHING OF AN ISOLATED SINGULARITY OVER A LOCAL RING
WITH NO RESIDUE FIELD EXTENSION

Consider a diagram (1.1). Let P be a minimal prime of Hgo/4B and let m :=
PN A. In this section we prove

Proposition 5.1. Assume that (1), (2) and (4) of Proposition 1.8 hold. Then
there exists a diagram (1.7) satisfying conditions (1)—(8) of Proposition 1.6 (and
hence the conclusion of Theorem 1.2 holds in this case).

With a view to §§8-9, we will start out working under more general hypothe-
ses than those of Proposition 5.1, and gradually impose more restrictions on our
diagram (1.1) as we go along. The idea is to show that p factors through a map
C — Cp such that P C /Hc, /B and Cf, is an almost complete intersection
over A at PN Cp. Once this is done, we will invoke Proposition 1.8 and the proof
will be complete. We start with any diagram (1.1) whatsoever of noetherian rings.
Let C = M be a presentation of C. Let % denote the coherent sheaf on
Spec C such that I' (Spec C, &) = % (in what follows we will adopt the following
convention: ideals and modules will be denoted by capital letters, and their sheafi-
cations by script capital letters). Restricted to the smooth locus of C over A, the
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sheaf %}SpocC\V(Hc/A) is nothing but the conormal bundle of Spec C'\ V(H¢/4)

in Spec A[ ]. The first step of the proof is to achieve the situation when the vector

bundle Z |Spec C\V(He ) is trivial. This is given by Elkik’s lemma, which we now

invoke. Let C’ := Sc(p). Extend p to C’ by setting it to be (for example) the 0
map on the positive degree part of SC(I%).

Alu]

Lemma 5.2 (Elkik [7, Lemma 3]). There exists a presentation C' = “5= such

T’
I’

is the trivial vector bundle.
Spec C'\V (H¢r )

Since = is locally free, for any prime ideal Q C C’, C'Q is smooth

|Spcc C\V(Hcya)
over C' whenever C’ch is smooth over A. Therefore

(51) Hc/AC/ C HC’/C

(this will be needed to prove (1.10)). Let P be as in Theorem 1.5 and let m =
PNA. If HoyaB ¢ P, we may take C, = D = C’ and there is nothing more
to prove. If HoiyanB C P, then P is a minimal prime of Hgi 4B by Property
2.16 and (5.1). In this case, replace C' by C’. From now on, assume that the
vector bundle = ‘SPCCC\V( 1a) is trivial. If V(mHc/aCpnc) # Spec Cpnc, let

r:=rk and let f_l, ceey fr be global sections of 2

}SpeCC\V(Hc/A)
If V(mHC/ACpmc) = Spec Cpnc, set r = 0

7z }Spec C\V(

which generate = ‘SpeCC\V(HC nE

and let {f1,..., fr} be the empty set. Let z1,...,2 be a set of generators of m.
To achieve the situation when C' is an almost complete intersection at P N C, we
iterate the generalized blowing up 7, (see Definition 4.1). Consider a sequence

(5.2) CcIhop B IS o T
of generalized blowings up (we are assuming that (4.13) holds for each i in (5.2), so

(i

that (5.2) is well defined). Let C; = 14[“1)[7157,3] be the presentation of C; obtained,
recursively, from the definition of generalized blowing-up (here n; 1 = kn;; cf. (4.2)
and (4.3)). The purpose of the next several lemmas is to show that, under some
additional hypotheses, after a finite number L of such blowings up we can ensure
that there exist fi,..., f, € I1, such that for 1 <i < r, ﬁ is the natural image of
fi, up to multiplication by an element of A[u(™]\ (P N A[u(")]). This will mean
that Cf, is an almost complete intersection over A at P N C and our proof will be
finished.

is trivial.
Spec Ci\V(mHc,aCs)

Lemma 5.3. For all i € N, the vector bundle £ 12

Proof. By definition,

Ii Il_lA[u(’)] .
5.3 - 2 N.
>3 R VO] M

Since A[u?] is flat over A[u*~Y] away from V(mA[u(*~V)]), away from that locus
(5.3) can be rewritten as

Z; w (i1

i 1Spec C;\V (mC;)

R

, €N
Spec C;\V(mC;)

and the lemma follows immediately by induction on %. O
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Wi

, . o d, .
For each i, consider the exact sequence ;—72 — C" = Q¢ /4 of Ci-modules and
i
the corresponding exact sequence

T 4 ;i w;
(55) ﬁ — OSpec C; - Qépec Ci/A
of sheaves of Ogpec ¢;-modules. First, let ¢ = 0 in (5.5). Since fi, o, fr

S
I'(Spec C'\ V(Hc¢ya), %), we have Lio(f_j) € T'(Spec C'\ V(HC/A),ngeC o) 1<
7 <r, and hence

(5.6) Hé}Aazo(fj) €T (Spec C,08yec ¢) =C™, 1 < j <r, forall L1 > 0.
Lemma 5.4. Assume there is a positive integer Ly such that
(5.7) m*(CLy)pncy, € mHeya(CLy)prcy, -

Let Ly be such that (5.6) holds and let L = LoLy. Then Cp, is an almost complete
intersection over A at PN Cp.

Proof. We have

(5.8) m(CL) pncy, C (HCL/A)PHCL

by Property 2.16, induction on L and (5.7). Combining Lemma 5.3, (5.4) and (5.7),
we see that the sections

* £ * I
(rpo---om) fi,...,(mpo---om) fr €l <SpeC(CL)PﬁCL\V(m(CL)PﬁCL)a I—é)
L
freely generate % . It remains to show (3) of Definition
L1Spec(CL)pnc, \V(m(CL)Pncy)

1.7. This is given by the following lemma.

Lemma 5.5. There exist elements fl(L), . .,fT(L) € I whose natural images in
I'(Spec(CL) pno, \ V(m(CL) Prcy)s %) are (mpo---om)* f1,...,(mpo---om)* f,
respectively, up to multiplication by an element of Cr, \ PN Cy.

Proof. Consider the commutative diagram

(5.9)

N <—‘Tj>|t\]
N
&
(_

Li U @i 1
2 OSpcc C; QSpec Ci/A

induced by the map A[u] — A[u()], given by iterating (4.2). First, let i = 1 in
(5.9). By (4.2) and the chain rule, z; sends an n-vector with entries by,...,b, €
(U, O0%,ec ¢) (where U is an open set of Spec C) to an (nk)-vector with entries
zjb;, 1 < j <k, 1 <1 <mn. Next,leti= L in (5.9). By induction on L, z,
sends (by,...,b,) to an ny-vector all of whose components are of the form z%by,
1 <1 < n, where |o| = L. Combining this with (5.6)—(5.7) we obtain, after
localization at P N Cp,, that JL((ﬁL 0--+0 wl)*f_j) extends to an element of

(510) F(SpeC(OL)PﬁCLa OnL ) = (CL);;%CL

Spec(CL)pncy,

for 1 < j < r. Since dp((m o ---om)*f;) € Kerdyp, by (5.9) there exist

A9 e B @, (Ch)pnc, such that di(f]™) = du((rr o - 0 m1)"fy),
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1 < j < r, under the identification (5.10). Since dy, is injective away from the non-
smooth locus V(H¢, )4(CL)pncy) of (CL)pncy, by (5.8) it is injective away from
I,
i SpCC(CL)PmcL\V(m(CL)PmCL7

the elements fj@) generate % ®c, (CL)pnc, away from V(m(CL)pnc,). Since
Spec A[u(L)]PQA[u(m] is affine, H'(Spec A[u(L)]pmA[u@)],I%) = 0, so ffL), cey

V(m(CL)pncy)- Since the (mz0---om)* f; generate

FiY) can be lifted to f{™), ..., £ € (IL) praguer = T(Spec Afu™)] prapue, IL)-
Multiplying fl(L), .. .7f7(,L) by an element of A[u(™]\ P N Au™], we may take
fl(L), ce fT(,L) € Ir. This proves Lemma 5.5 and hence also Lemma 5.4. O

Proof of Proposition 5.1. We want to apply Lemma 5.4. For that, we must show

that there exists Lo such that (5.7) holds. Since P = \/Hg /4B, there exists Lo
such that
(5.11) m™"B = P"B C HoyaPB = mHc4B.

We claim that (5.7) holds for this Ly. Indeed, let hq,...,hs be a set of generators
of Hgya. Let h;l) denote the image of h; in C;. By (4.2), (4.5) and induction on ¢,

hg»L) can be written as
(512) W =g + i),

where gJ(-L) € A and qJ(-L) e mtCyr. Let H} := (g§L), e ,g,EL))A.

Lemma 5.6. Let (Q be a module over a noetherian ring C and M an ideal of C
with M C Jac(C). Let H and H' be submodules of Q, with sets of generators
H = (h1,...,h) and H = (g1,...,g1). Assume that g; —h; € M*Q, 1 < j <t,
and M*Q c MH'. Then H = H'.

Proof. Since h; € H' + M*Q, 1 < j < t, we have H C (H' + M'Q) = H' and
H' C H+M*Q C H+ MH'. The result follows by Nakayama’s lemma. O

By (5.11)-(5.12) and Lemma 5.6, HojaB = Hj B. Then (5.11) implies that
m™ B C mH} B, hence m™ C mHj by faithful flatness of o, hence m*°Cr, C
mH;p Cr,. (5.7) follows from (5.12) and Lemma 5.6. Thus we may apply Lemma
5.4. By Lemma 5.4, Cp is an almost complete intersection over A at P N Cf.
Apply Proposition 1.8 with C replaced by Cy,. We construct a diagram (1.7) (with
A* = Ap,). (1.10) follows from (5.1), (4.4) and Property 2.16. (1)—(2) and (4)—(8)
of Proposition 1.6 follow immediately by Proposition 1.8 and we are done. O

§6. SEPARABILITY IN FIELD EXTENSIONS

Let o : (A,m,k) — (B, P, K) be a regular homomorphism of local noetherian
rings. One of the difficulties in proving Theorem 1.2 comes from the fact that the
residue field extension £ — K induced by o need not be separable. However, as we
shall see in §7, we always have dimy Hi(k, K, K) < dim B — dim A < oco. In this
section, preliminary to §7, we study field extensions with dim H; (k, K, K) < oo.
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Notation. If A — B is a ring extension with char A = p > 0, ABP will denote
the A-subalgebra of B, generated by the set BP. Of course, if A and B are fields,
then ABP is a subfield of B since, in that case, if a € ABP \ {0}, then a=! =
(a_l)pap_1 € ABP.

We start with a general observation about Kéahler differentials in field extensions
of positive characteristic. Let k — K be a field extension.

Proposition 6.1. Assume that char k = p > 0. Let a € K; consider da € Q.
We have da =0 <= a € kKP.

Proof. <= is immediate.

— It is sufficient to consider the case when K is finitely generated over k. From
the Jacobi—Zariski sequence for the triple &k — kK? — K and from the fact that
Qprr/k Qrrr K — Q) is the zero map, we get the isomorphism Qg /prer =g 4,
Thus, replacing k by kKP does not change the problem, that is, we may assume,

in addition, that K C k. Then K can be written as K = @{'i?—;;la)v a; € k.
Moreover, if a ¢ k, then we may choose x; = a and therefore da # 0. O

Corollary 6.2. We have Qg = 0 if and only of K = kKP. More generally,
consider a subset uy = {uy | Y € ¥} C K. The elements duy, v € U form a
K -basis of Qg y if and only if uy is a minimal set of generators of K over kKP?.

A set uy satisfying the equivalent conditions of Corollary 6.2 is called a p-basis
of K.

Remark 6.3. Let 6 : k — K be a finitely generated extension of fields of charac-
teristic p > 0. A p-basis of K over k can be constructed as follows. Decompose §
as k — Ky — Ky — K, where K, is purely transcendental over k, K is separable
algebraic over K; and K is algebraic and purely inseparable over K. Moreover,
choose this decomposition in such a way as to minimize dimg Qg /,. Let up be
a minimal set of generators of K; over k and vg a p-basis of K over K. Then it
is easy to see that up Uwvg forms a p-basis of K over k (indeed, dup U dve gen-
erate Qi by definition; moreover, they are linearly independent: a non-trivial
K-linear dependence relation among dup U dvge would imply that one of the wy,
A € A can be removed and replaced by one of the vy, which contradicts the min-
imality assumption on dimg Qg ,). In particular, Qg = 0 if and only if K is
separable algebraic over k. If K is not finitely generated over k, then the extension
ke k(0
counterexample to all these statements.

1
=k (t,t%,tpz S .), where ¢ is transcendental over k, provides a

Let § : k — K be any field extension (no assumptions on the characteristic). Let

{wx}rea be a maximal family of elements of K such that

(1) {wa}rea are algebraically independent over k.

(2) {dwx}ren are linearly independent over K in Q.
Write {wa } for {wx}rea. Let {vy}oca be a set of elements of K such that {dwa } U
{dve} form a basis for the K-vector space Q. Let Kj := k(wa) and let Ko
denote the subfield of K generated by ve over K. We get a decomposition of the
extension k — K:

(6.1) E2 Ky D Ko O K,

where « is purely transcendental, § is an inseparable algebraic extension and +y is
unramified (i.e. Qg/x, = 0).
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Remark 6.4. In the case when K is finitely generated over K, (in particular, when-
ever K is finitely generated over k), we have some extra information about the size
of ® and Qp/,. First of all, in this case we have #® < oco. Secondly, K must
be algebraic over K, otherwise we could enlarge the set A (cf. Remark 6.3), and
this would contradict the fact that wp is the maximal set satisfying conditions (1)
and (2). If K is finitely generated over Ko, then K is separable algebraic over Ko,
since Qg /k, = 0 (cf. Remark 6.3).

Next, we prove a generalization of the primitive element theorem, which deals
with the minimal number of generators of a finitely generated field extension.

Theorem 6.5. Let § : k — K be a finitely generated field extension. Let d :=
dimg Qg p. Then the minimal number of generators of K over k is equal to d + 1
if & is separable but not pure transcendental, and to d otherwise.

Proof. Consider a decomposition (6.1) of §. Let ¢t := tr.deg K/k, so that t = #A
and d = t + #® (cf. Remark 6.3). First, suppose J is separable. In this case
t = d. Then the minimal number of generators of K is at least d. If K can be
generated by exactly d elements, then it is pure transcendental over k. Otherwise
K is generated by one element over K, by the primitive element theorem, hence
the minimal number of generators of K over k is d+ 1. This proves the theorem in
the separable case.

Suppose 9§ is not separable. It is obvious that K cannot be generated by fewer
than d elements. Let us prove that d elements are enough. Since K, is generated
over k by t elements and dimg Qg /x, = d — ¢, we may replace k by Kx. In other
words, we may assume that K is algebraic over k. Our proof is by induction on d.
First, let d = 1. Let ks be the separable closure of k£ in K and let v be any element
of K such that dv generates Qg /i, = Qg i . Then K = ky(v)K? by Corollary 6.2,
hence K = ky(v)KP" for all n, so that K = k,(v). Now, it is well known and
easy to prove that a composition of a separable algebraic extension with a simple
algebraic extension is again simple [9, §VIL.6, Theorem 14, p. 185 and Exercise 4,
p. 190]. The case d = 1 is proved.

Next, let d > 1. Let vy,...,vq be a set of elements of K which induce a basis
of Qg /. We have K = kq(v1,...,v4)KP, hence K = kg(vy, ... ,vg)KP" for all n,
hence K = kg(v1,...,v4). Now, ks(v1) is a simple extension of k by the d = 1
case, and K = kg(v1,...,vq) is generated over ks(vi) by d — 1 elements, hence K
is generated over k by d elements, as desired. O

Remark 6.6. Another way to phrase Theorem 6.5 is that if ¢ : kK — K is an in-
separable finitely generated field extension, then the set vg of (6.1) can always be
chosen in such a way that K = Kg. Indeed, if o is inseparable and finitely gen-
erated, Theorem 6.5 says that the smallest number of generators of K over K, is
#®, hence we may choose vg so that K = K¢ = K (ve).

Let Vg, ¢ € ®, be independent variables. Let I denote the kernel of the map
Ka[Va] — Ko which sends V;, to vs. Choose a well-ordering of ®. For an element

¢ € @, define Dy :={¢' € @ | ¢/ < ¢}. Let Ky denote the subfield of K¢ generated
by ve, over K. Let gy € Ky[Vs] denote the (monic) minimal polynomial of vy over

K. Pick and fix a representative G of g¢ in K [Vs,][Vy]. Since K(‘é[i/‘)i’] is a field,

the relations Gg form a set of generators of I. By construction, the elements Gg
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form a minimal set of generators of I, hence they induce a basis of the Kg-vector

space 1L2 .

Lemma 6.7. We have a natural isomorphism Hi(k, Ko, Ko) = I% In particu-
lar, the set ® has the same cardinality as any basis of the Kg-vector space
Hy(k, Ke,Ks).

Proof. By definition, the elements {dwp} U {dve} are K-linearly independent in
Qk k- Since there is a natural homomorphism Qx, @, K — Qg /i, {dwa}U{dve }
are also Kg-linearly independent in Qg, . Since {dwp} U {dve} generate Kg as a
field over k, we have

(6.2) Qo /i = (@ Kéde> P | P Kadv,

AEA pee
The ring K5 [Vs] is a localization of a polynomial ring over k, hence
(6.3) Hi(k, Kz[Vs], Ko) = 0.
By (6.2), (6.3) and Property 2.2 (applied to the surjective map Kx[Vs] — Ko), the
Jacobi-Zariski sequence (2.5) for the triple k — K, [Va] = Kg takes the form

I
O - Hl(kaq)aKq)) - I_2 - QKA[V(])]/]C & K(I)

(6.4)
s, (@ Kq)duu) @ @chdvgb — 0.

AEA ped

Since ds is an isomorphism, (6.4) implies that Hi(k, Ko, Ko) & %, as desired. O

Corollary 6.8. Let x1,...,z, be elements of I. The elements x1,...,z, form a
reqular system of parameters of the regular local ring Ka[Va|r if and only if the
natural images of x1,...,xq in Hi(k,Kg,Kg) under the isomorphism of Lemma

6.7 form a basis of Hi(k, Ko, Ko).

Lemma 6.9. There is a natural injection ¢ : Hy(k, Ko, K) — Hy(k, K, K). If K
is separable over K¢ (cf. Remark 6.4), then v is an isomorphism.

Proof. Immediate from the Jacobi—Zariski sequence for the triple k — K¢ — K
(Property 2.18): 0 — H;(k,Ke,K) — Hi(k,K,K) — H1(Ks, K, K), and Prop-
erty 2.19. O

Corollary 6.10. Keep the above notation. Suppose dimg Hy (k, K, K) < oco. Then
® is a finite set and #® < dim Hy(k, K, K). If, in addition, K is separable over
Kg, then #® = dim Hy(k, K, K).

Proof. Immediate from Lemmas 6.7 and 6.9. O

Lemma 6.11. Let k — K be a field extension. Assume that dim Hy(k, K, K) < oo.
Then there exists a subfield L C K, containing k and finitely generated over k, such
that the natural map Hyi(k, L, K) — Hy(k, K, K) is an isomorphism. Fix one such
L. Then for any subfield K' C K with L C K’, the natural map Hy(k,K', K) —
H,(k, K, K) is an isomorphism. Finally, let Ky be an extension of k, contained in
K', such that the natural map Qo /e D1y K — Qi p is injective. Then the natural
map H1 (Ko, K',K) — Hi(Ky, K, K) is an isomorphism.
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Proof. Write K as a filtered inductive limit of its subfields which are finitely gener-
ated over k: K = lim K;. Since André homology commutes with direct limits ([18,

Lemma 3.2] and [2, Chapter III, Proposition 35]), Hi(k, K, K) = lim H, (k, K;, K).

Hence there exists a subfield L C K, finitely generated over k, with Hy(k, L, K) =
H,(k,K,K). For any field K’ such that L ¢ K’ C K, the map Hy(k,L,K) —
Hy(k, K, K) factors through H;(k,K', K), so Hy(k,K', K) — Hy(k, K, K) is sur-
jective. The injectivity of Hy(k, K', K) — Hy(k,K,K) is given by the Jacobi-
Zariski sequence for k — K’ — K (Property 2.18), so

(6.5) Hy(k,K',K) = H(k, K, K),

as desired. To prove the last statement of the lemma we first note that the map
Qo /k Ory K — Qpyp factors through Qg @ K — Qg ; this implies that
the map Qg /i, @k, K — Qg /p @ K is also injective. Now the last statement of
the lemma follows from (6.5) and the commutative diagram

(6.6)
Hl(k,KQ,K) — Hl(k,K/,K) — Hl(Ko,K/,K) — QKO/k ®K—> QK’/k ®K

I U ! | l
Hl(ka()aK)—)Hl(k?KaK)—) Hl(KOaKvK)—) (21<()//€(®[(—> QK/k

given by the Jacobi—Zariski sequences for the triples k — Ky — K’ and k — Kq —
K, by the five lemma. O

Lemma 6.12. Let k — Kg — K be a composition of field extensions. Assume
that the natural map Qg @k, K — Qg is injective and the natural injection
Hy(k,Ky,K) — Hy(k, K, K) is an isomorphism. Then K is separable over K.

Proof. Immediate from the Jacobi—Zariski sequence for the triple ¥ — K¢y — K
and Property 2.19. O

Let 0 : k — K be a field extension with dim H;(k, K, K) < oco. Consider a
decomposition of o of the form (6.1). Although K is unramified over Kg, there
need not, in general, exist a finitely generated extension of K¢, contained in K,
over which K is separable. For the proof of Theorem 1.2 we will need to find a
decomposition k — K — K of ¢ such that K is separable over K and such that
K is the limit of an ascending sequence of finitely generated extensions of K,
contained in K.

Proposition 6.13. Leto : k — K be a field extension such that dim Hy (k, K, K) <
oo. Consider a decomposition of o of the form (6.1). There exists a sequence
Ky — Ky — -+ — K, — - of finitely generated extensions of K¢ contained in
K, having the following properties.

(1) For each i € N, the natural map Hy(k,K;, K) — Hy(k, K, K) is an isomor-

phism.

(2) Let K := lim K;. Then K is étale over K.
Proof. If K is separable over K¢, put K; = K = Ko and there is nothing to prove.
Suppose K is not separable over K¢ (in particular, chark = p > 0). Let K; be
a finitely generated extension of Kg, contained in K, such that the natural map
Hy(k,K1,K) — Hy(k,K,K) is an isomorphism (K exists by Lemma 6.11). We
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define the K; recursively as follows. Suppose K; is defined. Since K is unramified
over K¢ we have K = KgKP? (Corollary 6.2), so K; C KeKP?. Define K;11 to
be a finitely generated extension of K;, contained in K, such that K; C KK f+1

This defines K; for all i € N. Put K = lim K;. Now (1) holds by definition of

K7 and Lemma 6.11. Since K¢ C K K is unramlﬁed over K. By construction,
K = K3KP?, so K is unramified over Kg (Corollary 6.2). Then the Jacobi—Zariski
sequence shows that the natural map Qg /1 @k, K—Qz R/ is surjective; hence so
is the map Qg /1 QKke K — Qf(/k®f(K' Since the inclusion Qg /1 @Kk K — Qg /i
factors through Qf(/k ® i K, the natural map Qf{/k Qi K — Qi is injective. The
map H;(k, K ,K) — Hi(k, K, K) is an isomorphism by Lemma 6.11. Thus K is
separable over K by Lemma 6.12. Combining this with the fact that K is unramified
over K, we get that K is étale over K by Properties 2.4 and 2.19. This completes
the proof. O

§7. RESIDUE FIELD EXTENSIONS
INDUCED BY FORMALLY SMOOTH HOMOMORPHISMS

Let o : (A,m,k) — (B,P,K) be a formally smooth local homomorphism of
local noetherian rings. Let B denote the formal completion of B. In this section
we deal with the difficulties coming from the inseparability of the field extension
k — K, induced by o, by proving the following version of the Nica—Popescu theorem
(see Corollary 7.9 for the original Nica—Popescu theorem). We construct a local
noetherian A-algebra A®, smooth over A, and a commutative diagram

A -2 B

Lo

A 2 . B

such that o® is formally smooth and induces an isomorphism of the residue field
of A* with K. We may take dim A® = dim A + dimg Hy(k, K, K) (we will see
that any ring A® having the above properties must be at least of that dimension).
Let m® denote the maximal ideal of A® and let ¢ := dim %. If we adjoin ¢
independent variables to A® and send them to a set of ¢ elements of B inducing
a regular system of parameters of mB 5 the resulting homomorphism will still be
formally smooth by Corollary 2.25. In other words, we can always enlarge A® so
that dim A® = dim B. By construction, A® will be a filtered inductive limit of
smooth A-algebras of finite type. The situation is greatly simplified in the special
case when the field extension k¥ — K is finitely generated. We will point out what
happens in the finitely generated case in order to give the reader an appreciation
of the difficulties which arise when K is not finitely generated over k£ and the need
for the somewhat involved construction of A®, carried out in this section.

Acknowledgement. The results of this section are closely related to those of [12].
Since both our statements and proofs are somewhat different from those of Nica
and Popescu, we prefer to give an independent exposition.

Let By := % and let Py denote the maximal ideal of By. Formal smoothness is
preserved by base change [10, Chapter 11, (28.E), p. 201]. Taking base change of o
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by k = %, we see that the local ring (By, Py, K) is formally smooth (equivalently,
geometrically regular—cf. Proposition 2.6) over k. This means that

(7.1) Hy(k, By, W) = 0 for any Bp-module W
(Proposition 2.6). Let d := dim B — dim A = dim By.
Lemma 7.1. We have dim Hy(k, K, K) < d.

Proof. Immediate from the Jacobi-Zariski sequence (2.5) for the triple k — By —
K, Property 2.2 and (7.1) (with W =K): 0 — H1(k, K, K) — %. O

Consider the residue field extension k& — K, induced by o. Let Kj and Kg be
as in (6.1). Let K, be a finitely generated extension of Kg, contained in K, such
that the natural map

(7.2) Hy(k, K1, K) — Hy(k,K,K)

is an isomorphism (K exists by Lemma 6.11). Pick a basis for Q, /5, of the form
{dwp, }U{dve, } such that A1 D A, &1 D P, the sets A1\ A and ®; are finite and wy,
are algebraically independent over k, while vg, are algebraic over Ky, = k(wy, ).
Note that if K is finitely generated over k, we may take K1 = K¢ = K, A1 = A
and ®; = & (cf. Remarks 6.4 and 6.6 and Lemma 6.9). We get a decomposition
(6.1) for the field extension k — Ki: k — Ka, — K¢, — K;. Since K is finitely
generated over K¢, and since Qg /x, =0, Ki is separable over K¢, (cf. Remarks
6.3 and 6.4). By Lemma 6.9, we get an isomorphism

(73) Hl(k,K.:pl,Kl)%Hl(k,Kl,Kl).

Let a = #®;. By Corollary 6.10, applied to the field extension k¥ — K7, and
using the fact that K is flat over Ky, we obtain a = dimg, Hi(k, K1, K1) =
dimg Hy(k, K1, K) = dimg Hy(k, K, K). Make the identification ®; = {1,...,a}.
For A € Aj, let w) be any representative of wy in B; similarly for v;, i € ®;.
Let Vo, = (V4,...,V,) be independent variables. Write K¢, = w and let
(G1,...,G,) be a base of I, constructed in §6 (with ® replaced by ®1), so that
G; € Kp,[W1,...,Vi]. Let G;, 1 < i < a, be the representative of G; in B[V;] ob-
tained by replacing wy by wy and v; by v;, j <i. For 1 <i <aq, let z; := G;(v;).
Let Ay := A[WANV‘IM]PHA[WAI,V@J'

Theorem 7.2. (1) The elements x1,...,x, can be extended to a reqular system
of parameters of By.

(2) Let Wa, = {Wx | A € A1} be independent variables and consider the map

Ay — B which sends Wy to wy and V; to v;. This map is injective and flat.

Proof. (1) Consider the homomorphism between the triples k — Kj, [V, — Ko,
and k — By — K (the map Ky, [Vs,] — By is given by sending W) to wy and V;
to v;). By functoriality of André homology, we obtain a commutative diagram of
the Jacobi—Zariski sequences:

(7.4)

0 —— Hi(k,Ke,, K) —— £ @k, K

| d J#

B8 Q
0 —— H(k,KK) —— j;—o Pog;g’;k Qg /p — 0
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(here the top row is a part of the Jacobi—Zariski sequence for the triple k& —
K, [Vs,] — Kg, and the Kg,-module K, and the bottom row is the Jacobi—Zariski
sequence for the triple k — By — K). Now, « is an isomorphism by Lemma 6.7.
The map ~ is the composition of the isomorphism H;(k, K¢,, K) = Hyi(k, K1, K)
(obtained from (7.3) by tensoring by K) with the isomorphism (7.2) (this follows
by the functoriality of André homology); thus v is an isomorphism. Therefore § is
injective. The elements 6(G;) are nothing but the images of the z; in %‘);. Since
Gi,...,G, are Kg,-linearly independent in Iiz, they are K-linearly independent
in Iiz OKaq, K, hence z1,...,x, are K-linearly independent in 1%'
Now (2) follows from Corollary 6.8 and Corollary 2.22. This completes the proof
of Theorem 7.2. O

(1) is proved.

Remark 7.3. Suppose that K is finitely generated over k. In that case, K = Kg,
and we may take A®* = A;; the A-algebra A® described in the beginning of this
section is already constructed (notice that A® is already in B; there is no need to
pass to completions).

We continue with our construction of A® in the general case.

Definition 7.4. Let A’ be a noetherian A;-subalgebra of B such that dim A’ =
dim A+ a. Let x1,...,2, be as in Theorem 7.2. We say that A’ is unramified
over Ap if A’ is flat over A and mA—f;, is a regular local ring of dimension a with
regular parameters x1,...,Z,-

If A’ is unramified over A;, then the inclusion A’ — B is flat by Corollary 2.22.
Also, A; is unramified over itself by definition of x1, ..., z,.

Proposition 7.5. Let (Ao, Py, Ko) and (Az, Po, K2) be two local noetherian
A[Wp, Va] prajw,,vs-subalgebras of B such that Ay is formally smooth over A.
Assume that there exists a non-negative integer b < a such that z1,...,zp induce
a reqular system of parameters of 1?20. Assume that the inclusion Ay — B is
a formally smooth homomorphism of local rings and that As contains A1 and is
unramified over it (in particular, dim As = dim A + a). Assume that the map
Qo /k Oy K — Qg 15 injective. Finally, assume that char K = p > 0, that K
is either inseparable or purely transcendental over Ky and that As is a localization
of a polynomial ring over Agy (in finitely many variables). Then there exists a se-
quence Ay — Az — --- where each A; is a localization of a polynomial ring over
Ap in finitely many variables, contained in B, with the following properties:

(1) dim A; =dim A+ a for alli > 2.

2) A; is unramified over Ay for all i > 2.

(2)
(3) A:= | A; is étale over Ay (in particular, smooth).
(4)

i=1
4) The inclusion A — B is a formally smooth homomorphism of local Tings and
the induced residue field extension is étale.

Proof. We construct the A; recursively as follows. Suppose A; is constructed. Let
K; denote the residue field of A;. Let Ko — K\, — K¢, = K; be the decomposition
(6.1) for the extension Ky — K, where we can choose K¢, = K; by Theorem 6.5
and Remark 6.6. Here A; and ®; are finite sets and #®; = dimg, H1 (Ko, K;, K;) =
dimg Hy (Ko, K;, K) = dimg Hy (Ko, K, K) is independent of ¢ (by Lemma 6.11);
in fact, diagram (6.6) shows that #®, = a — dimg, Hi (k, Ko, Ko). Let wy, denote
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the generators of K, over Ky and ve, the generators of K; over Ku,. We will
assume, inductively, that A; is the localization of the polynomial ring Ag[Wy,, Vs, ]
at the prime ideal P; which is, by definition, the kernel of the map Ag[Wa,, Va,] —
K; which maps Ag to Ko, Wy to wy and Vj to ve. Since Qg /i, = 0, we have
{wa,,vs,} C KPKy (Corollary 6.2). Let K;;1 be a finitely generated extension of
Ky, contained in K, such that

(75) {w/\qz ) ’Ucpi} - Kf—i—lKO'

Consider the decomposition (6.1) Ko — Ka,,, — Ks,,, = Ky of the exten-
sion Ko — K;i1 (we may take Ko, , = K;1 by Theorem 6.5 and Remark
6.6). As usual, let wy, ., be a set of algebraically independent generators of
Ky, ., and vs,,, a set of p-independent generators of Kg, , over Ky, ,. Put
Aiv1 = Ao[Warys Vo, )Py, - By (7.5), for X € Ay, there exists ny € N, ele-
ments ay; € Ko and polynomials exj, hyj € Ko[Wa, ,,Vs,.,], 1 < j < ny, such
that the inclusion K; — K,y is given by

(Y] w/\1+1 s ’U<I>1+1) b
(7.6) wy = ay)q ( ) N AE Ai
Z ! h>\] (w/\7+1 ) U‘I’7+1)

(the existence of expressions (7.6) follows from (7.5) because the field K7, K
equals the Ko-subalgebra of K; 1, generated by K; +1). We also have the analogous
statement for vy, ¢ € ®;; elements ay; € Ko and eg;, hgj € Ko[Wa,,,,Va,,,] for
¢ € ®,;, are defined in the same way. Now the idea is to use the relations (7.6) to lift
the inclusion K; — K;41 to an inclusion A; — A;4+1. Pick and fix representatives
Exj,Hyj € Ao[Wa, ., Vs,.,] of ex; and hy; and similiarly for E4; and Hg;. Let
ay; be a representative of ay; in Ao, similarly for as;. By construction, Hy;, Hy; ¢
P; ;1. Define the homomorphism ¢; : A; — A; 11 by

E
ZaM<H§>, AEA;
ng

E
Zad,j( ‘”_) . GEeD,

Applying Theorem 7.2 (2) with A1, ®; and B replaced by A;, ®; and B, respectively,
we see that A; C B and B is flat (hence faithfully flat) over A; for all 4. This also
proves that all the maps A; — A;;1 are injective, and that A is an A-subalgebra
of B.

(7.7)

Lemma 7.6. The Ag-algebra A= U Ai is étale over Ag.

i=2
Proof. Consider a commutative diagram

Ay —

(7.8) l

EFE —

Zlm —

where E is an Ap-algebra and N is an ideal of E such that N? = 0. We want
to show that there is a unique lifting A — F which makes this diagram commu-
tative. It is sufficient to prove that for each ¢ > 2 there exists a unique lifting
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7; + A; — FE compatible with (7.8). To construct 7;, take any homomorphism
12 Ao[Wa,.y, Vo, ] — E, compatible with (7.8). Since

(79) AZ C AOAf—i-l
by (7.7) and since N? = N2 =0, 7;,, determines a unique lifting 7, : A; — E. O

Taking £ = % and N = PI;—L in (7.8) and passing to the limit as j — oo shows
that there exists a unique extension of the homomorphism Ay — Bto A — B. We
have 5,4, = 0 by (7.9). The map Ay — B is formally smooth, hence the inclusion

A — B is formally smooth (by Proposition 2.6 and Remark 2. 10). Let K denote
the residue field of A. Since K, C K we have

(7.10) Hy(k, K, K) = H(k, K, K)

by Lemma 6.11. By Lemma 6.12, K is separable over K. Since Ky C K and
Qg K, = 0, we have Qg IR = 0 by the Jacobi—Zariski sequence. Hence K is étale

over K (Properties 2.4 and 2.19), as desired.
Next, we show that A is noetherian. Indeed, all the maps A; — B are faithfully
flat. Thus the noetherianity of A is given by the following lemma.

Lemma 7.7. Let {A;} be an inductive system of noetherian rings together with a
faithfully flat map from each A; to a fized noetherian ring B. Then lim A; is again
noetherian.

Proof. Let I;, j € N be an ascending chain of ideals of A. Then the chain I;B
stabilizes, say for j > jo. The ideal I, B is finitely generated, hence there exists i
sufficiently large so that I;, B = (I, N A;)B. Then for any i’ > ¢ and any j > jo we
have IjﬂAi/ C (IJB)ﬂAy = (IjOB)ﬂAi/ = (IjoﬂAi)BﬂAi/ C (IjoﬂAi/)BﬂAi/ =
I, N Ay, where the last equality holds by faithful flatness of the map Ay — B.
Since this holds for all i’ > i, we have I; = I;, for j > jo, as desired. O

Finally, it remains to check that each A; is unramified over A;. Since the A; are
localizations of polynomial rings over Ay, they are flat over Ay, hence also over A
It remains to show that z, ..

It is sufficient to prove that xb+1, ..., xq induce a regular system of parameters of
. . K
m’:;‘ For each ¢, write ngfax = O[W}‘ vl We proceed by induction on i. For

i = 2, our statement is true because A; was assumed to be unramified over A;.
Suppose the statement is true for . Consider the commutative diagram

0 —— Hi(Ko,Ki, Kip1) —— #®k, Kip

l # l

Xit1 Iiga
0 —— Hi(Ko, Kit1, Kiv1) —— =,
i

The maps «; and a;41 are isomorphisms by Lemma 6.7, and 3; is an isomorphism
by Lemma 6.11. By the induction assumption and Corollary 6.8, the natural im-
ages of Th+1s--+yLq in Hl(KQ, Ki, Ki+1) = Hl(KQ, Ki, Kl) ®K1 Ki+l form a basis
of Hi(Ky, K;, K;1+1). Hence their images in Hq (Ko, K;+1, K;+1) form a basis of

H, (Ko, Kiy1,Kit1). Therefore 41, ...,z, induce a regular system of parameters
of —Aitl , as desired. Proposition 7.5 is proved. |

moA
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We will now build up the A-algebra A® described at the beginning of this section
recursively, using transfinite induction on the set of generators of the residue field.
We will start with Ag = A[Wa, Va]pnaw,,vs) and use Proposition 7.5 repeatedly,
until we arrive at the A-algebra A® whose residue field is K. But first, we must
check that Ay = A[Wx, Va]pnagw,,vs) satisfies the hypotheses of Proposition 7.5.

Namely, we have to check that B is formally smooth over AW, Va]praiw,, el -
Lemma 7.8. The ring B is formally smooth over A[Wh, Valpnawy, Vel

Proof. Since Bis formally smooth over B and B over A, Bis formally smooth over
A. Consider the Jacobi-Zariski sequence for the triple A — A[Wa, Vo] pnaw,,ve] —

B:
0 — Hy(A[Wy, VCI’]PHA[WA,Vq)]aBa K)

(7.11) - <EB KdWA> o | P KW, | -5, @ K.
AeA pcd

Now, {dwx}xea and {wg}geco are all linearly independent in Qp5,, ® K because

their natural images in (2,4 = (1}, are linearly independent by definition. Hence

the last arrow in (7.11) is injective, so Hy(A[Wa, Vq>]pﬂA[WA)up],B, K) =0 and the

lemma is proved. O

Corollary 7.9 (the Nica—Popescu theorem [12]). There exists an increasing se-
quence Al of subrings of B, each of which is a localization of a polynomial ring
in finitely many variables over A, such that lim A} is a local noetherian ring of

11— 00

the same dimension as B, the inclusion lim A, — B is formally smooth and the
1— 00

induced residue field extension is separable.

Proof. Let Ag = A[Wa,Va|pnajw,,vs] in Proposition 7.5. Choose an increasing

sequence A; of finite subsets of A such that for each ¢ € ®;, vy4 is algebraic over
k(wa,,ve,wy,). Put

"o, N
Ai T A[WAM VCI’7 WA“ Vq”i]PBﬂA[WAi1V¢1WA1)V¢1]'

Extend z1,...,x, to aset x1,...,x4 which induces a regular system of parameters
of B and let A] := AY[zay1,... 7$d]PéﬁA;’[za+1 _____ vy~ Then dim A; = dim B.
The other conclusions are given by Proposition 7.5. O

Theorem 7.10. There exists a smooth local noetherian A[Wa,Va|pnaiw,,vs]-
algebra A®, mapping to B, such that:
(1) A* is étale over AW, Va]pnapwa,ve)-
(2) The homomorphism A® — B is formally smooth and the induced map
A* B
PnAs P
of residue fields is an isomorphism.
(3) dim A®* =dim A + a.
(4) A® is a filtered inductive limit of smooth local AJWa, Va]|pnagw,,ve)-algebras

A essentially of finite type, over which B is flat; the elements x1,...,x, form
a reqular system of parameters for each of the %.
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Proof. We construct A® by transfinite induction, using Proposition 7.5. Let A
denote the set of local noetherian subalgebras A of B such that:
(1) A[Wa, Va|prawa,va) C A.
(2) Ais étale over A[Wa, Valpnapw,,va)-
(3) A is a filtered inductive limit of smooth A-algebras A essentially of finite
type, such that each ﬁ is a regular a-dimensional local ring with regular

parameters i, ..., Zq-
(4) The map A — B is formally smooth and the induced residue field extension
is étale.

A is partially ordered by inclusion; A # () by Proposition 7.5, applied to

Ao = AWa, Valpnaw, ve)  and
AQ = Al.

Given a subset {45 | 0 € A} C A, which is totally ordered by inclusion, |J As € A
dEA

(again, since each As comes with a faithfully flat map to the noetherian ring B,

noetherianity of |J As is given by Lemma 7.7). By Zorn’s lemma, A contains a
SEA
maximal element (A®,m®, K*). It remains to prove that K* = K. Suppose not.
Take an element ¢t € K \ K°®. By assumption, K is separable over K*®. Hence ¢ is
either transcendental or separable algebraic over K.
Case 1. t is separable algebraic over K*®. Let h denote the minimal polynomial of
A*[T]

t over K* and let H be any lifting of h to a polynomial over A®. Put A := NI

Since H is separable, the inclusion A®* — B extends in a unique way to a map
A— B (by the implicit function theorem). It is immediate to verify that Ae A,
which contradicts the maximality of A°.
Case 2. t is transcendental over K°®. Let t be any representative of ¢t in B.
Then t is transcendental over A* by Corollary 2.22, applied to the triple A®* —
A [t]PﬁA'[t] — B. Let Ay := A® [t]PﬁA'[t]-

The homomorphism A®* — A, satisfies the hypotheses of Proposition 7.5, so
there exists an A®-algebra A € A, containing A,. This is a contradiction, hence
K*=K. |

Corollary 7.11. There exists a local noetherian A-algebra (A',m’), contained in
B, smooth over A, such that:
(1) A’ is a filtered inductive limit of smooth finite type A-algebras.

(2) B is formally smooth over A’.
(3) m'B =P (in particular, dim A’ = dim B).

(4) & > K.
Proof. Extend x1,...,x, to a set x1,...,zq4 which induces a regular system of
parameters of By. Put A" := A®[xq11,...,2Zd]Pnas(zass,...,xq)- Lhe inclusion o* :

A* — B extends to an inclusion ¢/ : A — B; B is formally smooth over A" by
Corollary 2.25. Let m’ denote the maximal ideal of A’. Then m’'B = PB. O

§8. SMOOTHING OF AN ISOLATED SINGULARITY OVER A LOCAL RING

Let the notation be as in Theorem 1.5 and let B denote the P-adic completion
of Bp. Combining the results of §84-7, we obtain a commutative diagram (1.7),



A NEW PROOF OF D. POPESCU’S THEOREM 421

satisfying (1)—(8) of Proposition 1.6, with B replaced by B (this is explained in
more detail below; it proves Theorems 1.5 and 1.2 in the case when (B, P) is local
and P-adically complete). In this section we show how to replace B by Bp (by
P-adic approximation) and in §9—how to descend from Bp to B (delocalization).
We start with two observations pertaining to both this and the next section.

Remark 8.1. Suppose P = (0). Then Bp is a field. Then Apna and pp(Cpnc) are
domains. Letting D = p(C), we get that Hp/4 # (0), so D satisfies the conclusion
of Theorem 1.5 and (1.3). From now on, we will assume that P # (0), both in this
and the next section.

Let S = Sc(4). As before, we will assume that Hg/4 C P NS (otherwise we
put D = S and Theorem 1.5 and (1.3) are proved (cf. (5.1)). Then, by (5.1),
Hg 4B is a minimal prime of P. From now on, to simplify the notation, we will

replace C' by S and assume that there is a presentation C' = M such that
& ‘Spec C\V(He,a) is the trivial vector bundle (cf. Lemma 5.2), both in this section
and the next. Note that because of (5.1) and Property 2.16, replacing C by S does
not affect condition (3) of Proposition 1.6.

Let m = PN A. In both this and the next section, we will assume that the
homomorphism op : A,, — Bp is formally smooth in the P-adic topology. This is
weaker than being regular by Proposition 2.7.

We now state and prove the main result of this section:

Proposition 8.2. Assume that B is local with mazimal ideal P (in particular,
P = /Hc/aB). Then there exists a diagram (1.7) satisfying (1)-(8) of Proposition
1.6 (in particular, Theorems 1.5 and 1.2 hold in this case).

Proof. Let fi,...,f, € T'(Spec C\ V(Hc,4)) be sections which freely generate

%}Spec OV (He, )" Note that this property is preserved after a change of base of

the form ®4A, where A is essentially of finite type over A.

Let (A’,m’) be the ring whose existence is asserted in Corollary 7.11 (applied
to the formally smooth homomorphism op). Apply Proposition 5.1 to the flat
homomorphism ¢’ : A’ — B and the finite type A’-algebra C ®4 A’. We get a
commutative diagram (1.7), with B replaced by B, satisfying (1)~(8) of Proposition
1.6. Moreover, since A’ is a filtered inductive limit of local A-algebras A, smooth
and essentially of finite type, over which both A’ and B are flat (by Corollary 2.22),
by Lemma 3.8 we may choose one such A-subalgebra (A, m) such that our diagram
(1.7) descends to a diagram of A-algebras, mB = P and (4.13) holds for all the
generalized blowings up C; of C' ®4 A involved in the construction. We obtain a
commutative diagram

(8.1) A—>— B

PO
(L) (N) A g

C@sA-"— Cp —"— CniL &— 0+ Cp
satisfying (1)—(8) of Proposition 1.6. The idea is to approximate (8.1) in the P-adic
topology to get a diagram (1.7) with B instead of B. To do this, we will use the
following facts, which were proved in the course of the construction of (8.1).
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Properties 8.3. (1) The map 7L is the composition of L generalized blowings
up along m. Here L = LoL1, where Lo is a positive integer such that

(8.2) m"B C mHc sB
and Ly € N is such that (5.6) holds.
(2) The algebra Cp, is an almost complete intersection over A. Let Cp, = A[q}im]
be the given presentation of C, and let fl(L), cee T(L) € Iy, be as in Definition
1.7. The elements ffL), ceey T(L) can be chosen so that their respective images
in T (Spec CL\V(mClp), %) are y(r D) fi, .. y(7 ) £, for some y €

CrL\ (PNCyL) (Lemmas 5.4 and 5.5).
(3) The map ™) is a composition of N generalized blowings up along m, where
N satisfies (1.18) and

(8.3) mN BT c J(fP).
(4) Write
AlGy,. .., G

(8.4) Co = —F)
where F = (Fy,...,F,) are linear homogeneous equations over A. Write
F; = zl: a;;G; and let a; denote the column r-vector with entries a;;. Let
I(F) bZe:;he submodule of A" generated by ai,...,a;. Then

(8.5) m*N C I(F)
(Lemma 4.5).

(5) Let K 5 denote the kernel of the A-linear map A' — A" given by the matriz
(aij), Kp the kernel of the B-linear map B! - Br given by the same matriz.
Let g; = po(G;) € B and let g denote the l-vector with entries g;, 1 <1 <.
Condition (6) of Proposition 1.6 is equivalent to saying that

(8.6) ge K;B.

We now P-adically approximate the diagram (8.1). Namely, we will construct a
new sequence of generalized blowings up

TN+L 5

(87) C®AA2>01£>...—>CN+L
and
(8.8) Co L C 2 Oy

along m, where A is, in the sense defined below, a P-adic approximation to A, and
(8.7)—(8.8) are P-adic approximations to the corresponding maps in (8.1). Let J
denote the A-submodule of A" generated by a1, ...,a;. By (8.5) and Lemma 3.7,
mtA” C J for t > 0. Take t € N such that

(1) P'B'N Kz C PKp.

(2) t > 2N.
Next, choose ¢’ € N such that

(3) ' > L+ 2t.

(4) m* P N Im(dg) € m* Im(dy)
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(in the notation of (5.5)). Here (1) and (4) can be achieved by the Artin—Rees
lemma. We will now approximate (8.1) to within P*". Condition (1) will be needed
to deduce (6) of Proposition 1.6. Condition (2) will be needed to ensure that the
hypotheses of Lemma 4.4 hold for the sequence (8.7), and also to prove (7) of
Proposition 1.6. (3) will be needed to ensure the hypotheses of Lemma 5.4 and (4)
to approximate the elements fl(L), RPN fT(L) € Iy, to within 2¢.

Let z1,..., 2 be a set of generators of m. Since A is a local smooth A-algebra,
we may take A to be of the form A = %, where V. = (Vi,...,Vq), h =
(hl, ceey hq) and

Oh;
o,

Let v; = a(V;) (cf. (8.1)). For each i, 1 < i < Kk, let 3;(V) € A[V]pnajy] be a
representative of z;. Without loss of generality, we may assume that 3;(V) € A[V].
Let V = (V4,...,V,) be an s-tuple of independent variables. For each i, 1 <i < s,
define z; = ﬁi(f/). Let y = {y1,...,9a} C B be a set of generators of P. Let
U={U;jj |1<i<a, 1<j<k}, W={W;|1<ij<a},and X ={X;o | 1<
i <gq,a € Ng, |a| =t'} be independent variables.

Let A; denote the A-algebra with generators Y, V, U, W, X, and relations

A=A

1<i,5<q

(8.9) det )

k a

QiZZUijfj—ZWipY}n 1<i<a,
(8.10) i=1 p=1
Hy=hi(Vi,....,Va)+ Y Y°Xiu 1<i<yg,

jal=t!

and let A := (Al)PﬁAl' Define the map & : A — B as follows. For eachi, 1 <i < s,
choose an element o; € (v; + PYB) N B. Put 5(Y;) = yi and 6(V;) = @;. Since
hi(t) € P, 6 extends to a homomorphism & : %
mod P'. Finallyl mB = PB by the choice of A, hence (Z)B = PB by Lemma 5.6
(since (2)B = mB = PB and 5(z;) — 6(%;) € P' B). Hence

— B, which agrees with &

(8.11) (3)B=P

by faithful flatness of B~ over B. Put 6(W;) = 1. By (8.10)—(8.11), & can be
extended to a map o : A — B (for example, we may take 6(W;;) = 0 for i # j).
Let m := PN A. By construction,

(8.12) (Y)A C (3)A

(since one can solve for Y in the system of linear equations Q1,...,Q,). On the
other hand, (;?2) = (hﬂ?([x])i??g;](v)) = % which is a field. Thus

(8.13) (H)A=(3,Y)A = .

We have

(8.14) (Y) C A, m),w,x);

in particular,

(8.15) (Y) C Hio
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On the other hand, after localization at 7 the equations (8.10) become smooth in
view of (8.9), so that Hz,, ¢ m. Together with (8.15) this means that

(8.16) Hz;/,B=B.

Let C' = M be an A-algebra. Consider a generalized blowing up Ty ye :
C' — C] of C'" along m, with generators z1,...,2Zk, {Y* | « € Ng, |a] = t'}. By
definition, such a blowing up is described by the equations

(8.17) Zg ay - Y vexM =0

o=t/

The key property of this transformation needed below is the fact that the R; are
linear in XM and that

(818) (Y) C AR,X(U

(immediate from definitions).
Consider the A-subalgebra A[V4, ..., V]
in (8.19) right below and the fact that a #
the V satisfy no algebraic relations over A i
v AL, V] —

(Vi) = Vi

A (usmg (8.10), the map ~ defined
y emark 8.1, it is easy to see that
A). Define the map
— A

by

-
0b
in

(8.19)
__AV] A
(P, AO

and that = w s a

The homomorphisms 6 and & o v agree mod P!, Let Ay =

From the equations (8.10), we see that Ay is a subalgebra of

~t’

free Ag-module. We have a commutative diagram
(820) T'}’@AAO T5®AA0

where 7 ® Ap is an isomorphism.
Definition 8.4. Let ¢ be a positive integer. Assume that we are given an A-algebra
Ql and an A-algebra C7, with maps p; : C; — B and py : C; — B. We say that
C; t-approximates C if we have a commutative diagram

% p®i4o Bt

Bt
(8.21) Twl Tpa@AAO
&

Cop —— o
compatible witNh (8.20), where Co1 is an flo-algebrai and 7 is an isomorphism.
Suppose that Cy t-approximates C1. We say that a Ci-module M t-approximates
a Ci-module M if there are Ag-modules My and M; and homomorphisms =% Mo M
My 25 My = My ®éy, %, compatible with (8.21), where v,/ is an isomorphism,
tar identifies My with M, ®¢,, 1, and M is a direct summand of . Suppose M

approximates M and let f € M, f € M. We say that f t- approx1mates f if the
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natural image fg of f i in =% M Ties in LM(M()) and (’}/MOLM )(fo) is the image of f in Mt
Consider submodules M ’ C M, M' ¢ M. We say that M’ t-approximates M’ (as
submodules of M and M, respectlvely) if there exist sets of generators (f1,..., fr)
of M' +m'M mod m*M and (fi,..., f,) of M’ +m*M mod 7'M such that f;
t-approximates fj, 1 < j < r. A homomorphism é: M — M of C;-modules
t-approximates a homomorphism ¢ : M — M " of C1-modules if M t-approximates
M, M’ t-approximates M', ¢y(M;) C M| and ¢ and ¢ are compatible with the
maps Yar, tar, Y and epgr.

Lemma 8.5. Let ¢ : M — M’ be a surjective homomorphism of Ci-modules t-
approzimating a homomorphism ¢ : M — M’ of Ci-modules. If f € M, f’ €
M' are such that f' t-approzimates ¢(f), then there exists f € ¢~ (f") which t-
approzimates f.

Proof. Straightforward diagram chasing. O

Lemma 8.6. Let Cy be an A-algebra essentially of finite type, t'-approzimating an
A-algebra Cy essentially of finite type.

(1) If pl(Ol) C 5(A) +mB, then p1(Cy) C 5(A) + mB.

(2) Let 1, : C1 — Cy be a generalized blowing up along m with generators
21,y 2k, GS N (4.2), and Tz ye : Cl — Cg a generalized blowing up along m
with generators Z1,...,%2,, Y%, |a| =, as in (8.17). Choose 7, and 7z ya in
such a way that for each i, 1 <1i < ny, the element ¢&; of (8.17) t'-approzimates
¢i of (4.2) (in this case, we will say that 7z y« t'-approzimates 7,). Then Cs

t'-approzimates Cs.
(3) Let

(8.22)

be the maps which induce m, and 7z ye~, respectively. If an element f S
Ala™, XD ¢ -approzimates f € AuM), then 7'(f) t'-approzimates = (f)
(in other words, the relation of t'-approximation is preserved by generalized
blowings up which approximate each other). The same statement is true for
an element of Cy t'-approzimating an element of Cy, and also an element of
a free Cy-module M, t'-approzimating an element of a free Cy-module M, t'-

approzimated by M ditto for a submodule of M t'-approzimating a submodule
of M.

Proof. Immediate from definitions. O

Let L and N be as in (8.1) and Properties 8.3. Let (8.7) be a sequence of N + L
generalized blowings up of C' ® 4 A along m, with generators Z1,..., 2, {Y*}. In
view of (8.19), the A-algebra C'®4 A t'-approximates the A-algebra C' ®4 A. By
Lemma 8.6 (1) and induction on N + L, we have that j,(C;) C &(A) + mB for
all i < N + L, so that such a sequence (8.7) is well defined. Moreover, by Lemma
8.6 (2) and induction on N + L, the sequence (8.7) t’-approximates the sequence
7N o (L) of (8.1).
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Lemma 8.7. Let t € N. Let Oy be an A-algebra with m C Jac(Cy) and Cy an A-
algebra with m C Jac(Cl) t-approzimating Cy. Let M be a finitely generated Cy -
module t-approximating a finitely generated A-module M and J C M a submodule
t-approrimating a submodule J C M. Assume that M, = % (in the notation of
Definition 8.4). Let s be a positive integer such that

(8.23) s <t
If

(8.24) m°M C J,
then m>M C J.

Proof. Let My be as in Deﬁnition 8.4. By definition of approximation, there exist
generators fi, ..., fr of ——— e tM t-approximating generators fl, cooy frof m By

definition of approximation, fj € M,. By (8.23)-(8. 24), th m{M' Applying
the isomorphism 7y of Definition 8.4, we get (2)*Moy C (f1,..., fr)My, so that
8’55\\44 =n M (fl,...,fr) =T (here we are using that M, = %, so that % o~

M, ®c, g— By (8.23) and Nakayama’s Lemma, m*M C J, as desired. |

Next, we apply the results of §5 to (8.7). By Lemma 8.6 (3) and induction on
L, mLOHC/A(CLO)PﬂéLO t"-approximates m"™ He4(CL,) pncy, (as submodules of

(éLo)PﬁéLo and (CL,)pncy,, respectively). By the choice of Ly and Lemma 8.7,
mLO(C'LO)PméLO C mHC/A(éLo)PméL()' Thus the hypotheses of Lemma 5.4 are

satisfied for 7y, o--- o7y, and so C/, is an almost complete intersection at PN Cy.
Pick and fix a set w1, ..., wp, of generators of Hé}A. Write
A, .l x 0]

8.25 C; = - ,
(8.25) i

) ¢ approximates u() 1 < j < n,;. Let k; be the number of the X
Varlables. Applying Lemma 8.6 (and induction on L) to each wsdo(f;) € C", we
get that its image in C’Z t'-approximates its image in C?. By the choice of Ly, this
implies that ZO‘JO(JFJ-) € C’Z, where |a| = L, t’-approximates zo‘cio(f_j) € C}. Hence
dr(FIN* ;) € Cpr e ¢ approximates dr, ((7()* f;) € C7* (note that mod 7!’
the last k, components of dz, ((7(1))* f;) in C+T*= are 0). Moreover, this property
does not change after multiplying, respectlvely, by an element y € Cr, \ (PN CL)
and § € Cp \ (PN CyL), t-approximating y. By condition (4) in the definition
of ', dp(F1))*f;) as an element of dy, (IL) (2t)-approximates dr,((7()* f;)

where u

as an element of dr, (ﬁ) By Lemma 8.5, applied to the C-module homo-

morphism 1:—5 — dr (%), (2t)-approximating the Cp-module homomorphism
L L

% — dp (%), the inverse image f;L) of dr,((7)*f;) in :—é can be chosen to
L L L
Iy

7. Next, apply Lemma 8.5 to the C-module homo-
L

(2t)-approximate JF;L) €
morphism I, — %, (2t)-approximating the Cr-module homomorphism I, — %
L L

By Lemma 8.5, the elements fl(L),...,fr(L) € I, of Lemma 5.5 can be chosen
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to (2t)-approximate ffL), P e 1 of (8.1). Hence fl(N+L), L R (2t)-

approximate fl(N+L), . .,fT(NJrL). By (8.3) and Lemma 8.7 (applied to B viewed
both as an A-algebra and an A-algebra), mVB" c J(f)). Also, I(f(1)) (2t)-
approximates I(f(%). By (8.5) and Lemma 8.7,

(8.26) m2N c I(fNHR),

Thus, the hypotheses of Lemma 4.4 hold for Cy, including (4.16). Applying
Lemma 4.4, we get a diagram (1.7), satisfying (1)—(5) and (7)—(8) of Proposition
1.6. It remains to prove (6) of Proposition 1.6. This is given by the following
lemma.

Since I(f(N+1)) (2t)-approximates I(f(N+L)) they have the same minimal num-
ber of generators in view of (8.5) and Nakayama’s Lemma. Let aq, ..., a; be genera-
tors of I(f(N+L)), (2t)-approximating ay, . . ., a; of (8.4). View fN+L) as a column
r-vector and write f(NTL) = Zli:1 aigi, 9i € AaN+L) XIN+L)] Let K ; (resp.
Kp) denote the kernel of the map Al — AT (resp. B! — BT) given by the matrix
(a1,...,a). Let K4 (resp. K ) be the kernel of the map A' — A" (resp. B! — Bn)
given by (a1,...,a;). Let g; denote the image of §; in B and let g be the column
l-vector with entries g;. By construction, g € Kp.

Lemma 8.8. We have Kg = KABZ. In particular, g € KABI.

Proof. Of course, K ABI C Kp. It remains to prove the opposite inclusion. Since
a(a;) —&(a;) € P?*B" and since P*B™ C I(fN+1))B" by (8.11), (8.13), (8.26) and
the choice of ¢, there exists an [ x [ invertible matrix U with entries in B such that

(8.27) (@' (ar),. .., 0" (@)U = (6(@1),...,5(@)).

Moreover, we may take U congruent to the identity matrix mod P?. (8.27) implies
that K B' + P'B' = K;B' + P'B' and that KpB' C Kz + P'B'. Since B is flat
over A, K ;B! = K. We obtain

(8.28) KpB'c KiB'+ P'B' = K;B' + P'B.
Since K ;B! C KpBt, (8.28) implies that
(8.29) KpB' C K;B' + (P'B'n KpB').

Since KpB' and K p are isomorphic as B-modules (by (8.27)) and by the choice of
t, we have (P'B')N (KpB') ¢ PKpB!. Together with (8.29) this implies KB C
KABl + PKBBl, so KpB! = KABl by Nakayama’s lemma. Since the map B — B
is faithfully flat, this implies Kp = K ABZ, as desired. This completes the proof of
Lemma 8.8 and Proposition 8.2. O

Remark 8.9. Let A be as in (8.10). By definitions, the sequence (8.7) is actually
defined over A;. Multiplying all the f;NJFL) and the @; by an element of A;\ (PNA;)
does not affect the proof or the result. Hence the diagram (1.7) of Proposition 8.2
descends to a diagram of Aj-algebras, satisfying (1)—(8) of Proposition 1.6.
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§9. SMOOTHING OF RING HOMOMORPHISMS
In this section we prove

Proposition 9.1. Let the notation be as in Theorem 1.5. Then there exists a
commutative diagram (1.7) satisfying (1)-(8) of Proposition 1.6.

This will complete the proof of Theorem 1.5 and (1.3).

Proof of Proposition 9.1. By Proposition 8.2 and Remark 8.9, we have a diagram
(1.7) of Aj-algebras, with B replaced by Bp. In order to descend from Bp to B, we
need the following delocalization lemma. Let Y = (Y1,...,Ys,), U = (Uy,...,Us)
and X = (Xi,...,X,) be sets of independent variables, F; € C[Y,U, X], and
F=(F,...,F).

Lemma 9.2. Consider a commutative diagram

//

YUX]

(9.1)

where (py (Y1),...,py (Ya)) = P. Assume that the F; are linear in X, that the
coefficients of the X; in F; do not depend on U and that

(9.2) (Y)C C \/ArxC.

Let E be an independent variable and let U7 = EU;. For a positive integer L, put

X¥(L) = E*X;. Let Ff(L) = E*F;, where we view F*(L) as a polynomial in U*,
X*(L) and E over C[Y]. Let C*(L) := W, we have the obvious map
§:C*(L) — C|[E]. Then:

(L

(1) C*(L)p = C[E]s.

(2) (Y)C*(L) C Hew(1y)c-

(3) For L sufficiently large, there exists a map p* : C*(L) — B, compatible with
(9.1), such that e := p*(E) ¢ P.

Proof. (1) is obvious. Since the relations F' are linear in X, we have Apx =

Ap+ x+ (1) viewed as ideals in CY]. Since (Y)C C /Ap xC, we have (Y)C*(L) C
VAF (1), x+()C* (L) C Hew(r))c; this proves (2). To prove (3), choose e € B\ P
such that B(e)p(U), B(e)p(X) C B(B) and

(9.3) eKer §=0.

For each L € N, pick uf,z3(L) € B, 1 <i < s, 1< j < p, such that B(u]) =
B(e)p(U;) and (x5 (L)) = ﬂ(e)Lﬁ(X ). (9.3) implies that

(9.4) ex;(L —1)=x}(L)

forall L > 2 and 1 < j < p. Let v; denote the degree of F; viewed as a polynomial
inU, 1 <4 <q. TakeLENsuchthatLZ2andL>%for1<z'<q
Define the map p* : C*(L ) — B by setting p*(E) = e, p*(U}) = uj, p*(X; (L)) =
zj(L). We have ﬂ(F*( D, 2*(L — 1)) = Ble" ") F(p ( ),ﬁ(X)) =0, so
that F(L — 1)(u*,2*(L — 1))) € Ker . Then, using (9.4), F}(L)(u*,z*(L))) =
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eF*(L —1)(u*,2*(L —1))) € e Ker § = (0). This shows that p* : C*(L) — B is
well defined. Lemma 9.2 is proved. O

Remark 9.5. If A is reduced, the above argument can be modified so that e is not
a zero divisor in B. This will be important in §10 where we investigate injectivity
of the map ¥ : D — B. Indeed, suppose A is reduced. Then so is B. Let @ be
the intersection of the minimal primes of B contained in P. Then @ = Ker 3. Let

h

Py, ..., P, be the minimal primes of B not contained in P and let R = (] P; (if
i=1

h = 0, we adopt the convention R = B). Then R = Ann(Ker ). In the proof

of Lemma 9.2, we chose e € R\ P. Since Q ¢ P, for 1 <i<h, Q ¢ UPfor

1 <i < h. Hence there exists b € @ such that b ¢ P, for 1 <i < h. Replacmg e by
e + b, we may assume that e is not a zero divisor and that eV Ker 3 c Qv c PN
for all N € N. Since (Y) C /Ap x, there exists N € N such that

oF oFr >

N pg — N pq il =
(9.5) PNBi= (Y)VB C(axl’“"axp

F

(where we view the a as q -vectors). Choosing L > v; + N in the proof of Lemma

8.2, we get a map C* - compatible with (9.1). Using (9.5) and the fact that
the F; are linear in the X, we lift this map to p* : C* — B as desired.

We come back to the proof of Proposition 9.1. First, note that the only require-
ment on the elements yi,...,y, € Bp in the proof of Proposition 8.2 was that they
generate PBp. Thus, without loss of generality, we may assume that y1,...,y, € B
and that (y1,...,y.)B = P. Let the notation be as in (8.10), (8.17) and (8.25).
Wiite Oy = CVIWXXT W XTI - et X = (XM, XN+D). Let
(W, X, X) play the role of X and (U, V) the role of U in Lemma 9.2. (8.14) and
(8.18) imply that the hypothesis (9.2) of Lemma 9.2 is satisfied. By Lemma 9.2, we

obtain a C[Y]-algebra C},_; = C[Y’V*7%LVZ;§*’;Z*’U*7E] together with homomor-

phism § : O, — Cn4L[E], which becomes an isomorphism after localization by

E. Let A* = ARVLUZWLXE] - e algebra A* is nothing but the result of the

(Q*.H*) .
application of Lemma 9.2 to the A-algebra homomorphism A[Y] — %

In paritcular, we have a map o : A* — A; which induces an isomorphism
(9.6) Ay = A[E]p; moreover,

Next, we delocalize the sequence Co L C 2, C’N+ .- Namely, choose a positive
integer S sufficiently large so that there exist a} € A*" and g; € A*[u*, X*] such
that a(a}) = E%a;, 6(g}) = E°g; and ZZ 10797 =0in Cx, ;. Let g* denote the
column [-vector whose ith entry is the image of §; in B, multiplied by e°. Since the
matrices (af,...,a}) and (ay, ..., @) differ by a factor of the form ET, T € Ny,
we have KA*BéJ = KAB}. By Lemma 8.8, g € KAB%. Hence by choosing S
sufficiently large, we can ensure that

(9.8) g" € K4-B.
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Put G} = E5G;, C§ = %j]* and C* := A*l[”i‘f] We have the obvious
i ( i:lu’iGi) ( i:lu’igi)
maps : Cf L C* N ~Nir- We claim that the resulting diagram (1.7) satisfies
(1)—(8) of Proposition 1.6. Indeed, (1) follows from (9.7). (2) holds because Y; € m*,
by definition of Y. (3) is given by (9.7), Lemma 9.2 (2), the definition of Y and
the transitivity and base change properties of smoothness. (5) is trivial and (6)
is nothing but (9.8). Finally, (4), (7) and (8) are statements about localizations
Cpne- and A7 . and hence follow from Lemma 9.2 (1), (9.6) and the corresponding
properties of the diagram given by Proposition 8.2. This completes the proof of
Proposition 9.1 and with it Theorems 1.5 and 1.2. O

§10. SMOOTHING IN THE CATEGORY OF SUBALGEBRAS

In this section we give an affirmative answer to Problem 1.3 when A is reduced
and Z has infinite transcendence degree over x(A N Q) for any minimal prime
Q@ of B. We give two counterexamples. The first shows that the hypothesis of
infinite transcendence degree is necessary. The second shows that the hypothesis
that A is reduced is necessary for the existence of (1.2) such that ¢ is injective and

HC/AB - W/HD/CB'
Theorem 10.1. Assume that one of the following holds.
(1) dim A =dim B =0.
(2) A is reduced and for each minimal prime Q of B, there exist infinitely many
elements Ty, ..., Ty, ... in %, algebraically independent over k(AN Q).

Consider a diagram (1.1) with p injective. Then there exists a diagram (1.2) such
that v is injective and Ho/ja B C \/Hp,cB.

Remark 10.2. There are two special cases in which the hypotheses of (2) are sat-
isfied. Onme is when B = A[[z1,...,x,]], with z; independent variables, the other
when A is essentially of finite type over a field k or Z and B is the completion with
respect to a non-zero ideal I C A. To see this in the first case, let Ay be the subring
of A generated by 1. Then Ag[[z1,...,x,]] has cardinality continuum, hence has
uncountable transcendence degree over Ag. Since Ag[[x1,...,2,]]®4, A C B, B has
uncountable transcendence degree over A. The proof in the second case is similar,
except we let Ap be an essentially finite type algebra over a countable subfield kg
of k, satisfying A = Ap ®p, k. This raises the question, suggested by B. Teissier, of
describing B explicitly as a direct limit of its smooth subalgebras of finite type.

Proof of Theorem 10.1. Case (1). Since both A and B can be written as direct
products of local artinian rings, it is sufficient to consider the case when B is local.
Then B is a complete local ring and Theorem 10.1 follows from Theorem 7.10, since,
in this case, the algebra A* of Theorem 7.10 is isomorphic to B and is a filtered
inductive limit of smooth local A-subalgebras of B, essentially of finite type over a
polynomial ring over A.

Case (2). Let the notation be as in Theorem 1.5. We wish to prove that if p is
injective, we may choose D to be a subalgebra of B in Theorem 1.5. The idea is
that in §§9-10 D is obtained from C' by a composition of two kinds of operations:
adjoining algebraically independent elements and taking a finitely generated algebra
defined by linear (not necessarily homogeneous) equations. Since A is reduced, so
are B and C. Let Py,..., P, denote the minimal primes of B. Let @; := P, N C.
Renumbering the P;, we may assume that Q1,...,Qp are the minimal elements
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among the Q1,...,Q, h < k. Then (0) = ﬂ Q;, so that Q1,..., Q) are precisely

the minimal primes of C. Let K denote the total ring of fractions of C; K is a
direct product of fields.

First, suppose P is a minimal prime of B. Since C' is reduced, it is non-singular
at its generic points. In this case, PN A is a minimal prime of A, and x(P) is smooth
(i.e. separable) over k(P N A). Hence (P N C) is also separable over k(PN A). If
P N C were a minimal prime of C, this would mean that C' is smooth over A at
PN, which contradicts the fact that Hz/4 C PNC. Thus PNC' is not a minimal

prime of C'. In the above notation, we may take P = P}, and h < k. Pick an element
k—1
t e ﬂ P; such that ¢ is algebraically independent over C' mod P. Let z1,...,x

be a set of generators of the ideal PN C. Let T be an independent variable and let

D = % Define ¢ : D — B by ¢(T') = t. The algebraic independence of ¢

mod P implies that ¢ is injective. We have \/Hg/aD C (PNC)D = Hp ¢ Since
Dpnp = (f)g;gc (T) = (Pr%gmci —(T) = k(PN C)(T), and since x(P N C) C x(P)
are separable over k(P N A), we have Hp,4 ¢ PN D. Replace C by D. Iterating
this procedure finitely many times, we may assume that Hg,4 is not contained in

any minimal prime of B (hence also in no minimal prime of C).

Lemma 10.3. Under the assumptions of Theorem 10.1 (2), consider a commuta-
tive diagram

A—2—B

{1

C——cCr
where C* = % and the F; are linear in Uy, ...,Us. Let P be a non-minimal
prime ideal of B, such that PN C is not a mzmmal prime of C, and let t € N.
Assume that p is injective. Then there exists an ideal J, contamed in the C-torsion
submodule of C*, and an injective homomorphism py : =~ — B such that, letting

7 denote the natural map C* — <, we have

J b
(1) p=moroa.
(2) p*(U;) — p1(U;) € Pt for 1 <i <s.

Furthermore, He+ /o C /Anng-J.

Proof. Write F; = E bi;U; — bjp. Consider the linear map b : K° — K7 given

by the ¢ x s matrlx b”7 j#0. Forl < j<h let Kj =r(Q;). Let r; =
rk(bi)1<i<q mod Q;. Let pj denote the map C* ®¢ K; — B ®¢ K; induced by

1<1<s
p*. Let "bp denote the map K°* ®@c B — K?®¢ B induced by b. We will show that

there exists v = (vq,...,v5) € (Ker bg) N P*B* such that
tr. deg( [pj(U1)+U17"'7p;(US)+’US]/Kj):S_Tj

for 1 < j < h. We construct (v1,...,vs) as follows. By definition of r;, there exists
a subset S; C {1,...,s}, of cardinality s — r;, such that, fixing s — r; arbitrary

S .
@ ¢ B, i € S;, the system of equations ) bmv,(,{) = 0 in the unknowns

m=1

elements v;
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U,(,Z), m ¢ S; has a unique solution in B ®¢ K;. Choose vgj) € B, i€ S;, such

that the extension of K; which they generate in B ®¢ K; has transcendence degree

s —r; over pi(C* ® Kj). For i ¢ Sj, let Ufj) be defined by bivl(j) = 0. Let v\9)
i=1

53 ) Multiplying v() by a suitable element

of C', we may assume that ’U(j) € Bforalli, 1 <1i<s. Foreach j, 1<j<h, pick

%

denote the s-vector whose i¢th entry is v

h
an element z; € (P*NC)N( (| Qi\Q;). Definev = 3 z,;0) € Ker bg N P'B*.

1<i<h j=1

1#]

Define p1 : C* — B by p1(U;) = p*(U;) + v;. For each 1 < j < h, the map
p1j 1 C" ®c K; — B ®c Kj, induced by p1, is injective. Let J = Ker p;. Then
AnncJ is not contained in any minimal prime of C, i.e. J is contained in the
C-torsion submodule of C*. Take a prime ideal Q C C* such that He« /o ¢ Q.
Then CF, is smooth over C, hence has no C-torsion. Therefore J is annihilated by
some element of C* \ @, i.e. Anng~J ¢ Q. This proves that Hew o C v/ Annc-J.

Lemma 10.3 is proved. O

We go through the proof of Theorem 1.2 step by step and study the injectivity of
all the maps to B which appear along the way. Let C' = M be a presentation
of C. Consider a diagram (1.1). The first step is to replace C' by the symmetric
algebra S = Sc(4) (Lemma 5.2). By Lemma 10.3 there exists an ideal J contained
in the C-torsion submodule of S and an injective map % — B compatible with p.
Let S = % By Elkik’s Lemma (Lemma 5.2), S has a presentation such that the
conormal bundle is globally trivial above the smooth locus of S. Since

(10.1) HC/AS C HS/C C v/ AnngJ,

S and S are isomorphic above the smooth locus of S over C' and HC/AS' C HS/C'
Then HeyaS C HS/A by transitivity of smoothness. If HS/AB ¢ P, we may take
D = S and there is nothing more to do. Assume that Hg ,B C P; then P is
a minimal prime of Hg / 4B. Hence we may replace S by S in all the subsequent

arguments (note: we are not claiming that the conormal bundle of S is free over
the smooth locus of S; however, by (10.1), it is free away from the locus defined
by the ideal H := HC/AS', which has the property that /HBp = P—this is what
we actually used in the proof of Theorem 1.2). From now on assume that 1% is
globally free away from the locus defined by an ideal H, such that v HBp = P.
By Propositions 9.1 and 1.6 (and by the proof of Proposition 9.1), there exists a
commutative diagram

(10.2) A——B
R ———

pu
C Cly] CIY,V,E| ——— Clyr ——D

such that C[Y,V,E] is pure transcendental over C' (in particular, C[Y,V, E] is
defined by zero linear equations over C[Y]), Cx is defined by linear equations
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over C[Y, Vv, E], D by linear equations over Cy

(10.3) Y) CHey sowv.mp
(10.4) (Y)C Hpjey,,, and
(10.5) Hp/aB ¢ P.

We want to show that D can be chosen so that the map D — B is injective.
First, we show that the map p, : C[Y] — B can be chosen to be injective. In
other words, we have to show that there exists a set (y1,...,yq) of generators of
P algebraically independent over C. Take a set (y1,...,Yq) of generators of P.
Suppose tr.deg(C[y])/C) = b < a. Say, y1,...,yp are algebraically independent
over C' and yp41, ..., Yq are algebraic over Cly1, ..., ys). For each i, 1 <i < h, take
an element z; € B, transcendental over C[y] mod P;. It is easy to construct a Cly]-
linear combination x of the x;, which is transcendental over Cly] mod P; for each

h
i,1<i<h Ifb=0,pickwe (P\ (U P)) Np(C) and define y,41 := wz; then
i=1

Yat+1 € P is transcendental over C. Next, assume b > 1. Let yé_H = Yp+1 + TY1.
Replacing yp11 by ¥, we increase tr. deg(Cly]/C) by 1. By induction on b, there
exists a choice of generators (y1,...,y,) which are algebraically independent over
C'. That is, we may assume that p, is injective. Applying Lemma 10.2 successively

: - - Cx
to the homomorphisms C[Y] — C[Y,V, E], p,(C[Y,V,E]) — W and

* * D . .
Pne(Crir) — e p D> We get a commutative diagram

A—— B

oo

Let J = Ker 1. Using (10.3)—(10.4), the fact that smoothness is preserved by base
change and the last statement of Lemma 10.3, we have

(10.6) (Y)D C Hpje  and
(10.7) (Y)D C \/AnnpJ.
Let Dy := £ By (10.6) and (10.7),

(10.8) (Y)Dy C Hp, c.

Let Ry,..., R; denote the minimal primes of A, contained in P. Then R1A,,, ...,
Ry A,, are precisely the minimal primes of A,,. By regularity of o, R1Bp, ..., RiBp
are precisely the minimal primes of Bp. Similarly, since Dpnp is smooth over A,
Ri1Dpnp, ..., RiDpnp are the minimal primes of Dpnp. Since (y)B = P is not
a minimal prime of B, p,(Y) ¢ R;Bp for any i¢. Then (Y)Dpnp ¢ R;Dpnp for
any 4, 1 <14 <. Since (Y)Dpnp is not contained in any minimal prime of Dpnp,
(10.7) implies that JDpnp = 0. Hence Dpnp = (D1)pap, so Hp, 4B ¢ P by
(10.5) and Lemma 10.3 (2). We have constructed a C-algebra D; together with
an injective map ¢ : Dy — B, such that \/Hc/aB C Hp,/cB (cf. (10.8)) and

Hp,/aB ¢ P (hence \/Hc jaB G Hp, jaB), as desired. O

The next example shows that Theorem 10.1 may fail if A is not reduced.
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Example 10.4. Let k be a field and let A := H20ews 100 .= A[[T]]. Let

(z2,2y,x2)

C = % and define the map p : C — B by p(u) = yT. We want to show
that there does not exist a commutative diagram (1.2) such that ¢ is injective
and (z,y,2)B C \/Hp;cB. Suppose such a diagram (1.2) exists. Since zu =
0 in D and since Annpx = (Annax)D by flatness, we have ¢(u) € (z,y,z)D.
Write ¢(u) = xv; + yva + 2™vs in D, where either vz ¢ (z,y,2)D or vs = 0.
We have ¢(zv1) € (y,2)B N (z)B = ((y,2) N (x))B = (0), so zv;y = 0 in D by
the injectivity of ¥. Hence ¢(u) = yvs + 2™v3. We claim that vs = 0. Indeed,
we have yT' = yy(va2) + z2™P(vs). Hence z™p(vs) € (y)B N (z")B = (yz")B,
so that ¥(vs) € (x,y)B. Then ¢(zvs) = x(vz) = 0, so xzvs = 0 and hence
vs € (z,y, 2)D, which implies v3 = 0. We have shown that ¢(u) € (y)D. Therefore
for any prime P C D with Hp,c ¢ P, we have u € (y)Cpnc, which implies that
Annc (7@)) ¢ PN C. This means that Hp,c C \/(Annc (7(‘;)’))D = +/(z,y)D, so
that \/Hp,cB C (z,y)B, which contradicts (x,y,2)B C \/Hp,cB.

The next example shows that if B does not have infinite transcendence degree
over A, then Theorem 10.1 may fail, even when A is regular. First, consider the
analogous question for modules in Lazard’s theorem. By an argument similar to
that of Lemma 10.3, one shows that for a reduced ring A, a flat module M which
has infinite rank over the residue field at every minimal prime of A, is an inductive
limit of free finitely generated A-submodules. We give an example showing that this
is not so without the infinite rank assumption. We then use it to give an example
of a regular homomorphism of noetherian rings ¢ : A — B such that B is not a
direct limit of smooth A-subalgebras of finite type.

Example 10.5. Let ko be a field and a;j, bi;, cij, § € N, 1 < i < 3, independent
variables. Let k be the pure transcendental extension of ky with the generators
aij, bij, cij, 3 € N, 1 <@ < 3. Let A := k[2,9, 2](2,y,2), With 2, y 2z independent
variables. We define the following inductive system:

¢7171

(10.9) My 25 My 2Oy, O

of free finitely generated A-modules. Put M; = A3 for all i € N. Let f;,q:,h;
denote the generators of M;. Let

(10.10) lij = aijr 4 bijy + cijz,

1 <i <3, 75 € N. Define the homomorphism ¢; by ¢;(f;) = liifit1 + l2igit1,
¢i(gi) = —lzi fix1+loihiz1, ¢i(hi) = —l3:9i41—l1iihig1 for i € N. Let M := lim M;.

11— 00

M is an inductive limit of free A-modules, hence flat. We want to show that M
is not an inductive limit of free finitely generated A-submodules. Suppose the
contrary. Since rk M = 2, any free submodule of M can have rank at most 2.
Hence there exists a constant n € N such that, in the notation of (10.9), M is also
the limit of the inductive system

(10.11) My % A2 My — A2 Mopay — - .

Represent ¢ and A, respectively, by a 2 x 3 and a 3 x 2 matrix with entries in A;
denote these matrices by ¥ and A. Similarly, represent each ¢; by a 3 x 3 matrix
d; with entries in A. By construction, AV = &, &, ---®;. Consider the 2 x 2
submatrix ® of (®,,P,_1---P1), obtained by deleting the third row and the third
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column of (®,P,_1---P1). To get a contradiction, it remains to prove that ®
is not a product of two non-invertible 2 x 2 matrices with entries in A (we may
assume that the first matrix is not invertible because I'm(A¥) is not contained in
ATU(Af; + Agr), and the second because Im(A¥) is not contained in a submodule
of the form A(fs + bha) + A(ga + chz2)). It is sufficient to prove that det @ is
an irreducible polynomial in k[z,y, z]. The polynomial det ® is homogeneous in
x, y and z of degree 2n. Moreover, the coefficients of det ® are homogeneous
polynomials in a;j, b;; and c;; of degree 2n, quadratic in the variables a;;, bsj, cij
for each fixed j. For each i € N, let k; denote the pure transcendental extension of
ko generated by x, y, z, ai;, bij, cij, where j € N, j #4dand 1 <[ < 3.

Lemma 10.6. The polynomial det ®, viewed as a polynomial over k;, is an irre-
ducible quadratic form in the nine variables aj;, bji, cji, 1 < j < 3.

Proof. The polynomial det ® is a quadratic form over k; in aj;, bjs, cji, 1 <j< 3.
Let ®; denote the 3 x 2 matrix given by the first two columns of ®; and ®,, the
2 x 3 matrix given by the first two rows of ®,,.

Lemma 10.7. Let 2 < i < n— 1. Write ®,®,,_1---®; = <¢11 12 ¢13>,

¢21 G2 Po3
~ Y11 Y2
G; 1 PPy = | Ya1 Yoo |. Then ¢i5, Yij, aii, b, cii, x, y, z are all alge-
P31 P32

braically independent over k.

Proof. Since each matrix ®; involves a different set of variables a;, by, ¢, it is
sufficient to prove that each of the sets {¢;;} and {¢;} separately is algebraically
independent over ko(x,y, z). This is proved by straightforward induction on n — i

and ¢, respectively. O
We have
lyy =l 0 P11 P12
(10.12) d = @“ 212 il?’) i 0 g | | Y21
A v TR 0 oy —li/ \¥s1 32
Lemma 10.6 follows by a direct calculation. O

By Lemma 10.6, if det ® = fg is a factorization of det @, then for each ¢, 1 < i <
n, either f or g is independent of a;, by, ¢;;. In other words, there is a partition
{1,...,n} = Ay [T Ay, such that f depends only on z, y, z and a;;, by;, ¢;; fori € Ay
(and is a quadratic form in these nine variables for each fixed ¢) and similarly for g.

Say, 1 € Ay. Let P := &, P,_; - Dy, and write & = (? f ;) By definition,

- hh =l

D = |l 0 |. Hence ® = <
polynomial in a;1, b;; and ¢;; over kq[z,y, 2], the coefficient of agjas; is ¥2(ae — f39).
By induction on n, ae — 36 is an irreducible polynomial in k[z,y,z]. By (10.12)
and Lemma 10.7, det ® is not divisible by x, hence g is not divisible by x. Thus
g = ae — 36 and f depends only on a;1, b;1, ¢;1 and x, y, z. By symmetry we can
make the same argument for n instead of 1. This proves that g depends only on
Qiny Din, Cin and z, y, z. Then n = 2, in which case det ® is clearly irreducible.
This proves that M is not a direct limit of its free finitely generated submodules.

alyy + Blor —aldsr + vl

eloy + 011y —0lay + Xbl)' Viewing det ® as a
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Remark 10.8. In Example 10.5, tk M = 2. Since A is a UFD, any flat rank 1
A-module is a direct limit of free finitely generated submodules. However, there
exists a normal local ring A which is not a UFD, and an A-module M of rank 1,
which is not a direct limit of free A-submodules. Namely, let ky be a field. Let
x, Y, z be independent variables. Consider an infinite number of variables a;, b;
and c¢j, j € N. For each j, let r; and s; denote the roots of the quadratic equation
(a; X +b;)? — C?X = 0. Let k denote the extension of ky generated by a;, b;, ¢;,

rj, 85, j € N. Let A := % We define the following inductive system:

¢”*1> M, _¢1, ..

My 2 0,
of free finitely generated A-modules. Put M; := A2 for all i € N. Let f;, g; denote
the generators of M;. Let ly; = ajz+bjy+cjz, loy = aj(x —r5y), l3; = a;(x—s;y),
laj = ajr+bjy—c;jz. Define ¢; by ¢;(fi) = liifiv1+12igiv1, ¢i(9:) = I3i fir1+laigita
for i € N. Let M := lim M;. The module M is an inductive limit of free modules,
11— 00

hence flat. Since l1;l4; = l2;l3; by construction, we have rk M = 1. To prove that
M is not a direct limit of free submodules, represent the homomorphisms ¢; by
2 x 2 matrices ®;. If M is a direct limit of free submodules, these submodules must
necessarily be of rank 1. Then for some n we can write ®,, --- ®; = AV, where A
and ¥ are a column 2-vector and a row 2-vector, respectively. Let ¢ denote the left
uppermost entry of the matrix ®,, --- ®;. It is sufficient to prove that ¢ cannot be
written as a product of two elements of A in a non-trivial way. Suppose ¢ = fg.
Since, for each ¢ € {1,...,n}, ¢ is a linear homogeneous polynomial in a;, b;, ¢;,
rj, S;, there exists a partition {1,...,n} = Ay ] A4 such that f depends only on
z,y, z and a;, bj, ¢j, 14, s; for j € Ay and similarly for g. Then one uses induction
on n to show that #A s, #A, < 1, which easily leads to a contradiction.

Next we show how Example 10.5 and the example of Remark 10.8 can be used
to construct regular homomorphisms o : A — B such that B is not a direct limit of
smooth A-subalgebras of finite type. In the first example we will have tr.deg4 B =
2, in the second tr.deg,B = 1.

Example 10.9. Let ko be a field and let k = ko(a,b,c,d), where a = {ai;} jen
1<i<3

and similarly for b, ¢ and d. Let A = k[z,y, 2](z,4,.)- Let l;; be as in (10.10) and

let B denote the ring generated over A by the symbols {f;,g;,h;};en with the

relations
Ji—dvi = lifig1 + l2igiva,
(10.13) gi — d2i = —lsi fig1 + l2ihiy,
hi —d3i = —l3igi+1 — liihiya,

localized at the maximal ideal generated by (zx,y, z). There is a natural homomor-

phism ¢ : B — k[[z,y, z]]. Indeed, we can use the relations (10.13) recursively in ¢ to
klz,y,2]

(z,y,2)"
scendental extension of k(x,y, z) of degree 2, generated by f1 and g;. Since f; and
g1 are mapped to elements of k[[x, y, z]] algebraically independent over k(z,y, z), ¢

is injective.

construct homomorphisms B — By (10.13), B is contained in a pure tran-

Claim. The ring B is noetherian.
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. . o Alfigishil(@,y,z _
Proof of Claim. For i € N, let B; := (lsi(fi—dli)+lli(gi—¢i(2i§l+l)2i(hi—d3i))’ so that B =

lim B; and B; C B for all i € N. By (10.13) all the B; are birational to each other

Z(alizi hence also to B). Let m := (x,y,2)B. By construction, for every n € N,
L %, so that k[[z,y, z]] is the m-adic completion of B. It is sufficient to
prove that every prime ideal of B is finitely generated. Let I be a prime ideal of
B and put I; := I N B;. Since m is finitely generated, we may assume that ; m.
Since B; is noetherian, I; is finitely generated. Hence it is sufficient to prove that

for 4 sufficiently large
(10.14) I;Biy1 = Iy
Let A\;; : B; — B; denote the birational map between B; and B;. There exist

V1ij V2i5 VU3ij
elements Voij, V1ij, V2i5, U3ij S Bi such that Bj = Bi [Kij" K’ij" ﬁ} If V0oij ¢ I for

all j > ¢, (10.14) holds since in that case all the \;; become isomorphisms after
localization by the multiplicative system S generated by the vg;;, 7 > ¢, s0 I; Biy1 =
Il' (Bi+1)5 mBi—i—l = Ii+1 (Bi+1)5 mBi—i—l = Ii+1 . Now we compute V0oij eXphCltly from
(10.13) and show that we can choose 7 sufficiently large so that vg;; ¢ I. By (10.10)
and the identity I3 j+1(fit1 —d1,it1) +11i41(gi+1 —d2,it1) FHl2,it1 (Riv1 —d3i41) = 0,
we have vo;i+1 = liil1,i+1 —l2il3,141 — I3il2,i+1, Which is a non-degenerate quadratic
form in z, ¥y and z. Since I & m, there are at most two distinct values of i for

=
which vg; j+1 € I. The Claim is proved. O

Since B is noetherian, it is a regular 3-dimensional local ring with residue field
k; hence the inclusion homomorphism A — B is regular. By (10.13), Qp/4 is
exactly the module M ®4 B, where M is the module of Example 10.5. If B is a
direct limit of smooth A-subalgebras Ay of finite type, these subalgebras would have
transcendence degree two over A. Now assume, in addition, that char £k = 0. Then
the modules of Kéhler differentials Q(4,),,4, /4 ®a, k[[z,y,2]] are free k[[z,y, 2])-
modules, injecting into Qp,4 ®p k[[z,y, 2]]. This is impossible by Example 10.5
(replace k[z,y, 2](z,y,-) in Example 10.5 by k[[z,y, 2]]). Thus B is not a direct limit
of smooth A-subalgebras of finite type.

Similarly, one can use the example of Remark 10.8 to construct a regular homo-
% — B, where B is a noetherian A-algebra of transcendence
degree 1 over A which is not a direct limit of smooth A-subalgebras of finite type.

morphism

§11. APPROXIMATION THEOREMS

In this section, we use Theorem 1.1 to deduce the Artin approximation theorem
for Henselian pairs, as well as the nested smoothing and nested Artin approximation
theorem. First, we use Elkik’s Lemma to strengthen Theorem 1.1 (under some
additional hypotheses) by requiring that the smooth A-algebra D of (1.2) be étale
over a polynomial ring Alvy, ..., vg].

Definition 11.1 (D. Popescu). Let A be a ring and D a smooth A-algebra of finite
type over A. Let
(11.1) p = A

(f)
where v = (u1,...,u,) and f = (f1,...,fr), be a presentation. We say that
(11.1) is standard if D is a complete intersection (that is, ht (f) = r) and after



438 MARK SPIVAKOVSKY

3{? is invertible in D. If D admits a
J11<d,5<r

standard presentation over A, we will say that D is standard over A.

renumbering the f; and the u;, det

Note: if D is standard, then it is étale over the polynomial ring A[u,41, ..., Uy].

Proposition 11.2. Let o : A — B be a ring homomorphism and D a smooth finite
type A-algebra together with an A-algebra homomorphism v : D — B. Let J be an
ideal of A such that

(11.2) W(D) € o(A) + JB

and every element of (1+JB)N(D) is a unit of B. Then there exists a finite rank
projective D-module M, an element x € D’ := SpM and an A-algebra homomor-
phism D! — B, compatible with v, such that D!, is standard over A. Given any
presentation D = #, M can be chosen to be the direct sum of 1L2 with a finite
rank free D-module.

Proof. Let D = M be a presentation of D. First, consider the D-algebra
Sp7z. By Lemma 5.2, Sp+> has a presentation in which the conormal bundle is
globally trivial, that is, S Dli2 is a complete intersection. Replacing D by S DIL%
we may assume that D is a complete intersection, that is, in the new notation,
I=(f1,...,fr), where r = ht I. Under this assumption, we will show that M can
be chosen to be a free finite rank D-module.

Let % stand for the r x n matrix ngj). Since D is smooth over A, we have

A¢D = D. Then there exists an n X r matrix G = (gi;)1<i<n With entries in D
1<5<r
such that

of
11.3 —G =1d,
(11.3) 5y
(where Id, stands for the r x r identity matrix). Let ¢ = (¢1,...,t.) be new
variables and put D’ = D[t]. Extend ¢ to a map ¢’ : D’ — B in an arbitrary way,
for example, by sending all the ¢; to 0.
Now, for each (4,), 1 <i<n,1<j <r, pick an element a;; € A such that

(this is possible by (11.2)). Let Gy denote the n x r matrix (a;j)1<i<n. By (11.3)

1<j<r
and (11.4), we have

0
(11.5) P (8_£> o(Gy) = Id, mod JB,
SO det(d)(%)a(Go)) = 1 mod JB and is therefore invertible. Let x = det(%Gg).
Since () is invertible, ¢’ extends to a map D! — B. It remains to show that D!,
is standard.
Consider the change of variables

(11.6) i =ui— Y agt;, 1<i<n
j=1
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Let fi(@i1,...,1n) = fi(u1(@0),. .. ,un(@)), 1 <4 < r. By (11.6) and the chain rule,

of:
det / = det (gGO) =z,
il u
1<i,j<r
which is invertible in D/. Thus the Jacobian matrix of fl, ceey fr has an r x r
invertible minor, hence D/, is standard over A. This completes the proof. O

Now let (A,I) be a Henselian pair and let A denote the I-adic completion of
A. Assume that the natural homomorphism o : A — A is regular. This condition
holds, for example, whenever A is an excellent ring or, more generally, a G-ring.
If A is a local ring, then the requirement that o be regular is the definition of a
G-ring. If A is local and Henselian, o is regular if and only if A is excellent. We
obtain the following general form of the Artin approximation theorem.

Theorem 11.3. The approzimation property holds for the pair (A,I). That is,
for a system of algebraic equations with coefficients in A, any solution in A can be
approzimated by a solution in A arbitrarily closely in the I-adic topology.

Proof. Consider a system of algebraic equations over A. This means that we are
given unknowns uq, ..., u, and a set of equations which we may regard as an ideal
J C Aluy,...,up]. Consider the finitely generated A-algebra C = M
Consider a formal solution, that is, a homomorphism j : C — A. We want to show
that there exists a true solution, i.e. a homomorphism p : C' — A which agrees with
p mod IV, where N is an arbitrarily fixed positive integer. By Theorem 1.1 and
Proposition 11.2, we may assume that C' is an étale extension of the polynomial
ring Afupq1,...,uy] (where r = ht J). We define the desired solution p : C' — A
as follows. For each i, r < ¢ < n, pick z; € A such that p(u;) — x; € INA. Put
p(u;) = ;. Now ¢ is an étale extension of A having a section

’ (u7‘+1_17‘+1;~~~7 un_wn)

in IAN, hence it has a section in A by the Henselian property of (A, I). O

A further generalization of Artin approximation is the nested approximation
theorem. The nested version is useful for studying deformations of singularities, as,
for example, in the work of Mostowski and Teissier on algebraization of singularities
by deformation. We give two different proofs of the nested approximation. In one
of them, we follow Bernard Teissier [19] in that we first prove Teissier’s “nested
smoothing” theorem and then deduce nested approximation as an easy corollary.

Theorem 11.4 (B. Teissier). Consider a commutative diagram

Ay — oA, 22, Ol = A
Loe
(11.7) O =gy 2, o
Aol L b
B -4 .pB P,  Prp _B

of homomorphisms between noetherian rings, where C; is of finite type over A,
1<i<m. Let A, .= A; ®a, , Bi—1 (A} = Ay by convention). Assume that A
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is noetherian for all i. Assume that the induced homomorphism o; : A, — B; is

reqular for each i. Then (11.7) can be extended to a commutative diagram

Ay =2 4, 2, 0 24, =4
" s -
o R NG . TN U o B
(11.8) é1 $2 Sm
D, . p, 2, . I, p.=D
Y1 P2 Ym
B2 g, B, 9t g _p

such that for each i, 1 < i < m, D; is smooth of finite type over D;—1 ®a,_ , A;
(for i = 1, this condition should read “smooth over A1”). Let I be an ideal of A
and I; == 1IN A;, 1 <i<m. Assume that for each i every element of 1 + I;B;
is a unit of B; and that ‘;‘—L‘ &~ I?ﬁ"ﬁ Then D; can be chosen to be standard over
Di—1®a, , A

Proof. We proceed by induction on m. For m = 1 the result is nothing but Theorem
1.1 together with Proposition 11.2. Assume m > 1. Flrst apply Theorem 1.1 and

Proposition 11.2 to the maps A}, Tm, C®a,, , Bn-1 L, B, where o, = pL,oTh
is regular by assumption and C ®4,, , By,—1 is of finite type over A/,. We obtain
a factorization

(11.9) Al —-C®a, _, Bn1—D —B

m—1
of g, where D’ is a smooth (resp. standard) A} -algebra. Next, let C/, _; be a
finite type pm—1(Ch—1)-subalgebra of B, 1 such that the first two homomorphisms
in (11.9) are actually defined over CJ,_;, so that the first two maps in (11.9) are
obtained from a sequence

(11.10) Am ®a,,_, 07/11—1 —C®a, , 07/11—1 —>D—>B,

/

where D is a smooth (resp. standard) (A ®.4,, , C! _,)-algebra of finite type, by
tensoring with B,,_1 over C/. ;. Consider the following commutative diagram:

A O Oms g Omea
‘r1l l l l‘l'm—l
(1111) Cl Jt . Om 2 Om_Q _— C';n—l
Al s |
Bl ﬁmfz Bm—l
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Apply the induction hypothesis to (11.11). We obtain a commutative diagram

A =2 A AL, L AL

- S

o e, O
(11.12) 4 -

Dy —2— . Dy % Dy

P1 Ym—2 Ym—1

61 Bme ﬁm—Z

Bm—2 — Bm—l

By

with D;is smooth of finite type (resp. standard) over D;_1®4, , 4;,i < m—1. Put
D :=D®c¢s | Dp—1. Since D is smooth (resp. standard) over A®4,, , C, D

m—1»

is smooth (resp. standard) over A®a4,, , Dp—1. We have the map D — B coming

from the tensor product; the map C' — D is the composition C — C®4,,_,Cr._; —
D — D =D®c¢; _, Dn-1, where the first and last maps are given by x — z ® 1.
This completes the construction of (11.8). |

Theorem 11.5. Consider a diagram (11.7). Let the assumptions be as in Theorem
11.4. Lgt I be an ideal of A and let I; :== INA;. Let A; denote the I;-adic completion
of A;, B; the I; B;-adic completion of B;. Assume that

(11.13) Ai=B; foralli, 1<i<m,

and that (A;,1;) is a Henselian pair for all i. Then there exists a homomorphism
p: C — A such that for each j, 1 < j <m—1, p(C;) C Aj. The homomorphism
p can be chosen to agree with p up to an arbitrarily specified power of I.

Remarks 11.6. (1) The algebras C; in the diagram (11.7) can be regarded as
nested systems of algebraic equations over A; with solutions in B;, which we
want to approximate by solutions in A;.

(2) Let { } denote convergent power series and { ) Henselization. The special
cases of interest in Theorem 11.5 are A; = Ay (zy,...,x;) and B; = A; or
Bj = Ai{x1,...,z;}, where A, is equipped with a multiplicative norm in the
sense of [11, §45].

(3) If all the A, and B; are G-rings, as in (2) of this remark, the condition that
the o; be regular homomorphisms is a consequence of (11.13), so it does not
need to be specified separately.

First proof of Theorem 11.5. By Theorem 11.4 we may, replacing the C; by the D;,
assume that each Cj is standard over A; ® 4, , C;—1. Fix an integer N € N. We will
denote by p; the restriction to C; of the hypothetical homomorphism p which we
want to construct. We will construct the maps p; : C; — A; recursively in i. For
i =1, (4 is standard over A; and the map p; is constructed exactly as in Theorem
11.3. Suppose that p;_1 has been constructed. Consider the decomposition

(Cic1 ®a,_y Ai) = (Cic1 ®a,_, Ao, ... 0] = Cy,

where the v; are algebraically independent over C;_1 ®4,_, A; and € is étale. The
map (a;j—1 0 p;) : Ci—1 — A; induces a map C;_1 ®4, , A; — A;. We extend



442 MARK SPIVAKOVSKY

it to a map p; : C; — A; in the usual way: first, let p;(v;) be any element of
(pi(vy) + IN B;) N A;, then extend p; to C; by definition of Henselian. O

We give another proof of Theorem 11.5, under the additional assumption that
the homomorphisms «; are flat.

Second proof of the Nested Approximation Theorem, assuming that the o are flat.
Again, we use induction on m. Again, consider the homomorphisms A/, — C®a4,,_,
B,,-1 — B. Since (A,I) is a Henselian pair with I-adic completion B, so is
(A5, TA! ). Applying Theorem 11.3, we obtain a homomorphism p’ : C ®4,, ,
By,_1 — A, which agrees with p mod I'V. We may regard C as a (Cp,_1®a4,,_, A)-

. _ (Cm-1®a4,, ;A)[v1,...,v1]
algebra; let C' = (gl,___l) ™

ki
For each v;, write p'(v;) = > (ai; ® b;j) with a;; € A and b;; € B,,—1. Let
j=1
w={w; |1<i<1l 1<j <k} be new variables. Let > (a; ® b;) stand for
J

be a presentation of C over C,,,_1 ®4, _, A.

ki
the collection { 3" (aij; ® bs;) | 1 < i <1} and similarly for {3 (a;w;)} C Afw].
Jj=1 J

For each q, 1 < q < s, let hg(w) := gq( X (a;w;)) € (Crmo1 ®a,,_, A)[w]. Take

a finitely generated C,,_j-submodule M JC Cm-1 ®a4,,_, A which contains all
the coeflicients of all the polynomials hq. Since A is assumed flat over A,,_1,
Cpm-1®a,,_, Ais flat over Cp,—1. Thus the inclusion M C Cp—1 ®4,, , A can be
factored through a free Cy;,—1-module FF = C" _,. Let {e1,..., e, } be a Cp,_;-basis

of F. For 1 < q < s, write hy(w) = 3 hgp(w)e,, where hyp(w) € Cpi[w]. Let
p=1

hi={hg | 1<q<s, 1<p<r} PutCpoy = Szl

p: Crm—1 — B_1 by setting p(w;;) := b;;. We get a commutative diagram

. Define a homomorphism

A — L Ay A
gl | | |
(11.14) O = s O
ﬁll l lﬁm” lﬁm*l
By B, . Lrs B2 Lz, By—1

By the induction assumption, there exists a homomorphism p,,—1 : Cro1 — Ap—1
which agrees with p,,—1 modulo IY | and such that p,,—1(C;) C A;, 1 <i<m—1.
Now, letting p(v;) = Zle aijpm—1(wi;) defines a map p : C — A which agrees
with p modulo IV. This completes the proof. O

APPENDIX. REGULAR HOMOMORPHISMS WHICH ARE NOT INJECTIVE

Let 0 : A — B be a homomorphism of noetherian rings and let I denote the
kernel of o. The purpose of this Appendix is to show that ¢ is regular if and only
if Ann(I)B = B and the induced homomorphism % — B is regular.

Let A:= £ and let 7 : A — A be the natural map.
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Theorem A.l. Let A be a noetherian ring and I C A an ideal. Let A := % and
let C be an A-algebra. The following two conditions are equivalent:

(1) C is regular over A.
(2) C is regular over A and Anna(I)C = C.

Note that both (1) and (2) imply that I is contained in a minimal prime of A.

Proof. There is a 1-1 correspondence between the primes of A and the primes of A
containing I. For any prime P C A,

(7))

SO P—% is geometrically regular over one of these fields if and only if it is geometrically
regular over the other. For a prime P of A not containing I, x( %) ® C is the zero
ring, hence geometrically regular over n(%) by definition. Hence, to prove Theorem
A.1, it is sufficient to prove

Lemma A.2. Let A be a ring and I C A an ideal. Let A := % and let M be an
A-module. The following two conditions are equivalent:

(1) M is A-flat.

(2) M is A-flat and Anna(I)M = M.

Note that if A is noetherian, both (1) and (2) imply that I is contained in a
minimal prime of A.

Proof. (1) = (2). Since M is A-flat, it is a direct limit of free A-modules. For
each of the free A-modules A" — M mapping to M, tensoring both sides with A
over A, we get that M is a direct limit of free A-modules. Hence M is A-flat.

Since M is an A-module, every element in M annihilates I. Thus to complete
the proof of (1) = (2) it remains to prove

Sublemma A.3. Let A be a ring, I an ideal of A and M a flat A-module. Then
the set of elements in M annihilating I (which we denote by Annp(I)) is equal to
Anna(I)M.

Proof. Let ay, A € A, be a set of generators of I. Consider the exact sequence
(A.1) 0 — Ann(I) — A — A®,

where A® stands for the product of the (possibly infinite) set of copies of A indexed
by A and the last map in (A.1) sends = to {axx}rea. Tensor (A.1) with M and
apply flatness. This completes the proof of (1) = (2).

(2) = (1). Now, assume that M = Anna(I)M and that M is A-flat. Then M
can be written as a direct limit of free finitely generated A-modules. We want to
deduce that M can also be written as a direct limit of free A-modules. For that it is
sufficient to prove that any map A — M can be factored through a free A-module:

A— A" > M

for some n € N. Giving a map p: A — M is the same as giving an element 2 € M
(where © = p(1)). Since M = Anna(I)M, there exist y1,...,y, € Anna(I) and
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T1,...,Tn € M such that

(A.2) T = Xn:ylxl
i=1

Then p factors through A", where the map A — A™ is given by sending 1 to > v; X;
i=1

1=

(the X; being the generators of A™) and A™ — M sends X; to ;. O
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