1 Спуск Галуа для векторных пространств (7 марта)

Пусть L/K — расширение полей. Векторное пространство W над K можно превратить в векторное пространство $L \otimes_K W$ над L посредством тензорного умножения. При этом W вкладывается в $L \otimes_K W$: $w \mapsto 1 \otimes w$. При этом любой K-базис $\{e_i\}$ в W превращается в L-базис $\{1 \otimes e_i\}$ пространства $L \otimes_K W$. Переход от W к $L \otimes_K W$ называется восхождением (ascent). Обратно, если нам дано (ненулевое) векторное пространство V над L, можно попытаться описать K-подпространства $W \leq V$ такие, что K-базис пространства W является L-базисом пространства V.

Определение 1. Пусть V — векторное пространство над L. K-подпространство W такое, что K-базис W является L-базисом V, называется K-формой пространства V. Переход от V к K-форме V называется **спуском**.

 $Примеры 1. \ K$ -форма L^n — это K^n , поскольку стандартный K-базис K^n является L-базисом в L^n . K-форма $M_n(L)$ — это $M_n(K)$. K-форма L[x] — это K[x]. У любого векторного пространства V над L есть K-форма: можно взять любой L-базис $\{e_i\}$ в V, и его K-линейная оболочка является K-формой V.

Теорема 1. Пусть V — векторное пространство над L, W — K-подпространство V. Следующие условия эквивалентны:

- 1. любой K-базис W является L-базисом V;
- 2. некоторый K-базис W является L-базисом V;
- 3. L-линейное отображение $L \otimes_K W \to V$, $a \otimes w \mapsto aw$ является изоморфизмом векторных пространств над L.

Пусть теперь L/K — конечное расширение Галуа и $G = \operatorname{Gal}(L/K)$.

Определение 2. Пусть V — векторное пространство над L, $\sigma \in G$. Отображение $r \colon V \to V$ называется σ -линейным, если оно аддитивно и $r(av) = \sigma(a)r(v)$ для всех $a \in L$, $v \in V$.

Определение 3. **G-структурой** на L-векторном пространстве V называется набор функций $r_{\sigma}\colon V\to V,\ \sigma\in G$ такой, что r_{σ} σ -линейно, $r_{1}=\mathrm{id}_{V}$ и $r_{\sigma}\circ r_{\sigma'}=r_{\sigma\sigma'}$. Если на V задана G-структура, будем говорить, что G полулинейно действует на V.

Примеры 2. Пусть W — векторное пространство над K. На L-пространстве $L \otimes W$ можно ввести стандарную G-структуру: $r_{\sigma}(a \otimes w) = \sigma(a) \otimes w$. Если $\varphi \colon V \to V'$ — изоморфизм векторных пространств над L, и на V задана G-структура, то существует единственная G-структура на V', согласованная с φ .

Лемма 1. Пусть V — векторное пространство на L с G-структурой, V' — G-инвариантное L-подпространство (то есть, $\sigma(V') \subseteq V'$ для всех $\sigma \in G$). Тогда на фактор-пространстве V/V' можно задать G-структуру: $\sigma(v+V') = \sigma(v) + V'$.

Доказательство.	Несложно.		

Лемма 2. Пусть A- абелева группа, $\xi_1, \ldots, \xi_n \colon A \to L^{\times}-$ различные гомоморфизмы групп. Пусть V- векторное пространство над $L, u \ v_1, \ldots, v_n \in V$. Если $\xi_1(a)v_1+\cdots+\xi_n(a)v_n=0$ для всех $a\in A,$ то $v_1=\cdots=v_n=0$.

Доказательство. Линейная независимость характеров.

Для векторного пространства V над L с G-структурой определим множество неподвижных точек $V^G = \{v \in V \mid \sigma(v) = v \text{ для всех } \sigma \in G\}$. Очевидно, что V^G является K-подпространством V.

Лемма 3. Пусть V — векторное пространство над L c G-структурой. Определим отображение следа $\mathrm{Tr}_G\colon V\to V$ формулой $\mathrm{Tr}_G(v)=\sum_{\sigma\in G}\sigma(v)$. Тогда $\mathrm{Tr}_G(V)\subseteq V^G$ и для любого $v\in V,\,v\neq 0$, найдется $a\in L$ такое, что $\mathrm{Tr}_G(av)\neq 0$. В частности, если $V\neq 0$, то $V^G\neq 0$.

Доказательство. Несложно. Для второй части нужно воспользоваться леммой 2 для $A=L^{\times}$.

Теперь мы можем установить соответствие между K-формами и G-структурами.

Теорема 2. Пусть V — векторное пространство над L. Существует естественная биекция между K-формами V и G-структурами на V, которая K-форме $W \subseteq V$ ставит в соответствие векторное пространство $L \otimes_K W$ со стандартной G-структурой (точнее, ее перенос на V вдоль изоморфизма), а G-структуре на V сопоставляет множество неподвижных относительно нее точек V^G .

Доказательство. Мы приведем только [нетривиальный] кусок доказательства: докажем, что для пространства V с G-структурой K-подпространство V^G является K-формой на V. Более точно, отображение $f: L \otimes_K V^G \to V$, $a \otimes w \mapsto aw$, является изоморфизмом векторных пространств над L. Очевидно, что f является L-линейным отображением. Покажем, что fинъективно. Если $t\in L\otimes V^G$ таков, что f(t)=0, можно записать t в виде суммы разложимых тензоров $t = \sum_i a_i \otimes w_i$. Более того, можно считать, что элементы $w_i \in V^G$ линейно независимы над K. Тогда $\sum a_i w_i = f(t) = 0$, то есть, w_i являются линейно зависимыми над L. Докажем, что такого не бывает: любая линейно независимая над K система векторов из V^G является линейно независимой над L. Предположим противное и рассмотрим минимальную нетривиальную линейную комбинацию $a_1w_1 + \cdots + a_nw_n = 0$, где $a_i \in L$ и $w_i \in V^G$. Тогда $a_n \neq 0$, и после домножения на скаляр можно считать, что $a_n = 1$. Применяя к этой линейной комбинации σ , получаем $\sigma(a_1)w_1+\cdots+\sigma(a_n)w_n=0$. Заметим, что $\sigma(a_n)=a_n=1$ и вычтем одно равенство из другого: получим, что $(a_1 - \sigma(a_1))w_1 + \cdots + (a_{n-1} - \sigma(a_{n-1})w_{n-1} = 0$. Это линейная комбинация меньшей длины, поэтому из минимальности следует, что $a_i = \sigma(a_i)$ для всех i и для всех $\sigma \in G$. Значит, все a_i лежат в K; поэтому исходные векторы были линейно зависимы над K, что противоречит нашему предположению.

Покажем теперь, что f сюръективно. Рассмотрим его образ $f(L \otimes_K V^G)$. Это L-подпространство в V, устойчивое относительно действия G. По лемме 1 на нем индуцируется G-структура. Для любого вектора $v \in V$ выполнено $\mathrm{Tr}_G(v) \in V^G \subseteq f(L \otimes_K V^G)$, откуда $\mathrm{Tr}_G(\overline{v}) = \overline{\mathrm{Tr}_G(v)} = \overline{0}$. По лемме 3 это означает, что $\overline{V} = \overline{0}$, поэтому $V = f(L \otimes V^G)$, и f сюръективно.

В случае $K=\mathbb{R},\ L=\mathbb{C}$ группа Галуа состоит из двух элементов: $G=\{1,c\}$, где c соответствует комплексному сопряжению. Поэтому для задания G-структуры на V достаточно задать одно c-линейное отображение $V\to V$. Сюръективность отображения $f:\mathbb{C}\otimes_{\mathbb{R}}V^G\to V$ легко видеть из тождества $v=\frac{v+c(v)}{2}+i\frac{v-c(v)}{2i}$. В случае произвольного расширения можно написать аналогичные формулы.

Пример 1. Пусть X — конечное множество с действием группы Галуа G. Рассмотрим пространство $V = \operatorname{Map}(X, L)$ всех отображений из X в L относительно поточечных операций. Дельта-функции δ_x ($\delta_x(x) = 1$, $\delta_x(y) = 0$ при $y \neq x$) образуют его базис. Зададим полулинейное действие G на V: для функции $f: X \to L$ и элемента $\sigma \in G$ определим $\sigma(f): X \to L$

так, чтобы диаграмма

$$X \xrightarrow{f} L$$

$$\sigma \downarrow \qquad \qquad \downarrow \sigma$$

$$X \xrightarrow{\sigma(f)} L$$

была коммутативна. Это означает, что $\sigma(f)(x) = \sigma(f(\sigma^{-1}(x)))$ для всех $x \in X$. Какая K-форма соответствует этой структуре? Наивный ответ $\mathrm{Map}(X,K)$ (то есть, линейная оболочка δ_x) не подходит, если только X не состоит целиком из неподвижных точек: дело в том, что $\sigma(\delta_x) = \delta_{\sigma(x)}$.

Хорошо известно, что представления группы G (над полем K) тесно связаны с групповой алгеброй K[G]. Аналогично, G-структуры на векторном пространстве связаны с действием некоторой алгебры, которую мы сейчас построим. Пусть $C(G) = \bigoplus_{\sigma \in G} Le_{\sigma} - L$ -векторное пространство с базисом, индексированным элементами группы G. Определим умножение в C(G) правилами $e_{\sigma}c = \sigma(c)e_{\sigma}$ и $e_{\sigma}e_{\tau} = e_{\sigma\tau}$ для $\sigma, \tau \in G$ и $c \in L$. При этом C(G) становится ассоциативной алгеброй над K (но не над L!) с единицей e_1 , которая не является коммутативной при $L \neq K$. Нетрудно понять, что задание G-структуры на векторном пространстве V эквивалентно заданию структуры C(G)-модуля на V. При этом утверждение о существовании K-формы в любом пространстве превращается в тот факт, что любой C(G)-модуль раскладывается в прямую сумму модулей, изоморфных L (с естественной структурой C(G)-модуля).

Пусть теперь $V = L[x_1, \ldots, x_n]$ и G действует на коэффициентах многочленов из V; это определяет G-структуру на V. Ее K-форма $W = V^G = K[x_1, \ldots, x_n]$. Если $I \leq V$, то $I^G = I \cap K[x_1, \ldots, x_n] \leq K[x_1, \ldots, x_n]$. Будем говорить, что I определен над K, если он порождается (как идеал) некоторым подмножеством $K[x_1, \ldots, x_n]$.

Теорема 3. Для идеала $I \leq L[x_1, \ldots, x_n]$ равносильны:

- 1. I определен над K;
- 2. $\sigma(I) \subseteq I$ для всех $\sigma \in G$.
- 3. $\sigma(I) = I$ для всех $\sigma \in G$.

Для контраста посмотрим на расширение $\mathbb{F}_p(\sqrt[p]{t})/\mathbb{F}_p(t)$, не являющееся расширением Галуа. Пусть $I=(x-\sqrt[p]{t}) \leq L[x]$; тогда $\sigma(I)=I$ для всех $\sigma \in \operatorname{Aut}_K(L)=\{e\}$, но I не определен над K. В этом случае $I \cap K[x]=(x^p-t)$, поэтому идеал в L[x], порожденный $I \cap K[x]$, строго меньше I.

Пусть V — векторное пространство над L с G-структурой. Отображение $c\colon G\to V$ называется **1-коциклом** на V, если $c(\sigma\tau)=c(\sigma)+\sigma(c(\tau))$ для всех $\sigma,tau\in G$.

Например, для фиксированного $v \in V$ функция $c_v \colon G \to V$, $\sigma \mapsto \sigma(v) - v$, является 1-коциклом. Теорема Гильберта 90 (в аддитивной форме) утверждает, что все 1-коциклы $c \colon G \to L$ имеют такой вид. Можно обобщить эту теорему до коциклов в векторных пространствах с G-структурой:

Теорема 4. Пусть V — векторное пространство над L с G-структурой. Любой 1-коцикл на V имеет вид c_v для некоторого $v \in V$.

Мы пронаблюдали простейший случай соответствия, который неформально можно описать так:

Теорема 5 (Мета-теорема 1). Пусть L/K — конечное расширение Галуа c группой Галуа $G = \operatorname{Gal}(L/K)$. Тогда существует эквивалентность между категорией L-объектов c действием группы G (и G-эквивариантных морфизмов над L в качестве морфизмов) и категорией объектов над K (и морфизмов над K). При этом объекту над L c действием G сопоставляется объект неподвижных точек относительно этого действия; в обратную сторону соответствие устанавливается посредством расширения скаляров.

Теорема 6 (Мета-теорема 2). В условиях Мета-теоремы 1 существует биекция между множеством скрученных форм объекта V и множеством $H^1(G, \operatorname{Aut}_L(V_L))$. Здесь V —
объект над K, и его скрученной формой называется объект V' над K, который при расширении скаляров становится изоморфным объекту V посредством некоторого изоморфизма $\varphi\colon V_L\to V'_L$. Эта биекция сопоставляет объекту V' коцикл $\varphi^{-1}\cdot {}^\sigma\varphi$, а обратная κ ней сопоставляет коциклу $c\in Z^1(G,\operatorname{Aut}(V_L))$ объект $V'=({}_cV_L)^G$ (или фактор $({}_cV_L)/G$) со следующим действием группы Галуа $G\colon \sigma(x)=c_\sigma{}^\sigma x$.